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Abstract: We present ASTRO, the first system that sup-
ports trustworthy data sharing with strong consistency
guarantees among a distributed collection of autonomous
nodes. Autonomous nodes support data reads and writes
without coordination with other nodes, share data oppor-
tunistically in a peer-to-peer fashion, and are mutually
distrustful. ASTRO enforces fork-causal consistency,
a new consistency semantics that, though weaker than
causal consistency, provides two key properties: (1) it
prevents Byzantine nodes from undetectably modifying
the causal history of updates created or accepted by cor-
rect nodes, and (2) it guarantees that correct nodes accept
only updates that extend the causal history of the updates
they already know. We prove that fork-causal consis-
tency is the strongest weakening of causal consistency
achievable among autonomous nodes and show that it
can be enforced efficiently while giving nodes the free-
dom to control their bandwidth and storage resources by
selecting which updates they are interested in receiving.

1 Introduction
This paper presents the first architecture that supports
trustworthy data sharing with strong consistency guaran-
tees among a distributed collection of autonomous nodes.
Such nodes support data reads and writes without coor-
dination with other nodes, share data opportunistically in
a peer-to-peer fashion, and are mutually distrustful.

Supporting nodes’ autonomy is critical in many prac-
tical data sharing applications—including delay tolerant
networking (DTN) [2, 13, 25, 32, 39], personal data shar-
ing [4, 31, 34], and cooperative data sharing across multi-
ple administrative domains [1, 29]—where peers operate
in settings where their connectivity, dependability, and
level of mutual trust vary dramatically.

Several existing systems address a subset of these
challenges, but their solutions don’t apply to autonomous
nodes. For example, weak consistent replication sys-
tems support peer to peer data sharing and are highly
available [8, 33, 30, 34], but are designed for environ-
ment where nodes trust each other. Systems that in-
stead rely on a centralized server [10, 20, 23, 27, 26]—
possibly implemented through a collection of untrusted
servers [11, 22]—don’t support disconnected operations
and peer-to-peer data sharing.

This work introduces ASTRO, a data sharing system
that resolves the fundamental tension between peer-to-

peer sharing and mutual distrust by relaxing the con-
sistency requirements on the updates accepted by au-
tonomous nodes. Nonetheless, ASTRO guarantees that
the data accessed by correct nodes satisfy a notion of con-
sistency that is not only globally meaningful but also, in
a precise way, is the strongest relaxation of causal con-
sistency [18] achievable between autonomous nodes.

ASTRO supports autonomy along three dimensions:
1. Limited Trust: ASTRO provides correct nodes with

sufficient local information to determine, regardless of
the faults or manipulations of other nodes, whether it
is safe for them to accept the updates they receive.

2. Opportunistic Sharing: ASTRO supports discon-
nected workgroups and peer-to-peer data sharing. As a
result, ASTRO remains available despite network par-
titions or node failures.

3. Selective Sharing: ASTRO gives nodes control over
their storage. Nodes can garbage collect their logs and
decide which subset of the updates created in the sys-
tem they want to receive.
ASTRO’s ability to achieve high availability while

supporting partial information exchange among mutually
distrustful nodes comes at a price: familiar guarantees
such as causal consistency—the guarantee at the core of
Bayou [33] and PRACTI [8]—become unattainable.

ASTRO provides instead a new consistency seman-
tics, which we call fork-causal consistency. As its name
suggests, fork-causal consistency weakens causal con-
sistency by adopting an approach inspired by SUNDR’s
fork-linearizability.

Fork-linearizability limits the degree by which a faulty
server can disrupt linearizability: a faulty server can at
most “fork” its history, leading different clients to ob-
serve histories that, though incompatible, are linearizable
when taken in isolation. Similarly, fork-causal consis-
tency limits how much a faulty node can harm causal
consistency; a faulty node can at most fork its history,
leading different peers to observe histories that, although
incompatible, are causal when taken in isolation. This
guarantee greatly reduces the attacks a faulty node can
mount. For instance, a faulty replica can no longer ex-
pose arbitrary subsets of updates from one correct replica
to another correct replica even if the faulty replica con-
trols the only channel of communication between the cor-
rect replicas. Furthermore, ASTRO ensures that upon ex-
changing updates, correct nodes will be able to detect any
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mutual inconsistency. We prove that when nodes are au-
tonomous and potentially faulty or malicious, fork-causal
consistency is the strongest possible weakening of causal
consistency, i.e. it is the weakening of causal consistency
that admits the smallest number of additional executions.

The main challenge in providing fork-causal consis-
tency in ASTRO is to prevent faulty processes from
exploiting nodes’ autonomy to their advantage. For
instance, the requirement to support selective sharing
means that, even with perfect connectivity, a given node
may never receive certain updates. Faulty nodes may
try to exploit partial information to create fraudulent
gaps and reorderings in the updates they exchange. AS-
TRO addresses this challenge by supporting secure up-
date summaries. Precise update summaries are equiva-
lent to traditional updates, but ASTRO allows also impre-
cise summaries to be sent in lieu of updates the receiver
doesn’t care for.

Each update summary carries with it a proof of its
accuracy. One of the key properties of ASTRO’s sum-
maries is that the proofs they carry are associative: the
proof for the summary that covers a sequence of updates
u1 . . .un can be verified by combining the proofs car-
ried by the individual updates that the summary claims
to cover. This property gives ASTRO nodes maximum
flexibility in verifying whether their state is consistent
with the state of a node they want to exchange summaries
with, and it is crucial to marry selective and opportunistic
sharing data sharing with strong consistency guarantees,
despite limited trust.

We have built a prototype of our system using the
PRACTI framework and our evaluation demonstrates
that ASTRO adds only 2% CPU and 19% bandwidth
overhead over approaches that guarantee data integrity
but no consistency.

In summary, we make the following contributions:
1. We propose new consistency semantics, fork-causal

consistency, that we argue enforce the right semantics
for distributed and highly available environments with
potentially faulty or malicious participants.

2. We show that when nodes are autonomous and may
be faulty or malicious, fork-causal consistency is the
strongest possible weakening of causal consistency.

3. We introduce ASTRO, a data sharing system for au-
tonomous nodes that guarantees fork-causal consis-
tency while supporting opportunistic and selective data
sharing among mutually distrustful nodes.

4. We develop a new construct based on Merkle trees that
generates associative proofs crucial to implementing
the secure update summaries on which ASTRO relies.
The remainder of this paper is organized as follows.

Section 2 describes our threat model and assumptions.
Section 3 introduces fork-causal consistency. Section 4
and 5 describe protocols that achieve fork-causal consis-
tency in autonomous environments with complete and in-

complete information, respectively. Finally, we evaluate
our system, discuss related work and conclude.

2 Model
ASTRO is designed to operate in settings where connec-
tivity, dependability, and the level of mutual trust vary
dramatically. We thus assume an asynchronous system
where nodes exchange updates to objects through a net-
work that may fail to deliver messages, delay them, du-
plicate them, or deliver them out of order. Additionally,
connectivity between nodes may vary over time.

We assume a Byzantine failure model, in which faulty
nodes may deviate arbitrarily from the protocol due to
bugs, misconfiguration, or malice. We put no bound on
the number of Byzantine nodes, but we assume that they
cannot subvert cryptographic primitives such as digital
signatures and one-way hashes. We use the notation 〈m〉p
to indicate that message m is signed by node p.

3 Consistency
Access control and consistency are two important prop-
erties that together ensure the correctness of a system.
Access control prevents unauthorized nodes from read-
ing/writing objects and is enforced using standard cryp-
tographic techniques by signing updates, encrypting data,
and rejecting unauthorized reads and writes [5, 26]. On
the other hand, consistency is a contract between the sys-
tem and the programmer that enables the programmer to
reason about the results of operations. Intuitively, con-
sistency constraints the ordering of events to make the
results of reads and writes predictable and well-defined.

