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Abstract. The Poisson-Boltzmann equation is a partial differential equation that describes
the electrostatic behavior of molecules in ionic solutions. Significant efforts have been devoted to
accurate and efficient computation for solving this equation. In this paper, we developed a boundary
element framework based on the linear time fast multipole method for solving the linearized Poisson-
Boltzmann equation. A higher-order parametric formulation called algebraic spline model is used
for accurately approximation of the unknown solution of the linearized Poisson-Boltzmann equation.
The numerical test and experimental results show that these techniques offer an efficient and accurate
solution for solving the electrostatic problem of molecules.

1. Introduction. Accurate and effective computational approaches for atom-
istic simulation of bio-molecules are significant topics of current computational bio-
logical research. Different biological activities such as drug design or molecular tra-
jectory simulation can be performed based on numerical solutions of solvation energy
[34].
The Molecular Energetics and Force Calculation Problem:

The Potential energy of a molecule in solution includes two different parts, bonded
energy Ebonded and solvation energy Gsol. The total energy of the system is U =
Ebonded + Gsol. The bonded energy Ebonded is measured by the following equation
[29].

EMM =
∑

bonds kb(r − req)2 +
∑

bond angles kθ(θ − θeq)2

+
∑

torsion angles kφ(1− cos[n(φ− φeq)])
.

The first three sums represent bonded interaction: covalent bonds, valence bonds, and
torsions around bounds [16, 17]. The effect of the solvation energy Gsol is used when
a molecule in the solution. The solvation energy is the sum of the energy to form a
cavity in the solventGcav, van der Waals interaction energyGvdw, and the electrostatic
potential energy change due to the solvation Gpol(also known as polarization energy)
[21, 22, 23, 36, 39].

Gsol = Gcav +Gvdw +Gpol, (1.1)

The electrostatic solvation energy is the change in the electrostatic energy due to
the induced polarization in the solvent, and so the electrostatic component of the
solvation energy can be written as

Gpol =
1
2

∫
φrxn(~x)ρ(~x) dV, (1.2)

where ρ(~x) is the charge density at position ~x and the reaction electrostatic potential
φrxn(~x) at position ~x indicates the potential change from the air to the solvent, i.e.,
φrxn = φsol − φgas.

A number of applications involve the computation of electrostatic solvation en-
ergy. For example, the binding effect of a drug (molecule 1) and its target (molecule
2) can be measured by the following binding energy relation.

∆Gbind = Gcomplex − (Gmolecule1 +Gmolecule2),
1
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which shows that the binding energy is the difference between the solvation energy
of the complex of two molecules (e.g. target and drug) and the sum of the solvation
energy of the two individual molecules.

On the other hand, the electrostatic forces of molecules can be computed to
simulate their activity. The accuracy and computational cost of electrostatic force
computation directly affect the simulation results. In order to compute the electro-
static force, the electric field of proteins themselves and the influence of their dielectric
and ionic environment should be considered.
Background and Significance: Considerable research efforts have been devoted to cal-
culating binding solvation energy and forces in the past two decades. Based on the
solvent model used these different theoretical approaches can be divided into two
broad categories: explicit and implicit.

Explicit solvent models adopt a microscopic treatment of both solvent and solute
(molecule). Explicit approaches sample the solute-solvent space by molecular dynam-
ics or Monte Carlo techniques which involve a large number of ions, water molecules
and molecular atoms. This requires considerable computational effort for calculat-
ing the potential functions is needed and explicit solutions are often not practical
especially for large domains. [42]

Implicit solvent models treat the solvent as a featureless dielectric material and
adopt a semi-microscopic representation of the solute. The effects of the solvent are
modeled in terms of dielectric and ionic physical properties. As as result, the com-
putational cost is reduced in comparison with explicit solutions. Implicit continuum
electrostatics approaches using the Poisson-Boltzmann (PB) equation are now widely
used and have been successfully used to obtain good approximations.
Prior Work: Finite difference method (FDM), finite element method (FEM) and
boundary element method (BEM) are three types of numerical solvers widely used to
solve the PB equation.

FDM employs a box of three dimensional cubic grids where the molecule and
surrounding solvent are contained. The electrostatic potentials are approximately
solved on these grid points based on the PB equation. [3, 24, 35]

The idea of FEM is the approximation of partial differential equations in varia-
tional form over the space. FEM employs robust and various discretization of three
dimensional space. The approximate solution of the PB equation is solved over these
discrete elements while some iterative solution strategies, like inexact Newton meth-
ods and multilevel algorithms, are often applied for accurate and efficient numerical
solution. [18, 19, 15, 9, 25].

Since R.J. Zauhar and R.S. Morgan introduced a BEM paper on continuum elec-
trostatic of biological systems [44], in the past two decades, scientists have made
contributions to improve and extend the BEM solution and performance. Some of
these works focus on overcoming the difficulties of BEM which typically gives rise to
fully populated matrices with numerous singular and hypersingular surface integrals.
These works include the implementation of accelerating techniques for numerous sin-
gular and hypersingular surface integral operations [31, 11, 41, 14, 12, 27, 2] and, the
analysis of and strategies for conditioning the linear system. [31, 14, 2, 30]

Other works make contributions to the methodological generalization including
the solution from single molecule to multiple molecules [48, 32], the solution from the
two-region case to the multiple-region case [2], and the extensive method for solving
nonlinear PB equation. [40, 13]
Main Contributions:



Fast Multipole Boundary Element Method for Poisson Boltzmann Electrostatics 3

The main contributions of this paper include: (a)A new method that produces a
linear Poisson-Boltzmann system of reduced size by discretizing the energy functionals
using algebraic spline boundary elements of a molecular surface. (b) The use of
GMRES iterative method with KiFMM [43] for a very fast linear solver of the reduced
linear system. The results show that our new approach is more accurate and efficient
than other numerical solvers even with fewer boundary elements. (c) The consistent
parametric formulation of the normal derivative of electrostatic potential is presented
as a good approximation.

In the next section, a featureless continuum model widely used in solvated elec-
trostatic simulation and Poisson-Boltzmann theory is introduced. Then we discuss
the details of the main technique used to construct algebraic spline models and solve
the electrostatic potential, and solvation energy via a kernel-independent, fast multi-
pole method. In section 4, numerical implementation and the simulation results are
presented in detail. Finally, we conclude the paper with our experimental results and
analysis.

2. Implicit Continuum Model and the Poisson-Boltzmann Equation. A
molecule is defined as a stable group of at least two atoms in a definite arrangement
held together by very strong chemical covalent bonds. For a molecule embedded in
an ionic solution, we separated the open domain (R3) into interior (Ω) and exterior
regions (R3 − Ω) by the molecular surface Γ [28].

The continuum model of a molecule in the solvent is then defined by these two
regions and used for numerical computation of solvation electrostatic computation.
Two important coefficients of a continuum model are dielectric and ionic strength.
The dielectric coefficient ε(~x) and ion strength I(~x) at position ~x depends on which
region ~x belongs to.

ε(~x) =
{
εI , ~x ∈ Ω,
εE , ~x ∈ R3 − Ω.

I(~x) =
{

0, ~x ∈ Ω,
I, ~x ∈ R3 − Ω.

where εI and εE are dielectric constants. I is the constant ionic strength of the solvent.

Based on the continuum model, the electrostatic potential in the interior and
exterior of a molecule is governed by Poisson equation.

∇ · (ε(~x)∇φ(~x)) = ρc(~x) + ρb(~x)

ρc(~x) = −4π
∑nc
k=1

qk
εI
δ(~x− ~xk)

ρb(~x) = λ(~x)
∑
i eczicie

−ecziφ(~x)/kBT

if the solvent only contains ions with 1 and −1 charges,
= λ(~x)κ̄2(~x)

(
kBT
ec

)
sinh

(
ecφ(~x)
kBT

)
.
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where each notation in the equation is defined as follows.

ε(~x) dielectric coefficient at x
qk charge of the atom k
~xk the position of charge point qk (center of the atom k)
nc the number of point charges
λ(~x) 1 outside molecule, 0 inside molecule

κ̄(~x) =
√

8πe2cI(~x)
kBT

modified Debye-Huckel parameter
ec the charge of an electron
kB Boltzmann’s constant
T the absolute temperature
I(~x) = 1

2

∑
i ciz

2
i The ionic strengths at ~x

ci, zi concentration and charge of ith ionic species

In the Poisson-Boltzmann equation, the charge density ρc(~x) is explicitly determined
by atomic charges of a molecule and the charge density ρb(~x) is implicitly approxi-
mated by Boltzmann distribution of ionic charges.

