
Unvanish: The Remarkable Peristence of Bits
Owen S. Hofmann, Christopher J. Rossbach, Brent Waters, and Emmett Witchel

Department of Computer Sciences, The University of Texas at Austin
{osh,rossbach,bwaters,witchel}@cs.utexas.edu

UTCS Technical Report TR-09-25

1 Introduction
The television show Mission Impossible began with Jim Phelps receiving instructions from a recording that subse-
quently self-destructs. This communication has strong privacy guarantees, but is not invulnerable to attack. The
instructions can be overheard and even recorded. Instructions were often recieved in obscure locations, but it would
be possible for someone other than Jim Phelps to listen to them.

The strongest guarantee of the Mission Impossible instructions is that after Jim Phelps hears his instructions, no
one else will hear them. Were it to exist, a technology capable of reconstructing the instructions from the smoking
remnants of the recording would jeopardize the success of tasks given to the Impossible Mission Force.

Vanish is a system that purports to provide guarantees similar to those of the Mission Impossible instructions for
digital data like email, photographs, and video [7]. Users transform their data into a Vanish data object (VDO), which
is encrypted with a randomly generated key whose only persistent copy is stored in a distributed hash table (DHT).
The key is randomly generated from a large space, so it is difficult to guess. The user specifies an expiration time for
the VDO. The DHT has a policy to delete data after 8 hours. To implement any expiration time greater than 8 hours,
the Vanish system must refresh the key by reading it out of the DHT and storing it back. Because the key becomes
permanently unavailable after the DHT expires it, expiration of the key should make it impossible to decrypt the VDO.

The most important guarantee provided by Vanish is that any VDO obtained after its expiration time should not be
readable. This paper demonstrates a system, called Unvanish, that violates the Vanish guarantee. Anyone obtaining a
VDO after its expiration time can decrypt it using Unvanish. Unvanish requires a constant, but modest investment in
processing and storage.

The security of the Vanish system hinges crucially on one important assumption: that an attacker (without government-
scale resources) will not be able to crawl or scrape the majority of the data stored on the underlying DHT. If an attacker
were able to collect and store (almost) all of the data on the DHT, then data meant to “vanish” would be persistent.
One could simply consult the stored DHT to decrypt a VDO after the timeout period. Assuming that scraping a DHT
is prohibitively difficult is potentially problematic for two reasons.

Misaligned Incentives Vanish bases its security properties on implementation details of a system (the Vuze DHT)
designed to be used differently from how Vanish uses it. We believe this is a critical mistake. Computer systems
evolve to satisfy the demands of its users and maintainers, they cannot be relied on for security properties.
We demonstrate that the the current Vanish system does not provide its intended security property. But even
if the current Vuze environment were more favorable to the security of Vanish, the system might evolve in an
unfavorable direction due to conflicting goals.

Untested Assumption The key assumption that existing DHTs are hard to scrape has been neither tested nor chal-
lenged in depth. In general, it is dangerous to base the security of deployed systems on assumptions that have
not been reviewed by the security community.

The Vanish authors explicitly consider the attack we demonstrate, dismissing it as prohibitively expensive. We
show that a dramatic gap exists between the cost asserted by the Vanish authors and the attack’s real cost. The Vanish
authors give a cursory analysis that estimates the cost to break the system to be around $860K per year using Amazon’s
EC2 system. In contrast, we show that we can recover a sufficient number of secret shares to decrypt almost all VDOs
using only 10 small instances on Amazon’s EC2 network [5]. Using reserved pricing it is possible to launch our attack
for approximately $5,000 per year, or under 50 cents per hour.

Using 10 machine instances in EC2, we were able to recover approximately 92% of the key material stored by
Vanish on the Vuze DHT. We directly tested our approach by creating 104 VDOs using the default settings from the
Vanish website. Unvanish was able to decrypt all 104 VDOs after their retention period had expired. Decrypting

1

even a single VDO violates the main security guarantee of Vanish. We estimate that even using Vanish’s high security
settings, we could recover approximately 79% of VDOs after their retention period expires.

