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Abstract

In this paper, we describe the interface and implementation of the SuperMatrix
runtime system. SuperMatrix exploits parallelism from matrix computations by map-
ping a linear algebra algorithm to a directed acyclic graph (DAG). We give detailed
descriptions of how to dynamically construct a DAG where tasks consisting of ma-
trix operations represent the nodes and data dependencies between tasks represent the
edges of the graph. We show the algorithm that, given a DAG as input, dispatches
and schedules tasks to threads. Different scheduling heuristics and optimizations im-
plemented as part of SuperMatrix are discussed, demonstrating the flexibility and
portability that results from the separation of concerns. Using this flexible framework,
we compare several scheduling algorithms, such as work stealing, that optimize for
either load balancing or data locality, and we demonstrate that a relatively simple,
single queue implementation provides exceptional performance while also allowing for
the widest flexibility for further enhancements. Performance results from a sixteen core
machine are provided.

1 Introduction

With the emergence of multicore architectures, exploiting parallelism will be become vi-
tal for the performance of computationally intensive applications. Many libraries such as
the Linear Algebra PACKage (LAPACK) [2] have to be reimplemented. Simply linking to
multithreaded Basic Linear Algebra Subprograms (BLAS) [12] libraries is not an efficient
solution since implicit synchronization points exists between calls to each BLAS operation,
so many opportunities for parallelism are lost. Here we discuss the implementation details
of the SuperMatrix runtime system that allow the runtime system to be highly portable
and flexible. SuperMatrix, as being part of the broader FLAME project, not only addresses
the programmability issue [19] for these new architectures but also provides exceptional
performance when parallelizing matrix computations.
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Within the Formal Linear Algebra Method Environment (FLAME) project, we have
developed a notation [15] that allows for the mechanical derivation of algorithms [3]. We
implemented linear algebra algorithms using the FLAME API for the C programming lan-
guage [5]. This API mirrors the notation used to express the algorithms using object-based
matrix data structures, thereby abstracting away implementation details such as array in-
dexing. A library of commonly used linear algebra operations has been implemented and
released as open source software in libflame [21].

By storing matrices hierarchically [13] and viewing submatrix blocks as the unit of data
and operations with blocks (tasks) as the unit of computation, we introduced the concept of
algorithms-by-blocks. In libflame we have abstracted away the need to specify the matrix
storage within the implementation of each linear algebra algorithm. As a result we can
seamlessly execute sequential algorithms with flat matrices stored in the traditional column-
major order or leverage the same code to execute algorithms-by-blocks using hierarchical
matrices with arbitrary depth.

The key abstraction for exploiting parallelism lies with mapping an algorithm-by-blocks
to a directed acyclic graph (DAG) where tasks represent the nodes of the graph and data
dependencies (flow, anti, and output) between tasks represent the edges [10, 11]. We de-
veloped the SuperMatrix runtime system through a clear separation of concerns where we
divide the process of exploiting parallelism into two phases: analyzer and dispatcher. During
the analyzer phase, the execution of tasks is delayed, and instead the DAG is constructed
dynamically. Once the analyzer is done, the dispatcher phase is invoked which dispatches
and schedules tasks to threads. In this paper, we discuss the details of the interface for
invoking SuperMatrix and its implementation for both phases.

The specific contributions of the present paper include:

• We discuss in depth the implementation details of the SuperMatrix runtime system
along with several optimizations.

• As a result, we expose the portability of the SuperMatrix implementation which only
depends upon a small set of threading mechanisms.

• SuperMatrix is shown to be highly flexible in that we can use different scheduling
algorithms by only changing a few highly modularized routines.

• We make quantitative comparisons between more deterministic scheduling algorithms
and work stealing [6] from which we show the benefits of relatively simple algorithms
such as a single queue implementation.

Together these contributions show that the separation of concerns between the algorithms
and runtime system allows us to provide high performance and gather further insight into
the scheduling issues presented by this problem domain.