The linearized PB equation approximated from linearizing the full PB equation
is widely used and believed as an efficient approximation for the regular solvation
electrostatic problem. [32][12][41]

∇ · (ε(~x)∇φ(~x)) = ρc(~x) + ρLb (~x)

where ρLb (~x) = κ̄2(~x)φ(~x) is the first term of Taylor expansion of ρb(~x).
By solving this equation, we can obtain the electrostatic potential φ(~x) over

the entire region. Since it is often difficult to directly solve the Poisson-Boltzmann
equation for this kind of complex molecule-solvent systems, several computer pro-
grams have been created to solve it numerically. We also developed a boundary
element solver with fast multipole method to numerically solve the linearized Poisson-
Boltzmann equation.

3. Boundary element solution of the Poisson-Boltzmann equation. In
this paper, we solve the Poisson-Boltzmann molecular electrostatic problem for the
real protein complex. The inputs of the solver are 3-D structures of bio-molecules ob-
tained from the RCSB protein data bank (PDB) and the outputs are the PB numerical
electrostatic results. The RCSB protein data bank (PDB) is a worldwide data repos-
itory for the distribution of 3-D structure data of large molecules of proteins. PDB is
a file format which contains the exact locations of all atoms in a molecule and the list
of amino acids making up a particular protein. The molecular model for continuum
electrostatic calculations is obtained from a PDB file by assigning charge and radius
parameters derived from a variety of force fields, e.g. AMBER, CHARMM, etc. For
example, the adaptive Poisson-Boltzmann solver, APBS, applies the all-atom AM-
BER force field to prepare the setup of Poisson-Boltzmann electrostatic calculations.
[20]

In the definition of the continuum model, the whole region is divided by its molec-
ular surface Γ. In this paper, the molecular surface Γ is extracted using geometric flow
evolution in a level set formulation [7, 8]. The basic idea of this technique is to drive
an initial approximate surface obtained from the Gaussian density function to the fi-
nal molecular surface in the level set formulation using geometric flow evolution. The
surface is then discretized into triangular meshes which is extracted from the level
set using dual contouring method. After the preparation of the continuum model,
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our spline based boundary element method is applied to numerically solve the linear
PB equation over the triangular mesh. The numerical treatment of the PB equation
based on a C1 algebraic spline model will be described and the consistency of the
electrostatic potential is guaranteed by the parametrization of electrostatic potential
using the algebraic spline model.

3.1. Boundary representations and boundary integral equations. The
PB boundary formulation, also called PB boundary integral equations, is derived
from the PB equation using the boundary conditions on the interface of the continuum
model. The interface is now defined by the triangular mesh of the molecular surface
Γ. Because of the zero ionic strength inside the molecule , the ionic charge density
ρb(~x) = 0 in the molecular region. The molecular charge density ρc(~x) = 0 in the
solvent region because the molecular charge density in the PB equation is defined
by the delta functions of the atomic positions. Therefore, the linearized Poisson-
Boltzmann equation can be separated into two formulations,

∇ · (ε(~x)∇φi(~x)) = −4π
∑nc
k=1 qkδ(~x− ~xk) ~x ∈ Ω

∇ · (ε(~x)∇φe(~x)) = κ2φe(~x) ~x ∈ R3 − Ω (3.1)

where φi(~x) and φe(~x) are the electrosatic potential interior to and exterior to the
point ~x on the surface Γ.

The boundary conditions on the surface Γ of Ω is then defined by the electrostiatic
potential φi(~x) and φe(~x) and their normal derivatives.

φ(~x) = φi(~x) = φe(~x)
∂φ
∂~n(x) (~x) = ∂φi

∂~n(x) (~x) = εE
εI

∂φe
∂~n(x) (~x) (3.2)

After applying Green’s second identity to the interior Poisson equation and exterior
PB equation (3.1) with the boundary conditions (3.2), the boundary integral equations
of PB equation are derived as follows,

1
2
φ(~x) +−

∫
Γ

(
∂

∂~n(y)
G0(~x, ~y)φ(~y)−G0(~x, ~y)

∂φ(~y)
∂~n(y)

)
d~y =

nc∑
k=1

qk
εI
G0(~x,~xk) (3.3)

1
2
φ(~x) +−

∫
Γ

(
εE
εI
Gκ(~x, ~y)

∂φ(~y)
∂~n(y)

− ∂

∂~n(y)
Gκ(~x, ~y)φ(~y)

)
d~y = 0 (3.4)

where −
∫

is the principal value integral. The Green’s functions, also called fundamental
solutions, for the PB equation are

G0(~x, ~y) = 1
4π‖~x−~y‖

∂G0(~x,~y)
∂~n(y) = − cos θ0

4π‖~x−~y‖2

Gκ(~x, ~y) = e−κ‖~x−~y‖

4π‖~x−~y‖
∂Gκ(~x,~y)
∂~n(y) = −e−κ‖~x−~y‖(1.0+κ‖~x−~y‖) cos θ0

4π‖~x−~y‖2

where cos θ0 = (~x−~y)·~n(y)

‖~x−~y‖ and cos θ = (~x−~y)·~n(x)

‖~x−~y‖ and ~n(y) is the surface normal on the
point ~y [44].

Figure 3.1 shows an example of the boundary element decomposition of a four-
atom molecule. The molecular surface Γ has been discretized into elements Γi,
i = 1, ..., N . ~xi represents a point on an element Γi as ~yj represents a point on
Γj . Their normal vectors are written as ~n(x)

i and ~n
(y)
j . Boundary integral equations
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Fig. 3.1. The example of boundary element decomposition of a four-atom molecule: ~xk is the

center of kth atom, ~xi and ~yj are the points on the elements Γi and Γj of the surface Γ and ~n
(x)
i

and ~n
(y)
j are their normal vectors.

can be written as a linear system using this notation. An improved version of the
boundary integral equations was proposed by A.H. Juffer and other researchers by
linearly combining the derivative forms of these two boundary integral equations. The
formulation is also called derivative boundary integral equations (dBIEs)[1].

1
2 (1 + εE

εI
)φ(~x) + −

∫
Γ
(∂G0(~x,~y)

∂~n(y) − εE
εI

∂Gκ(~x,~y)
∂~n(y) )φ(~y)d~y

−−
∫

Γ
(G0(~x, ~y)−Gκ(~x, ~y))∂φ(~y)

∂~n(y) d~y =
∑nc
k=1

qk
εI
G0(~x,~xk)

(3.5)

1
2 (1 + εI

εE
)∂φ(~x)
∂~n(x) + −

∫
Γ
( ∂

2G0(~x,~y)
∂~n(x)∂~n(y) − ∂2Gκ(~x,~y)

∂~n(x)∂~n(y) )φ(~y)d~y
−−
∫

Γ
(∂G0(~x,~y)

∂~n(x) − εI
εE

∂Gκ(~x,~y)
∂~n(x) )∂φ(~y)

∂~n(y) d~y =
∑nc
k=1

qk
εI

∂G0(~x,~xk)
∂~n(x)

(3.6)

where

∂G0(~x,~y)
∂~n(x) = cos θ

4π‖~x−~y‖2
∂Gκ(~x,~y)
∂~n(x) = e−κ‖~x−~y‖(1.0+κ‖~x−~y‖) cos θ

4π‖~x−~y‖2
∂2G0(~x,~y)
∂~n(x)∂~n(y) = (~n(x)̇~n(y))−3 cos θ0 cos θ

4π‖~x−~y‖3
∂2Gκ(~x,~y)
∂~n(x)∂~n(y) = e−κ‖~x−~y‖(1.0 + κ‖~x− ~y‖) G0(~x,~y)

∂~n(x)∂~n(y) − κ2e−κ‖~x−~y‖

4π‖~x−~y‖ cos θ0 cos θ

The main advantage of this reformulation is that it leads to a well-conditioned
system. The linear iterative solver converges much faster than the original boundary
integral equations which are also called non-derivative boundary integral equations
(nBIEs) [30].
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4. Numerical Treatment of Boundary Integral Equations. The main dif-
ficulties to solving the PB boundary integral equations are the full populated ma-
trix, the singular and hypersingular integral and numerous integral operations. The
nonzero entries of the populated matrix is O(N2) where N is the number of unknowns.
It is proportional to the number of discrete elements or vertices of the molecular sur-
face. Because of the large number of elements necessary for discretizing the surface,
we use a Krylov iterative linear solver instead of direct solver to solve the Poisson-
Boltzmann boundary integral equations.