In Sections 2 and 3 we provide more information on the Vanish system and Vuze DHT. We describe our break in
Section 4.

2 Vanish overview
This section provides an overview of the Vanish system, including its goals, its technical organization and its security
model.

2.1 Vanish goals
The decreasing cost of non-volatile storage has given us the ability to store almost all communications for later re-
trieval. While the benefits of persistent data are numerous, it is often desirable for certain private data to be ephemeral.
For instance, there have been numerous cases where access to a user’s or corporation’s email have been subpoenaed,
and the subpoenaed party would have liked old emails to have disappeared.

At first glance achieving ephemeral data might seem easy; a user can simply delete any data that should not be
retained. However, in practice scrubbing data is a difficult task for a multitude of reasons.

• Other users often store our private information as revealed in email, shared photographs, or text messages. Often,
the sender of the message will want the contents discarded after the message is read. Typically, the sender lacks
the means to enforce this wish against a receiver who actively wants to retain the message, e.g., by making
auxiliary copies. However, even in circumstances where the receiver is agreeable to the sender’s wishes, she
may be unmotivated to put extra effort toward seeing that those wishes are carried out. We call this model of
user behavior trustworthy, but lazy.

• Modern computing environments are populated by many backup, caching, and archival tools. As a result, even if
a user deletes his own local copies of data, other copies may persist elsewhere, possibly without the knowledge
of the user. Even encrypted archived copies are a problem as the private key might be available via legal action
or other compromise. If the key ever becomes available, the user loses all privacy for the archive.

• Actively pruning data to retain only the most necessary and innocuous items can require a substantial user effort.

Geambasu, Kohno, Levy, and Levy proposed the Vanish system [7] to deal with unwanted data retention. The goal
of Vanish is to expire data automatically after a certain user-specified timeout period. The system relies on an intriguing
new technique to expire data. A user invokes the Vanish system, passing it a data object and an expiration time. Vanish
encrypts the data object using a randomly generated key K. The system then uses Shamir secret sharing [10] to break
the key into N shares where k of them are needed to reconstruct the key. Vanish then stores these shares in random
indices on a peer-to-peer distributed hash table (DHT). The encrypted data object together with the list of random
indices comprise a “Vanishing Data Object” (VDO).

A user in possession of a VDO can retrieve the data contents before the specified expiration time T by simply
reading the secret shares from at least k indices in the DHT and then reconstructing the decryption key. However, if
the expiration time has passed, the DHT will no longer store any share. The Vanish authors assert that the DHT policy
of limiting data retention, combined with normal network churn will cause the information necessary to reconstruct
the original encryption key to be permanently lost.

2.2 Technical overview
In this section we provide a high level overview of the Vanish architecture. For additional details we refer the reader
to the Vanish paper [7].

Vanish relies on two principal mechanisms. The first is an encapsulate algorithm that takes a data object D as
input, and produces a Vanishing Data Object (VDO) as ouput. The second mechanism is a decapsulate algorithm that
accepts a as input VDO and reproduces the original data, with the caveat that decapsulation must be done within a
certain timeout of T of the VDO’s creation. Below, we describe each process.

2

Encapsulate(D) The encapsulation algorithm takes as input data D. The algorithm creates a secret key K, and then
encrypts the data D under the key K to yield ciphertext C. Next, the algorithm uses Shamir secret sharing [10] to
split the key K into n shares K1, . . . ,Kn where k shares are required to reconstruct the secret. Shamir secret sharing
guarantees that k shares of K1, . . . ,Kn are sufficient to reconstruct K, but no information about the original key K
can be recovered with fewer than k shares.

Next, the algorithm chooses an “access key” L, which is used as a seed to a pseudo random number generator
(PRNG). The algorithm runs the PRNG to derive n indices Ii, . . . , In. For j = 1, . . . , n it stores key share Kj at index
Ij in the DHT. 1 Finally, the VDO V is output as the tuple V = (C, L).

