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Abstract
We present a Model Driven Engineering approach to ex-
plain, verify, build, and test dataflow or streaming soft-
ware architectures that are parallelized for performance or
availability. Component-connector models are incrementally
elaborated by transformations that refine or optimize archi-
tectural designs. We re-engineered two significant case stud-
ies to illustrate the generality of our work: (1) recoverable
crash fault tolerant servers and (2) join parallelizations in
database machines.

1. Introduction
Model Driven Engineering (MDE) is a paradigm of increas-
ing importance to everyday software design and develop-
ment. In our experience, MDE has allowed us to focus more
on problem essentials and less on accidental complexities,
and has freed us from low-level details of common program-
ming languages (Java, C#) and platforms (Windows, Linux).

Our interest in MDE arose from implementing Recover-
able Crash Fault Tolerant (RCFT) servers that are examples
of streaming architectures (also called dataflow and pipe-
and-filter architectures) [9, 26]. The component-connector
models of these servers are so complicated that we needed
a way to convince ourselves and others of the correctness
of the designs. We re-engineered prototypes built by domain
experts as we wanted to synthesize the systems they had la-
boriously crafted by hand. As we are not domain experts, it
was not obvious to us how their architectures worked or why
they were correct. We needed a structured way to explain,
verify, build, and test our versions of their systems.

We used stepwise development (SWD) to achieve our
goals. SWD is a fundamental technique for controlling com-
plexity. It has been successfully used in developing pro-
grams [2, 15, 16, 29] and software architectures [4, 7, 8,
10, 12, 19, 13, 23, 24, 25, 31]. As SWD of architectures
is well-explored, we were surprised that prior results were
inadequate to explain RCFT architectures as well as stream-
ing architectures in other domains. The reasons are: (1) prior
work focused on a bottom-up construction of systems: com-
ponents and connectors were used to build progressively

higher-level abstractions. In contrast, we deal with middle-
ware mappings: we start with an executable architecture and
incrementally map it to a parallel architecture with desired
performance or availability properties; (2) architectural opti-
mizations that break abstraction boundaries for purposes of
efficiency and fault-tolerance are essential but absent in ex-
tant work; and (3) components may be extended with new
capabilities, ports and relationships that were not present
previously. This latter point is controversial as not all prior
work advocates extensions; extensions are common in our
approach. Without these additions, we could not describe,
let alone verify, the systems that we were building.

We present our findings as a structured MDE approach to
enhance streaming software architectures. We begin with an
executable component-connector architecture as our initial
model. We then transform this model by refinements (that
expose hierarchical detail) and optimizations (that break en-
capsulation boundaries) to incrementally derive a parallel ar-
chitecture. As each transformation is simple and so too is its
proof of correctness, our approach is correct by construc-
tion, i.e., if the initial architecture is correct and its transfor-
mations are correct, the final architecture is correct.

To verify that our hand-written implementations preserve
essential properties, we rely on testing. We define unit, mod-
ule, and integration tests after each transformation and reuse
these tests as the architecture is developed. In essence, we
not only derive and verify parallel architectures incremen-
tally, but also show how their implementations can be built
and tested incrementally as well. This too we believe is new.

We present two non-trivial case studies to evaluate and
demonstrate the generality of our work: (1) recoverable
crash fault tolerant servers and (2) join parallelizations in re-
lational database machines. In these studies, we reengineer
prototypes created by experts to give them architectures that
are designed in a principled manner. These studies illustrate
the similarity of architectures in different domains, but they
also reveal the fundamentals that underlie pragmatic SWD.
Our work shows how non-experts (other software engineers
like us) can participate and appreciate the challenges that ex-
perts face and the techniques they implicitly use. We begin
with an overview of our approach.
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2. Architectural Design Overview
An architecture is a directed graph of boxes and arrows. A
box is a component; an arrow is a communication path for
messages or tuples, pointing in the direction of dataflow.

A sort architecture is an elementary example. It consists
of a single box SORT that takes a stream of tuples A as input
and produces a sorted stream of tuples sort(A) as output
(Figure 1a). SORT works by reading stream A into memory,
sorting its tuples, and outputing the sorted stream. SORT has
other parameters, such as a sort key and a tuple comparison
function. We elide these details without loss of generality.

(a)
A sort(A)SORT

(b)

SORT

SORT

HSPLIT OMERGEA sort(A)...
A1

An

sort(A1)

sort(An)

SORT

Figure 1. Sort Architecture

An architectural transformation or simply transforma-
tion is a mapping of an input architecture to an output ar-
chitecture. Properties of relevance in the input architecture
are preserved by the output architecture. We identify two
kinds of transformations: refinements and optimizations. A
transformation that exposes hierarchical implementation de-
tail is a refinement. Figure 1b shows a classical database re-
finement of a SORT box that exposes how SORT can be
parallelized: the input stream A is hash-partitioned on keys
by the HSPLIT box, producing substreams A1 . . .An. All tu-
ples in stream Ai hash to value i ∈ 1 . . .n. Each substream
is sorted on the same sort key, producing sorted streams
sort(A1) . . .sort(An), which are then combined by an or-
dered merge, producing stream sort(A).