The rest of the paper is organized as follows. In Section 2 we discuss the matrix storage
and interface required for the SuperMatrix runtime sytem. Section 3 describes the process
for dynamically constructing a DAG, and Section 4 presents the algorithm for dispatching
tasks to threads. We enumerate different scheduling algorithms and how to incorporate those
into the dispatcher in Section 5. Section 6 provides performance results and an analysis of
work stealing. We discuss related work in Section 7 and conclude the paper in Section 8.
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FLASH_Queue_begin();

FLASH_Chol(

FLA_LOWER_TRIANGULAR, AH );

FLASH_Trinv(

FLA_LOWER_TRIANGULAR,

FLA_NONUNIT_DIAG, AH );

FLASH_Ttmm (

FLA_LOWER_TRIANGULAR, AH );

FLASH_Queue_end();

#define ENQUEUE_FLASH_Gemm( \

transA, transB, \

alpha, A, B, \

beta, C, cntl ) \

FLASH_Queue_push( \

(void *) FLA_Gemm, \

(void *) cntl, \

‘‘Gemm’’, \

2, 2, 2, 1, \

transA, transB, \

alpha, beta, \

A, B, C )

Figure 1: Left: Parallel region interface to invoke the SuperMatrix runtime. Right: Macro
definition for storing a task.

2 Interface

In this section, we describe the necessary matrix storage and interface to invoke the Super-
Matrix runtime system.1

2.1 Hierarchical matrix storage

Even though the methodology to exploit parallelism through DAG scheduling can be applied
to flat matrices, SuperMatrix currently requires the matrix operands to be stored hierarchi-
cally. As a result each submatrix block is stored contiguously for spatial locality and easily
demarcated in order to detect dependencies between tasks. We use the FLASH [17] extension
to the FLAME/C API for creating and accessing hierarchical matrices.

Here we present one particular routine that copies a flat matrix to a hierarchical one:
FLASH Obj create hier copy of flat( A, depth, &blksizes, &AH );

where A is the original flat matrix, depth is number of levels for blocking, blksizes is
an integer array specifying the number of elements in a block at each level, and AH is the
resulting hierarchical matrix [21]. Typically, only a depth of one is used in order to create
matrices with storage-by-blocks, also called block data layout, where each element in the
top-level matrix is a pointer to the contiguously stored submatrix blocks.

2.2 Parallel regions

SuperMatrix uses parallel regions to identify the operations from which to exploit parallelism.
In Figure 1 (left), we give an example of a parallel region for inversion of a symmetric positive
definite matrix, which is computed using the Cholesky factorization (chol) A → LLT ,
followed by inversion of a triangular matrix (trinv) R := L−1, and then triangular matrix
multiplication by its transpose (ttmm) A−1 := RTR. Each of these operations reads and

1The interface and implementation of SuperMatrix are implemented in C, but this approach is language
independent and can be applied to Java or C++, but that discussion is beyond the scope of this paper.
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then overwrites the matrix AH with the result of the computation. We present an algorithm
for computing chol in Section 3, which is representative of the algorithms for computing
trinv and ttmm. See [4, 11] for more details about SPD inverse.

All the code in between FLASH Queue begin and FLASH Queue end specifies the parallel
region. At the start of the parallel region, the analyzer is invoked which stores all tasks and
constructs the DAG. The dispatcher will then be called at the end of the parallel region in
order to execute all the tasks. If the begin and end routines are not placed in the code,
then each of the three operations will be parallelized individually by SuperMatrix where
implicit synchronization points between each operation will exist as opposed to SuperMatrix
exploiting parallelism between all three operations in concert. If SuperMatrix is turned off,
those begin and end routines essentially become no-ops, and the operations are all executed
sequentially. The begin and end routines can also be nested recursively, similar to the
OpenMP sections construct, and across multiple functions interprocedurally, so the analyzer
phase starts storing tasks at the outermost begin, and the dispatcher phase will not be
invoked until reaching the outermost end.