Meanwhile, we are unable to store and access the full matrix in the memory.
However, for each iteration, the matrix-vector product should be evaluated. The cost
of the straight forward evaluation is expensive, such that time complexity is O(N2)
where N is the number of unknowns. Fast multipole method is a technique to improve
the time complexity of matrix-vector product to linear time evaluation.

In addition, the numerical computation of the surface integral depends on the
parametrization of triangular elements. In this paper, we compare the evaluation
of the integrals of kernel functions between planar linear elements and higher-order
algebraic elements. We do the parametrization on the triangulation of the molecular
surface. The triangulation of the surface is composed of the vertices V = {~vi}Pi=1

with their unit normal vectors {~ni}Pi=1 and the triangular elements Γ = {Γj |Γj =
~vj1~vj2~vj3 where j = 1, · · · , L and ~vj1, ~vj2, ~vj3 ∈ V}. Before we discuss the details of

(a) (b) (c)

(d) (e)

Fig. 4.1. Molecular model of a protein (PDB id:1CGI); (a) The van der Waals surface of its
3D atomic model (852 atoms); (b) The surface generated using the Gauss density function from
its 3D atomic model (c) Its solvent excluded surfaces (SES), also called molecular surface; (d) The
decimated triangulation of SESs; (e) The piecewise algebraic surface patches generated from the
decimated triangulation of SESs.

our numerical treatment, we take a ligand protein (PDB id: 1CGI) as an example to
show some important and useful types of molecular structures in Figure 4.1. Figure
(a) is the van der Waals surface which represents the 3D atomic structure of the
molecule, where the color of each sphere represents its residue type and the radius
of each sphere represents the radius of the atom. Based on 3D atomic structure, the
molecular surface is generated to apply the boundary condition (3.2) of our solution.
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Figure (b) shows the approximate molecular surface extracted from the level set
of Gaussian density function from the 3D atomic model. Figure (c) is the molecular
surface of this protein generated using geometric flow evolution in level set formulation
and this surface is a better approximation to the definition of molecular surface, also
called solvent excluded surface [7, 8].

Based on the decimated triangulation of the molecular surface in Figure (d),
the algebraic spline surface, composed by a higher order curve element, A-patches,
is concluded, as is shown in the figure (e). This higher-order model is applied for
improving the accuracy and efficiency of electrostatics computation. We will describe
all the details in this section.

Fig. 4.2. The parametric representation of a linear triangular element: vj1, vj2, vj3 are the
vertices of the jth triangular element Γj and yj is an arbitrary point on the element.

4.1. Parametric linear element. Figure 4.2 shows the point ~yj on the element
Γj = ~vj1~vj2~vj3. The parametric form of ~yj is given by its barycentric coordinates
(b1, b2, b3)T as follows. [

~yj
1

]
=
[
~vj1 ~vj2 ~vj3
1 1 1

]b1b2
b3


We then approximate those integrals with a kernel function G(~x, ~y) using the Gaussian
quadrature.

−
∫

Γ

G(~x, ~y)f(~y)d~y =
L∑
j=1

−
∫

Γj

G(~x, ~yj)f(~yj)d~yj =
L∑
j=1

M∑
m=1

WmG(~x, ~yjm)f(~yjm)J(Γj)

where ~x is the evaluation point; {Wm}Mm=1 and {~yjm}Mm=1 are mth weight and point
of Gaussian quadrature, and J(Γj) is the Jacobian (area) of the linear element Γj .

4.2. Algebraic-spline model and parametrization. Algebraic patches or A-
patches are a kind of low degree algebraic surface finite elements with dual implicit
and rational parametric representations [4]. The A-patch element is defined within a
prism scaffold as shown in the figure 4.3. For some triangle element Γj = ~vj1~vj2~vj3 of
a triangulation of the molecular surface, the A-patch {Γ̄j}Lj=1 is defined on this prism.

~vjl(λ) = ~vjl + λ~njl, l = 1, 2, 3

where the prism is defined by

D(Γj) := {~y : ~y = b1vj1(λ) + b2vj2(λ) + b3vj3(λ), 0 ≤ λ ≤ 1}
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Fig. 4.3. A prism scaffold of triangular element vivjvk

where (b1, b2, b3) are the barycentric coordinates of points in ~vj1~vj2~vj3.
According to the definition of algebraic patches, we define an implicit function

over the prism D(Γj) in Benstein-Bezier spline form.

Fd(b1, b2, b3, λ) =
∑

i+j+k=d

bijk(λ)Bdijk(b1, b2, b3)

Bdijk(b1, b2, b3) =
d!

i!j!k!
bi1b

j
2b
k
3

which is also called the algebraic spline model. The details of the parametrization of
algebraic spline model are in [47]. The molecular surface Γ can be approximated by
the zero contour of the implicit function Fd:

{(b1, b2, b3, λ) : Fd(b1, b2, b3, λ) = 0}

Now, given the barycentric coordinates (b1, b2, b3)T on the triangle, the parametric
form of the position ~yj on the A-patch element Γ̄j = ~vj1~vj2~vj3 is

[
~yj
1

]
=
[
~vj1(λ) ~vj2(λ) ~vj3(λ)

1 1 1

]b1b2
b3


As what we did for linear element, we can also approximate those integrals using
Gaussian quadrature on the A-patches [47],

−
∫

Γ̄

G(~x, ~y)f(~y)d~y =
L∑
j=1

−
∫

Γ̄j

G(~x, ~yj)f(~yj)d~yj =
L∑
j=1

M∑
m=1

WmG(~x, ~yjm)f(~yjm)J(Γ̄j)

where ~x is the evaluation point. Γ̄j is the zero contour of the cubic Bezier basis
over jth triangle where Wm and ~yjm = bm1~vj1(λjm) + bm2~vj2(λjm) + bm3~vj3(λjm) are
the mth weight and points of Gaussian quadrature on this patch Γ̄j . The Jacobian
weight J(Γ̄j) is described in the appendix as the area of the patch. Because ~yjm =



10 CHANDRAJIT BAJAJ and SHUN-CHUAN ALBERT CHEN∑3
i=1 bmi~vji(λjm) is the mth integration point on the element Γj and

G0(~xi, ~yjm) = 1
4π‖~xi−~yjm‖

Gκ(~xi, ~yjm) = e−κ‖~xi−~yjm‖

4π‖~xi−~yjm‖
∂G0(~xi,~yjm)

∂~n
(y)
jm

=
−(~xi−~yjm)·~n(y)

jm

4π‖~xi−~yjm‖3

∂Gκ(~xi,~yj)

∂~n
(y)
jm

=
−e−κ‖~xi−~yjm‖(1+κ‖~xi−~yjm‖)(~xi−~yjm)·~n(y)

jm

4π‖~xi−~yjm‖3 ,

the numerical treatment of nBIEs (3.3) and (3.4) becomes

1
2φ(~xi) +

∑L
j=1

∑M
m=1 φ(~yjm)Wm

∂G0

∂~n
(y)
jm

(~xi, ~yjm)J(~yjm)

−
∑L
j=1

∑M
m=1

∂φ

∂~n
(y)
jm

(~yjm)WmG0(~xi, ~yjm)J(~yjm) =
∑nc
k=1

qk
εI
G0(~xi,~xk)

1
2φ(~xi) −

∑L
j=1

∑M
m=1 φ(~yjm)Wm

∂Gκ
∂~n

(y)
jm

(~xi, ~yjm)J(~yjm)

+ εI
εE

∑L
j=1

∑M
m=1

∂φ

∂~n
(y)
jm

(~yjm)WmfGκ(~xi, ~yjm)J(~yjm) = 0

where L is the number of patches, and the numerical treatment of dBIEs (3.5) and
(3.6) is

1
2 (1 + εE

εI
)φ(~xi)

+
∑L
j=1

∑M
m=1 φ(~yjm)Wm

(
∂G0

∂~n
(y)
jm

(~xi, ~yjm)− εE
εI

∂Gκ
∂~n

(y)
jm

(~xi, ~yjm)
)
J(~yjm)

−
∑L
j=1

∑M
m=1

∂φ

∂~n
(y)
jm

(~yjm)Wm (G0(~xi, ~yjm)−Gκ(~xi, ~yjm)) J(~yjm)

=
∑nc
k=1

qk
εI
G0(~xi,~xk)

1
2 (1 + εI

εE
) ∂φ
∂~nix

(~xi)

−
∑L
j=1

∑M
m=1 φ(~yjm)Wm

(
∂2G0

∂~n
(y)
jm∂~n

i
x

(~xi, ~yjm)− ∂2Gκ
∂~n

(y)
jm∂~n

i
x

(~xi, ~yjm)
)
J(~yjm)

+
∑L
j=1

∑M
m=1

∂φ

∂~n
(y)
jm

(~yjm)Wm

(
∂G0

∂~n
(x)
i

(~xi, ~yjm)− εI
εE

∂Gκ
∂~n

(x)
i

(~xi, ~yjm)
)
J(~yjm)

=
∑nc
k=1

qk
εI

G0

~n
(x)
i

(~xi,~xk).

