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ABSTRACT

This paper derives some important properties of the equiliﬁrium
behavior of arbitrarily complex networks of queues.

Emphasis is given to networks that have been extensively used in
modeling computer systems but the results are also applicable to general
queueing problems. No restriction is made on the queueing discipline or
the distribution of service requirements of a job in a particular station
(server) of the network. Closed networks with an arbitrary number of
circulating jobs and open networks fed by external sources where the

distribution of interarrival times is arbitrary are both considered.



INTRODUCT ION

Queueing networks have found wide application in the analysis of
time-sharing and multiprogramming systems along with applications in
other several disciplines. Most queueing models developed so far
(1, 2, 3, 8, 9, 11, 12) restrict attention to the analysis of systems under
equilibrium conditions. Also in most cases analysis has been restricted
to networks containing
a) exponential servers
b) servers whose service distribution has a rational Laplace-Stieltjes
transform (1, 3, 11, 12) and where the device is simultaneously
shared by all jobs in the queue. This discipline has been called
""processor sharing" (15).
c) non-exponential servers that work under Last Come First Served
preemptive-resume (3) scheduling disciplines.
Chandy (3) proved that the concept of local balance equations is applicable
to these models. In almost every situation that arises in computer systems
and in several other disciplines, the goal of the analysis is to determine
the average throughput of the entire network and of each of its individual
components., It is also the case in most situations that the most important
parameters of design are the utilizations (busy time) of each component in
the network. This paper shows how these goals can be achieved with a
minimum effort and:
a) independently of the way the individual queues are managed
(scheduling discipline)
b) the networks considered are arbitrary
c) the probability distributions of the interarrival times of the

external sources feeding the networks and also the probability

distribution of service time in each queue, are irrelevant except
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for their expected values (means).

The reader may be surprised of the simplicity and neatness of the
solutions offered here to this problem.

The argument used to derive these properties seems to have been used
for the first time by Khintchine (10). It states that if a queue is to
achieve steady state then the expected number of arrivals per unit time
should be equal to the expected number of departures per unit time for that

queue.

Mathematical Analysis

The paper is divided in four independent sections: Open Networks,
Saturation Conditions, Throughput Analysis and Cyclic Networks.

Open Networks - Let us consider a general network of queues (see figure 2)

where arrivals enter the network from an external source(s) according to
some probability distribution. In each server of the network a job is
serviced for a period of time depending on its demand for service at this
queue. Its service in the queue may depend upon:

a) seryvice demand

b) input process

¢) scheduling discipline
The latter case can be appropriately handled in most cases because for the
purpose of this analysis the only thing that matters is the average service

th

time of a random job in the server. After a job receives service in the i

queue it chooses with some fixed probability P,. to join the jth queue or it

1]
departs from the system with probability Pim. The network contains any
number of queues interconnected in an arbitrary fashion. We will describe

the approach by using a Poisson source for simplicity and compactness. It

should be borme in mind, however, that this restriction is superfluous and
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does not restrict the scope of the results. Assume that the network

is being fed by infinite sources of jobs and that the interarrival times

are identically distributed independent random variables with a finite

mean. Assume that the average number of arrivals per unit time to the ith

queue is Wi. We follow Chandy's approach (3) of replacing several external

poisson sources by a unique Poisson source with mean W in the following form:
m

then P . = W./W where W=2X W,
oi i i

For i=1, . ., n define P .W® W
or i=1

i
i.e. when a new job arrives it joins the ith queue with probability Poi'
Obviously the two arrival mechanisms are equivalent. Tt is clear that if
a queue is in steady state, the expected number of arrivals is equal to the
expected number of departures per unit time. In the case under consideration
it is also true that the input rate at steady state to any queue is a
fraction of W.