Only SuperMatrix enabled operations can exist within a parallel region, a list of which
can be found in [21]; otherwise sequential semantics will not be maintained. For example, the
routine FLASH Random matrix fills a matrix with random values, yet it is not a SuperMatrix
supported routine. If this routine is placed within the parallel region overwriting AH, then
the data will be corrupted before the tasks are executed in parallel.

2.3 Tasks

The only information needed to detect dependencies are the input and output operands
of each task. The FLAME/C API for general matrix-matrix multiplication (gemm) C :=
αAB + βC is given by:

FLA Gemm( FLA NO TRANSPOSE, FLA NO TRANSPOSE, alpha, A, B, beta, C );

Figure 1 (right) shows the macro definition for storing a gemm task in SuperMatrix. The
first operand of FLASH Queue push is a pointer to the function to be executed. The second
is a pointer to a control structure only used internally for which users can pass in a null
pointer, and the string is also only used internally for debugging purposes. The four integers
indicate the number of operational arguments, constant multipliers, input matrix operands,
and output matrix operands.

All tasks have at least one output matrix operand for which the matrix is first read and
then overwritten, but a few have more than one. All matrix operands must be contiguously
stored blocks, so the algorithm-by-blocks that creates and stores tasks must recursively stride
through the hierarchical matrices. The constant multipliers are also matrix objects for which
the values are typically FLA ZERO, FLA ONE, or FLA MINUS ONE. The possible transposition ar-
guments for gemm consist of FLA NO TRANSPOSE, FLA TRANSPOSE, and FLA CONJ TRANSPOSE.

3 Analyzer

We present the algorithm for dynamically constructing a DAG used by the analyzer phase
in Figure 2 (left). For notational purposes, here we assume that the linear algebra algorithm
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Data: Linear algebra algorithm S,
block size b

Result: Directed acyclic graph (V,E)
V := ∅; E := ∅;
foreach A ∈ Rm×n accessed by S do

for i to m
b

do
for j to n

b
do

Aw
i,j := ∅; Ar

i,j := ∅;
end

end

end
while Execute S do

Store task: V := V ∪ {t};
foreach Ai,j accessed by t do

î := i
b
; ĵ := j

b
;

Ar
î,ĵ

:= Ar
î,ĵ
∪ {t};

if Aw
î,ĵ
6= ∅ and Aw

î,ĵ
6= t then

Store flow dependency:
E := E ∪ {(Aw

î,ĵ
, t)};

end
if Ai,j is overwritten by t then

foreach tr ∈ Ar
î,ĵ

do

if tr 6= t then
Store anti-dependency:
E := E ∪ {(tr, t)};

end

end
Aw

î,ĵ
:= t; Ar

î,ĵ
:= ∅;

end

end

end

for j = 0, . . . , N − 1 do
Aj,j := Chol(Aj,j); (chol)
for i = j + 1, . . . , N − 1 do

Ai,j := Ai,jA
−T
j,j ; (trsm)

end
for k = j + 1, . . . , N − 1 do

Ak,k := Ak,k − Ak,jA
T
k,j; (syrk)

for i = j + 1, . . . , N − 1 do
Ai,k := Ai,k − Ai,jA

T
k,j;

(gemm)
end

end

end
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Figure 2: Left: The algorithm that constructs a DAG given a linear algebra algorithm and
block size. Top right: A loop-based algorithm that computes the Cholesky factorization by
blocks where A ∈ Rn×n, N = n

b
, Ai,j ∈ Rb×b where 0 ≤ i, j < N . Bottom right: The DAG

for the Cholesky factorization on a 3 × 3 matrix of blocks where the subscripts denote the
order in which the tasks are stored.
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accesses flat matrices and strides through the matrix according to the block size b. The
SuperMatrix implementation embeds pointers within the contiguously stored blocks of a
hierarchical matrix in order to perform the same data dependency analysis where the block
size manifests itself as the size of each block.