In general, boxes, arrows, or connected subgraphs can
be transformed. The transformations we consider can be
proven correct, but often they are simple enough that intu-
ition suffices. (The correctness of Figure 1b is ’obvious’ to
database researchers, but we are unaware of a published for-
mal proof). If the initial architecture is correct, and its trans-
formations are correct, the resulting architecture is correct.

2.1 Testing
Most details of a system are not captured by its architecture.
Although we might have a proof-of-correctness, say, for a
SORT box, we might not know if the box’s hand-crafted
implementation is correct. Hence testing is needed.

Figure 2a depicts a unit test or module test of a SORT box
as a harness that feeds input streams into SORT and verifies
that its output is correct. When SORT is refined (Figure 2b),

this unit test becomes an integration test that verifies the
correctness of SORT ’s parallel architecture. Additional unit
tests are created for the HSPLIT and OMERGE boxes,
so that these unit tests become integration tests when their
boxes are refined. Note the unit test for the SORT box is
also a system test, as it is a test for the entire parallel SORT
architecture.

(a)

SORTA sort(A)

(b)

SORT

SORT

HSPLIT OMERGE sort(A)...
A1

An

sort(A1)

sort(An)

SORT

Figure 2. Test Harnesses

In general, tests are created at every level of abstraction.
The validity of each test (i.e., the validity of the properties
that it checks) must hold after every transformation. So as
architectural details of an implementation are revealed, we
verify its correctness by an accumulation of tests. Note that
a test could be a unit test, integration test, or a system test
depending on the level of abstraction at which it is used. In
this sense, our approach has an appealing symmetry.

2.2 Optimizations
The second kind of transformation is an optimization. An
optimization breaks encapsulations to realize non-functional
properties (e.g., efficiency or fault-tolerance); it is an equiv-
alence rewrite that does not alter design semantics. Consider
the projection-sort architecture of Figure 3a. A stream of tu-
ples A enters projection box PROJ, where PROJ removes
unnecessary fields. The resulting stream A′ is then sorted,
yielding stream B.

Both PROJ and SORT boxes are refined individually to
their parallel counterparts in Figure 3b. Both HSPLIT boxes
partition streams using exactly the same hash function.
Note that the MERGE box serializes substreams A′1 . . .A′n
into stream A′ and then HSPLIT reconstructs these same
substreams. An optimization removes the MERGE and
HSPLIT pair, as their composition is the identity map. Fig-
ure 3c shows the optimized projection-sort architecture.

Optimizations play havoc with tests, as boxes and con-
nectors can disappear. For example, the connector between
MERGE and HSPLIT in Figure 3b is absent in Figure 3c.
To run tests after an optimization, it may be necessary to
reintroduce eliminated boxes – MERGE is reintroduced to
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Figure 3. Optimization and Testing

run the PROJ unit test in Figure 3c. Reintroductions are
temporary—they only belong to test harnesses.

The optimization of PROJ − SORT example is an in-
stance of a more general concept we call an exchange. Fig-
ure 4a shows substreams A1 . . .An combined by a MERGE
(which is part of one abstraction) and split into substreams
B1 . . .Bk by a HSPLIT (which is part of another abstraction).
Unlike the PROJ − SORT example, here the composition
of MERGE and HSPLIT is not the identity map. An ex-
change reorders stateless computations. The key property of
Figure 4a is each tuple of an Ai substream is hash-routed
to a unique B j substream. This property is preserved by ex-
changing (swapping) the composition order of MERGE and
HSPLIT (Figure 4b): substream Ai is first HSPLIT into sub-
streams Ai1 . . .Aik and then substreams A1 j . . .An j are com-
bined by MERGE to form substream B j for all j ∈ 1 . . .k.
Exchanges are essential in streaming architectures.

(a)

MERGE HSPLIT

A1

An

B1

Bn

(b)

MERGEHSPLIT

HSPLIT MERGE

A1

An

B1

Bn

Figure 4. Exchanges

2.3 Extensions
Last but not least, it is possible for a transformation to add
new capabilities and ports to a box. We say that a box X is
extended to Y (written X  Y ) to express this change. Ex-
tending a box is equivalent to adding one or more “features,”
which can be accomplished by preprocessors (e.g., #ifdef
inclusion of extra code) or by more sophisticated means [2].

In the next sections, we show how these ideas can be used
to explain, verify, build, and test designs created by domain
experts from very different fields of software development.

3. Recoverable Crash-Fault-Tolerant Servers
Our work on streaming architectures stemmed from the de-
sire to define and implement generic transformations to map
a vanilla server to an RCFT server [26]. There are sev-
eral such mappings in practice [14, 33]. In this section, we
describe the most recently proposed mapping that is used
in state-of-the-art fault-tolerant servers [9]. We begin with
some client-server basics.

3.1 Basics
We consider request-processing applications with multiple
clients sending requests to a server. Client requests can read
or write the server’s internal state, which persists across the
processing of requests. For each request, the server receives
the message, updates its state, and sends a response back
to the client. That servers have state is important: RCFT of
non-stateful servers is a much simpler problem.