Strong consistency semantics simplify reasoning
about correctness because all nodes observe similar or-
dering of events. For instance, linearizability [17] en-
sures that all nodes observe each write happening in the
same order and at the same instant. Unfortunately, in a
distributed system, enforcing strong consistency seman-
tics such as linearizability or sequential consistency has
high, often unacceptable costs in terms of loss of avail-
ability or performance overheads [11, 22].

As a result, distributed systems often use consistency
semantics that are weaker than sequential consistency or
linearizability but still provide some intuitive basis for
reasoning about the system. For example, Monotonic
write (FIFO/PRAM) consistency [40, 21] ensures that
if a node performs write w1 followed by write w2, then
all other nodes observe this same ordering. On the other
hand, monotonic read consistency [40] guarantees that if
a process has observed a particular value for the object
any subsequent accesses will never return any previous
values. Causal consistency [7] strengthens this model to
ensure that if a node observes write w1 (done by itself or
by some other node) and then performs write w2, then all
other nodes that observe these dependent writes observe
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them in the same order, i.e. w1 followed by w2. A differ-
ent approach is taken by eventual consistency,which al-
lows transient inconsistencies but ensures that once suffi-
cient communication has happened and no more updates
occur in the system, every node agrees on the final value
of all the objects.

In benign environments, consistency enables applica-
tion developers to rely on invariants, thereby simplifying
design and development [6, 9]. Lack of consistency can
make the developer’s life very difficult; as Werner Vogels
noted, “Systems that do not guarantee monotonic write
consistency are notoriously hard to program” [3].

Consistency is also important for the users of applica-
tions. In a study of communication needs during wild-
fires, Taylor et al. note that getting the story right during
disasters can help make the situation predictable, limit
loss to property, and make the difference between life
and death [39]. On the other hand, re-orderings of emails
and mailing lists information in a DTN mailing system
can cause delivery of messages to unintended recipients
or omission of some intended recipients [32, 36]. Ab-
sence of consistency in personal data sharing settings can
prevent updates from a cellphone from reaching a laptop
and vice-versa. Similarly, a peer-to-peer data sharing in-
frastructure in critical military settings cannot tolerate the
possibility of an adversary reordering messages [25].

3.1 Consistency vs autonomy
Given the importance of consistency, what consistency
semantics are enforceable in a system with autonomous
nodes? Unfortunately, by requiring opportunistic shar-
ing, limited trust, and selective sharing, many consis-
tency guarantees are not just expensive but simply un-
achievable. The CAP Theorem [15] states that lineariz-
ability and sequential consistency are unenforceable in
an asynchronous network where partitions can occur and
one insists on 100% availability for reads and writes as
required by autonomy.

SUNDR’s fork-linearizability [27] is similarly
unattainable since it must enforce linearizability for
runs where nodes do not fail. Moreover, SUNDR has
three additional requirements regarding the trust and
availability of autonomous nodes. First, SUNDR relies
on a central server through which all updates flow.
Hence, even if nodes can physically communicate with
each other, they cannot exchange updates if the server
is unavailable or unreachable, violating opportunistic
sharing. Second, although SUNDR tolerates a faulty
server, it requires all clients to be correct to ensure
safety, violating the limited trust requirement. Figure 1
illustrates a scenario in which faulty clients collude with
the faulty server to violate fork-linearizability. Suppose
in the open-source CVS example on which the SUNDR
paper focuses, an attacker controlling a compromised
client F can issue two updates u = minnocuous (say, a

changed comment) and u′ = mattack (say, a backdoor
or code with a buffer overflow bug that allows stack
smashing and compromise of the program) such that
minnocuous and mattack have the same version information
((0,1,0) in the given example). Then, the faulty server
can show u = minnocuous to one set of clients A (e.g., the
auditor for the module in question) and show u′ = mattack
to other clients C (e.g., non-contributing users who
download the source tree to compile for production use)
while still allowing A to continue to see C’s updates
and vice versa (i.e., without detectably “forking” the
histories). Third, a fail-stop client failure can block
access to a data item if it fails at an inopportune time
during an update [27].

Causal and FIFO consistency are impossible to guar-
antee in an autonomous environment with misbehaving
or malicious nodes. Both consistency semantics require
all the writes performed by a node to be observed in the
same order by every node in the system. A misbehaving
node, however, can create and send two different updates
to two different correct nodes. By reading the received
value, the correct nodes would violate causal (and FIFO)
consistency—unfortunately, if the correct nodes cannot
communicate directly, there is no way for them to de-
termine whether or not the updates they receive violate
consistency.

Supporting trustworthy data sharing among au-
tonomous nodes requires operating under a fundamen-
tally weaker system model. To cope with this challenge,
we introduce a new notion of consistency.

3.2 Fork-causal consistency
We begin by associating with each execution an observer
graph that captures how information flows during the ex-
ecution. This is not an actual graph that our protocol
maintains, but it is useful for presentation purposes. To
build this graph, we ask each node to disclose the depen-
dencies between the operations it executes. The graph
has two types of vertices:

1. Read vertices are tuples of the form (n,oId,wl), where
n denotes the node at which the read is performed, oId
is the identifier of the object being read, and wl de-
notes the list of vertices corresponding to the write op-
erations whose value the read returns.

2. Write vertices are tuples of the form (q,oId,val),
where val is the value written to object oId by node
q. Every object update creates a new write vertex.

In the absence of Byzantine nodes, the observer graph
would contain one vertex for each read and write opera-
tion; a directed edge between two successive operations
at each process; and a directed path between a read vertex
r and the write vertex that wrote the value that r reads. It
would be foolish, of course, to expect Byzantine nodes
to play by these rules and disclose their dependencies
accurately—all we can require is for correct nodes to co-
operate.
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Time Action Auditor(A) Faulty Client(F) Correct Client(C) Server(S)’s VSL
0 initially (0,0,0) (0,0,0) (0,0,0) A:(0,0,0), F:(0,0,0), C:(0,0,0)
1 F writes u and (0,0,0) (0,1,0) (0,0,0) A:(0,0,0), F:(0,1,0), C:(0,0,0)

u’ with ts (0,1,0)
2 A reads u (1,1,0) (0,1,0) (0,0,0) A:(1,1,0), F:(0,1,0), C:(0,0,0)
3 A writes approval (2,1,0) (0,1,0) (0,0,0) A:(2,1,0), F:(0,1,0), C:(0,0,0)
4 C reads approval (2,1,0) (0,1,0) (2,1,1) A:(2,1,0), F:(0,1,0), C:(2,1,1)

and F’s write u’

Fig. 1: Illustration of an undetectable forking attack in SUNDR [27] in the presence of faulty clients. The server values denote the
Version Structure List (VSL) maintained at the server, and the client values are the vector clocks maintained at the clients. The
server’s VSL values indicate the VSL obtained after the client has performed the operation with the same timestamp. For example,
VSL at time 1 is the VSL obtained after F writes u.

Hence, the observer graph is only guaranteed to in-
clude, for every correct node p:

1. Read and write vertices for operations executed by p;
2. Write vertices referenced in any read vertex of p;
3. A directed edge between the vertices corresponding to

two consecutive operations of p;
4. A directed edge between write vertex w and any read

vertex of p that reads from w.

Definition 1. We say that vertex u precedes vertex v in
observer graph G (denoted as u ≺G v) if there is a di-
rected path from u to v in G. By extension, we say that
the operation corresponding to u precedes the one corre-
sponding to v. If u ≺G v, then v depends on u. If u 6≺G v
and v 6≺G u, then we say that u and v are concurrent.

Definition 2. An operation u is said to be observed by a
correct node p in G if either p executes u or if p executes
an operation v such that u≺G v. We denote the projection
of graph G over the set of operations observed by p as
Gp.

We now define the set of executions admitted by our
new notion of consistency in terms of the properties we
expect of their corresponding observer graphs. In partic-
ular, we introduce two conditions that limit what Byzan-
tine nodes can disclose (or fail to disclose) beyond the
four basic requirements we listed above.
Fork-causal consistency: An execution α is said to be
fork causally consistent if it admits a corresponding ob-
server graph G that satisfies the following properties:

1. For any correct node p, and for all nodes q, the pre-
cedes relation totally orders all operations of q ob-
served by p in G.