We use chol as a motivating example for describing the analyzer where we provide a
loop-based algorithm for computing this operation in Figure 2 (top right). We provide the
resulting DAG for chol on a 3× 3 matrix of blocks in Figure 2 (bottom right).

As we execute the algorithm within the analyzer, we store tasks using the macro defini-
tions similar to the one found in Figure 1 (right) instead of executing those tasks. For the
Cholesky factorization, we store the first task chol0 which reads and overwrites block A0,0.
Since A0,0 has not been accessed before, we know that block is ready to be used. We then
record that chol0 was the last task to overwrite A0,0. Next we store trsm1, which reads
A0,0, so we now have an occurrence of a flow dependency between chol0 and trsm1. Flow
dependencies, often referred to as “true” dependencies, occur when a block is read by one
task after it is overwritten by a previous task (read-after-write). This process is repeated
until all tasks are stored, and the entire DAG is constructed. In order to construct the
DAG for SPD inverse, chol is executed as stated above followed sequentially by trinv and
ttmm, both of which are implemented using similar loop-based algorithms.

Only flow dependencies occur within chol, but anti-dependencies also exist within trinv
and ttmm [11]. Anti-dependencies occur when a task must read a block before another task
can write to the same block (write-after-read). Even though only one task can overwrite a
block one at a time, multiple tasks can read a block simultaneously. As a result, we maintain
a list of tasks that have read a particular block. Care must be made to clear all the lists of
tasks stored by each block once all tasks are executed in order to avoid memory leaks.

Output dependencies, the final class of dependencies, occur when the result of one task
is overwritten by the result of a subsequent task (write-after-write). The copy routine is
the only BLAS operation that strictly overwrites a matrix without first reading it, which
rarely occurs in linear algebra algorithms. As such, we use the same mechanism as flow
dependencies in order to detect output dependencies.

4 Dispatcher

In Figure 3 (left) we present the algorithm that all threads execute in order to dispatch
tasks to threads. In Figure 3 (right) we present two optimizations prefetching and thread
preference, which we elaborate further in this section. We discuss the implementation of
the enqueue and dequeue routines in Section 5. In this section, we assume that all tasks are
placed onto a single first-in first-out (FIFO) order queue from which all threads access.

When the dispatcher is invoked, it first spawns the appropriate number of threads. Then
each thread performs the algorithm in Figure 3 (left) where all of the initial ready tasks
are enqueued. We define a ready task as one for which all of the tasks it depends upon
have been executed. Then all the threads enter the while loop and then spin wait until
successfully dequeuing a task. Once a task has been obtained, that particular thread will
execute it, update all of the dependent tasks, and then free the task data structure. We define
a dependent task as one that has an incoming data dependency from the executed task. We
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foreach task in DAG do
if task is ready then