RCFT servers have a cylinder topology representing the
cyclic flow of request-response. We unroll the cylinder, as
shown in Figure 5a, by breaking the seam along dotted lines.
Figure 5b shows a typical architecture with clients C1 . . .Cn
and server S. B denotes a serialization of requests into a
single stream.C is a demultiplexer that splits an input stream
into multiple output streams, one stream per client.1

C1

C2

Cn

...
S

(a)

(b)

Figure 5. Unrolled Cylinder Topology

3.2 Crash Fault Tolerance
Crash fault tolerance is the ability for a service to survive a
number of failures. A failure occurs when a box stops pro-
cessing messages—no messages pass through a failed box
and a failed box cannot create new messages. We assume
that every box executes on a separate machine, later we re-
lax this restriction. The rules for failure are simple: if a ma-
chine fails, all boxes on that machine fail. The failure of net-
work boxes — B, C, and • — affect a machine the same

1 B, C, and • (broadcast) are network components that model the behavior
of the physical network connecting different boxes.
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as pure software boxes. For example, a machine cannot pro-
cess requests if its network card stops working. Failure is
self-contained, meaning that failures do not propagate across
machine boundaries. Further, we do not guarantee delivery
of each individual network packet; retransmissions (either
by the application, network protocol, or both) must be em-
ployed to deal with transient network packet loss. These are
standard assumptions in CFT research.

The technical objective of CFT is to eliminate Single
Points of Failure (SPoF) by replicating functionality [27]. An
SPoF is the failure of a single box (machine) that causes the
server abstraction to fail. Our initial design (Figure 5b) has
three SPoFs: the server S, the serializerB, and demultiplexer
C can fail, resulting in the failure of the server abstraction.
In the following, we progressively reveal a way to eliminate
SPoFs in this design.

3.2.1 Agreement Refinement
The first transformation CFT0 adds a single node A⊥ be-
tween the clients and server. The agreement node A⊥ im-
plements an ordered queue of messages, receiving messages
from clients and passing messages one at a time to the server.
A⊥ adds nothing; it is a placeholder for subsequent refine-
ments. Figure 6 shows the architecture after CFT0.

C1

C2

Cn

...
SA⊥

Figure 6. After the CFT0 Transformation

3.2.2 Replication Refinements
The next transformations, CFT1a and CFT1b, replicate the
agreement and server boxes to improve system availability,
i.e., to make the server abstraction more resilient to crashes.
See Figure 7.

C1

C2

Cn

...

A1

A2

Am

...
QARt

S1

S2

Sk

...
QS

Figure 7. Fully Replicated A⊥ and S Boxes

The replicating-agreement transformation CFT1a does
the following: (1) it extends A⊥ to A (i.e., A⊥  A) to im-
plement an agreement protocol, (2) replicates A m-times as
boxes A1 . . .Am, and (3) adds a routing box, Rt, before and
a serializer, B, and quorum box, QA, after the replicas. Rt
forwards incoming client messages to a subset of A repli-
cas, where the actual subset is determined by the agreement

protocol. The replicas A1 . . .Am implement an agreement
protocol that guarantees a quorum-decided linear order in
which client messages should be processed [20, 21]. A repli-
cas communicate with each other to determine what should
be the next client message to process. Each A replica votes,
sending its “next” message to the quorum box QA. QA for-
wards a message to the server if it receives identical mes-
sages from a sufficient number of replicas. CFT1a maintains
the behavior of and interface to A⊥.

Now consider the replicating-server transformation CFT1b.
It replicates the server S k-times, indicated by boxes S1 . . .Sk,
and adds three new boxes: •,B, and QS. Box • broadcasts an
incoming request to each server replica. Replicas receive the
message, updates their state, and send responses. B serial-
izes all responses and box QS collects a quorum of identical
responses. Once QS receives matching responses from a suf-
ficient number of S replicas, QS transmits the response to the
client, thus maintaining the abstraction of a single server.2

In summary, A is replicated m-times and S is replicated
k-times. The specific values of m and k depend on the num-
ber of faults f to tolerate and the agreement protocol. Com-
mon assignments set m = 2 f + 1 and k = f + 1. Yin et al.
explain this difference in replica count by noticing that the
quorums necessary to prove the protocols correct are larger
for messages coming from the agreement portion (QA) than
for messages coming from the execution (QS) [32]. Since the
server, on average, requires more computational resources
than agreement, and thus needs a more powerful—and more
expensive—machine, using fewer server replicas in the ar-
chitecture is a desirable property.

Transformations CFT1a and CFT1b are commutative as
the order in which they are applied does not matter. However,
both transformations must be applied to guarantee that the
system will tolerate the failures of up to f server machines
and up to f agreement machines. Figure 7 is the result of
applying these transformations to Figure 6.

3.2.3 Exchanges
Our original architecture of Figure 5b had three SPoFs; our
current design in Figure 7 has eight! Although there are more
SPoFs, we show these are easier to remove.

In Figure 8 we dissolve existing abstraction boundaries
and identify three new abstractions that contain two or three
boxes, all of which are SPoFs. For example, the left-most
abstraction contains SPoF boxes B and Rt. The middle ab-
straction contains three SPoF boxes (B, QA, and •). And the
right-most abstraction contains three SPoF boxes (B, QS,
and C). In the following paragraphs, we explain how ex-
changes revise the implementations of each abstraction to
implementations that have no SPoFs.