Now, the boundary integral equations are treated as a linear system For better
elaboration, we can write the boundary integral equations in the following matrix
form.

[
1
2I + ∂G0

∂~n(y) −G0
1
2I −

∂Gκ
∂~n(y)

εI
εE
Gκ

] [
φ
∂φ
∂~n

]
=
[∑nc

k=1
qk
εI
G0,k

0

]

where

• φj and
(
∂φ
∂~n

)
j

are the jth unknown electrostatic potential and its normal

derivative at some point ~yj on the patch Γ̄j
• I is the identity operator so that Iijφj = φj
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• The operators compute the potential at the point ~xi due to the patch Γ̄j

(
∂G0
∂~n(y)

)
ij
φj = −

∫
Γ̄j

∂G0

∂~n
(y)
j

(~xi, ~yj)φ(~yj)d~yj

=
∑M
m=1Wm

∂G0

∂~n
(y)
jm

(~xi, ~yjm)φ(~yjm)J(Γ̄j)

(G0)ij
(
∂φ
∂~n

)
j

= −
∫

Γ̄j
G0(~xi, ~yj)

∂φ(~yj)

∂~n
(y)
j

d~yj

=
∑M
m=1WmG0(~xi, ~yjm)∂φ(~yjm)

∂~n
(y)
jm

J(Γ̄j)(
∂Gκ
∂~n(y)

)
ij
φj = −

∫
Γ̄j

∂Gκ
∂~n

(y)
j

(~xi, ~yj)φ(~yj)d~yj

=
∑M
m=1Wm

∂Gκ
∂~n

(y)
jm

(~xi, ~yjm)φ(~yjm)J(Γ̄j)

(Gκ)ij
(
∂φ
∂~n

)
j

= −
∫

Γ̄j
Gκ(~xi, ~yj)

∂φ(~yj)

∂~n
(y)
j

d~yj

=
∑M
m=1WmGκ(~xi, ~yjm)∂φ(~yjm)

∂~n
(y)
jm

J(Γ̄j)

(G0,k)i = G0(~xi,~xk)

where ~xi is a point on the patch Γ̄i and ~yjm is mth Gaussian quadrature point
on the patch Γ̄j .

dBIEs can also be written in a linear system as nBIEs.

[
1
2 (1 + ε)I + ∂Gκ

∂~n(y) − ε ∂G0
∂~n(y) G0 −Gκ

∂2G0
∂~n(y)∂~n(x) − ∂2Gκ

∂~n(y)∂~n(x)
1
2 (1 + 1

ε )I + ∂Gκ
∂~n(x) − εI

εE
∂Gκ
∂~n(x)

] [
φ
∂φ
∂~n

]
=

[∑nc
k=1

qk
εI
G0,k∑nc

k=1
qk
εI

∂G0,k

∂~n(x)

]
(4.1)

(
∂G0
∂~n(x)

)
ij

(
∂φ
∂~n

)
j

= −
∫

Γ̄j
∂G0

∂~n
(x)
i

(~xi, ~yj)
∂φ(~yj)

∂~n
(y)
j

d~yj

=
∑M
m=1Wm

∂G0

∂~n
(x)
i

(~xi, ~yjm)∂φ(~yjm)

∂~n
(y)
jm

J(Γ̄j)(
∂2G0

∂~n(x)∂~n(y)

)
ij
φj = −

∫
Γ̄j

∂2G0

∂~n
(x)
i ∂~n

(y)
j

(~xi, ~yj)φ(~yj)d~yj

=
∑M
m=1Wm

∂2G0

∂~n
(x)
i ∂~n

(y)
jm

(~xi, ~yjm)φ(~yjm)J(Γ̄j)(
∂Gκ
∂~n(x)

)
ij

(
∂φ
∂~n

)
j

= −
∫

Γ̄j
∂Gκ
∂~n

(x)
i

(~xi, ~yj)
∂φ(~yj)

∂~n
(y)
j

d~yj

=
∑M
m=1Wm

∂Gκ
∂~n

(x)
i

(~xi, ~yjm)∂φ(~yjm)

∂~n
(y)
jm

J(Γ̄j)(
∂2Gκ

∂~n(x)∂~n(y)

)
ij
φj = −

∫
Γ̄j

∂2Gκ
∂~n

(x)
i ∂~n

(y)
j

(~xi, ~yj)φ(~yj)d~yj

=
∑M
m=1Wm

∂2Gκ
∂~n

(x)
i ∂~n

(y)
jm

(~xi, ~yjm)φ(~yjm)J(Γ̄j)(
∂G0,k

∂~n(x)

)
i

= ∂G0

∂~n
(x)
i

(~xi,~xk)

4.3. Normal derivative of electrostatic potential. In Figure 4.4, the para-
metric form of the position on a A-patch Γ of a triangulation ~v1~v2~v3 is shown as

~x = b1~v1(λ) + b2~v2(λ) + (1− b1 − b2)~v3(λ), ~x ∈ Γ (4.2)
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Fig. 4.4. The representation of a point ~x on a algebraic patch ~v1~v2~v3.

If we write the parameters as a vector ~b = (b1, b2, λ), the normal derivative of the
electrostatic potential can be written in the following form using the chain rule

∂φ
∂~n (~x) = ~n · ∇φ(~x) = ~n ·


∂φ
∂x1

(~x)
∂φ
∂x2

(~x)
∂φ
∂x3

(~x)


= [n(x)

1 , n
(x)
2 , n

(x)
3 ] ·

 ∂b1∂x1

∂b2
∂x1

∂λ
∂x1

∂b1
∂x2

∂b2
∂x2

∂λ
∂x2

∂b1
∂x3

∂b2
∂x3

∂λ
∂x3



∂φ
∂b1

(~x)
∂φ
∂b2

(~x)
∂φ
∂λ (~x)


(4.3)

where ~x = (x1, x2, x3)T and ~n(~x) = (n(x)
1 , n

(x)
2 , n

(x)
3 )T is the unit vector of the normal

at ~x.
We can derive each term in the equation (4.3) in terms of the parametric param-

eters of the algebraic spline model. First, ∂b1∂x1
∂b1
∂x2
∂b1
∂x3

 = (~v1 − ~v3) + λ(~n1 − ~n3)

 ∂b2∂x1
∂b2
∂x2
∂b2
∂x3

 = (~v2 − ~v3) + λ(~n2 − ~n3)

 ∂λ
∂x1
∂λ
∂x2
∂λ
∂x3

 = b1~n1 + b2~n2 + b3~n3

(4.4)

where ~vi = (vi1, vi2, vi3)T and its unit normal vector ~ni = (ni1, ni2, ni3)T for i = 1, 2, 3.
Then, we approximate the electrostatic potential function in the region by

φ(~x) = b1((1− λ)φ(~v1) + λφ(~v1 + ~n1)) + b2((1− λ)φ(~v2) + λφ(~v2 + ~n2))
+(1− b1 − b2)((1− λ)φ(~v3) + λφ(~v3 + ~n3)), (4.5)
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Fig. 4.5. The representation of electrostatic potential φ(~x) at a point ~x on a algebraic patch
~v1~v2~v3.

and the derivative of the potential to the coordinate ~b becomes

∂φ
∂b1

(~x) = ((1− λ)(φ(~v1)− φ(~v3)) + λ(φ(~v1 + ~n1)− φ(~v3 + ~n3)))
∂φ
∂b2

(~x) = ((1− λ)(φ(~v2)− φ(~v3)) + λ(φ(~v2 + ~n2)− φ(~v3 + ~n3)))
∂φ
∂λ (~x) = b1(φ(~v1 + ~n1)− φ(~v1)) + b2(φ(~v2 + ~n2)− φ(~v2)) + b3(φ(~v3 + ~n3)− φ(~v3))

(4.6)
Finally, we can get the normal derivative of electrostatic potential in the equation

(4.3) in this A-patch by combining the above two equations (4.4) and (4.6).
The unknown electrostatic potential and its normal derivatives at the Gaussian

quadrature points, in the matrix form of PB BIEs can be derived from the parametric
representation of the electrostatic potential at the positions of the vertices and the
vertices with a displacement of its unit normal. Here, the parametric form of a
Gaussian point ~yjm on the element Γ̄j is

~yjm = bm1~vj1(λjm) + bm2~vj2(λjm) + (1− bm1 − bm2)~vj3(λjm)

and the electrostatic potential φ(~yjm) and normal derivative of electrostatic potential
∂φ

∂~n
(y)
jm

(~yjm) at this point are computed using the equations (4.5) and (4.3).