Acquire lock
Enqueue task
Release lock

end

end
Condition := true
while condition do

Acquire lock
Dequeue task
Release lock
if task 6= ∅ then

Execute task
foreach dependent task do

Acquire lock
Update dependent task
Release lock
if dependent task is ready
then

Enqueue dependent task
end

end
Free task

else if work stealing then
Acquire lock
Steal task
Release lock

end
Acquire lock
if tasks are not available then

Condition := false
end
Release lock

end

foreach task in DAG do
if task is ready then

Enqueue task
end

end
Prefetch blocks
while tasks are available do

if saved task 6= ∅ then
Dequeue task

else
Use saved task
Saved task := ∅

end
if task 6= ∅ then

Execute task
Dequeue saved task
foreach dependent task do

Update dependent task
if dependent task is ready
then

if saved task = ∅ then
Save dependent task

else if dependent > saved
task then

Enqueue saved task
Save dependent task

else
Enqueue dependent
task

end

end

end
Free task

end

end

Figure 3: The algorithm that all threads execute in order to dispatch and schedule tasks
from a directed acyclic graph with mutual exclusion included (left) and the same algorithm
incorporating prefetching and thread preference without mutual exclusion enumerated (right)
where a task is greater than another task if it has a higher priority.
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store the data dependency data structures as the outgoing edges of a task as opposed to
being the incoming edges. In Figure 2 (bottom right), chol0 is the only initial ready task,
and its dependent tasks are trsm1 and trsm2. After all tasks have been executed, the
threads will exit the while loop, and then the dispatcher will join the threads back together.

4.1 Mutual exclusion

The need for mutual exclusion arises at four locations within the dispatcher, shown in Fig-
ure 3 (left). The first two occur at the enqueue and dequeue routines. Since we use a single
queue implementation from which all threads access, we must provide mutual exclusion for
that queue.

Each task has a counter of how many tasks it is dependent upon, which is the number
of a node’s incoming edges in the DAG. That counter is decremented as tasks execute and
update their dependent tasks. Once that counter reaches zero, then the task is ready. A
task may be dependent upon multiple tasks that may be executing in parallel, which then
subsequently update it. This situation leads to the third use of mutual exclusion. We can
use multiple locks to provide mutual exclusion for updating several tasks at the same time.

The fourth location lies with detecting the terminating condition for the while loop. We
maintain a global counter of the total number of executed tasks. Once that counter reaches
the total number of tasks, then we know to end the loop for all threads and then exit the
dispatcher. Work stealing provides a potential extra fifth need of mutual exclusion, which
we will discuss further in Section 5.

We only need the ability to acquire and release individual locks to perform mutual exclu-
sion. While more efficient constructs such as an atomic update provided in OpenMP exist,
we instead chose to make SuperMatrix more portable.

4.2 Prefetching

When threads start executing tasks, the caches of each processor associated with a thread
are virtually devoid of any data pertinent to the execution of those tasks. As a result the
first several tasks will always incur a cache miss when accessing its blocks. In order to warm
up the caches, we prefetch the blocks accessed by those first tasks.

In Figure 3 (right), we first enqueue all the initial ready tasks. As we traverse all the
stored tasks to find the ready ones, we log the K blocks accessed by the first tasks where K
is the size of the L3 or L2 cache divided by the storage block size of the hierarchical matrix.
Every thread then touches those K blocks before entering the while loop by reading each
block, striding through them with an increment the size of an individual L1 cache line. In
doing so we preload the caches with blocks without needing to access each element and incur
more cache misses during the execution of a task. In Figure 2 (bottom right), the first three
blocks accessed are A0,0, A1,0, and A2,0 by the tasks chol0, trsm1, and trsm2.

4.3 Thread preference

We also present the second optimization thread preference in Figure 3 (right). When tasks
enqueue dependent tasks, it is more likely that another thread will dequeue the newly en-
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queued task since idle threads are continously polling to dequeue a task. In many situations,
we want the same thread that enqueues a task to also execute that a dependent task in order
to preserve data locality. We implement thread preference in order to allow the enqueuing
thread to have the first chance at dequeuing a task. For instance in Figure 2 (bottom right),
we want the same thread to execute syrk8 and chol9 since both tasks update A2,2.

After a thread executes a task, it will first dequeue and save a new task. While updating
the dependent tasks and if any of those are ready, that thread will see any of the ready
dependent tasks have a higher priority than the recently saved task. If so, that thread will
replace the saved task and execute it once the updating is complete. We will discuss priorities
of each task in Section 5. Since we are assuming a single FIFO queue implementation, the
priorities are set by arrival times, so no saved task will be replaced, and thus in this case
thread preference will only occur when there are no other tasks waiting in the queue.

5 Scheduling

In this section, we present different implementations of the enqueue and dequeue functions
in order to perform different scheduling algorithms.