2 Appreciate the need for an agreement protocol: a consistent order of re-
quests is essential for correct behavior because if replicated servers process
client requests in different orders, server replica states will diverge and re-
sponses from different servers for a single client request would be inconsis-
tent. This inconsistency breaks the one-correct-server abstraction.
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Figure 8. Abstractions with Multiple SPoFs

Consider the left-most abstraction of Figure 8, which we
show again in Figure 9a and comprises the sequence (B, Rt).
The CFT2a exchange swaps the order of these boxes (see
Figure 9b). Box Rt is replicated once for each client and
B is replicated once for each Ai. Instead of serializing all
requests and then routing, we route client requests immedi-
ately and serialize requests before each A replica. The prop-
erty that each client request is sent to a subset of A replicas
is preserved by CFT2a. As expected, the interface of n input
channels and m output channels is maintained. But now, Rt
and B boxes are no longer SPoFs in Figure 9b.

Rt

Rt1

Rt2

Rtn

...

(a) (b)

Figure 9. The CFT2a Rewrite

Now consider the middle abstraction of Figure 8, which
is replicated in Figure 10a and consists of the box sequence
(B,QA,•). This sequence separates A replicas and S replicas
in Figure 8. Transformation CFT2b is a pair of exchanges
that modify the order (B,QA,•) to (B,•,QA) and then to
(•,B,QA). That is, instead of taking a quorum of responses
from A replicas and broadcasting the result, we broadcast
the results of all A replicas and take a quorum at each server
replica. The property that a quorum-decided request from
replicated A boxes is delivered to all server replicas is pre-
served by CFT2b. But now, there are no SPoFs in Figure 10c.

Q

Q1

Q2

Qk

...

Q1

Q2

Qk

...

(a) (b) (c)

Figure 10. The rewrite CFT2b.

Similarly, transformation CFT2c is a pair of exchanges
that is applied to the right-most abstraction in Figure 8,
which is the box sequence (B,QS,C) that separates S repli-
cas from client boxes. CFT2c modifies the order (B,QS,C)
to (B,C,QS) and then to (C,B,QS). That is, instead of tak-
ing a quorum of server responses and forwarding a single
response to a client, server replicas send their responses to

C1

C2

Cn

...

A1

A2

Am

...

QA1 S1

S2

Sk

...

Rt1

Rt2

Rtn

QA2

QAk

QS1

QS2

QSn

... ... ...

Figure 11. Exchanges and Machine Boundaries

the client, and the client takes the quorum of responses. This
preserves the property that quorum-decided responses from
replica S boxes are received by a client box. Doing so no
longer makes B, QS, and C SPoFs.

Figure 11 shows the result of applying transformations
CFT2a-CFT2c to Figure 7. Further, we relax an earlier as-
sumption of limiting one box per machine to expose machine
boundaries, i.e., enclosures that assign multiple boxes per
machine, as indicated by double-walled rectangles in Fig-
ure 11. Note that boxes B, QSi, Ci, and Rti execute on client
machine i. As stated earlier, if a machine fails, all of its boxes
fail. The server abstraction fails if and only if more than f
server machines or f agreement machines fail.

3.3 Recovery
Up to this point, failure is permanent. If a machine or a box
fails, it no longer responds and has no hope of ever respond-
ing again. After the CFT transformations, our architecture
supports f failures of A replicas and f failures of S replicas.
When either limit is exceeded, the entire system is in a failed
state and we violate our one-correct-server abstraction.

In this section we describe a series of transformations
that add failure recovery to our design. Failure recovery
limits the situations where a client sees an unresponsive
server abstraction. A machine that crashes but recovers can
be considered correct, albeit slow. The other machines will
continue to make progress, though the recovering machine
may not be able to catch up immediately. If other machines
crash, the remaining fast servers may have to wait for the
recovering servers to catch up, at which point the system can
continue to serve client requests.

3.3.1 Recoverable Server Extension
Transformation RC0 extends a server box S without failure
recovery to a server box RS with recovery (S RS). Failure
recovery includes both logging and checkpointing, and the
ability to load a checkpoint and replay the log upon restart.
Most modern request-processing servers implement this
functionality (two open-source examples are Hadoop [14]
and Zookeeper [33]). The extension S  RS is not auto-
matic; server programmers must manually extend their code
to correctly implement recovery because checkpointing ac-
cesses application-specific data structures. Figure 12 shows
the result of applying RC0 to Figure 5b.
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C2

Cn
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Figure 12. After Transformation RC0

3.3.2 Recoverable Agreement Refinement
Recall that transformation CFT0 introduces an A⊥ box in
front of S. A⊥ is part of the greater abstraction of one correct
server. For this entire abstraction to be recoverable, all of its
stateful internal boxes must be recoverable, thus A⊥ RA.
Further, the recovery algorithm of the server RS is extended
slightly, as it needs information from the RA box to fully
recover. (Note: this “extra” information is not essential at
this stage of design, but like the introduction of the A box,
it is a placeholder for subsequent refinements to elaborate.
Providing this “extra” information is part of RS RS′).

We do not have to transform the other boxes in the archi-
tecture (such asB orC) as they are stateless; the recovery of
a box that does not keep persistent state is a simple restart.

In summary, transformation RC1 makes three changes: (1)
A⊥ RA⊥, (2) RS RS′, and (3) a new arrow connects RS′

to RA to allow RS′ to query RA for checkpoint information.
Figure 13 shows the result of applying RC1 to Figure 12.3

C1

C2

Cn

...
RS'RA

Figure 13. After Transformation RC1

3.3.3 Replication Refinements
RC2a and RC2b are transformations that respectively add fail-
ure recovery to replicated agreement and server boxes. Al-
though RC2a and RC2b are commutative, they are dependent
on CFT1a and CFT1b respectively. Figure 14 shows the result
of applying both transformations to Figure 13.