4.4. Numerical linear system. The matrix to map the index of the vertices
~vj1~vj2~vj3 of some element Γj to the index of vertices of the surface is

Eij =

 1 if ~v(i/3)(i mod 3) = ~vj
1 if ~v(i/3−L)(i mod 3) = ~vj−P
0 otherwise

This matrix maps the index of electrostatic potential from the vertices of an element
to the vertices of the triangulation.

φ(~vit) =
∑P
j=1E(3i+t)(j)φ(~vj), i = 1, · · · , L and t = 1, 2, 3,

φ(~vit + ~nit) =
∑P
j=1E(3(i+L)+t)(j+P )φ(~vj + ~nj), i = 1, · · · , L and t = 1, 2, 3

We define
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• the coefficient matrix of the boundary integral equations in the equation (4.1)
to be A

• the transform matrix from the unknowns in the equation (4.1) to the paramet-
ric representation of algebraic spline model to be B. The detailed derivation
of the matrix form is in the appendix.

• the matrix mapping the vertex index of the patches to the vertex index of
the surfaced to be E.

The final linear system will be

ABE



φ(~v1)
φ(~v2)

...
φ(~vP )

φ(~v1 + ~n1)
φ(~v2 + ~n2)

...
φ(~vP + ~nP )


=



Q01

Q02

...
Q0P

Q′01

Q′02
...

Q′0P


where Q0i =

∑nc
k=1

qk
εI
G0(~vi,~xk), i = 1, · · · , P and Q′0i =

∑nc
k=1

qk
εI
∂G0
∂~ni

(~vi,~xk), i =
1, · · · , P . The unknowns are now located on the vertices of triangulation {~vi}Pi=1.

5. Postprocessing.

5.1. Interior and exterior electrostatic potential. If the PB electrostatic
potential on the surface Γ is computed, we can obtain the electrostatic potential inside
Γ (the interior region Ω) from the equation 5.1,

φ(~x) = −
∫

Γ
( εEεI

∂Gκ(~x,~y)
∂~n(y) − ∂G0(~x,~y)

∂~n(y) )φ(~y)d~y
+−
∫

Γ
(G0(~x, ~y)−Gκ(~x, ~y))∂φ(~y)

∂~n(y) d~y +
∑nc
k=1

qk
εI
G0(~x,~xk)

(5.1)

if ~x ∈ Ω and the electrostatic potential outside Γ (the exterior region R3 − Ω) from
the equation 5.2 [1].

εE
εI
φ(~x) = −

∫
Γ
( εEεI

∂Gκ(~x,~y)
∂~n(y) − ∂G0(~x,~y)

∂~n(y) )φ(~y)d~y
+−
∫

Γ
(G0(~x, ~y)−Gκ(~x, ~y))∂φ(~y)

∂~n(y) d~y +
∑nc
k=1

qk
εI
G0(~x,~xk)

(5.2)

if ~x ∈ R3 − Ω. The numerical solution of patch quadrature is applied to compute
these surface integrals.

5.2. Numerical solution of electrostatic free energy and force. The elec-
trostatic free energy is derived by Sharp using the variation principle from linearized
PB equation[38]. The formulation of electrostatic free energy Gpol in the equation
(1.2) is computed by the charge and the electrostatic potential at the atomic centers
of a molecule . The electrostatic potential at the atomic centers can be computed
through the interior electrostatic potential equation (5.1).

Gpol =
∫

Ω

φrxn(~x)
nc∑
k=1

qkδ(~x− ~xk)d~x =
1
2

nc∑
k=1

φrxn(~xk)qk

where the difference between the electrostatic potential in the solvent and the air,
also called the reaction field electrostatic potential, is φrxn(~x) = φsol(~x)− φgas(~x).
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Because the ionic strength is zero in the air, the Poisson kernel G0(~x, ~y) and
Poisson-Boltzmann kernel Gκ(~x, ~y) are the same. At the same time, the dielectric
constants inside and outside the molecule are the same: εE = εI , so the two surface
integral terms in the equation (5.1) are zero. It indicates that the interior electrostatic
potential in the air is

φgas(~x) =
nc∑
k=1

qk
εI
G0(~x,~xk).

Therefore, the reaction field electrostatic potential φrxn(~x) is the surface integral term
of the electrostatic potential in the solvent φsol(~x).

φrxn(~x) = −
∫

Γ

(
εE
εI

∂Gκ(~x, ~y)
∂~n(y)

− ∂G0(~x, ~y)
∂~n(y)

)φsol(~y)d~y+−
∫

Γ

(G0(~x, ~y)−Gκ(~x, ~y))
∂φsol(~y)
∂~n(y)

d~y

In Sharp’s definition, the electrostatic free energy is actually composed of three
terms and the above formulation is called the reaction field energy. In the planar
case, the remaining two terms, the electrostatic stress and osmotic pressure terms,
are canceled out.

Based on Sharp’s definition, Gilson expressed the electrostatic force Fpol through
a variational derivation of force expression from electrostatic free energy [22].

Fpol = −
∫

Ω

(
ρc(~x)E(~x)− 1

2
E(~x)2∇ε(~x)− kBT

∑
i

[ci(e−ziφ(~x)/kBT − 1)∇λ(~x)]

)
d~x

(5.3)
where ρc(~x) = 4π

∑nc
k=1 qkδ(~x − ~xk) and the electric field is the gradient of the elec-

trostatic potential, E(~x) = −∇φ(~x).
The terms in the electrostatic force equation (5.3) are called the reaction field

force, the dielectric boundary force, and the ionic boundary force.
• the reaction field force

Frxn = −
∫

Ω

ρc(~x)E(~x)d~x = −4π
nc∑
k=1

qkE(~xk)

• the dielectric boundary force

Fdb =
∫

Ω

1
2
E(~x)2∇ε(~x)d~x

• the ionic boundary force

Fib =
∫

Ω

kBT
∑
i

[ci(e−ziφ(~x)/kBT − 1)∇λ(~x)]d~x

where λ(~x) is 1 outside Γ and 0 inside Γ.
For an atom of a molecule which doesn’t form part of a dielectric or ionic bound-

ary, the dielectric boundary force and ionic boundary force are zero and only the
reaction field term is necessary Fpol = Frxn. For an atom of a molecule which forms
part of a dielectric or ionic boundary, also called a solvent-exposed atom, all three
terms should be counted Fpol = Frxn + Fdb + Fib.
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In order to compute these different force terms, we have to approximate the
electric field E(~x) at all atomic centers and molecular surface points. The electric field
~x is approximated using the gradient of interior and exterior electrostatic potential
(5.1) and (5.2).

∇φ(~x) = −
∫

Γ
[∇G0(~x, ~y)−∇Gκ(~x, ~y)] ∂φ∂~n (~y)d~y

+−
∫

Γ

[
ε∇∂Gκ

∂~n (~x, ~y)−∇∂G0
∂~n (~x, ~y)

]
φI(~y)d~y

+
∑nc
k=1

qk
εI
∇~xG0(~x,~xk)

if ~x ∈ Ω and

ε∇φ(~x) = −
∫

Γ
[∇G0(~x, ~y)−∇Gκ(~x, ~y)] ∂φ∂~n (~y)d~y

+−
∫

Γ

[
ε∇∂Gκ

∂~n (~x, ~y)−∇∂G0
∂~n (~x, ~y)

]
φ(~y)d~y

+
∑nc
k=1

qk
εI
∇G0(~x,~xk)

.

if ~x ∈ R3 − Ω.
The reaction field force can be computed using the electric field at these atomic

centers. Nevertheless, we can not handle the dielectric boundary force and ionic
boundary force so easily. In order to compute these two forces, we have to compute
the ∇ε(~x) term in dielectric boundary force and the ∇λ(~x) term in the ionic boundary
force. In this paper, we used a distance-dependent model derived by Im to approx-
imate the dielectric function ε(~x) and the ionic boundary function λ(~x) [26]. The
details of this model are described in the appendix.