2. If r = (p,oId,wl) is a read vertex in G and p is correct,
then there exists no write vertex w′ = (q,oId,val) in G
s.t. one of the write vertices in wl precedes w′ and w′
precedes r. In other words, r returns the values of the
latest concurrent writes to oId.
It is easy to restate these requirements on the observer

graph in terms of the guarantees that fork causal consis-
tency offers to correct nodes:
FC1: Writes that are dependent on each other are ob-
served in the same order by all correct nodes.

FC1 implies that writes performed by a correct node
are observed everywhere in the same total order. How-
ever, a Byzantine node b may create during an execution
α two writes b1 and b2 such that in no observer graph G
that is admitted by α either b1 ≺G b2 or b2 ≺G b1. We
call such concurrent writes incompatible.
FC2: Incompatible writes are never observed by a cor-
rect node.
FC3: A read r to an object oId returns the values written
by the most recent set of concurrent writes to oId that
precede r.

Fork-causal (FC) consistency is weaker than causal
consistency: every causally consistent execution is also
FC-consistent. In particular, FC consistency does not
ask, as causal consistency does, that all operations of a
node q be totally ordered. Instead, it limits its require-
ment to those operations that are observed by a correct
node p. This weakening, when combined with FC2, im-
plies that Byzantine nodes that fork their history by creat-
ing incompatible updates can prevent correct nodes from
sharing updates past the point of incompatibility.

Nonetheless, FC consistency provides powerful guar-
antees: indeed, it is the strongest weakening of causal
consistency achievable among autonomous nodes.

More precisely, consider a collection of autonomous
nodes implementing a data sharing application A that, in
the absence of Byzantine faults, provides causal consis-
tency and eventual consistency.
Theorem: FC is the strongest consistency semantics
achievable in A .

Proof sketch. We model an autonomous node p as a de-
terministic state machine whose state includes a repre-
sentation of the observer graph induced by the operations
observed by p. The state machine has three commands:
READ(oId),WRITE(oId,val), and SYNCC(G). The first
two commands are invoked by A running on p and in-
volve local operations on object oId; SYNCC is invoked
by another autonomous node q and takes as a parame-
ter q’s current observer graph G. When SYNCing with
q, p learns of new updates; however, before incorporat-
ing them as part of its state, p checks whether the new
observer graph that would result by joining G with p’s
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current observer graph satisfies consistency condition C.
To do so, it creates the hypothetical observer graph G′
that would result if p were to read all the updates it re-
ceived from q. If G′ satisfies C, the p adopts G′ as its new
observer graph; if not, SYNCC(G) fails and p rejects q’s
updates. It is easy to see that if C admits an execution α,
then α never causes a SYNCC operation to fail at a correct
process. It is also not hard to prove the following lemma:
Lemma: If FC admits an execution α, then, for each cor-
rect p, there exists a (possibly different) causally consis-
tent execution β such that α and β are indistinguishable
by p.

Suppose now by contradiction that there exists a con-
sistency condition SC for A that is strictly stronger than
FC but weaker than causal consistency. Then, in every
execution the set of failed SYNCSC(G) is a superset of the
set of failed SYNCFC(G). Further, there exists at least one
execution γ where no SYNCFC fails, but SYNCSC(G) fails
at some correct process p. By our lemma, there exists
a causally consistent execution β that for p is indistin-
guishable from γ. Hence, since SYNCSC fails on some G
in γ, it must also fail on the same G in β. But, since by as-
sumption SC is weaker than causal consistency, SYNCSC
can never fail at p when executing β: contradiction.

We argue that fork-causal consistency is the right
semantics for data-sharing applications involving au-
tonomous nodes for two reasons. First, as we just
showed, no stronger consistency can be provided in
these settings. The need for disconnected operations ex-
cludes linearizability, sequential consistency, and even
the weaker fork-linearizability. Similarly, the presence
of faulty nodes excludes causal consistency.

Second, fork-causal consistency is useful in many
practical settings involving autonomous nodes. In execu-
tions with only fail-stop failures, fork-causal consistency
converges to causal consistency, a desirable consistency
semantics for autonomous nodes. In environments with
buggy, misconfigured, or malicious nodes, fork-causal
consistency limits damage by preventing faulty nodes
from altering the causal dependencies observed by cor-
rect nodes.

4 ASTRO-CI
ASTRO-CI (Complete Information) is a protocol that
enforces fork-causal consistency assuming complete
information—nodes receive, process, and store all up-
dates in the system. ASTRO-CI uses Bayou’s log-
exchange protocol for efficiently exchanging updates be-
tween nodes [33].

Note that simple approaches based on signed version
vectors or vector clocks [35] are insufficient to guarantee
fork-causal consistency. Consider, for instance, a faulty
node that generates two updates, both with the same ver-
sion vector or vector clock, and sends them to two dif-
ferent correct nodes p and q. Even after communicating

with each other, p and q won’t detect these incompati-
ble updates unless they decide to exchange and compare
all the updates they know of, including those their ver-
sion vectors say are already known to both of them. Be-
sides being inefficient, this approach still falls short of
providing fork-causal consistency: if all communication
between two correct nodes p and q goes through a faulty
node s, then s can selectively forward p’s updates to q
and vice versa, violating the no-gap property.

ASTRO-CI is based on the observation that if the
sender attaches all the updates it has seen to every up-
date it creates, then the receiver can be assured of get-
ting causal consistency in benign environments [9]. The
same idea can be extended to environments with Byzan-
tine nodes to get fork-causal consistency by detecting
whether the sender and receiver are forked. So, a re-
ceiver additionally checks that the visible subset of the
overall updates, received update and its history and the
receiver’s local history, doesn’t contain a pair of incom-
patible updates; updates that are created by the same
node but neither update occurs in the history of the other.

ASTRO-CI is an optimization of this simple idea. In-
stead of sending the entire history, a sender includes a
causal history summary (CHS) to each update u. As de-
scribed in the next section, a CHS provides a secure and
efficient mechanism to summarize the set of updates on
which u depends. Thus, an update u in our system has
the following structure: 〈oId, lts,data,CHS〉cid, where lts
is the logical timestamp (cid, lc), cid is the creator of u
and lc is the value of a counter local to cid that is incre-
mented on every update.

4.1 Causal History Summary
To prevent faulty nodes from manipulating dependencies
between updates, each correct node p running ASTRO-
CI embeds in each update u it creates and signs the up-
date’s causal history summary (or CHS). The CHS for u
is a tamper-evident summary of the set of updates that u
depends upon. Its purpose, intuitively, is to offer a cor-
rect node q that receives u the ability to check whether
u’s CHS is consistent with the dependencies induced by
the updates that q has already observed.

Unfortunately, encoding the causal history of an up-
date securely and efficiently is not straightforward. Sim-
ply encoding the causal history as a list of all prior up-
dates does not scale to practical systems with a signifi-
cant number of updates. Similarly, relying on a straight-
forward comparison of the hash of all the updates known
to the creator and the receiver of u will not work in
causally consistent systems, because causal consistency
allows different nodes to observe different subsets of
concurrent writes. Hence, different nodes may have
observed different but compatible causal histories, and
simple hashes across such compatible histories may not
match. For example, in Figure 2 node b has updates

5



DVV=

(        ,        ,     )a0 a1

b0

b2

b3

c1

b1 b2

c0

a1 c1

c0

a1a0

b0 b1 b2

c2c1

a0 a1

c0

b0 b1 b2

c′
1

a0 a1

b0

c0

b1 b2

(a) Creator b (b) Receiver c with (c) Receiver a with (d) Forked receiver d
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Fig. 2: Challenges of summarizing updates in a causal environment: (a) node b wants to create update b3, (b) receiver c has seen
more legal updates than b, (c) receiver a is missing some updates, and (d) receiver d is forked. The figure indicates the updates
histories at each node when they receive update b3 and the outlined box indicates the updates that will be covered by the DVV(a1,
b2, c1) of the update b3.

a0,a1,b0,b1,b2,c0,c1 when it creates update b3. How-
ever, a simple hash of these updates will not match with
the hash of updates at the receiver c in Figure 2(b), even
though c is causally consistent with b, because c pos-
sesses the extra update c2. Note that fig 2(b) reflects a
legal possible state in causal and fork-causal system but
unfortunately, the simple hashing approach doesn’t ac-
commodate this possibility.

