MODELLED EXPLORATION BY ROBOT
by

L. Sikldssy

April 1972 TR-1

Technical Report No. 1

Department of Computer Sciences
The University of Texas
Austin, Texas 78712

Siklossy, L.
ABSTRACT

Techniques which permit a modelled mobile robot to explore its
environment are described. The robot generates tasks for itself, gener-
alizes solutions to these tasks, changes and improves the efficiency of
its operators, and generates its own advice to speed its search techniques.
Learning takes the form of modification and creation of programs that are
used by the robot,

We discuss how a robot can attempt to test the adequacy of its world.
by checking whether global properties of the modelled universe, perhaps

in the form of conservation laws, hold in the states that can be reached.

Sikléésy, L.

1. INTRODUCTION

The development of sophisticated robots is no longer a domain reserved

to science fiction. Computer-controlled hand-eye systems have been built

?

3 4
in the United States1 2, Great Britain~ and Japan . An eye on wheels is

operational in the United Statess. The range of applications of robots

is so wide that we can expect a growing interest in the field of robotics.

A robot's capabilities of solving tasks can be expected to be largely

proportional to the amount of knowledge that it has of its environment

and the ways it can interact with this environment; and of itself and the

means of improving its performance, However much knowhow is initially

given to a robot, it is desirable to investigate robots that can improve

over this initial knowledge. We propose that the exploration of its

environment is a method by which the robot can become more sophisticated.

We shall describe, and exemplify, techniques which model various aspects

of exploration by robot. We may conceive (in an anthropomorphic way)

~

that the robot, as it explores its environment, tries to answer the following

questions:

1

2)

3)

What is the nature of my environment? Which objects surround me ?
What are their properties? In what ways can they be manipulated?
(Section 2 gives some answers to these questions.)

What tasks can I perform? Which tasks are impossible, undesirable,
dead-ends? Given some task that I can achieve, can I also achieve
some more general task? Can I learn to perform the task more
efficiently? (In section 3, we shall consider how the robot can
introspect to determine its own capabilities.)

To which extent is my model of the world correct? Can 1 perform

tasks that result in views of the world that are in contradiction

Siklossy, L.

with other information that I have about the world? (In section
4, we shall see how the robot can check to some degree the validity
of its own model.)
Our discussion pools the partial results of several experimental
programs that simulate robot exploration. To focus the discussion, we
shall be interested in a mobile robot in the SRI robot's5 environment of
rooms, connecting doors, boxes, etc. Choosing
this environment saves us both from having to design our own
robot, and from falling into the temptation of cheating by modelling a
robot built specifically to illustrate our views of exploration. We hope

that our ideas can be transferred to the exploration of other environments.

2, EXPLORATION OF THE ROBOT'S SURROUNDINGS.

A model of a robot, following STRIPSS, is given in the Appendix.

We shall call this model APWORLD. A state of the robot is represented as
a conjunction of predicates giving properties of objects in the model.
Operators can transform one state into another state. For an operator to
be applicable to a state, the state must satisfy the preconditions of the
operator. Predicates of the state that match the Delete list of the
operator are deleted from the state, while the predicates of the Add list
of the operator are added to the representation of the state.

Operators are applied in the robot's model of the world, not in the
real world. For example, the operator climbonbox(box) does not make the
robot climb the box. It performs a gedanken move in the model world of
the robot. If the robot so chooses, a sequence of operators can be trans-
lated by an executive program into real world actions. We assume that the
executive receives feedback from sensory organs as the robot moves in the

world, and that it is appropriately interrupted if the real world makes it

Siklossy, L.

impossible to accomplish certain actions that seemed possible in the model.
Since we are dealing with two worlds: the real physical world, and
the robot's model bf it, a little terminology will help. A real task
attempts to answer a question (Is the robot near a box?), or solve a
problem (Bring about a state where the robot is near a box.) in the real

physical world, A modelled task, or simply task, attempts to answer similar

questions, or solve similar problems, based only on the model of the world.
In general, the model of the world is much less complex than the real world.
In this section, and in the next one, we shall assume that the solution

of real tasks can usually be inferred from the solution of modelled tasks.,
In section 4, we shall 1lift this restriction.

2,1 Discovery of Objects.