C1

C2

Cn

...

RA'1

RA'2

RA'm

...
QARt

RS''1

RS''2

RS''k

...
QS

Q'

Figure 14. After the RC2a and RC2b Transformations

3 We represent multiple communication channels in the same direction with
just one arrow for brevity.

Agreement Replication. Once CFT1a replicates agreement
box RA, the transformation RC2a extends replicated RA
boxes to RA′ by adding new message handlers such as one
for receiving the current checkpoint on which the RA′ repli-
cas must agree.4 Further, a broadcast (•) is introduced that
sends all incoming messages from the server to all agree-
ment replicas RA′1 . . .RA′m.

Server Replication. Once CFT1b replicates server box RS′,
transformation RC2a extends replicated RS′ boxes to RS′′

by adding inter-replica communication between the server
replicas. The system can continue with multiple servers to
make progress after another server crashes, however, the
restarting server may be behind. Thus, it must fetch check-
point state from the other server replicas to catch up.

After processing a fixed number of client messages, the
agreement box asks the server for its current checkpoint. The
agreement box can only accept this checkpoint if it receives
a quorum of matching checkpoints from server replicas.
When a server crashes and attempts to recover, it asks the
agreement box for the latest checkpoint. This “Help, I need
to recover!” message comes from just one server, and the
agreement box does not wait for a quorum (as one will
never come). A special quorum box Q′ (a) takes quorums
of checkpoint messages from servers and (b) immediately
passes along recovery messages of failed servers.

3.3.4 Exchanges

C1

C2

Cn

...

RA'1

RA'2

RA'm

...

QA1 RS''1

RS''2

RS''k

...

Rt1

Rt2

Rtn

QA2

QAk

QS1

QS2

QSn

Q'1

Q'2

Q'm

Figure 15. A Recoverable CFT Client-Server Architecture

QAi

Si

RA'i
RS''i

Ai
Q'i

Figure 16. Machine Boundaries of RA′ and RS′′ Replicas

In addition to the CFT2a . . .CFT2c exchanges, we apply
one more. Recall Figure 14, where there is a sequence of
boxes ((B,Q′,•)) that connect server replicas to agreement
replicas. These three boxes are each SPoFs.

4 As part of the transformation, the agreement protocol must now not only
agree upon the next client request to transmit, but also on the checkpoint to
save to stable storage.
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Transformation RC3 is a pair of exchanges that modify
the order (B,Q′,•) to (B,•,Q′) and then to (•,B,Q′). RC3
removes •, Q′, and B as SPoFs, and preserves the property
that all replica RA′ boxes receive quorum-decided messages
from server replicas (or “Help!” messages from recovering
servers). Figure 15 shows an RCFT server architecture.

Figure 16 shows the machine boundaries for RA′ and
RS′′ replicas. Each machine must execute all of the boxes
associated with its respective machine type.

3.4 Perspective
Implementation Experience. We built our RCFT design in
the Lagniappe Programming Environment [26]. Lagniappe
focuses on easing the development of streaming architec-
tures for multi-? platforms5 and is a component-based pro-
gramming environment where programmers model their ap-
plication dataflow while at the same time provide compo-
nent implementations in an imperative language (e.g., C++).
Lagniappe continues ideas proposed by others [18, 30], but
instead explicitly focuses on applications with persistent
state and with the challenges of running on multi-? systems.

Lagniappe is not a pure model-driven programming en-
vironment. The transformations it performs on application
and platform models are hard-wired and stem from domain
knowledge in properly extracting parallelism from stream-
ing applications to achieve higher throughput and lower la-
tency (i.e., increased performance). However, there are other
reasons to transform an application to a parallel execution,
specifically to increase availability by adding fault-tolerance.
We intend to reimplement Lagniappe in a true MDE fash-
ion to allow not only applications and platforms to be mod-
eled, but also explicit transformations to be added as well.
Figure 15 is the RCFT architecture that we implemented in
Lagniappe.

Testing. With the expert implementation came a large and
unstructured suite of tests for RCFT. Incremental develop-
ment allowed us to reorganize these tests in a more meaning-
ful manner. For example, we identified unit (module) tests
for different components, such as agreement, checkpointing,
recover, etc., which we then used as integration tests when
these boxes were refined. This reorganization convinced us
that we would have created a comparable set of tests using
our process of incremental development.

For example, Figure 17a shows a basic test, Test1, that is
a unit test of S, and determines if the response of S matches
the expected output from C1 sending a request. Test1 is a
unit test of the server and is dependent on the actual server
application. For example, a distributed file system would
send back data at a location requested by the client. Test1
(and all similar tests of the server functionality) become
integration tests as we refine the server abstraction to include
agreement. We show this in Figures 17b and 17c.

5 Multi-? platforms refer to any type of parallelism available in today’s hard-
ware: multi-threaded, multi-core, multi-processor, or even multi-machine.

Test2 is a unit test of A⊥, shown in Figure 17b. Test2
tests that all agreement replicas agree upon the same next
request. When transformation CFT1a replicates and refines
A⊥ to A1 . . .Am, Test2 moves from a unit test of A⊥ to an in-
tegration test of this refinement of the agreement abstraction.