Decapsulate(V = (C, L)) The decapsulation algorithm accepts a VDO V = (C, L) as input. The algorithm seeds
the PRNG with the access key L to retrieve n indicies I1, . . . , In. It then retrieves the data values from the DHT at
these indices. If fewer than k values are retrieved, the algorithm outputs failure. Otherwise, it uses Shamir secret
sharing on k shares to reconstruct a key K ′. Finally, it attempts decryption of C using K ′. The algorithm outputs a
failure if the decryption is not sucessful; otherwise, it returns D, the result of the decryption.

Implementation The Vanish core system consists of a software package that can be installed on a Linux, Mac or
Windows system. In core sysytem is coupled with a Firefox plug-in which allows the user to right-click on a selected
area of text in the browser to transform this text into a Vanishing Data Object. The output of this process is a VDO
encoded in text. A user can then right-click on the VDO and ask the plug-in to retrieve the original object.

The currently deployed Vanish system stores key shares on the Vuze [1] peer to peer distributed hash table (DHT).
The default values for the Firefox system are to distribute n = 10 shares with a threshold of k = 7.

2.3 Security Model and Assumptions
The goal of Vanish is to provide a type of forward security, where past objects are secure if the VDO is compromised
after its expiration time. This is somewhat similar to forward secure signatures [2,8] and forward secure encryption [3].
However, in these systems, a user’s machine is responsible for evolving evolving (updating) a private key. In Vanish,
the goal is to achieve security without requiring active deletion of the VDO from the user’s machine. Instead, the
system relies on the DHT data retention policy and peer-to-peer membership churn to expire the shares of the key used
to encrypt the VDO.

Consider a user that creates a VDO V with expiration time T . If Vanish is secure then any attacker obtaining the
VDO at time T + t, t > 0 will not be able to reconstruct the data. Providing this guarantee of security requires at least
two assumptions about the attacker. (We note that if we require correctness we also must assume availability of the
DHT before the timeout.)

Limited Network View The attacker must not be able to view the user’s traffic to the P2P network. Otherwise, the
attacker could simply sniff and store all shares pushed by the user onto the P2P network.

Limited View of DHT The attacker must not be able to read all data stored on the DHT. Otherwise, the attacker could
simply backup all information stored on the DHT.

Our work focuses on the latter assumption.

3 Vuze background
The Vuze DHT is used by the Vuze Bittorrent client, primarily to implement decentralized tracking. The DHT is based
on a modified Kademlia [9] implementation, and functions simlilarly to many other DHTs. Nodes in the network and
keys in the hash table are assigned 160-bit identifiers (IDs). Each DHT node stores those keys which are closest to it
in the ID space. To deal with unreliable nodes, keys are replicated to the 20 closest nodes to the key’s ID.

The Vuze client categorizes peers into a number of buckets by their distance from its own ID. The client keeps a
predetermined number of peers in each bucket. To store or look up a key, the requesting node hashes the key to obtain
its ID, and contacts the k closest peers to the desired ID. Each peer returns a list of its own peers that are closest to the

1We note that the use of a PRNG is not strictly necessary, as the algorithm could simply select n random indices at the expense of storing larger
VDOs.

3

desired ID. The requesting node contacts those peers, reaching successively closer peers until it finds those responsible
for storing the desired ID. It then requests that those peers return or store the associated value. Stores and lookups are
performed on the 20 nodes closest to the desired ID.

In the Vuze DHT, node IDs are generated by hashing the node’s IP address and port number. To support the
common case of multiple users communicating via a single NAT device, Vuze allows the same IP to join the network
at different locations based on port number. Thus a single machine may join the network at multiple positions in the
ID space by changing the port number on which it is running the Vuze protocol.

A node joins the Vuze DHT by contacting a known peer and intiating a lookup for its own ID. It uses this lookup
to build its list of peers and eventually finds the nodes closest to its ID. When a node is contacted by a new peer with
an ID among the 20 closest to its own, it replicates all of its stored keys to that node.