In the real world, the discovery and recognition of objects can be
a time-consuming activity. In a modelled exploration, it is possible to
simulate the discovery of objects by incorporating these objects in the
model, but hiding them from the robot (for example by setting a bit attached
to the object.) If some circumstances are met (for example if the robot
happens to '"bump" into a box), the hidden object is discovered by the robot.
2.2 Discovery of Properties of Objects.

In a similar (and just as uninteresting) manner, we can simulate the
discovery of properties of objects. For example, after some box has been
visited by the robot, the fact that this box is pushablg,which was pre-~ -
programmed but initially invisible, becomes evident to the robot. Similarly,
the robot could "discover" that a lightswitch could be turned on.

2.3 Discovery of Relations among Objects.

As the robot goes poking around, he can accumulate more challenging*

* Information which was preprogrammed, but initially hidden, is not
particularly challenging.
3

Siklossy, L.

information about objects and their interrelationships. For example,

an estimate of the distance separating two objects in two different rooms
would depend on various paths, through other rooms, that link the two
rooms. As new rooms are entered by the robot, the shortest known path
between the two objects might be changed. Shortest path information

is useful to solve tasks.

3. SOLVING TASKS.

After some preliminary exploration, the robot has some knowledge
of its environment: of objects, their properties, and how they can be
manipulated. The Appendix describes such a state of knowledge in the
APWORLD model of the robot. The robot will have to solve tasks in its
model, and will explore its capabilities of becoming a better problem
solver.

A state in the model is a conjunction of predicates in the model.*
APWORLD describes an initial state. A task is an ordered pair of states,
(statel, statez). A tasgk solution to this task is a sequence of operators

P> OPys «v+> opn, such that all the predicates of state2 are contained

in the state:

%%
op, (...op2 (op1 (statel)) R |

Difficult tasks will have long task solutions, {.e., will be made
up of long sequences of operators. Solving a task becomes a problem of
search, and two main approaches seem to have been used for this type of

problem.

* We say nothing at this point about whether such a state models some
realizable physical situation.

%% We assume that the preconditions to all the operators are satisfied
as necessary.

Siklossy, L.

(a) Fairly general (hence weak) tools are given to the robot to
solve tasks. For example, STRIPS5 solves tasks by using means-
ends analysis techniques.

(b) Much information about how to solve a large variety of tasks
is given to the robot's task solver. Such an approach was
used by Winograd.6 The task solver, written in a dealect of
Plannerz is given advice on how to manipulate a world of blocks.

If the world of the robot is sufficiently complex, we can assume
that the advice provided in an approach similar to (b) above will not
permit the task solver to solve all problems without search. 1In an
approach similar to (a), few difficult tasks could be solved. In both
approaches, the task solver must improve its performance. Perhaps the
only difference is that, in the second case, improvements start at a higher
level of proficiency.

We conceived of the task solver as being able to generate its own
advice. This advice is used to prune the search tree and to direct the
search. We now discuss some ways in which the robot can generate its
own advice.

3.1 Non-Recoverable Properties.

In a state, some of the predicates may be non-recoverable: that is,

if they have been deleted by some operator, there is no way that they
can be added. For example, if our model included an operator BURN (box),
the ashes that result from BURNing the box could not be transformed back
into the box.

In APWORLD, the robot considers the Delete and Add lists of its

*
operators, and finds several non-recoverable properties: --it is impossible
* Here, as in the other examples derived from APWORLD, no attempt is

made to be complete. Unless otherwise indicated, the statements
about APWORLD also hold in the complete STRIPS 5 system.

5

Siklossy, L.

to have any of the three boxes AT any place beyond their original location.

If a non-recoverable property must be present in the final state
.£ a task, the robot generates the absolute advice that at no time should
this property be deleted (from intermediate states).

3.2 Non-Changeable Properties.

Some of the predicates in the initial state are easily found to be
non-changeable, since they are mentioned in neither Delete nor Add lists
of any operator. For example, in APWORLD, CONNECTS (DOOR1, ROOM1, ROOM5)
and TYPE(BOX1, BOX) are such predicates. These predicates are global to
all states, and may be handled more efficiently by the task solver,

Other predicates are added by some operator, but cannot be deleted
by any operator. In APWORLD, once STATUS (1switch, ON) is true, it can
never be deleted: the LIGHTSWITCH1 will always be ON.