To address these issues, a CHS consists of a depen-
dency version vector (DVV) and a summary hash (SH).
The DVV summarizes the updates known to the creator
of u. For example, in Figure 2(a), the DVV of update b3
is (a1,b2,c1). SH is a summary hash of all updates in-
cluded in the DVV: before they are hashed, updates are
ordered according to their logical time stamp [33]. Note
that the CHS of u summarizes the CHSs of all the updates
included in the DVV—it is this recursive structure that al-
lows a node that receives u to check whether u’s declared
dependencies are consistent with what the receiver has
already observed.

Going back to the example of Figure 2(b), in ASTRO-
CI node c, upon receiving b3, computes the hash of all the
updates it has observed within the DVV. If the computed
value matches b3’s summary hash SH, then c accepts b3.

Because of the DVV, every update in ASTRO-CI in-
cludes an O(N) version vector, where N is the number
of nodes in the system. We reduce this overhead by ob-
serving that, since the receiver verifies new updates in
causal order, the DVV created by node p only needs to
include the vector entries that have changed since p cre-
ated its previous update. This optimization allows nodes
to include only an Incremental DVV (IDVV) in the (now)
Incremental CHS (ICHS) of the updates they create.

In an experiment based on connectivity records of 100
mobile users [14], we observed an average IDVV size
close to 1. Using IDVVs instead of DVVs also reduced
bandwidth consumption by 95% and synchronization la-
tency by 97%.

4.2 The Protocol
The creator of an update in our system simply generates
the ICHS and includes it in the signed update. This up-
date is then opportunistically propagated to other nodes

using a variant of Bayou’s log exchange protocol. As in
Bayou, each node maintains a version vector (CVV) that
summarizes the updates it has accepted. When a node
wants to receive more updates, it sends a request with its
CVV to other nodes. A node q receiving such a request
scans its logs to determine any updates that are not in-
cluded in the requestor’s CVV and sends these updates.
Before accepting an update u, node q performs the fol-
lowing sequence of checks:
Inclusion Check: The inclusion check enforces FC1 by
ensuring that q has observed all the updates that u de-
pends upon. The inclusion check involves verifying that
the DVV of an update is included in q’s version vector
and ensuring that the summary hash of the updates ob-
served by q that are included in the DVV matches the
summary hash of u.
Compatibility Check: The compatibility check enforces
FC2 by ensuring that neither u nor any of the updates that
u depends upon is incompatible with any update that q
has already observed. To check compatibility for updates
that have passed the inclusion check, all that is required
is to verify that (1) each newly received update u signed
by node p has a higher logical time than any update from
p previously observed by q, and (2) u’s IDVV includes
the most recent update by p observed by q.

Once an update to object oId has passed both checks,
q uses it to update the set WoId that q keeps for each oID.
At all times, WoId contains the most recent updates to oId
that q has observed. ASTRO-CI enforces FC3 by having
each read operation that q performs on object oId return
the current content of q’s WoId.

The following theorem then follows directly:
Theorem: ASTRO-CI enforces fork-causal consistency.

ASTRO-CI supports several additional features:
Immediate Fork Detection: ASTRO-CI ensures that the
first exchange of updates between forked nodes p and q
will reveal the presence of incompatible updates, mini-
mizing the damage caused by faulty nodes.
Accountability: ASTRO-CI allows a correct node that
detects a fork to identify the incompatible updates and
use them to generate a proof of misbehavior (POM)
against the node that signed them.
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Reconciliation: ASTRO-CI allows application-specific
policies that relax fork-causal consistency to let correct
nodes that observe incompatible updates reconcile their
differences and proceed using the reconciled state. Rec-
onciliation in ASTRO draws on prior mechanisms in-
troduced by systems that support disconnected operation
[8, 20, 29, 33, 34] by modeling a faulty node that forks its
history into two incompatible branches as two nodes that
issue conflicting updates. Choosing a policy, of course,
remains a hard problem: the conflicting updates could
have effects that ripple through the system—how can
these issues be isolated and repaired? As with standard
conflict resolution, we expect systems to adopt a range
of automatic and manual conflict resolution techniques
that make use of application requirements and semantics
to determine an appropriate course of action such as au-
tomatically declaring one fork of the history to be the
“truth” and discarding all updates from other forks, au-
tomatically merging compatible updates, or emailing a
human to resolve a conflict. At some level such heuris-
tics are unsatisfying, but we conjecture that systems like
ASTRO-CI, which provide mechanisms to quickly de-
tect faulty updates and provably identify nodes that issue
them, can simplify recovery and minimize the damage
from divergent histories.

5 ASTRO
Despite its many attractive properties, ASTRO-CI’s abil-
ity to support truly autonomous nodes is fundamentally
limited by its requirement that all node receive and store
all updates. ASTRO (Partial Information) is an extension
of ASTRO-CI that eliminates the need for complete in-
formation, while still providing fork-causal consistency.
ASTRO supports the exchange of partial information
along the following dimensions to give nodes freedom
to control their bandwidth and storage resources.

1. ASTRO supports secure, consistent checkpoints to al-
low log truncation/garbage collection. Rather than
maintaining full logs, nodes can keep a suffix of the
logs and exchange checkpoints when they need to
communicate with nodes that need updates from be-
fore the truncation point [33].

2. ASTRO allows each node to specify independently an
interest set that contains all the objects for which the
node wants to receive updates. In ASTRO-CI, every
node had the same interest set, which included all ob-
jects.

3. ASTRO supports also a combination of the two previ-
ous dimensions: if a node only cares about a subset of
data and it needs to receive a checkpoint, it can receive
a checkpoint that covers just the objects of interest.
Supporting the exchange of partial information is

challenging. In benign environments, the missing in-
formation may hide some dependencies required for

enforcing causal consistency. Figure 3 shows a sim-
ple (and naive) approach to support partial information.
Node a has updates a0,a1, ...,a8, which write to objects
o0,o1, ...,o8 respectively, and it wants to transmit these
updates to node b. However, b is only interested in ob-
jects o0,o1, and o8. Suppose that a simply transmits up-
dates a0,a1,a8 to b. No harm is yet done: as long as b
never accesses objects affected by the missing updates,
it observes the same values and hence the same consis-
tency as it would with complete information. The prob-
lems start when b synchronizes with another node c that
is interested in all objects. Because c doesn’t know about
the missing updates a2− a7, successive reads o8 and o5
return for o8 the new value written a8 and for o5 some
obsolete value written before a5. This execution violates
both causal and fork-causal consistency semantics: c ob-
serves the effect of update a8 without observing the ef-
fects of a5, although correct node a observed a5 before
a8.

Byzantine nodes further complicate supporting the ex-
change of partial information for two reasons. First, in
the absence of complete information omission and re-
ordering errors may go unnoticed. Revisiting the pre-
vious example, suppose that a sends all updates to b, but
that node b is Byzantine. Suppose that, as before, node c
is interested in all updates, but that node b only exposes
a1,a2,a8 to c, pretending to not possess a2−a7. From c’s
point of view, this scenario is indistinguishable from the
one in which b truly did not possess updates a2−a7. Sec-
ond, partial information makes CHS unusable. ASTRO-
CI guards against Byzantine nodes by using CHS but, if
nodes receive arbitrary subsets of the updates, the CHS
that different nodes create will not match, thereby pre-
venting even correct nodes from exchanging information.

To address these challenges, we introduce updates
summaries. Precise summaries are equivalent to
ASTRO-CI updates (and we will continue to represent
them as such in our figures), but imprecise summaries
can be used as a secure and tamper-evident substitute for
a sequence of precise updates to objects outside of the
receiver’s interest set. For example in Figure 3, node b
receives summaries a0,a1,su2−7,a8, where su2−7 is an
imprecise summary replacing precise summaries a2−a7.