4 Breaking Vanish
Unvanish compromises the security of Vanish using a Sybil attack [4]. Because Unvanish attacks only the Vanish
system, and not the Vuze network, it does not need to maintain a large number of nodes in the network to exert
disproportionate influence on the operation of the DHT. Instead, Unvanish requires only a brief window of read-only
access to the shares that comprise a VDO’s encryption key, at any time in the 8-hour window between the VDO’s
creation and expiration (the default , and minimum Vanish expiration period). An Unvanish machine will gather all
the information it can using one identity and then abandon that identity and start up a new Vuze identity. We found
that one machine instance can concurrently support up to around 500 Vuze identities, making it possible to mount a
successful attack with limited resources.

Unvanish reads keys and values from the Vuze DHT by joining the network in different locations. Unvanish creates
vuze clients that quickly traverse all possible node IDs that can be generated by changing port numbers on a single
machine. Each client creates a node on a port, joins the network, and waits to receive replicated keys from nearby
nodes. Keys are archived to local storage for attacking VDOs at any point in the future. After a node has waited enough
time to receive replicated keys, it shuts down, its resources are released, and a new one is created on the next port in
sequence. A number of nodes run concurrently, to quickly traverse the available port numbers while still allowing
each node sufficient time to join the network and store keys. A large number of concurrent Unvanish nodes joining
and leaving the DHT in rapid succession copy and archive a significant fraction of the key space. By accessing large
portions of the key space from each individual machine, Unvanish minimizes the resources required to record enough
keys to decrypt most VDOs after they have expired.

Unvanish reduces storage requirements by ignoring many of the values present in the DHT. Values from the Vanish
system are sufficiently long to encode a share of an encryption key, while the majority of values in the Vuze DHT are
only a few bytes long and can be discarded.

If Unvanish can read and archive a large proportion of the keys in the Vuze DHT within the expiration time of a
VDO, then it can decrypt that VDO by retrieving shares of the encryption key from our local archive at any point in
the future, rather than by retrieving them from the DHT within their limited expiration time.

To quickly traverse the available port numbers while allowing each node sufficient time to join the network and
store keys, 50 nodes run concurrently; each node remains active for approximately 150 seconds. Unvanish is limited
to a small number of nodes on a single client due to network, processor and memory constraints of the small EC2 node
and the relatively unoptimized Vuze DHT source code.

EC2 implementation We implemented Unvanish using Amazon’s EC2 system, enabling a realistic assesment of the
actual cost to run Unvanish. We ran our Vuze DHT client on 10 of Amazon’s “small” EC2 instances, which provide
1.7GB of physical memory, 160GB of local storage, and compute power approximately equivalent to a 1.0Ghz Xeon.
Memory and processor constraints restrict Unvanish to 50 concurrent DHT nodes on each instance. Each DHT node
remains on the network for 150 seconds before being replaced by a new node.

Running the EC2 “small” instance costs the user $0.10 per hour if the instance is created on-demand. Thus, the
cost to run Unvanish is $1 per hour, or less than $9,000 per year. By contrast, the original Vanish paper claims such
an attack would have a price tag of $800,000 per year. Moreover, we believe that the cost of running Unvanish can be
further reduced. Amazon provides reserved instances, whose priciing structure entails an upfront charge followed by
a reduced per-hour usage rate. A 1-year reservation for 10 instances running full-time would cost less than $5,000.

4

Placed in DHT Recovered
VDOs 104 104

Key shares 1040 957

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(recover share)

P
(r

ec
ov

er
 V

D
O

)

 7/10
 9/10
45/50

Table 1: Unvanish results for 104 VDOs placed in the
Vuze DHT over a 7.5 hour window. At 7/10 shares re-
quired to decapsulate a VDO, all VDOs were success-
fully recovered. 957/1040 key shares were recovered.

Figure 1: Estimated probability of recovering a VDO
given the probability of recovering any one key share.
The 92% probability of recovering a key share in our
experiment is indicated with a vertical line. At that prob-
ability, we estimate that we can decapsulate 79% of all
VDOs even at the recommended “high-security” setting
of 45/50 shares.

Results We ran our Vuze DHT client on 10 Amazon EC2 instances for approximately 24 hours. Over a 7.5-hour
window during that time, we seeded 104 VDOs into the DHT, using the default security parameters of 7 of 10 shares
required for decryption. Table 1 shows the results of our experiment. Out of 1040 key shares, we were able to recover
957. We successfully decrypted all 104 VDOs using only our offline archive of the Vuze DHT.