6. Implementation Details and Experimental Results. In this paper, we
developed a platform of data structures and routines of a 3D boundary element solver,
called PB-CFMM (Poisson-Boltzmann - curved fast multipole method). We imple-
mented all the above methodologies for solving the PB electrostatic problem in PB-
CFMM and it is callable from TexMol [6]. As we described in the above section, the
input of the solver is the 3D atomic structure and the triangular mesh of the target
molecule. Its properties including electrostatic potential, electrostatic free energy and
forces are computed.

Here, PETSc (Portable, Extensible Toolkit for Scientific Computation) is used
for the solution of the PB linear system [10]. It supports matrix-free Krylov iterative
method (e.g. GMRES, CG) which do not require explicit storage of the matrix. The
explicit matrix is replaced by a user-defined evaluation of matrix vector production.
Here, we use kernel independent fast multipole method, KiFMM, to do linear-time
evaluation [43].

The computational steps for the solution of the PB electrostatic problem are
concluded in the following list.
Structure preparation Prepare structures for continuum electrostatic calculations

using “PDB2PQR”. The main task of “PDB2PQR” assigning charge and ra-
dius parameters to the atomic PDB structure [20]. Since many biomolecular
structures in the Protein Data Bank do not contain hydrogen atoms and a
fraction of heavy atoms, this software also checks and rebuilds those miss-
ing hydrogen and heavy atoms to biomolecular structures based on standard
amino acid topologies.

Molecular surface extraction Extract the molecular surface from the level set
computed through geometric flow evolution [5].

Triangular mesh generation Compute high-qualified linear triangular boundary
elements using octree-based dual contouring method [45].
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C1 A-spline modeling Compute the cubic algebraic spline over the triangular ele-
ments.

Numerical solution Compute electrostatic potential by solving the PB equation
using our boundary element solver ”PB-CFMM” with the fast summation
method using ”KiFMM” [43].
• construct KiFMM models for PB kernels on the algebraic spline model,
• solve the linear system using GMRES iterative method with KiFMM.

Post-processing compute electrostatic free energy and forces using electrostatic po-
tential.

In this paper, we solve the linear Poisson-Boltzmann system using the iterative
method, GMRES with the initialization of electrostatic potential using the coulombic
equation. The relative residual tolerance is 10−7 and number of Gaussian quadra-
ture points per triangle is 7. We then gathered 71 sets of ligand-receptor protein
complexes (ligand,receptor,ligand-receptor complex) from RCSB protein data bank
(PDB). These are used for the evaluation of the PB electrostatic computation.

The first experiment is an analytical numerical error evaluation with a given
potential function. This experiment is applied for understanding the reliability and
efficiency of our PB solution. In the second experiment, we compute and compare real
electrostatic results of these proteins between our boundary element solvers and Del-
Phi II finite difference solver [37, 33]. Then, we study the performance of our system
by controlling different effective factors. All experiments are done on a linux machine
with Dual Core AMD Opteron processor 280 with 4 GB memory. We discussed and
analyze the experimental results in the following experiments.

6.1. Analytical numerical evaluation. In the first experiment, we evaluate
the efficiency and accuracy of numerical computation of electrostatic potentials and
their normal derivatives using regular or consistent PB boundary element solvers with
fast matrix-vector product evaluation. The numerical test is done with the assump-
tion that electrostatic potential is given as an exponential function φ̃(~x) = e−‖~x‖

2

and the normal derivative of potential as the normal derivative of this exponential
function ∂φ̃(~x)

∂~n(x) = −2e−‖~x‖
2
(~x · ~n(x)). We calculate Q(~x) and R(~x) on the vertices of

the triangular meshes by evaluating the left hand sight of dBIEs (3.5) and (3.6).

Q(~x) = 1
2 (1 + εE

εI
)φ̃(~x) + −

∫
Γ
(∂G0(~x,~y)

∂~n(y) − εE
εI

∂Gκ(~x,~y)
∂~n(y) )φ̃(~y)d~y

−−
∫

Γ
(G0(~x, ~y)−Gκ(~x, ~y))∂φ̃(~y)

∂~n(y) d~y

R(~x) = 1
2 (1 + εI

εE
)∂φ(~x)
∂~n(x) + −

∫
Γ
( ∂

2G0(~x,~y)
∂~n(x)∂~n(y) − ∂2Gκ(~x,~y)

∂~n(x)∂~n(y) )φ(~y)d~y
−−
∫

Γ
(∂G0(~x,~y)

∂~n(x) − εI
εE

∂Gκ(~x,~y)
∂~n(x) )∂φ(~y)

∂~n(y) d~y

We evaluate the electrostatic potential and its normal derivative on the vertices of
triangulation computed using our boundary element solver by the relative errors√∑P

i=1 |φ(~vi)− φ̃(~vi)|2√∑P
i=1 |φ(~vi)|2

and √∑P
i=1 |

∂φ
∂~ni

(~vi)− ∂φ̃
∂~ni

(~vi)|2√∑P
i=1 |

∂φ
∂~ni

(~vi)|2
.
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# of evaluation relative error # of compute time
A-patches method (φ) iterations (seconds)

2000 direct 6.380× 10−7 35.21 165.063
KiFMM 6.379× 10−7 35.21 60.858

5000 direct 9.472× 10−7 40.88 1237.451
KiFMM 1.309× 10−6 41.72 216.232

10000 direct 2.424× 10−7 46.71 5423.711
KiFMM 2.635× 10−7 46.83 528.605

63444.81∗ KiFMM 4.678× 10−7 38.41 3012.344
Table 6.1

The results of analytical experiments computed using PB BEM solver with different number of
A-patches for 213 molecules; column 1 is the number of triangles (* is the average number of A-
patches of the original triangular mesh of 213 molecular surfaces); column 2 is the type of evaluation
method of matrix-vector product; column 3 is the average relative errors of potential φ and φ̃; column
4 is the number of iterations for the convergence; column 5 is the computation time in seconds.

# of numerical relative relative # of compute
A-patches method error (φ) error (∂φ∂~n ) iterations time (s)

2000 regular 6.379× 10−7 1.442× 10−3 35.21 60.858
consistent 5.208× 10−7 1.533× 10−7 36.17 62.388

5000 regular 1.309× 10−6 9.454× 10−4 41.72 216.232
consistent 9.081× 10−7 5.900× 10−7 45.83 258.544

10000 regular 2.635× 10−7 2.850× 10−3 46.83 528.605
consistent 2.769× 10−7 3.669× 10−7 45.82 492.002

63444.81∗ regular 4.678× 10−7 1.498× 10−3 38.41 3012.344
consistent 4.921× 10−7 4.944× 10−7 39.09 3107.15

Table 6.2
The results of analytical experiments computed using PB BEM solver with different number

of A-patches for 213 proteins; column 1 is the number of triangles (* is the average number of A-
patches of the original triangular mesh of 213 molecular surfaces); column 2 is the type of numerical
solution of boundary element method; column 3 is the average relative errors of potential φ and φ̃;

column 4 is the average relative errors of normal derivative of potential ∂φ
∂~n

and ∂φ̃
∂~n

; column 5 is
the number of iterations for the convergence; column 6 is the computation time in seconds.

Table 6.1 shows the average relative error of potential and compute time of the eval-
uations of whole proteins.

In this experiment, we observe that our fast boundary element solver is much
more efficient than the direct solver because fast multipole methods are linear-time
algorithms with high accuracy. With triangular meshes in different resolutions, small
relative errors of KiFMM indicate that our fast multipole method works well in solving
the PB linear system.

On the other hand, the normal derivative of potential on the molecular surface
is taken as unknown in the original derivative boundary integral equations. In our
paper, we used the parametric formulation of the algebraic spline model to derive the
normal derivative of potential. Here, we compute the potential and normal derivative
of potential using regular or consistent numerical methods and compare the relative
errors and computation time in Table 6.2.