I1f a non-changeable property is not present in the final state of the
task, the robot generates the absolute advice that at no time should this
property be added (to intermediary states).

3.3 Undesirable Properties.

The appearance, or disappearance, of certain predicates may be highly
undesirable, and would generate strong, if not absolute, advice to the
robot. The property that has appeared may be hard to delete if not wanted;
or it may be very costly to rediscover a property that has disappeared.

As an example of the former, if some B4 could be glued to the ground,
rendering it unpushable (unless unglued, an expensive task), and if BOX4
must be moved, then it is undesirable to glue BOX4 to the ground.

An example of the latter is found in APWORLD. From the initial state,

the sequence of operators:

goto2a (ROBOT,BOX1), pushtoa(BOXl,BOXZ),gotoZa(ROBOT,BOXZ),pushtoa(BOXZ,BOXS)

Siklossy, L.

deletes positional information about BOX1: i.e. in the model, BOX1 is
neither AT some place, nor NEXTTO something. It is possible (if tricky)

to lose all AT and NEXTTO information about all the boxes in APWORLD.

If we think now of a task solution, containing such undesirable properties,
as mapped back to a sequence of actions of a real task, it is clear that
the robot must rediscover the position of all the boxes, a costly chore.
(In the robot model, we must have information about such costs to be able
to discover certain undesirable properties.)

3.4 Impossible Tasks,

In solving the task (state statez), it may happen that we hypothesize

1’
some intermediary state3, and try to solve the two subtasks (statel, state3)
and (state3, statez). If state, cannot be realized in the model, then

the first subtask is not solvable. Knowledge about impossible tasks
allows the task solver to avoid doomed solution paths. We shall see how
some non-trivial impossible tasks can be discovered during task solutionm
generalization.

3.5 Generalization of Task Solutions.

Once a solution to a task has been found, it is desirable that this
solution be generalized to a larger class of tasks. We shall indicate
various directions in which the generalization can be made.

3,5.1 Generalization over Objects.
I1f a task was.solved for some specific objects, for example in APWORLD:
place BOX2 next to DOOR1l with LIGHTSWITCH1 ON
the task solver tries to generalize over the objects BOX2, DOOR1 and
LIGHTSWITCH1. Each of the objects is replaced by a variable having as
domain objécts in candidate extension sets. In APWORLD, extension sets

could be the whole universe; combinations of objects with certain properties:

Sikléssy, L.

objects of TYPE BOX; or objects that can replace some parameter in an
operator: for example the variable 'door' .in gothrudoor.

Certain extensions will lead to impossible tasks. For example if
APWORLD is extended to include some other DOOR2 of ROOM5, then the task
is no longer solvable since the boxes cannot leave ROOM1. TIf APWORLD
were augmented to permit boxeg to be pushed from one room to another, then
the extension would include appropriate calls to path finding routines.
Knowledge of shortest paths between cobjects (see section 2.3) would prove
valuable.

3.5.2 Generalization over Number

If certain objects have been members of several extension sets, it
is reasonable to try to generalize certain tasks over several of these
objects simultaneously.

For example, in APWORLD, if it has been noticed that BOX1l, BOX2 and
BOX3 belonged to several extension sets, then from the solution of the
task: (initial state; NEXTTO(BOX1, BOX2)) it is natural to
generalize to a solution of:

(initial state; NEXTTO(BOX1l, BOX2), NEXTTO(BOX1l, BOX3))
which is solvable, and to generalize further to the task:
(initial state; NEXTTO(BOX1,B0X2), NEXTTO(BOX1,BOX3),
NEXTTO (BOX2, BOX3))
which is not solvable in APWORLD!
3.5.3 Generalization over Preconditions

We shall see below (section 3.5.5) that every task solution can be
viewed as a giant operator, with its preconditions, Delete list and Add
list. We shall be interested in generalizing operators by weakening their

L 8
preconditions.

Sikldssy, L.