We have already discussed the single FIFO queue in Section 4. All threads enqueue tasks
to the tail of the queue and dequeue from the head. Each thread must first gain mutual
exclusion through a single lock in order to access the queue, which can become a bottleneck.

Multiple queues: Instead of a single queue, we can use multiple queues, one dedicated
to each thread. We then would have multiple locks, one for each queue. A thread will
only dequeue from the head of its dedicated queue. Threads can potentially enqueue tasks
to another thread’s queue depending on the task to thread assignment. In such a case, a
thread will need to acquire the opposing thread’s lock for which a task is assigned in order
to enqueue the task.

One particular task to thread assignment is data affinity where a thread executes all
tasks that overwrite a particular block [10]. We can then assign blocks to threads using a
two-dimensional block cyclic distribution (2D). Each contiguously stored block has its index
within the larger matrix of blocks for which we use to compute 2D data affinity.

Work stealing: Multiple queues eliminate the bottleneck of the single queue, but depend-
ing on the task to thread assignment, wide load inbalances may occur. Work stealing was
proposed to alleviate this problem when using multiple queues. If a thread is idle, it will
attempt to steal a task from a randomly selected thread’s queue, which is highlighted in
Figure 3 (left).

When using work stealing, a thread will always enqueue dependent tasks to the tail of
its own dedicated queue. All the initial ready tasks will be assigned to a particular queue,
usually to the first thread. If an idle thread’s queue is empty, it will attempt to steal a task
by acquiring the lock of the randomly selected thread and dequeue a task from the tail of
that queue, as opposed to the head, and then enqueue it onto the tail of its own queue. As
usual, all threads will dequeue from the head of queue to obtain tasks to execute.
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Priority queues: Each of the three scheduling algorithms use FIFO queues where tasks
are essentially sorted by their arrival times. We can use priority queues sorted by different
heuristics. Whenever we enqueue a task, we will use insertion sort in this case.

One particular heuristic is the height of each task within the DAG where we define
height as the distance from a node to its farthest leaf. A leaf is a node without any outgoing
edges. This heuristic optimizes for tasks on the critical path of execution. For instance in
Figure 2 (bottom right), we would want to execute gemm4 before syrk5. We can compute
the height of each task during the initial traversal of tasks to find the initial ready ones.

6 Performance

In this section, we show the performance of the SuperMatrix runtime system and compare
it to a high-performance dense linear algebra library GotoBLAS 1.26 [14].

6.1 Target architecture

All experiments were performed on a single SMP node of ranger.tacc.utexas.edu, which
contains 3,936 nodes.2 Each node consists of four sockets with 2.3 GHz AMD Opteron Quad-
Core 64-bit processors with a total of 16 cores providing a theoretical peak performance of
147.2 GFLOPS. Each node contains 32 GB of memory, and each socket has a 2 MB L3
cache, which is shared between the four cores. The OpenMP implementation provided by
the Intel compiler 10.1 served as the underlying threading mechanism used by SuperMatrix,
yet SuperMatrix is also implemented using POSIX Threads. Performance was measured by
linking to the GotoBLAS library as a high-performance implementation of BLAS for the
execution of individual tasks.

6.2 Implementations

We report the performance (in GFLOPS) for implementations of inversion of an SPD matrix
from two libraries using double-precision floating-point arithmetic. 16 threads mapped to
each processor and a storage block size of 192 were used for all experiments when possible.

SuperMatrix: We used the SuperMatrix runtime system embedded within libflame.
We gathered results using the various scheduling algorithms implemented by SuperMatrix:
single FIFO queue, single priority queue sorted by the heights of each task in the DAG, work
stealing, and 2D data affinity.