An important class of tests in any fault-tolerance setting is
failure injection. Figure 17d shows a simple example. If we
kill the machine on which server replica S1 executes, Test1
must still execute correctly. This test setup—failure injection
with the input stream from Test1—shows that the overall
system can handle a failure, and thus the availability of the
system is higher than in the system in Figure 17a. We use our
system test Test1 to not only validate the correctness of the
abstraction throughout the multiple refinements, but also to
test availability despite failures. We also do more complex
failure injection: once we transform the system to include
recovery, we can rotate failures through the nodes to test both
the overall availability and the recovery functionality.

4. Hash Joins in Database Machines
Gamma was (and perhaps still is) the most sophisticated re-
lational database machine built in academics [11]. Most of
the work on Gamma was in the late 1980s and early 1990s.
We focus on Gamma’s join parallelization, which is typical
of modern relational database machine architectures. What
is new in this section is our presentation of Gamma. Pub-
lished descriptions are informal (cf. [11]); our presentation
is a derivation from first principles. Readers should note that
exactly the same principles used in developing RCFT archi-
tectures are used in developing parallel join architectures.

A hash join is an implementation of a relational equi-
join; it takes two streams (A,B) of tuples as input and pro-
duces their equi-join (A on B) as output. The basic hash
join algorithm is simple: read all tuples of stream A into a
main-memory hash table, where the join key of A tuples are
hashed. Then read stream B, one tuple at a time. By hashing
a B tuple’s join key, one can quickly identify all A tuples that
join with the B tuple. This algorithm has linear complexity in
that each A and B tuple is read only once. Figure 18a shows
the executable HJOIN architecture that we start with.

4.1 Bloom Filtering Refinement
Joins are among the most expensive database operations.
Gamma makes an ingenious use of Bloom filters [5] to
reduce the number of tuples to join. It requires the use of two
boxes: BLOOM (to create a filter) and BFILT ER (to apply
the filter). This refinement of HJOIN is shown in Figure 18b.

The BLOOM box takes a stream of tuples A as input and
outputs exactly the same stream A along with a bitmap M.
The algorithm first clears M. Each tuple of A is read, its join
key is hashed, the corresponding bit (indicated by the hash)
is set in M, and the A tuple is output. After all A tuples are
read, M is output. M is the Bloom filter.
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Figure 17. Testing the CFT system.
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Figure 18. Hash Join Architecture

The BFILT ER box takes a bitmap M and a stream of
tuples B as input, and eliminates B tuples that cannot join
with A tuples. The algorithm begins by reading M. B is read
one tuple at a time; the B tuple’s join key is hashed, and
the corresponding bit in M is checked. If the bit is unset,
the B tuple is discarded as it can not possibly join with any A
tuple. Otherwise the B tuple is output. Stream B′ is the result.
Given the behaviors of the BLOOM, BFILT ER, and HJOIN
boxes, it is easy to prove the correctness of the Figure 18a to
Figure 18b refinement.

4.2 Parallelizing Refinements
Next, the BLOOM, BFILT ER, and HJOIN boxes are hier-
archically refined by replacing each with their parallel ver-
sions (Figure 18c). A BLOOM box is parallelized by hash-
splitting its input stream A into substreams A1 . . .An, creat-
ing a BLOOM filter M1 . . .Mn for each substream, coalescing

A1 . . .An back into A, and merging bit maps M1 . . .Mn into a
single map M.

A BFILT ER box is parallelized by hash-splitting its input
stream B into substreams B1 . . .Bn, where the same hash
function that splits stream A is used to split stream B. Map
M is decomposed into submaps M1 . . .Mn and substream
Bi is filtered by Mi. The reduced substreams B′1 . . .B′n are
coalesced into stream B′.

The parallelization of the HJOIN box is standard [1]:
both input streams A, B are hash-split on their join keys
using the same hashing function as before. Each stream Ai
is joined with stream B j (i, j ∈ 1 . . .n), yielding n2 HJOIN
boxes. Since an equi-join is computed, we know Ai on B j = /0

for all i 6= j (as equal keys must hash to the same value).
Thus, a single abstract HJOIN box is replaced by n HJOIN
boxes instead of n2 boxes (as all the other HJOIN boxes
have provably null outputs). By merging the joins of Ai on Bi
(i ∈ 1 . . .n), A on B is produced as output.

Figure 18c shows the result of applying all three paral-
lelization refinements to Figure 18b. Each of the BLOOM,
BFILT ER, and HJOIN parallelization rewrites have simple
proofs of correctness.

4.3 Optimizations
A primary goal of Gamma was to determine performance
increases that could be gained by parallelization. The ar-
chitecture of Figure 18c has three serialization bottlenecks
which degrade performance. Consider the MERGE of sub-
streams A1 . . .An into A, followed by a HSPLIT to re-
construct A1 . . .An. There is no need to materialize A: the
MERGE − HSPLIT pair is the identity map: Ai → Ai
(i ∈ 1 . . .n). The same applies for the MERGE −HSPLIT
pair for collapsing and reconstructing substreams B′1 . . .B′n.
The removal of MERGE −HSPLIT pairs eliminates two
serialization bottlenecks.