Denote the input rate to the ith queue by W - BT(i), (this notation is
used by Chandy (3) where BT stands for BTERM) define also BT(0) as 1,
then at steady state the input (output) rates of all queues should satisfy:

n

(1) i=1, ..., n WBT(i) = £ W-BT(j) Pji then the process of
j=0

finding the input rate to any queue at equilibrium reduces to

solving the set of linear equations
n
) i=1, ..., n BI(i) = £ BT(j) P,.
3=0 -

In matrix notation and recalling that BT(0) =1

(3) [BT(l) BT(2) . . . . . BT(n)] [I~-P] =[] . P

Por o2 * * * Ponl
where P is the matrix of Pij's. But notice that this matrix is
non-singular because Pioo > 0 for at least one queue; otherwise jobs would

accumulate in the network and steady state cannot be achieved. Then a

unique solution for the vector BT = [BT(1l) BT(2) . . . BI(n)] exists.
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Now denote by A, the probability that at steady state the ith server
1
is busy, while the server is busy the expected number of customers served

per unit time by this server is Ai/E(Si) where E(Si) is the expected service

time of a random customer in the ith queue.
By Khintchine's (10) argument the following has to be true:
%) i=1, ..., n Ai/E(Si) = W'BT(1i) for if not the queue is not in
steady state,
From (4) we have:

(5) Ai =W ¢« BT(i) - E(Si) i=1, .. .,n

. .o .t .
Saturation Condition - In order for the i h queue not to reach saturation

and thus to accomplish any service in a finite it must be true that:
6) Ai = W . BT(i) - E(Si) <1
It should be emphasized that the saturation condition for the whole network

cannot be established a priori and will depend on its "geometry" (configuration).
y

Throughput Analysis - Denote by TH(i) the throughput (rate of completions)

of the ith server, then:
(7) TH(i) = Ai Piw/E(Si) = W - BT(i) - Pioo i=1, ..., n
Naturally the total throughput of the network is W.
In general if the input is not Poisson the method reduces to find a
solution to the system of equations:
n

(8) RT(i) = @ +j§l RT(j) Pji

. . .t
where RT(i) denotes the steady state input rate to the i h queue
and @, the average rate of the external sources feeding the ith
queue.

Here again,

9 Ai/E(Si) =RT(i) i=1, ..., n
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Cyclic Networks - Consider the network of figure 3 where all jobs in

the network go through a cycle between the points labeled "source' and
"sink". We assume that there are N circulating jobs. The connections
between devices are arbitrary as are the service distributions and
disciplines in any queue. Assume that at steady state RS jobs per unit
time are passing through the source, then it is obvious that if we define
BT(i) as the probability that a job gets to the A queue in one "cycle"
the following is true at equilibrium:

BT(i)-Rs jobs are joining the ith queue per unit time and by

Khintchine's argument:

(10) BT(i) - Rs = Ai/E(Si) i= 1, ..., n wvhere Ai and E(Si) are

defined as before.

But this implies that if K # L

A
an, % -

L

BT (K) E(SK)
BT(L) E(SL)

this is a strong generalization of a conservation law first derived by BUZEN
(2) for a simple central server exponential network (2, 11, 12). This law
says that knowing the utilization of any server in the network then we can

find the others with equation (11).

Mean Flow time in a Cyclic Network with a Central Server

For this section we consider cyclic networks where the "source'" is
clearly identified with one queue (see Figure 3).

Denote by E(T) the mean flow time of a job through the network i.e.
the expected time taken by a job in a cycle between the source and the sink.

Then by the steady state argument used by Khintchine (9), Adiri (7)
Kleinrock and others, the expected arrival rate per unit time to the source
in this network is NE(T), but this arrival rate has to be identical to the

departure rate of the central server (source) then N/E(T) = Ao/E(So) where
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the subscript o refers to the queue chosen as source in the cyclic
network. Then,
E(T) = NE(S,)/A_ (12)
Here égain we only need to know one utilization to derive several
important parameters of .thenetwork under statiomary conditioms.
The same approach is applicable to strongly connected graphs of

queues,

Conclusions and Extensions

A set of important results concerning queueing networks was presented.
These results permit in most applications of importance to determine the
throughput of any arbitrarily complex open network. For closed networks
with a finite number of customers a conservation law and an expression for
the mean flow time of a job were derived in terms of one parameter of the

network.

It should be emphasized that no assumption whatsoever was made regarding
arrival patterns, scheduling disciplines or service distributions. All
these results were derived using a well-known property of any queueing

situation under stationary behavior.
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