PRACTI [8] has shown that, in benign settings, simple
update summaries of the form 〈oId list,start lts,end lts〉
can help save bandwidth and ensure causal consistency
by informing the recipient that it should not read from the
objects in oId list until it retrieves the missing updates
from some other source. The remaining of this section
is dedicated to showing how ASTRO uses update sum-
maries to support interest sets while guaranteeing fork-
causal consistency between potentially Byzantine nodes.
We structure our presentation in three steps. In Sec-
tion 5.1 we define update summaries more precisely and
give an axiomatic characterization of an append operator
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Fig. 3: The state of node a with updates a0 through a8 to ob-
jects o0 through o8 respectively and node b with a summarized
update su2−7, replacing updates a2 through a7. All updates are
done by node a.
that can combine summaries of consecutive sequences
of updates in a single summary—deliberately postpon-
ing the details of its implementation. In Section 5.2 we
discuss how our implementation of ASTRO relies on the
properties of append to enforce fork-causal consistency.
Finally, we present in Section 5.3 an implementation of
append that guarantees the properties asserted in Sec-
tion 5.1.

5.1 Update Summaries
A summary su is a tuple 〈oId list,start lts,end lts,data,
CHS〉cid, where start lts and end lts denote respectively
the logical timestamp of the earliest and the latest up-
date included in the summary, cid is the creator of the
updates summarized in su, and loId is the list of objects
modified by the updates included in the summary. For
precise summaries, start lts is the same end lts and data
is the new value of the single object the summary covers;
for imprecise summaries, data is left empty. Note that
(1) all updates in a summary come from a single creator
node and (2) summaries are signed. Both requirements
are for ease of presentation: ASTRO can handle sum-
maries with updates from multiple nodes and, although
it only accepts summaries with the guarantees integrity
and non-repudiation that signatures provides, ASTRO
can leverage the tamper-evident CHS of a signed sum-
mary to serve as an implicit signature for all the sum-
maries covered by that CHS.

We require three properties of summaries. First, for
the purposes of enforcing consistency, observing a sum-
mary that correctly represents the updates it claims to
cover must be equivalent to observing those individual
updates. Hence, the receiver of a correct imprecise up-
date su must be able to compute for all its updates that
depend on su the same CHS that it would have com-
puted if it had received the individual updates. Con-
versely, a summary that incorrectly represents the con-
stituent updates—because it omits updates, tampers with
the CHS, or misrepresents either the set of modified ob-
jects or the logical-time interval that the update spans—
will, if observed, fork the receiver from those correct pro-
cess who have observed the individual updates. Finally,
summaries must be composable: any node p that pos-
sesses summaries—even if (implicitly) signed by some
other node q—covering consecutive sequences of up-
dates should be able to append them to create a single

1 42 3 5 6 7 80

1 42 3 5 6 7 80

Faulty Node a

7

Node b Node d

10 2-7

su′2−7 : {o2, o3, o4, o6, o7}
Node e

1 42 3 5 6 70

Node c

su′2−7 : {o2, o3, o4, o6, o7}

1 80 2-7

su2−7 : o2 − o7

Fig. 4: Different scenarios of a faulty node exploiting partial
information

new summary implicitly signed by q.
As we will see in the next section, we rely on the im-

plementation of ASTRO to guarantee the first two prop-
erties. To address composability, we introduce instead
an append operator ⊕. Informally, append accepts as in-
put a pair of valid consecutive summaries and produces a
new valid summary that encompasses both. We then say
that a summary su is valid if either it is the result of an
append, or if su satisfies the following three constraints:
(1) it is signed, (2) it spans 2k updates for some k and (3)
start lts and end lts+1 are multiples of 2k. Let now su1

and su2 be two valid summaries signed by p, such that
that su1 ≺G su2 and start ltssu2 = end ltssu1 + 1. Then
su1⊕ su2 = su3, where:
- su3 is a valid summary signed by p
- start ltssu3 = start ltssu1 and end ltssu3 = end ltssu2

- CHSsu3 includes all updates that precede the updates
summarized in su1 and su2

- oId listsu3 is a deterministic ordering of the union of
the objects in oId listsu1 and oId listsu2

If the input summaries don’t conform to the above con-
straints, then append does not produce a valid summary.
For inputs for which it does produce valid summaries,
append offers two additional properties:
Associativity: ∀su1,su2,su3, (su1 ⊕ su2)⊕ su3 = su1 ⊕
(su2⊕ su3).
Collision resistance: ∀su1,su2, it is difficult to find su′2
such that su1⊕ su2 = su1⊕ su′2.

We will rely on these properties next in describing
how ASTRO works and in proving that it provides fork-
causal consistency. We will discuss an implementation
of append that guarantees these properties in Section 5.3.

5.2 The Protocol
The basic structure of ASTRO is similar to that of
ASTRO-CI, except that now nodes share opportunisti-
cally summaries rather than updates. Of course, the pres-
ence of imprecise updates introduces some changes to
how a correct node creates updates (a.k.a. precise sum-
maries), forwards the summaries it has observed to its
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peers, and verifies that observing the summaries received
from a peer does not violate fork-causal consistency.
Creating updates As in ASTRO-CI, each precise sum-
mary su created by a correct node p contains the sum-
mary’s CHS1, consisting of a DVV and a summary hash
SH. Node p computes SH in two steps. First, with the
help of the append operator, it creates, for each peer q, a
single summary encompassing all the summaries signed
by q that p has observed, as reflected su’s DVV. Then,
p orders these summaries deterministically and creates a
single hash SH across them.
Opportunistic Sharing To initiate an exchange, node p
sends q its LPVV—the latest version vector for which p
has observed all precise updates to the objects in p inter-
est set. The LPVV is a special case of the CVV we used
in ASTRO-CI, where nodes where interested in all ob-
jects. When a correct node q receives the LPVV from p,
it responds with two types of summaries: (1) all precise
summaries ps that are in p’s interest set but are not in-
cluded in p’s LPVV and (2) for all such ps, all imprecise
summaries is that ps depends upon such that is covers
some update that p has not observed yet (i.e. such that
end timeis is not included in p’ LPVV).
Accepting updates ASTRO’s current policy for deter-
mining which of the summaries contained in q’s response
will be accepted by p is simple: to accept any of the sum-
maries sent by q, p must accept all of them. Although it
is possible to implement a less Draconian approach, our
evaluation of ASTRO using the mobility patterns of real
users (see Section 6) suggest that this simple policy can
perform well in realistic settings.

A key difference between ASTRO-CI and ASTRO
that impacts which summaries are accepted by a correct
node is that nodes in ASTRO may receive multiple over-
lapping summaries that claim to cover the same set of
updates: a node may first receive an imprecise summary
su2−7 claiming to cover updates b2 to b7, and later re-
ceive precise updates for b2 and b3, or a different impre-
cise update su6−9. Partially overlapping summaries pose
a threat to fork-causal consistency, as it is in general im-
possible to determine whether they cover incompatible
updates. For example, suppose the creator b of su2−7 and
su6−9 is Byzantine: the updates that b includes in posi-
tions 6 and 7 in the first summary may be incompatible
with those that b uses for the same positions in the sec-
ond summary—if a receiver accepted both, fork-causal
consistency could be violated.

To avoid this situation, p applies the following com-
posability check to every summary su received from q
that overlaps with a summary p has already observed:

1. If su can be generated by appending a set of updates p
has already observed, then p tentatively accepts su.

1Just as ASTRO-CI, ASTRO too supports ICHS, but for simplicity
we omit the discussion of this optimization

2. If by appending su to other not-yet-rejected summaries
received from q it is possible to generate a summary
su′ that p has already observed, then p tentatively ac-
cepts su and all the other summaries from q that were
used to generate su′.