GotoBLAS: We compare SuperMatrix with the highly optimized GotoBLAS library. Go-
toBLAS also provides LAPACK functionality on top of its namesake. We gathered results
with multithreaded implementations of dpotrf, followed by dtrtri, and then dlauum, which
correspond to LAPACK implementations of chol, trinv, and ttmm, to compute SPD in-
verse. Since each of these operations are parallelized individually by GotoBLAS, there exist

2We thank Kent Milfeld for access to ranger.tacc.utexas.edu.
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Figure 4: Performance of inversion of an SPD matrix using different scheduling algorithms
implemented in SuperMatrix compared against GotoBLAS (left) and ratios of threads per-
forming useful computation to the total parallel execution time and the number of steals
with the total number of tasks (right).

synchronization points between each operation, and no parallelism is exploited between the
three operations.

6.3 Results

Performance results are reported in Figure 4 (left). Several comments are in order:

• The GotoBLAS implementation of inversion of an SPD matrix does not perform as well
as the SuperMatrix implementations because many opportunities to exploit parallelism
between the three operations are lost when parallelizing each operation individually.

• The single priority queue attains the same performance signature as the single FIFO
queue. These matrix operations perform O(n3) operations for O(n2) data where n is
the matrix dimension. As a result, SPD creates a rather large DAG of tasks from which
there is an abundant amount of parallelism that SuperMatrix can exploit. Sorting the
tasks according to its height may reduce the critical path, but in this case the total
number of tasks divided by the number of threads is far greater than the critical path
length. For example, SPD inverse on a 5, 000 × 5, 000 matrix has 10, 962 tasks yet a
critical path length of 135.

• The single FIFO queue and work stealing also exhibit the same performance signature
since both scheduling algorithms optimize for load balancing. Since the computational
cost of executing a task consisting of a matrix operation on 192 × 192 submatrix
blocks far greatly outweighs the cost of gaining mutual exclusion, the advantages of
using multiple queues with work stealing are amortized and mitigated over the entire
execution of tasks, which we discuss further in Section 6.4.
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• 2D data affinity performs quite poorly compared to the other scheduling algorithms
because of the relatively small size of the L3 cache on each socket. Since data affinity
attempts to optimize for data locality, there is a very small probability that the blocks
being updated currently reside on the cache of the processor executing the task. Since
using multiple queues may lead to load inbalances, the lack of data locality on this
system adversely affects performance.

We have developed a scheduling algorithm that attempts to optimize for both load balance
and data locality simultaneously by augmenting to a single queue implementation within
the SuperMatrix framework, which attains a significant performance increase, but that is
beyond the scope of this paper. The prefetching and thread preference optimizations give
a slight performance increase of about 1 GFLOPS for each when augmented to the single
FIFO queue. While these are minimal performance gains considering an unoptimized single
FIFO queue attains over 100 GLOPS, these optimizations greatly benefit the new scheduling
algorithm presented in [8].

We have also found that sorting priority queues via the height of each node usually
provides the best performance compared to other heuristics such as the number of dependent
tasks or the total number of tasks in its dependent sub-graph.

The analyzer phase is essentially sequential overhead that can potentially limit speedups
via Amdahl’s law. We measured the time spent during the dispatcher phase and found that
for SPD inverse the percentage of time SuperMatrix incurred sequential execution out of
the total execution time was only around 2% for all problem sizes. Also the space required
for storing the DAG might become prohibitive, but for instance given SPD inverse on a
5, 000 × 5, 000 matrix, the 10, 962 tasks take up 3.76 MB, yet that is quite small compared
to the 190.73 MB required just to store the matrix.

6.4 Work stealing analysis

In Figure 4 (right) we show the ratios for load balance where we computed the average
time each thread performed useful computation, which only consists of executing a task, and
divided that by the total time spent during the dispatcher phase. As this ratio converges to
one, then there is near perfect load balance since the threads spend the entire time during
dispatcher only executing tasks. As we can clearly see, both the work stealing and single
FIFO queue implementations attain the exact same load balancing properties and hence the
same performance signatures in Figure 4 (left).