To focus attention, consider the operator turnonlight in APWORLD.
Its precondition is:

TYPE (lswitch,LIGHTSWITCH) ON (ROBOT, BOX1) NEXTTO(BOX1, 1switch)

This operator is generalized if we weaken its precondition. We could
weaken the precondition in several ways:

1) elimination of one or more predicates:

state, = TYPE (lswitch, LIGHTSWITCH) NEXTTO(BOX1,lswitch)

2) weakening of a constant to a variable:

state1 = TYPE (lswitch,LIGHTSWITCH) ON(ROBOT,x) NEXTTO(x,lswitch)

3) weakening of a coupling among parameters:

state1 = TYPE (1switch,LIGHTSWITCH) ON (ROBOT, x) NEXTTO(y, lswitch)

or a combination of these three methods.

For the generalization to be successful, we must solve the task:
(statel; original precondition of operator), where to state1 we add the
non-changeable initial properties of the model. All of the
three generalizations mentioned are faasible. The greatest gener-
alization of turnonlight reduces the precondition to TYPE (1switch,LIGHTSWITCH).
The code generated for this new operator includes the subtask:
get ONFLOOR first, then if necessary:
goto2a (ROBOT,B0X1), pushtoa(BOX1, lswitch), climbonbox(BOX1).

3.5.4 Updating of Operators, and Improved Efficiency.

If an operator can be successfully generalized, the new version of
the operator replaces the old one, since the old operator serves no real
purpose.

It is also possible to change operators in a somewhat less radical
way. The robot can use the technique of hereditary properties to determine

that,in APWORLD, only one predicate of the form NEXTTO(ROBOT,x) can hold

in any one state. Hence, whenever the particular form of this predicate

Sikldssy, L.

is found by a precondition, as in the predicates pushtoa and gothrudoor,
the delete list component NEXTTO(ROBOT,$) can be replaced by a precise
NEXTTO(ROBOT,object), where the value of "object" has already been bound.
In this way, some efficiency is gained in searching the state of the robot.
3.5.5 Macro-operators.

The preceding discussion was general if we can show that every task
solution can be considered as an operator. It is enough to show that a
task solution consisting of the product op, - op1 of two operators can be

viewed as an operator. Let pre deliand addi be the preconditions, Delete

i’
list andA dd list of op,. Notice that op, is applied before op,.
i 1 Py

Let pre = pre, + (pre2 - addl)
del = delz + (de]l - addz)

= - del +
add = (add, el,) add,

(where + and - are set union and difference, following appropriate binding
of variables) be the precondition, Delete list and.Add list of a new operator
op. It is seen, by construction, that op has the same effect as 0p,- 0P, -
Macro-operators for arbitrary task solutions can be generated auto-
matically. However, they tend to have unwieldy preconditions, and should
be followed by a generalization over preconditions.
3.6 Hierarchies in Subtasks.
A goal state is represented as the conjunction of several predicates.
If we partition these predicates into disjoint subsets, each subset can
be viewed as a subtask that must be solved. Usually, the subtasks are
not independent, since they are coupled through common variables and
constants. Nevertheless, it is desirable to find some reasonable ranking
of subtasks. For example, it appears ''obvious" that if we wish, in APWORLD,
the robot to be next to the doorl, and the light to be on; then the robot

should first turn the light on, then go to the door.

10

/
Siklossy, L.

A good ordering of subtasks appears quite powerful. By taking the
partition to include single predicates only, and reordering them in a
fixed hierarchic order, it is possible to write a task solver for the
STRIPS world5 that seems capable of solving all the tasks in that world.
Even the longest solutions (15 operators) take less than 0.6s (interpreted
LISP on CDC-6600) while STRIPS requires 65.0s, 122.1s and 125.9s (partially
compiled LISP on PDP-10, excluding garbage collection time) to solve
problems which have solutions of length 4, 4 and 5 respectively.

While it is unlikely that, in a rich environment, algorithm-like
solutions to tasks exist, a robot can explore its environment to estimate
the relative priority that should be given to the solution of the atomic
subtasks of a task.

It is sometimes possible to determine the last operator that must
be applied. In APWORLD, a ON(ROBOT, object) in the final state means
that climbonbox must be applied last. More generally, the robot explores
the freedom it has to perform a subtask in the two cases when it has, or
has not, accomplished another subtask.

The relative hierarchy of subtasks has been coupled with a measure
of the distance between objects (in fairly complex scenes) to yield a
distance function that approximates the distance between two states.

The early results are very encouraging.
3,7 The Generation of Tasks

The tasks solver is given ab initio some tasks that are "interesting':
those that can be solved by one application of an operator! Using various
generalization techniques, and other considerations such as symmetry which
we have not discussed here, it is possible to generate a large number of

new "interesting" tasks. Beyond this point, a task generator may be necessary.