The relative errors of potential are similar in both numerical solutions but those
of the normal derivative of potential are not. The normal derivative of potential
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numerical solver # of grids/ Gpol relative compute time
method name # of A-patches (kcal/mol) error (seconds)
FDM Delphi II 653 −82.943 2.523% 11.39
FDM Delphi II 1293 −82.228 1.642% 95.35
FDM Delphi II 1933 −82.144 1.244% 286.65
BEM PB-CFMM 1436 −80.926 0.032% 4.63

Table 6.3
PB electrostatic free energy of a unit sphere with single charge computed using different nu-

merical method; column 1 is the numerical method; column 2 is the name of the solver; column 3 is
the number of grids for FDM and number of A-patches for BEM; column 4 is the electrostatic free
energy Gpol (kcal/mol); column 5 is the relative error of electrostatic free energy Gpol. As a refer-
ence, the exact electrostatic free energy is −80.9 kcal/mol with the interior and exterior dielectric
constatnt 2 and 80; column 6 is computational time in seconds.

numerical method BEM BEM BEM BEM FDM
# of A-patches/grids 2000 5000 10000 63444.81* 1933

avg. # of iterations 35.21 41.72 37.14 28.86 -
max # of iterations 91 98 93 84 -
min # of iterations 13 15 19 12 -

avg. compute time (s) 60.86 216.23 418.96 1506.18 408.66
max compute time (s) 165.6 553.69 901.91 7578.36 2705.42
min compute time (s) 19.99 56.88 153.87 221.77 69.11

avg. compute time per iter (s) 2.19 6.71 13.40 61.46 -
avg. correlation of Gpol 0.852 0.927 0.948 0.960 -

Table 6.4
The statistics of the experiments including the average, maximum and minimum of the number

of iterations, compute time, compute time per iterations and the correlation with Delphi FDM(1933

grids) of our BEM with different number of A-patches for 213 molecules (71 sets of ligands, receptors
and ligand-receptor complexes). (* the average number of A-patches of the original triangular mesh
of 213 molecular surfaces)

computed using the parametric formulation is more accurate than that computed
using the regular solution. This indicates that the relation between potential and
normal derivative of potential is accurate and consistent when we used our parametric
formulation (C.2).

6.2. Poisson-Boltzmann electrostatic solvation free energies.

6.2.1. A unit sphere with single positive charge. Only in some ideal cases,
we can derive the electrostatic free energy analytically from the PB equation. To test
the correctness of the PB solver, we compute the electrostatic free energy for a unit
sphere with +1e single charge placed at its center and the results are shown in Table
6.3. In this ideal case, the electrostatic free energy is −80.9 kcal/mol with the interior
and exterior dielectric constants 2 and 80. We can see that our BEM solution is more
accurate and efficient than FDM in this case. The relative error of Gpol computed
using BEM is much lower than that of FDM with any grid size. BEM also costs less
computational time than FDM.

6.2.2. A list of ligand-receptor complexes. Using PB BEM solver, we com-
pute electrostatic free energy for all proteins in the list of ligand-receptor complexes.
In Table 6.4, we show the statistics of the PB computation using our BEM solution.
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We compute the average, maximum and minimum iteration number and compute
time from the results of all 213 proteins (71 × 3). The average iteration number is
smaller than 40 and not related to the number of A-patches. The computational time
includes the time of solving surface and per-atom electrostatic potential and comput-
ing electrostatic free energy. The evaluation time per iteration is linearly proportional
to the number of A-patches since KiFMM is a linear time solver of fast matrix-vector
product.

Meanwhile, we also observe the influence of the mesh quality to the convergence
speed of iterative solution. We use average aspect ratio (twice of the ratio of the
incircle radius to the circumcircle radius of a triangle) of a mesh to measure the
quality of the mesh. After we compute an initial triangular mesh for the molecular
surface of a protein, we applied a geometric flow algorithm to improve the quality of
the mesh [46]. We observe that the averge aspect ratio of a mesh goes from 0.326
to 0.430 after improving the mesh quality using geometric flow algorithm. At the
same time, the average number of iterations goes from 43.41 to 28.86. It indicates
that better mesh quality will lead to faster convergence speed. The correlation of our

(a) 2000 A-patches (0.852) (b) 5000 A-patches (0.927)

(c) 10000 A-patches (0.948) (d) 63444.81* A-patches (0.960)

Fig. 6.1. The comparison of electrostatic free energy (kcal/mol) of 213 proteins (71 sets of
ligand-receptor complexes) between BEM and FDM with 1933 grids with the correlation in paren-
theses.

BEM solver to Delphi II FDM solver with 1933 grids are shown in the figures 6.1.
Each point in the chart indicates PB electrostatic solvation free energy of a protein
(ligand, receptor or their complex) computed using BEM or FDM. According to the
value of correlation, we found that the more patches we used, the higher a correlation
we obtained.

6.3. Poisson-Boltzmann electrostatic potential. We also compute the real
PB electrostatic potential for all the proteins. In Figure 6.3, we show the electrostatic
potential on the molecular surface of an example in the protein list. PB electrostatic
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Fig. 6.2. The comparison of per-atom energy (KJ/mol) of Bovine Chymotrypsinogen*A (PDB
id: 1CGI) between FDM with 1933 grids and BEM with 10000 A-patches. Each point indicates the
electrostatic solvation free energy of an atom.

(a) 5000 A-patches (b) 10000 A-patches (c) 54592 A-patches

(d) FDM with 1933 grids (e) difference between BEM and
FDM

Fig. 6.3. The PB electrostatic potential on molecular surface of nuclear transport factor 2
(PDB id: 1A2K) with different resolutions. (e) shows the difference of PB electrostatic potential
between BEM and FDM. The color is going from red (potential of −3.8 kbT/ec) to blue (potential
of +3.8 kbT/ec).



22 CHANDRAJIT BAJAJ and SHUN-CHUAN ALBERT CHEN

(a) 5000 A-patches (0.895) (b) 10000 A-patches (0.998)

Fig. 6.4. The comparison of electrostatic potential between the molecular surface of Bovine
Chymotrypsinogen*A (PDB id: 1CGI) with different resolutions (the correlation in parentheses)
where the average number of A-patches of the original surface is 63444.81.

numerical solver name # of grids/ inverse discretization correlation
method # of A-patches length scale (1.0/Å) (φ)
FDM Delphi II 653 0.333 0.965
FDM Delphi II 1293 0.667 0.977
FDM Delphi II 1933 1.000 -
BEM PB-CFMM 5000 0.367 0.944
BEM PB-CFMM 10000 0.732 0.968
BEM PB-CFMM 63444.81∗ 5.301 0.981

Table 6.5
Average experimental results of PB electrostatic potential computation for 213 proteins (71

sets of ligand-receptor complexes); column 1 is the numerical method; column 2 is the name of the
solver; column 3 is the number of grids for FDM and number of A-patches for BEM; column 4
is the inverse discretization length scale of each grid or A-patches; column 5 is the correlation of
electrostatic potential to FDM with 1933 grids.

potential is computed with different numbers of A-patches. The color of the sur-
face represents the electrostatic potential on the molecular surface, going from red
(potential of −3.8 kbT/ec) to blue (potential of +3.8 kbT/ec) and white is neutral
potential. The distribution of electrostatic potential computed using the triangular
A-spline models with different resolution are almost the same. The same results can
be observed in Figure 6.4 which represents the different of electrostatic potential of a
protein (PDB id: 1CGI) computed using A-spline models with different resolutions.
The number of A-patches of its original surface is 54592. The correlation of the results
computed from the original surface and decimated surface with 10000 A-patches is
up to 0.998. It indicates that we can get a similar result using only 1/5 of A-patches.
However, if we just use 5000 A-patches, they are not enough to represent the details
of the molecular surface and the correlation becomes 0.895.

Figures 6.3 (c) and (d) show the surface electrostatic potential computed using
our BEM solver and finite different solver, Delphi II. The distributions of their elec-
trostatic potential are roughly the same. We then compute the difference between
them, shown in Figure 6.3 (e). Blue color represents the magnitude of the difference
of surface electrostatic potential. We can observe that the large difference occurs only
in some small regions. In Table 6.5, we compute electrostatic potential at the points
of 653 grids using BEM or FDM with different resolutions and compare the results
by their correlation to the electrostatic potential computed by FDM with 1933 grids.
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The inverse discretization length scale in the table is the average edge length of tri-
angulation for BEM and distance between grid points for FDM. We can observe that
electrostatic potential computed using BEM and FDM is highly correlated.