A work stealing optimization for data locality was addressed in [1] where each thread
has an associated mailbox along with its queue. A thread will enqueue a ready dependent
task onto its own queue as usual but will also place it in the task’s assigned mailbox. Before
a thread attempts to steal, it will first check its mailbox to see if there are any ready and
available tasks. Again, a 2D distribution can be used to assign a task to a thread’s mailboxes.

We also show the ratio of number of stolen tasks compared to the total number of tasks
in Figure 4 (right). The number of steals for SPD inverse on a 1, 000 × 1, 000 matrix is so
high because there are only 168 tasks to execute, and at the initial stages of the dispatcher,
threads must continuously attempt to steal tasks to execute since all initial ready tasks are
assigned to a single thread. Once a steady state is reached where all threads have a sufficient
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amount of tasks on their queues, the number of steals incurred converges close to zero. As
a result, the mailbox optimization for work stealing will not provide any performance gains
since the only time the mailbox is accessed is in the event of a steal. Even if every mailbox
resulted in better data locality, which is unlikely since those steals occur at the beginning of
the dispatcher when the caches of each processor are cold, then less than one percent of the
tasks would benefit for problem sizes greater than 5, 000× 5, 000.

Prefetching may be applied to work stealing to alleviate cache misses incurred by the
first tasks executed regardless of the use of the mailbox, but thread preference cannot be
applied to work stealing since its default behavior is to enqueue a task to the same thread
that executes that task. Despite this fact, work stealing can potentially negate this behavior
by allowing threads to steal a task that could benefit from thread preference.

Despite providing the same performance as the single FIFO queue, work stealing adds a
level of non-determinism to scheduling to where we cannot effectively predict where tasks will
execute. The new scheduling algorithm in [8] limits the threads to which tasks can execute
in order to achieve better locality. This type of scheduling would be, at best, difficult to
replicate within the framework of work stealing.

7 Related Work

SMP Superscalar (SMPSs) [18] is a general-purpose runtime system that also constructs
a DAG using the input and output operands of tasks, which are denoted using compiler
directives in the code. SMPSs uses work stealing for its parallel scheduling of tasks, yet it
is not domain-specific to matrix computations like SuperMatrix. SMPSs begins execution
of tasks as soon as one is generated whereas SuperMatrix delays execution until the entire
DAG has been constructed, yet we have evidence that the DAG for matrix computations
can be statically generated [9].

Several other general-purpose parallel schedulers exist such as Cilk [7] and Intel Thread
Building Blocks (TBB) [16], both of which also use work stealing, and TBB implements the
mailbox optimization [20]. These systems do not create a DAG from data dependencies found
in the computation but rather employ directives in the code that allow for routines to specify
its dependent tasks. This approach exploits control-level parallelism, which is specified by
the order in which operations appear in the code, and handles divide and conquer algorithms
quite well. SMPSs extends the scheduling ideas first developed for Cilk to handle data flow
parallelism. In this paper, we attempt to analyze and compare the scheduling algorithms
themselves as opposed to the implementations of these different systems.

8 Conclusion

In this paper, we have shown the interface and implementation of the SuperMatrix runtime
system. We believe that the implementation is quite portable since we only rely upon
an underlying threading mechanism to spawn and join threads along with acquiring and
releasing multiple locks. We have also shown that SuperMatrix is quite flexible since it can
quite easily facilitate the use of different scheduling algorithms and heuristics, such as priority
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queues and work stealing, strictly within the enqueue and dequeue routines. We compared
work stealing with a single FIFO queue implementation by providing results where both
attain the same performance since both only optimize for load balance. We also showed that
optimizations, such as thread preference, can be more easily augmented to a single queue
implementation to provide better performance than work stealing. Finally, the performance
results demonstrate that exploiting parallelism at a coarser-level of granularity enables the
more efficient use of multicore architectures.
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