11

e
Siklossy, L.

The generator could be an outside source of "interesting" tasks. It
appears particularly challenging to design, as part of the robot, a task
gonerator that would, in the purest scienctific spirit, challenge the

model of the robot. We turn to a related topic in the next section.

4, MODEL TESTING

The model of the robot is only a projection of the real world.
Just as a scientific theory is an incomplete explanation of physical
phenomena, we may expect the model to desagree 'badly" with the real
world. We do expect that errors in measurement will place objects at
incorrect places in the model: these are minor errors. The failure of
the robot to recognize a door would be less minor. But a truly drastic
error in the model would be the failure to satisfy, in some state, some
higher-level properties of its world, such as conservation laws. 1In
many worlds, we expect lightswitches to remain lightswitches, and boxes
not to multiply.

We have found a violation of a conservation law in APWORLD. TIf
the robot pushes a box next to itself (the robot) and then moves away next
to another box, he will be in a state when he is sumultaneously next to
two objects that could be far from each other. As the reader can guess,
the robot did not notice this violation: it was not endowed with such
sight!

As models become increasingly complicated, the designer can be less
and less sure of their adequacy. Extensive exploratory testing of the
model, followed by the generation of tasks that attempt to contradict

conservation laws of the model, provide an added measure of adequacy.

12

Sikldssy, L.

5. CONCLUSIONS
Robot exploration is a tool that permits a task solver to generalize
its capabilities, generate its own advice, modify its own capabilities and
improve its performance. The task solver learns by generating and modifying
the programs that it uses to solve tasks. Hence, learning takes the form
of growth of structures, and their modifications through experiences’g.
The robot can study part of its own model, although the fragments of the
robots's programs that do this study are not themselves studied. In this
way we might avoid some problems associated with multiple levels of models1
Finally, the robot can check the adequacy of its own model by resorting

to a form of super-model that could be represented as conservation rules.

6. ACKNOWLEDGMENTS

The author owes an intellectual debt to the designers of STRIPS.
Discussions with, and programs by, participants in a problem-solving

seminar in the Fall of 1971, in particular R. Amsler, C. Dawson, J. Dreussi

and G, Hendrix, helped exploring... robot exploration.

13

10.

7/
Siklossy, L.

7. REFERENCES

Feldman, J. A. and Sproull, R. F., System Support for the Stanford
Hand-Eye System. Second Int. Joint Conf. on Artificial Intelligence.
1971, 183-189.

Project MAC Progress Report VIII, July 1970 to July 1971. Massachusetts
Institute of Technology, Cambridge, MA, 1971,

Barrow, H. G. and Popplestone, R. J., Relational Descriptions in
Picture Processing, In: Meltzer, B. and Michie, D. (Eds.),
Machine Intelligence 6, American Elsevier, New York, 1971, 377-396.

Ejiri, M., Uno,T., Yoda, H., Goto, T. and Takeyasu, K., An Intelligent
Robot with Cognition and Decision-Making Ability. Second Int. Joint
Conf. on Artificial Intelligence. 1971, 350-358.

Fikes, R. E. and Nilsson, N. J., STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving. Second Int.
Joint Conf. on Artificial Intellegence. 1971, 608-620.

Winograd, T., Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language. Report MAC TR-84,
Massachusetts Institute of Technology, Cambridge, MA. 1971.

Hewitt, C., Procedural Embedding of Knowledge in Planmer. Second
Int, Joint Conf. on Artificial Intelligence. 1971, 167-182.

Sikléssy, L., A Language-Learning Heuristic Program. Cognitive
Psychology, 2, 4, 1971, 479-495.

Winston, P. H., Learning Structural Descriptions from Examples.
Report MAC TR-76, Massachusetts Institute of Technology, Cambridge,
MA, 1970.

Minsky, M. L., Matter, Mind, and Models. In: Minsky, M. L. (Ed.)
Semantic Information Processing, MIT Press, Cambridge, MA, 1968,
425-432,

14

I4
Siklossy, L.

APPENDIX

APWORLD
This description of the robot is obtained after making the following

changes to the STRIPS robots:
--only the contiguous ROOM1 and ROOM5 are kept.