Analysis The most immediate conclusion from our work is that the currently deployed Vanish system does not
expire information when faced with an attack of modest cost. Figure 1 estimates the probability of recovering a VDO
given the probability of recovering any individual key share. We model the probability of recovering a key share as
a binomial variable, and estimate the probability of recovering the VDO as P (V DO) = P (X ≥ threshold) for n
binomial trials with probability p, where n is the total number of key shares and p is the probability of recovering a
share. Even at the recommended “high-security” setting of 45/50 shares, we estimate that we can recover 79% of all
VDOs.

The Vanish authors consider and dismiss a Sybil attack. Here we review the arguments. The primary argument
is that Vuze implements rudimentary defenses against a single node using multiple ports to gain disproportionate
influence in the network. Vuze allows only a small number of stores to a given key from a single IP address, regardless
of port number. Future versions of the Vuze DHT protocol will restrict the number of IDs attainable from a single
machine by computing the port number modulo 1999 before hashing. Contrary to statements in the Vanish paper [7],
this defense is not currently active. Even if the defense were made active, it appears that compatibility for older
protocol versions will be maintained, with the result that clients can user older versions of the protocol to circumvent
the defense. . The problem is basing the security of a system on the properties of different system intended for a
different purpose.

The worldwide scale of Vuze is essential to the security of Vanish, and the defense needed by Vanish to thwart our
Sybil attack is not aligned with the priorities of Vuze’s main user base. A large DHT with nodes run by independent
people with significant churn is essential to Vanish’s guarantee that secret shares are widely dispersed, safe from
collusion, and have high turnover. Anything less than a world-wide DHT is unlikely to be secure for Vanish because
smaller communities are vulnerable to collusion attacks and social engineering .

Counter measures There are two potential directions for mitigating the Unvanish attack. One is that one could use
an even “more secure” setting on the current system such as requiring 99 of 100 shares. This approach is problematic
for two reasons. First, requiring such a high recovery rate will cause the system to be unusable for legitimate users
as secret shares are lost via churn. Second, an attacker could react by scraping the DHT more completely, either by
buying more compute resources or by improving the efficiently of the (inefficient) Vuze client code.

5

Another possible counter measure is to migrate the Vanish system to another DHT system that has more security,
such as OpenDHT. While it is possible that this might make such an attack more difficult, we conjecture that one could
adapt our attack to this setting as well. In general, we believe that any modification of the overall Vanish approach
should be received with increased skepticism.

Conclusion The Vanish authors claim that Vanish cannot make security worse. Vanish provides an additional layer,
which if compromised, is no worse than what the user had in place originally. This argument assumes that user’s
behavior will be not be affected by the perceived benefits that Vanish delivers, which seems unlikely. Why bother
to prune my own data if Vanish is doing it for me? Our conclusion is that the Vanish security guarantee is useful in
principle, but is not achieved by the Vanish system and cannot be achieved by a similar system.

5 An Independent Break
In personal communication with Ed Felten [6] we learned that another group independently broke the Vanish system
by launching a Sybil attack.2

Acknowledgements
We thank Adam Klivans for a useful discussion at the an early stage of our project.

References
[1] Azureus. http://www.vuze.com.

[2] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In CRYPTO, pages 431–448, 1999.

[3] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT, pages
255–271, 2003.

[4] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First International Workshop on Peer-
to-Peer Systems, 2002.

[5] A. EC2. Pricing of ec2.

[6] E. Felten and Colleagues. Personal communication — will fill in information, 2009.

[7] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish: Increasing data privacy with self-destructing data. In
Proc. of the 18th USENIX Security Symposium, 2009.

[8] G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and verifying. In CRYPTO, pages
332–354, 2001.

[9] P. Maymounkov and D. Mazires. Kademlia: A peer-to-peer information system based on the xor metric. In
International Workshop on Peer-to-Peer Systems, (IPTPS), 2002.

[10] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

2We plan to provide more details after further discussion.

6