3. Otherwise, su is rejected.
The paragraph dedicated to Liveness later in this

section discusses the implications of the composability
check on the ability of correct nodes to share updates
with each other.

For each summary su that does not overlap with any
summary it has already p, performs the following se-
quence of checks:
Validity Check: The validity check ensures that su can
be used as a valid input to the append operator.
Inclusion Check: The inclusion check enforces FC1
by ensuring that q has accepted all the summaries and
hence all the writes on which su depends. The inclusion
check verifies that the hash of the summary of the update
summaries observed by q that are included in the DVV
matches the summary hash of su. The collision resis-
tance property of the append operator ensures that it is
improbable for the summaries that p and q compute to
match unless these summaries were obtained by succes-
sive applications of the append operator over the same
sequences of compatible writes.

Note that, although p may have summaries that over-
lap with all the write events in the DVV of su, the over-
lap may not be perfect: p may have accepted some sum-
maries that straddle the cut in the observer graph defined
by su’s DVV. Once again, partial overlaps may limit what
p can accept from q
Compatibility Check: The compatibility check enforces
FC2 by ensuring that neither su nor any of the summaries
that su depends upon includes writes that are incompat-
ible with any that p has already observed. The check is
virtually the same as in ASTRO-CI: if su has survived the
inclusion check and does not overlap with any summary
that p has already observed, then all that is required is
to verify that (1) if su signed by b, then su has a higher
start lts than the end lts of any update from p previously
observed by b, and that (2) su’s DVV includes the most
recent update by b observed by p.

If a non-overlapping su passes the validity, inclusion,
and compatibility check, then it is tentatively accepted.

If in the end all the summaries sent by q are tenta-
tively accepted, then p uses the summaries to update the
set Woid as described in the ASTRO-CI section to perma-
nently accept the summaries. Hence ASTRO enforces
FC3 by having each read operation that q performs on
oId return the current content of q’s WoId . The read to
oId blocks if WoId contains any imprecise summary. The
following theorem then follows:
Theorem: ASTRO-PI enforces fork-causal consistency.

Figure 4 illustrates how the use of summaries ad-
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dresses the attacks that a faulty node may mount. Sup-
pose that the creator node a in the previous example is
faulty. Node b has the updates a0 through a8 and node
d has received a correct summary from node a. Hence,
nodes b and d can exchange updates as indicated by the
arrow connecting them. Node a now sends an different
version of update u7 to node c which forks it with re-
spect to both nodes b and d, who have received a7 in-
stead. Forking in the figure is shown by the X sign over
the communication channel between the nodes indicating
that the nodes can’t exchange updates without detecting
the fork. Similarly, a omits object o5 from the update
summary su′2−7 it sends to node e, thereby forking e with
respect to nodes b and d. Note that even nodes c and e
are mutually forked as they have both received inaccurate
yet mutually incompatible update summaries.

Liveness: ASTRO creates summaries to avoid the cost
of receiving, processing and storing updates that a node is
not interested in accessing. Unfortunately, summarizing
updates can sometimes prevent sharing of data in discon-
nected groups. For instance, if two correct nodes have
received partially overlapping summaries (say su4−7 and
su4−5), then, without additional information, ASTRO can
not determine if the two summaries are compatible. Gen-
erally speaking, applications have two options to address
this problem: (1) relaxing consistency to ensure complete
availability, (2) giving up the ability to always exchange
data. We sketch several mechanisms for each option and
implement a few of these.

Relaxing consistency is an interesting alternative for
applications that want to be always available despite par-
tial information or don’t require strong guarantees that
fork-causal consistency provides. Our prototype supports
relaxation of fork-causal consistency to allow nodes to
accept incompatible summaries as long as they are in-
comparable but ensures that a node never observes com-
parable incompatible summaries. Nodes can eventually
detect all forks, generate POMs, and reconcile while
staying always live.

The second alternative is to maintain complete histo-
ries at some highly available servers and rely on these
servers to provide the desired summaries when needed.
This is a viable alternative for applications where auton-
omy is desired for performance and mistrust rather than
limited connectivity. For instance, applications such as
personal data sharing, where most interactions are ex-
pected to be within a trusted domain and for rare cross-
domain interactions, a low bandwidth liveness server can
be expected to be available, can rely on the server for pro-
viding the additional summaries to enable compatibility
check. Similarly, in systems such as Microsoft Active Di-
rectory [12], nodes can expect the creator to maintain all
the relevant history for summaries they create and obtain
the relevant summaries from them on demand.

An alternative approach to coordinate communication

so that most summaries are generated are at the same
granularity. For instance, applications spanning multi-
ple administrative domains can ensure that nodes in one
domain only accept updates created by nodes in other do-
main at certain pre-specified points in logical time. Col-
lective enforcement of this policy in a domain guaran-
tees that nodes within a domain can always mutually ex-
change information and be live.
Checkpoints and Garbage Collection: ASTRO uses
summaries to construct checkpoints that only need to in-
clude the last update for each object: all other updates
can be condensed as summaries. Thus, checkpoints store
a collection of precise and imprecise summaries. Check-
points can be used to garbage collect logs by replacing
all but the last update to each object with summarized
updates.

As we saw, independently garbage collecting the state
may lead to generating incomparable summaries. There-
fore, we need a mechanism for coordinating the garbage
collection and ensuring that either (1) all the nodes in the
system have reached the same state or (2) at least one
node maintains enough precise summaries to identify the
faulty node and reconcile the histories. Nodes in AS-
TRO rely on a server to maintain complete histories and
garbage collect any prefix of their history that they know
is present at the server. Such servers may be arranged
hierarchically to ensure that only the root needs to store
all the updates—intermediate nodes can simply maintain
the histories relevant to their domain.
Immediate detection, Reconciliation, and POM: AS-
TRO uses the same approach for reconciling forked
branches and POM generation as ASTRO-CI.

5.3 Implementation
In this section, we describe how ASTRO implements the
append operator on summaries. We first introduce as-
sociative hash summarization (AHS), a new construct
based on Merkle hash trees that supports associative sum-
marization of a series of values and later we use it to im-
plement append.

5.3.1 Associative Hash Summarization
Associative Hash Summary (AHS) is a substitute for sim-
ple hashing that supports the join operation (+) for as-
sociatively joining an AHS value to another. Let hi− j
denote the associative hash computed using series of val-
ues from vi to v j, where each value vi has a unique la-
bel i that reflects its position in the list and the labels
start at 0. Then AHS guarantees: h1−5 = h1 + h2−5 =
h1−2 +h3−5 = ... = v1 + v2 + ...+ v5.

We implement AHS using a simple construction based
on Merkle hash trees [28]. A Merkle tree is a binary tree
where the leaf nodes contain data values and the values at
internal nodes are a hash of the concatenation of the val-
ues of the left and right child. The AHS of a list of val-
ues v0, . . . ,vn−1 is the ordered list of the roots of canon-
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indicated in parenthesis over the figure (h0−3,v4 for Figure 5(a)) is the AHS value for the series of values shown in that figure.

ical Merkle trees built on v0, . . . ,vn−1 according to the
rules described below. The join operation is supported by
combining smaller consecutive trees to form larger trees.
AHS inherits it collision resistance from the collision re-
sistance of SHA1, which is used to construct Merkle trees
in AHS. The associativity of AHS is guaranteed by ad-
hering to the following two rules:
AHS1: An AHS contains only roots of balanced binary
trees. This constraint implies that for a series of values,
we may have to construct more than one Merkle trees on
those values.
AHS2: The minimum label of a leaf of a tree spanning
2k elements is a multiple of 2k. Two adjacent tree roots
covering 2k elements can be combined to form a tree con-
taining 2(k+1) elements iff the first of the two roots has a
starting label that is an even multiple of 2k.

These rules ensure that the size of AHS is logarithmic
in the number of input values.

We argue that the maximum size of an AHS of n val-
ues is 2log(n) + 1. Note that in a given AHS, it is not
possible to have a lower level value surround by a higher
level value on both sides due to the structuring constraints
described above. This observation implies that the AHS
value can increase in level upto a maximum level and
then must start decreasing. Hence, for n values we can’t
have more than 2log(n)+1 values.