(a) BEM vs FDM with 1283 grids
(0.8108,0.8449,0.8198)

(b) BEM vs FDM with 2563 grids
(0.8118,0.8629,0.8317)

Fig. 6.5. The relation of per-atom electrostatic force (kcal/mol·Å) of Bovine Chymotrypsino-
gen*A (PDB id: 1CGI) computed using BEM or FDM where blue,pink,yellow dots indicate x,y,z-
dimensional values of forces; (a) BEM with 28908 A-patches vs FDM with 1933 grids, the correla-
tions at x, y, z dimensions are (0.8108,0.8449,0.8198); (b) BEM with 28908 A-patches vs FDM with
2563 grids, the correlations at x, y, z dimensions are (0.8118,0.8629,0.8317).

6.4. Poisson-Boltzmann Electrostatic forces. Electrostatic force computa-
tion depends on the accurate evaluation of the gradient of electrostatic potential. It
requires a very stable electrostatic potential computation. For FDM, we approximate
the gradient of electrostatic potential at any specific point based on the electrostatic
potential computed on each grid points. On the other hand, for BEM, we can com-
pute the gradient of electrostatic potential at a point using potential computed along
three different directions. We can observe the correlation of electrostatic forces be-
tween BEM and FDM of an example in Figure 6.5. The correlation becomes higher
when the number of grids in FDM increases. It indicates that the electrostatic forces
computed using FDM may converge to that computed using BEM. In Figure 6.6, we
show PB electrostatic forces of two protein examples (PDB id: 1A2K and 1CGI). The
color of the molecular surface represents the inner product of the electrostatic forces
and the unit surface normals. The outward force gives a positive inner product and
negative otherwise. The color is going from blue (≥ 3.8 kcal/mol·Å) to red (≤ −3.8
kcal/mol·Å). We can see that the distribution of inward and outward forces computed
using BEM and FDM are almost the same.

The electrostatic force computation depends on the accurate computation of the
gradient of electrostatic potential and the approximation of the dielectric function
and ionic boundary. In this part, we found that if we used the fast multipole method
to compute the integrals of three electrostatic force terms, the numerical error will be
amplified. Therefore, we still used direct computation to deal with force computation.
On the other hand, in both BEM and FDM solutions, we used Im’s volume exclusion
function to approximate the derivatives of the dielectric function and ionic boundary
function in Fdb and Fib. This approximate function is used for computing the ∇ε(~x)
term in dielectric boundary force and the ∇λ(~x) term in the ionic boundary force.

7. Conclusion. In this paper, we introduce a complete pipeline to solve the
linearized Poisson-Boltzmann equation and compute electrostatic potential, energy
and forces for biomolecules. The boundary element method is used and the derivation
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(a) BEM with 54592 A-patches (b) FDM with 2563 grids

(c) BEM with 29108 A-patches (d) FDM with 2563 grids

Fig. 6.6. The inner product of unit normal vector and PB electrostatic forces on the molecular
surface of nuclear transport factor 2 (PDB id: 1A2K) and Bovine Chymotrypsinogen*A (PDB id:
1CGI) with different resolutions. The color is going from blue (≥ 3.8 kcal/mol·Å) to red (≤ −3.8
kcal/mol·Å).

of boundary integral equations and their numerical treatment are presented. Unlike
the original boundary integral equations derived from the Poisson-Boltzmann equation
which take normal derivatives of potential as unknowns in linear system, we derive
the parametric formulation of the normal derivative of potential based on an algebraic
spline model. In the analytical experiment, we observe that our solution gives more
accurate normal derivatives of potential than the original solution. In addition, we also
compare our numerical results including electrostatic free energy, potential and forces
with the state of the art finite difference solution, Delphi II. All the results show
that our boundary element solution is an accurate and efficient technique to solve
Poisson-Boltzmann electrostatic problems. For the purpose of biological simulation,
we developed a visualization application to observe the electrostatic potential and
forces on the surfaces of molecules.
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Appendix A. The Jacobian of an Algebraic patch.
The details of the derivation of numerical quadrature technique using Algebraic

spline model are in the manuscript [47]. They derived the Jacobian of an A-patch as
J(Γ̄j) =

√
EG− F 2 where

E = (∂x1
∂b1

)2 + (∂x2
∂b1

)2 + (∂x3
∂b1

)2

F = (∂x1
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∂b2

) + (∂x2
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∂b2
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G = (∂x1
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∂b2
)2 + (∂z3∂b2
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Appendix B. Distance-dependent dielectric model. Im et al. defined ε(~x)
and λ(~x) by a volume exclusion function [26].

ε(~x) = εI + (εE − εI)H(~x; {~xk}),

and

λ(~x) = H(~x; {~xk}),

where the volume exclusion function is defined by the atomic centers {~xk}nck=1,

H(~x; {~xk}) =
nc∏
k=1

Hk(‖~x− ~xk‖),

and

Hk(r) =


0, r ≤ rk − w,
− (r−rk+w)3

4w3 + 3(r−rk+w)2

4w2 , rk − w < r < rk + w,
1, r ≥ rk + w.

The gradient of ε(~x) and λ(~x) is then derived from he derivative of this volume ex-
clusion function.

H ′k(r) = − 3
4w3

(r − rk + w)2 +
3

2w2
(r − rk + w).

Appendix C. Parametrization of normal derivative of electrostatic po-
tential.

For a Gaussian quadrature point ~yjm on the patch Γ̄j , the parametrization of
electrostatic potential can be derived using the equation (4.5). Its formulation is
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written as follows (C.1).

φ(~yjm) = bm1((1− λjm)φ(~vj1) + λjmφ(~vj1 + ~nj1))
+bm2((1− λjm)φ(~vj2) + λjmφ(~vj2 + ~nj2))
+bm3((1− λjm)φ(~vj3) + λjmφ(~vj3 + ~nj3))

=


bm1(1− λjm)
bm2(1− λjm)
bm3(1− λjm)
bm1λjm
bm2λjm
bm3λjm



T 
φ(~vj1)
φ(~vj2)
φ(~vj3)

φ(~vj1 + ~nj1)
φ(~vj2 + ~nj2)
φ(~vj3 + ~nj3)

 =



Bjm1

Bjm2

Bjm3

Bjm4

Bjm5

Bjm6



T 
φ(~vj1)
φ(~vj2)
φ(~vj3)

φ(~vj1 + ~nj1)
φ(~vj2 + ~nj2)
φ(~vj3 + ~nj3)


(C.1)

where ~vj1, ~vj2 and ~vj3 are the vertices of the patch Γ̄j and ~nj1, ~nj2 and ~nj3 are their
unit normal vectors.

Then, the normal derivative of electrostatic potential in Equation (4.3) can be
computed using the parametric formulations (4.4) and (4.6), so that we can write it
in the following formulation (C.2).

∂φ

∂~n
(~yjm) =



Cjm1

Cjm2

Cjm3

Cjm4

Cjm5

Cjm6



T 
φ(~vj1)
φ(~vj2)
φ(~vj3)

φ(~vj1 + ~nj1)
φ(~vj2 + ~nj2)
φ(~vj3 + ~nj3)

 (C.2)

We include the parametric representation of electrostatic potential (C.1) and the
normal derivative of electrostatic potential (C.2) in the following matrix form C.3.

φ(~y11)
φ(~y12)

...
φ(~yjm)

...
φ(~yLM )
∂φ(~y11)

∂~n
(y)
11

∂φ(~y12)

∂~n
(y)
12
...

∂φ(~yjm)

∂~n
(y)
jm

...
∂φ(~yLM )

∂~n
(y)
LM



=



B11 0 · · · 0 B̂11 0 · · · 0

0 B22 · · ·
... 0 B̂22 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · BLM 0 0 · · · B̂LM

C11 0 · · · 0 Ĉ11 0 · · · 0

0 C22 · · ·
... 0 Ĉ22 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · CLM 0 0 · · · ĈLM





φ(~v11)
φ(~v12)
φ(~v13)

...
φ(~vL1)
φ(~vL2)
φ(~vL3)

φ(~v11 + ~n11)
φ(~v12 + ~n12)
φ(~v13 + ~n13)

...
φ(~vL1 + ~nL1)
φ(~vL2 + ~nL2)
φ(~vL3 + ~nL3)


(C.3)

where Bjm = (Bjm1 , Bjm2 , Bjm3 ), B̂jm = (Bjm4 , Bjm5 , Bjm6 ), Cjm = (Cjm1 , Cjm2 , Cjm3 )
and Ĉjm = (Cjm4 , Cjm5 , Cjm6 ).