The third bottleneck combines maps M1 . . .Mn into M and
then decomposes M back into M1 . . .Mn. The MMERGE−
MSPLIT pair is the identity map: Mi→Mi (i ∈ 1 . . .n). This
optimization removes the MMERGE−MSPLIT boxes and
reroutes the streams appropriately.6

6 There are many ways in which MMERGE and MSPLIT can be realized.
The simplest is this: M is a n×k bitmap. The join key of an A tuple is hashed
twice: once to determine the row of M, the second to determine the column
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Figure 18d shows the result of all three optimizations.

4.4 Perspective
Experience. Gamma has an elegant architecture. In present-
ing this material to graduate database students, we observed
that it is easier to remember the derivation of Gamma’s hash
join architecture rather than to remember the final design of
Figure 18d. Further, implementing and testing Gamma hash
joins at each level of abstraction (as in Figure 18) is an in-
teresting exercise; see [17] for more details. Unit tests are
defined for each primitive box. When boxes are refined, unit
tests become integration tests. Interesting cases occur when
optimizations eliminate boxes and connectors. The harness
in Figure 19 replays the unit test of a BLOOM box on the
final hash join architecture (Figure 18d). MMERGE and
MERGE boxes are reintroduced with appropriate connec-
tors to reconstitute the output A stream and M map.

...A ...

...

B

A⋈B
HSPLIT

BLOOMn

MERGEHJOIN1

HSPLIT

BFILTER1

BFILTERn

HJOINn

MMERGE
MERGE

BLOOM1

Figure 19. Unit Test of BLOOM after Optimization

Exchanges. Figure 18d is not the last word on Gamma’s
architecture. Exchanges are used to optimize the processing
of cascading joins. Figure 20a shows an incomplete archi-
tecture where the output of one join cascades to the input to
another. Figure 20b reveals partial internals of these HJOIN
boxes, where the output of the first join is formed by merging
substreams C1 . . .Cn into stream C and then C is immediately
hash-split into substreams D1 . . .Dk. This is yet another se-
rialization bottleneck. Unlike the bottlenecks in Section 4.3,
cascading joins use different join keys, so that the partition-
ing of C before its merge is different than the partitioning of
C after the hash-split (n 6= k).

Exchanges are used to remove these serialization bottle-
necks, where (MERGE, HSPLIT ) pairs are swapped with
(HSPLIT , MERGE) pairs (Figure 20c). That is, each Ci is
hash-split into k substreams (Ci1 . . .Cik) and sets of n sub-
streams (C1 j . . .Cn j) are merged into stream D j ( j ∈ 1 . . .k).
This exchange preserves the property that tuples of C whose
hash-value is j are assigned to stream D j, while eliminating
a serialization bottleneck. A drawback of this exchange is
bookkeeping: between the HSPLIT and MERGE boxes is
an n× k matrix of substreams, which we denote by [C]nk.

within the selected row. Thus, all tuples of substream Ai hash to row i of M.
MMERGE combines M1 . . .Mn into M by boolean disjunction. For each i,
MSPLIT extracts row i from M and zeros out the rest of Mi.

Figure 20c exchanges are performed on HJOIN input and
output streams. This generalizes Gamma’s HJOIN architec-
ture to Figure 20d: a single HJOIN box takes matrices [A]i j
and [B]k j of substreams as input (stream A is hash-partitioned
into i× j disjoint substreams and B into k× j substreams)
and produces a matrix [A on B] jn of substreams as output
(A on B is hash-partitioned into j× n disjoint substreams).
Exchanges arise in parallel database architectures generally,
and Gamma’s architecture in particular.

(a) HJOIN HJOIN

(b)

C1

Cn
...

D1

Dk
...MERGE HSPLIT

(c)

HSPLIT MERGEC1

Cn

...
D1
...

HSPLIT MERGE Dk

C11
C1k
Cn1
Cnk

C11
Cn1
C1k
Cnk

(d)
HJOIN

[A]ij ...

...

...

[B]kj

[A   B]jn

Figure 20. Exchange of MERGE and HSPLIT

5. Related Work
There is a rich collection of papers on software architecture
refinement [4, 7, 8, 10, 12, 19, 13, 23, 24, 25, 31]. Although
we build upon these pioneering works, the bridge is not
straightforward. Here is our integrative perspective.

If programs R and P can be defined as predicates then
refinement is implication [15, 16]. Program R is said to
refine program P if R ⇒ P. A special case of refinement
is equivalence R⇔ P. Our exchange rewrites and most of
the transformations used in our case studies are algebraic
identities (equivalences) [23, 24].

More generally, however, programs are behaviors where
actions, updates, and state changes are performed [6]; re-
finement is then called behavioral substitutability. Liskov’s
Substitution Principle states “Let q(x) be a property prov-
able about objects x of type T . Then q(y) should be true for
objects y of type S where S is a subtype of T ” [22]. Subtyp-
ing is a refinement relationship that scales to architectures
[12]. The tests that we define on an abstraction are intended
to verify the key properties that we want subsequent refine-
ments and optimizations of this abstraction to preserve.

When transformations are not equivalences, new proper-
ties and relationships may appear among components that
did not exist previously. For example, our first recovery
transformation RC1 (Section 3.3) adds a relationship from
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component S to A that was not originally present (Figure 13).
The addition of new relationships has an interesting conse-
quence: an architecture’s specification may change.