Figure 5(a, b) illustrate AHS1 and AHS2. The leaf
node with label i corresponds to value vi and h0−1 is the
internal node with label 1 formed by hashing together
values v0 and v1. AHS1 prevents the join of h0−3 and v4
and AHS2 sees that h6−7 and h8−9 are not combined to
form h6−9.

Join: The join operation on AHS first concatenates
the roots of the trees in the input AHSs and then cre-
ates a larger tree by combining trees that have the same
height and satisfy AHS2. The join process is repeated
until no more trees satisfy AHS2. The roots of the
remaining trees are the new AHS value produced by
the join operation. Figure 5(c) illustrates the join of
the two AHS values of Figure 5(a) and Figure 5(b).
First the rootlist values are placed together to obtain
{h0−3,v4,v5,h6−7,h8−9}. Since {v4} and {v5} are both

level 0 trees, they are combined to form a level 1 {h4−5}
tree and the list becomes {h0−3,h4−5,h6−7,h8−9}. The
process is repeated to obtain the final result {h0−7,h8−9}.
AHS2 prevents further merging between {h0−7} and
{h8−9}. Note that this combination is associative as cre-
ating the AHS of the original sequence from v0, ...,v9 also
produces the same AHS value, h0−7,h8−9.

5.3.2 Implementing Append
To support the append operator, we represent update
summaries by using the tree nodes in the AHS. Leaf
nodes represent precise summaries and internal nodes
represent summaries for the precise updates present in
the subtree rooted at that internal tree node. To attain this
goal, we extend AHS by (1) replacing leaf nodes with
precise summaries, (2) describing rules to deterministi-
cally construct the fields of a larger summary using the
smaller summaries, and (3) securely associating the fields
of an imprecise summary with the AHS of the subtree
containing that summary.

The rules for constructing the fields of an internal tree
node in an AHS tree are based on the requirements of the
append operator specified in Section 5.1. Specifically,
the start lts and the end lts of a tree node are computed
by taking the min and max of the start lts and the end lts
of its children. Similarly, the CHS of an internal leaf
node is computed to include all updates that preced the
updates summarized in the CHS of its children. The ob-
jects are summarized using an application specific sum-
marization strategy. Our prototype creates a sorted list
of all modified objects. The data field is set to null for
internal tree nodes.

The secure association between the AHS and fields
of a summary ensures that any modification in any of
the fields results in a different summary thereby guaran-
teeing the integrity and collision resistance of the sum-
maries. ASTRO achieves this association as illustrated
in fig 5(d). Typically, a hash for a node in a Merkle tree
is calculated as the hash of the concatenation of its chil-
dren hashes. We extend the hash construction to include
the fields of a summary to establish the non-repudiable
linking. Thus we have: Hnode = H(Hle f tChild ||HrightChild ||
start lt || end lt || oId list || CHS || data).
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Whenever a summary sui− j is exchanged, the sender
sends the corresponding root hashes from the AHS hi− j.
Further, for each tree node h in AHS, the sender addi-
tionally sends start lts, end lt, oId list, CHS, data, hl and
hr where hl and hr are the hash values corresponding to
the left and right child of h (if any). Thus, a summary
is implemented as a vector V of tuples (start lt, end lt,
oId list, CHS, data, hl , hr, h).

Operations: Our implementation of append is de-
signed to work for ASTRO. Therefore, it exploits the
knowledge that summaries are first accepted tentatively
and that if any summary su received during an exchange
is rejected, then all the summaries received with su are
rejected as well, even if they had been tentatively ac-
cepted. We leverage this knowledge to optimize the va-
lidity cheeck: when determining whether to accept a set
of summaries, we only invoke the validity check on the
last summary sent by each creator. To be valid, every
summary must submit to certain well-formedness con-
straint in terms of start lts and end lts of the summaries
it spans, and it must be signed—either explicitly by its
creator, or implicitly by appearing in the CHS of a later
summary explicitly signed by the creator. Clearly, for
any given node p, the last summary lsup created by p and
received by q must be explicitly signed to be valid. If
lsup is eventually accepted, it must also be well-formed,
and the inclusion check that ASTRO performs guaran-
tees that the CHS of lsup contains summaries for all of
p write operations prior to lsup. Therefore, owing to the
collision resistance of CHS, we implicitly possess a sig-
nature for the summaries of all prior updates performed
by p too.

Validity: The receiver declares an imprecise summary,
comprising of vector V of tuples (start lt, end lt, oId list,
CHS, data, hl , hr, h) valid if for each h ∈ v, it satisfies
the three checks: (1) h = H(Hl ||Hr|| start lt || end lt ||
oId list || CHS || data), (2) each tree node t ∈V satisfies
the structuring constraints of AHS, and (3) v is signed.
All precise summaries are valid if they are signed.

Append: The append operation on summaries su1 and
su2 can now be implemented by joining the correspond-
ing AHS after ensuring that the inputs are structurally
well formed according to the constraints of AHS and that
su1 ≺G su2 by performing the inclusion checks. To per-
form this check, summaries su1 and su2 are tentatively
accepted and on failing this check, the update packet con-
taining the summaries su1 and su2 is rejected. The signa-
ture for su2 serves as the signature for su1⊕ su2 because
su1 ≺ su2 and hence su1 is present in the CHS of su2.
Now, either su2 is signed or it will be eventually rejected,
and if su2 is signed, a proof for integrity and authenticity
of su1⊕su2 can also be structured. Therefore, we get that
that su1⊕ su2 is also signed.

The associativity of append follows form the asso-
ciativity of AHS join. The collision resistance prop-
erty of summaries follows from the use of merkle hash
trees. The result of append are valid because (1) out-
puts of AHS append satisfies the merge constraint and
(2) su1⊕ su2 is signed.

6 Evaluation
We have constructed a prototype of ASTRO by extend-
ing the PRACTI framework [8] to support the autonomy
features. ASTRO is built in Java and it Sun Java encryp-
tion library for performing cryptographic operations. Our
evaluation shows that ASTRO has modest overhead com-
pared to the approaches with integrity checks but no con-
sistency checks. Since PRACTI is the system closest in
spirit to ASTRO. Therefore, we compare performance of
PRACTI and ASTRO. We also implemented a few other
simple approaches discussed in literature to understand
their performance characteristics and compare their over-
heads with ASTRO.

6.1 Micro-benchmarks
In this section, we compare the performance of PRACTI
and ASTRO for some simple workloads. The key metrics
we consider are write latency, apply latency, and network
bandwidth. Write latency is the time to create a precise
summary with appropriate fields for consistency, sign it,
and store it. Apply latency is the time taken to verify an
update summary received from the network and update
local state. Network bandwidth gives the size of data sent
on the wire. Our micro-benchmarks indicate that the our
consistency checks impose insignificant overheads com-
pared to the cost of maintaining integrity by signing up-
dates. The Java encryption library we used takes 6.0 ms
for signature generation and 11.9 ms for verification. We
do 10000 writes to 1000 objects for experiments in this
section.
Write latency: We compare the write latency of three
systems with varying object sizes: PRACTI, PRACTI
with signatures, and ASTRO. As shown in Figure 6(a),
the most of the overhead occurs comes from signature
operations. ASTRO incurs an insignificant additional
overhead of 2% over the signed PRACTI approach. The
write latency doesn’t vary significantly with the size of
writes because the only operation dependent on the size
of the write is the hashing of data; signatures are created
by encrypting the hash of the data.
Apply latency: Next we compare the apply latency of
PRACTI, PRACTI+Signatures, ASTRO-100%, ASTRO-
90%, ASTRO-50%, and ASTRO-10%. ASTRO-X%
refers to a workload where the reader is interested in
only X% of the all updates. Since write latencies did
not show significant variation with object size, we limit
ourselves to 1 byte objects. Figure 6(b) compares the
average apply latencies. The variation of apply latency
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Fig. 6: Average write latency (a), apply latency (b) and total bandwidth (c) for synchronizing 10000 writes. x% ASTRO is ASTRO
in which reader is only interested in x% of the written data. ASTRO, PRACTI and PRACTI+Sign correspond to 100% interest set.