--the STRIPS operators goto2 and pushto have been split,

for convenience, into pairs of operators having conjunctive preconditions.
--with the elimination of location F in ROOM4, operator gotol would
serve no purpose and was removed.
Uppercase identifiers have been used for predicate names and constants,
Mnemonic lower case identifiers are used for variables, to make the operator
definitions easier to grasp. The short descriptions of operators are some-

times incomplete: again, they are given only to help the reader.

15

/7
Siklossy, L.

INITIAL STATE OF APWORLD

CONNECTS (DOOR1,ROOM1 ,ROOM5) ; CONNECTS (DOOR1,ROOMS ,ROOM1) ; AT (LIGHTSWITCH1,D);
TYPE (BOX1,BOX) ; TYPE (BOX2,BOX); TYPE(BOX3,BOX); TYPE (LIGHTSWITCH1,LIGHTSWITCH);

INROOM (BOX1,ROOM1) ; INROOM(BOX2,RO0M1); INROOM(BOX3,RO0ML); INROOM
(LIGHTSWITCH1,ROOM1) ;

PUSHABLE (BOX1) ; PUSHABLE (BOX2); PUSHABLE (BOX3);
AT (BOX1,A); AT(BOX2,B); AT(BOX3,C);
ATROBOT(E); INROOM(ROBOT,ROOM1); ONFLOOR; STATUS (LIGHTSWITCHL,OFF)

Operators in APWORLD

goto2a (object). Robot goes next to an object (typically a box) in
the same room. Preconditions:
ONFLOOR A J place [INROOM(ROBOT,place) AINROOM(object,place)]
Delete list: ATROBOT($),NEXTTO(ROBOT,$)

Add list: NEXTTO (ROBOT, ob ject)

goto2b (object). Robot goes next to connecting object (typically a door).

Preconditions:
ONFLOOR A 3 placel 3 place2 LINROOM(ROBOT, place 1) ACONNECTS (ob ject,placel, place2)]

Delete list and Add list: same as goto2a.

pushtoa (objectl, object2). Robot pushes objectl (typically a box)
next to object2 (typically a box).
Preconditions:
PUSHABLE(objectl)AONFLOORANEXTTO(ROBOT,objectl)Aa place [INROOM(objectl,place)A

INROOM (ob ject2,place)] .
Delete 1list: ATROBOT($),AT(objectl,$),NEXTTO(ROBOT,$),NEXTTO (objectl,$),

NEXTTO($, objectl)

Add list: NEXTTO(objectl,objeth),NEXTTO(objeth,objectl),NEXTTO(ROBOT,objectl)

16

Sikld%sy, L.

pushtob (objectl, object2). Robot pushes objectl (typically a box)
next to object2 (typically a door).
Preconditions:
PUSHABLE (ob ject 1) \ONFLOORANEXTTO (ROBOT, ob ject1) A dplacel 3Fplace2
ENROOM(objectl,placel)ACONNECTS(object2,p1ace1,place25]

Delete 1ist and Add list: same as pushtoa.

turnonlight (1switch). Robot turns on lightswitch lswitch.
Preconditions: |
TYPE(1switch,LIGHTSWITCH)AON(ROBOT,BOXl)ANEXTTO(BOXl,1switch)
Delete list: STATUS(lswitch,OFF)

Add 1list: STATUS (1switch,ON)

climbonbox (box). Robot climbs on box box'.
Preconditions: ONFLOORATYPE (box, BOX) A\ NEXTTO (ROBOT, box)
Delete list: ATROBOT(S$),ONFLOOR
Add list: ON (ROBOT, box)
climboffbox (box). Robot climbs off box "box'.
Preconditions: TYPE(box,BOX)AON(ROBOT,box)
Delete list: ON(ROBOT,box)
Add list: ONFLOOR
gothrudoor (door,fromroom,toroom). Robot goes through door 'door'
from room 'fromroom' to room 'toroom'.
Preconditions:
NEXTTO(ROBOT,door)ACONNECTS(door,fromroom,toroom)AINROOM(ROBOT,fromroom)ApNFLOOR
Delete list: ATROBOT($),NEXTTO(ROBOT,$),INROOM(ROBOT, $)

Add list: TNROOM (ROBOT, toroom)

17