In the algebraic specification community, the terms re-
finement and extension have different meanings. Consider a
2-space, where points along the X-axis are specifications,
and points along the Y-axis are implementations. A classical
paradigm (e.g., Z [28]) elaborates a specification incremen-
tally by extensions. Once completed, the specification is re-
fined progressively into an implementation without spec al-
teration. Horizontal arrows in Figure 21a denote extensions;
vertical arrows are refinements. Program P has specification
S and implementation I in Figure 21a.

specs

im
pl

I

S

P

specs

im
pl

S1

P1

S2

I2

I1

P2

T

(a) (b)

Figure 21. Extension and Refinement

Our approach is different. Transformations can simulta-
neously extend a specification and modify an implemen-
tation, a diagonal move through this 2-space. This follows
modern practice: we start with an existing program (spec,
implementation) and transform it to an improved (spec, im-
plementation) – we do not start from scratch. In Figure 21b,
program P1 = (S1, I1) is mapped to program P2 = (S2, I2) by
transformation T . In effect, we begin with an underspecified
design and progressively elaborate it [4, 7].

This observation has two important consequences, both
of which usually distinguish our work from others. First,
existing components can be “extended” to expose new ports
or to have new functionality (e.g., recovery). As mentioned
earlier, a primitive implementation technique to achieve this
is to use preprocessors to include or exclude ports in builds;
more advanced techniques to do this are known [2].

Second and more important is that a specification can
have both functional and non-functional requirements [3].
Functional requirements express logical or behavioral re-
lationships of components in a system. Non-functional re-
quirements are properties—such as performance or avail-
ability—that are expected from an architecture. Recall our
RCFT transformations. We start with a specification CS of a
client-server relationship (the exact details of which are not
important). When we apply the sequence of transformations
to map CS to a CFT architecture with no single point of fail-
ure, we alter our the spec to CS∧¬SPoF . When we apply
the next set of transformations to add recovery, we alter our
system’s spec to CS∧¬SPoF ∧Recovery. At no time do we
alter the functional requirements of our system; our trans-
formations progressively add non-functional requirements.

The ability to alter specifications and implementations
is essential: it allows both to be developed incrementally.
As our development of RCFT servers shows, we focus on
one concern (non-functional requirement) at a time and ex-
plain in simple steps how this concern is realized. It would
be much more complicated to start with a complete spec-
ification and show how it is refined to an implementation.
For example, compose our SPoF and Recovery transfor-
mations together, so that there are now three or four big
steps/transformations to map CS to CS∧¬SPoF ∧Recovery.
In all honestly, we could not have conceived such transfor-
mations: they would be too complicated to understand let
alone explain. Decomposing a design (spec and implemen-
tation) into understandable steps is the essence of our work
and of scalable stepwise development.

6. Conclusions
Experts intuitively construct non-obvious architectures that
take time to understand. The details and inner workings are
appreciated only with a considerable effort by non-experts.
Our experience re-affirms this, but the contribution of this
paper offers hope to others. By revealing details of architec-
tural design incrementally, non-experts can document, ap-
preciate, and contribute to domain-specific architecture de-
velopment. This affords new opportunities to improve the
trustworthiness of software. We can now verify architectures
whose proofs of correctness we did not have or could not
provide before. Further, we can show how architecture im-
plementation and testing can be more systematic. And most
important, we expose domain-independent (mathematical)
principles that underly software design—principles that are
simple enough that all developers and students can learn.

In this paper, we presented two non-trivial case stud-
ies to demonstrate our points: recoverable crash fault tol-
erant server architectures and architectures for paralleliz-
ing relational database hash joins. Although these domains
are quite different, their architectures have straightforward
and principled explanations. We implemented these archi-
tectures based on our models, whose details are presented
elsewhere [9, 17, 26].

From another perspective, we note that complex designs
are never created instantaneously; they come from simpler
designs, and these designs from even simpler designs, recur-
sively. By exposing the relationship between progressively
more sophisticated designs enables us to understand and ver-
ify these designs, and build and test them better. Incremental
development is not just “cute” (e.g., nice to have), but rather
is essential to achieving these goals.

A next step in research is to develop MDE-based tools
that allow designers to explore a design space interactively
by defining and applying transformations. Produced designs
would rely on standard MDE technology to synthesize im-
plementations. In effect, architectural refinement provides a
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another dimension of activities in MDE, allowing engineers
to alter designs in a verifiable way.
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ally supported by NSF’s Computer Systems Research Grant
CNS-0509338.

References
[1] F. Baru. DB2 Parallel Edition. IBM Systems Journal, 34(2),

1995.

[2] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE TSE, (30), June 2004.

[3] I. Baxter. Design Maintenance Systems. CACM, 35(4):73–
89, 1992.

[4] J. P. Bernhard and B. Rumpe. Stepwise refinement of
data flow architectures. Technical Report TUM-19746,
Technische Universität München, 1997.

[5] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Commun. ACM, 13(7):422–426, 1970.

[6] E. Börger and R. Stärk. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer-Verlag,
2003.

[7] M. Broy. Compositional refinement of interactive systems.
JACM, (44), 1992.

[8] E. Bruneton, T. Coupaye, and J. Stefani. The Fractal
Component Model. Technical report, Object Web Consor-
tium, http://fractal.objectweb.org/specification/
index.html, 2004.

[9] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
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