shows similar behavior to write latency for PRACTI,
PRACTI+Signatures, and ASTRO. The ASTRO-X% set-
tings with varying interest sets illustrate the benefit of
partial information. As the fraction of writes in which
the reader is interested falls, the average apply latency
per logical write goes down. However, the decrease is
not linear because ASTRO sends summarized updates of
logarithmic sizes to ensure consistency. Nevertheless, the
reduction is significant when a node’s interest set falls
from 100% (ASTRO) to 10% (ASTRO-10%).
Bandwidth: This experiment compares the bandwidth of
different configurations in a setup similar to previous ex-
periments. As indicated in Figure 6(c), ASTRO’s band-
width consumption is about 19% more that the signed
PRACTI approach for one-byte writes. Our protocol in-
curs the additional overhead because of the additional
ICHS field that ASTRO sends. As before, the band-
width consumption of our system falls significantly as
the fraction of updates in which the receiver is interested
decreases. Also note that the relative difference of the
two approaches would shrink for objects larger than the
1-byte objects examined here.

6.2 Trace Experiments
We evaluate ASTRO using a connectivity trace indicat-
ing the mobility patterns of 100 users [14]. The trace
contains the record of call log, cell tower accessibility,
and device proximity of each cell phone user. The cell
tower accessibility indicates which tower was accessible
at any point in time, and the device proximity informa-
tion indicates when two such cellphone devices came in
reachable range to each other.

The relevant aspect of this trace is the connectivity
information of different users, which reflects a possible
communication pattern in a real setting. We generate
the workload by canonically mapping calls in the trace
to new writes in ASTRO and the currently reachable cell
tower id to the oId of writes by users. The cell-tower
id gives a useful localized workload. We generated the
sync operations based the connectivity information in the
trace. In a sync, one node connects to another node and
fetches all the new updates sender has obtained since the

Checkpoint Log Log w/o IDVV SVV
BW (MB) 1.00 18.96 132.04 14.74
Latency (ms) 83 3,644 4,4778 4,050

Fig. 7: Comparison of ASTRO using log-exchange (with and
without IDVV), ASTRO using checkpoint and SignedVV ap-
proach

last sync.
For this experiment, we use a subset of the trace span-

ning 31878 updates and 286 synchronizations sessions
among 100 nodes. In each synchronization session, one
user fetches all new updates from the other user.
Comparison with Signed Version Vector: In the first
experiment, we use a Signed Version Vector (SVV) ap-
proach [35] as our baseline. In the SVV approach, the
writer signs its component of version vector and uses the
signed components obtained from the other writes it has
observed. Receiver verifies that each component of a
version vector is signed by its respective node, thereby
preventing faulty nodes from reordering updates created
by correct replicas. We apply the IDVV optimization to
the SVV approach since directly using the SVV approach
would be extremely inefficient due to prohibitive signing,
verification, and bandwidth overhead; SVV requires sep-
arately signing, verifying and transporting all entries of
the version vector. The IDVV optimization excludes the
components of DVV that are covered by previous entries.

Table 7 shows the total bandwidth consumed in three
settings: Signed Version Vector, ASTRO without the
IDVV optimization, and ASTRO. This experiment il-
lustrates two points; first, that the IDVV optimization
in ASTRO enables order of magnitude improvement in
network efficiency for realistic connectivity scenarios;
second, ASTRO performs as well as the simple SVV
approach while providing stronger properties. Table 7
shows similar results regarding the total synchronization
time of these three systems.
Benefit of Checkpoints: This experiment illustrates the
benefit of using checkpoints based on partial information
in ASTRO, which is not possible in other systems that
support autonomy. We use the bandwidth and synchro-
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Fig. 9: Breakdown of synchronization cost excluding the sig-
nature verification cost

nization time as our performance metrics and compare
the performance of ASTRO with log, where all updates
are exchanged using the log exchange, with ASTRO with
checkpoint, where a checkpoint summarizes all but last
update to each object as summaries.

As indicated in Table 7, the checkpoint exchange pro-
tocol reduces the bandwidth consumption by 95% and
the synchronization overhead by 97% compared to the
systems that require receiving all updates.

6.3 Partial Information
In this section, we evaluate the benefits and limitations
of partial information. We evaluate an artificial setting
comprising of 10 nodes and compared the two settings:
nodes are interested in all the data, nodes are interested in
10% of the data. We did random updates and periodically
synced two random nodes. With an update/sync ratio of
10 updates per sync, we observed a reduction in overall
bandwidth consumption from 12 MB in full information
to 8.7 MB in partial information setting. In the same set-
ting, we observed that even with partial information, only
11 synchronizations over a period of 10000 synchroniza-
tions had to rely on the external server to provide smaller
summaries to avoid partial overlap.

6.4 Synchronization time
Figure 8 shows the variation of synchronization time as
a function of number of updates for different selective
sharing settings. As expected, the cost of synchronizing
increases linearly with the number of writes. In addition,

selective sharing reduces the synchronization overheads.
Note that a significant fraction of the synchronization la-
tency comes from the encryption overhead.

Figure 9 shows the breakdown of the synchronization
latency across different steps: 1) state update for up-
dating the local state, LPVV and summary logs, 2) the
cost of performing the inclusion check, 3) cost of valid-
ity check, 4) cost of constructing a packet containing all
the summaries that the sender needs after receiving his
LPVV, and 6) the IO cost. As expected, the costs reduce
with the reduction in the fraction of interested writes.
Note that we intentionally omitted the latency due to the
encryption operations to better highlight overheads of our
system. The breakdown indicates that the security com-
ponent adds modest overheads in comparison to others.

7 Related Work
We have already discussed in the Introduction how Astro
relates to systems that support opportunistic data sharing
like Bayou [33], PRACTI [8], and Cimbiosys [34] as well
as systems, such as SUNDR [27] and Efficient Fork Lin-
earizable Shared Memory (EFL) [10] that provide data
services through untrusted servers.

Zeno [37] recently introduced the concept of eventu-
ally consistent state machine replication that allows avail-
ability despite partitions. However, Zeno requires f + 1
available servers, making it unsuitable for autonomous
systems.

In his dissertation [19], Kang defines a causal graph
in which each update contains a hash of the update’s
causal predecessors and of the contents of the update
to determine dominance relations between updates to a
single object. Spreitzer et al. [38] provide a design for
dealing with server corruption in Bayou’s server repli-
cation protocol that relies on audits and assumes full
replication. These approaches provide guarantees weaker
than fork-causal consistency and require complete infor-
mation thereby limiting their usefulness in autonomous
data sharing settings. Reiter and Gong [35] describe ap-
proaches to identify causal ordering of updates in dis-
tributed settings but their approaches don’t address omis-
sion or forking attacks.

TimeWeave [24] allows the secure history of events
happening at one node to be entangled with the history
at another node thereby ensuring that a tamper-evident
ordering of two events from two different histories can
be established. However, TimeWeave does not prevent a
faulty node from exposing two different histories to two
different nodes and does not provide fork-causal consis-
tency.

PeerReview [16] provides a way to check that nodes in
a distributed protocol follow the protocol’s specification
by requiring them to include a signed statement about all
messages they receive in all messages they send. Peer-
Review is not well-suited for autonomous settings as it
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relies on (1) presence of a quorum of witnesses out of
which at least one must be correct to ensure the correct-
ness properties and (2) the availability of complete infor-
mation at these witnesses.

8 Conclusion
ASTRO is the first system to support disconnected op-
eration and opportunistic data sharing among poten-
tially Byzantine nodes while continuing to provide pre-
cise and useful consistency guarantees to correct nodes.
Specifically, ASTRO supports fork-causal consistency,
the strongest consistency semantics that supports au-
tonomous computations and guarantees that Byzantine
nodes cannot alter the causal ordering of updates gen-
erated by correct nodes.
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