DESIGN AUTOMATION AND QUEUEING NETWORKS:
AN INTERACTIVE SYSTEM FOR THE
EVALUATION OF COMPUTER QUEUEING MODELS*

by
K. M, Chandy, T. W, Kellex, J. C. Browne

This work was supported by NSF grant GJ-1084.

May 1972 TR-3

Technical Report No, 3

Department of Computer Sciences
The Yniversity of Texas
Austin, Texas 78712

DESIGN AUTOMATION AND QUEUEING NETWORKS:
AN INTERACTIVE SYSTEM FOR THE EVALUATION OF COMPUTER QUEUEING MODELS *
K. M. Chandy
T. W. Keller

J. C. Browne

Department of Computer Sciences
The University of Texas at Austin

Abstract

Design automation techniques have been
successfully used in wiring board layouts, cir-
cuit design analysis, and other areas. Simulation
techniques have been used by system analysts to
evaluate complex computer systems. In the early
stages of a computer system design a designer
will find an interactive package, which yives him
real-time solutions for queueing models of complex
computer systems, extremely useful. In rhe first
few passes at a design, detailed simulation
studies are too expensive and too slow. A con-
versational package which evaluates arbitrary
configurations and gives approximate results 1is
preferable to a slow, expensive, though accurate
simulaticn. This paper is concerned with the
real-time analysis of complex queueing network
models which have been extensively used in comp-
uter systems analysis. In this paper we present
the theory, algorithms and some programs for a
system which departs radically from previous at-
tempts at computer design aids for queueing net-
work analysis in two ways: firstly the design
automation system proposed here will give both
algebraic and numerical answers to queries put
forward by the analyst. For instance, the ana-
lyst may want to find out an algebraic express-
ion for the throughput of a network as a function
of several parameters, Or the analyst may want

the output in the form of a graph of throughput

*The work reported here was supported in part
by NSF Grant GJ - 1084, 'Design and Analysis of
Multi-Programmed Computer Operating Systems.'

as a function of a parameter. The systeﬁ
discussed in this paper will satisfy both types
of requests. Secondly, the system allows the
analyst to evaluate arbitrary networks constructed
from a set of specified 'building blocks." The
"building blocks" are quite general--they include
queues with devices (servers), branches, joins,
and so on. The analyst is allowed to use as
many building blocks as he pleases, and he can
interconnect these building blocks in any pattern
he chooses. Thus the system is moderately flex-
ible and allows the analyst greater freedom in

choosing the models best suited for his system.

I. Queuing Mcdels of Computer Systems

A computer system consists of several differ-
ent kinds of resources. Jobs (customers) enter
the system and qucue up for resources. Computer
system resources include central processing units,
memory, etc. When a job finishes getting service
from one resource it may join a queue for another
resource. A computer system can be modeled as a
network of intercounected queues,

We shall be concerned with three service
disciplines: First Come First Served (FCFS),
Processor Sharing (PS), and Last Come First
Served Preemptive Resume (LCFSPR). We shall refer
to the last two disciplines as distribution

independent disciplines for reasons to be explain-

ed later.

The PS discipline is the limiting case of
Round-Robin-Fixed Quantum (RRFQ) as the qdantum
and switch times get arbitrarily small, All.jobs
in the queue are assumed to be serviced simulta-
neously: 1if k jobs are being simultaneously

processed by a single device, then cach of the k

johs is processed at 1/k times the rate at which a
job having the device all to itself is processcd.
The LCFSPR discipline is a priority-precemptive
discipline in which the priority of a job is the
clock time at which Lt enters the queue. The job
with the highest priority is serviced while lower
priority jobs wait. The PS discipline is a very
good approximation to RRFQ when the quantum size
is small. Since RRFQ is widely used, the PS
discipline is of significant practical interest.
This paper makes contributions in two areas:
some new results in queueing theory and computer
systems modeling are presented, and methods for
automatically obtaining algebrdic solutions for

queues (ASQ) are discussed.

Results in queueing networks

1. Distribution independent disciplines

The steady-state probabilities, utilizatioms,
throughput, etc. of a queueing network in which
all service disciplines are distribution independ-
ent (that is, PS or LCFSPR) depends on the mean
service times and is otherwise independent of the
service distributions, provided the distributions
have rational Laplace transforms. This result
was shown by Chandy [3]. It was first conjectured
by Baskett [2]for the PS disciplime. The ASQ
system will handle networks with distribution
independent service disciplines,
2, Job Typing

Most queueing network models assume that all
jobs in the network have common service distribu-
tions and branching probabilities. However, some
resources may be used primarily by a given class
of jobs while other resources may be used exten-
sively by other classes of jobs. Furthermore,
service distributions may vary from one type of
job to another. The CPU burst times of an inter-
active job are generally different from those of
a batch job. We present solutions for queues with
different types of jobs, where each type has 1its
own branching probabilities and service distribu-
tions. We shall permit different service distri-
butions for different job types only in queues
with distribution indepcndent service disciplines.
The solutions for queueing networks with job
typing is a new result, The ASQ system does not
currently handle job typing, but we plan to imple-

ment it in the future.
3, Auto Correlated Job Behavior

Most queucing models have assumed that the
service times and branching crobabilitics of a
job are independent of past behavior. However,
many jobs exhibit a behavior pattern. For instauce,
a job might have a series of short CPU burst times
followed by a series of long burst times. In this
paper we present a model for program behavior
which takes this autocorrelation into account. We
show that in queueing networks with distribution-
independent service disciplines, the steady-state
probabilities are independent of autocorrelated
behavior: the steady-state probabilities depend
only on the mean value. This result is important
because it suggests that throughput and utiliza-
tions for computer systems in which CPU burst times
exhibit certain patterns, can be obtained by making
the (false) assumption that successive burst times
are independent, provided that the CPU is serviced
in a RRFQ manner with a small quantum. The ASQ
system will handle networks in which jobs exhibit
this behavior pattern.
4, Local Balance

The concept of local balance was developed
by Chandy[ﬁ]. Local balance allows for trivial
analysis of apparently complex queueing systems.
It will not be discussed here, a detailed discuss-

ion is presented in[3].

Closed Queueing Networks

Consider the queueing network shown in Fig. 1.
In this network there always are a fixed number N
of jobs cycling around the network. A job enters
the network at the 'origin," traverses the network,
goes to the"destination' and is recycled back to the
origin., The ASQ system only handles closed net-
works at this time. We plan to implement the
analysis of "open' networks in the ASQ system in
the future., In an open network jobs enter the
network fromexternal sources, and may leave the
network and go to external sinks.

Let pij be the probability that a job which
finishes getting service in queue i joins qucue }
next. Let PIERM(i) be the expected service time
in queue i. We assume initially that all jobs
have common service distributions and common

branching probabilities. We shall also assume that

all service times ave exponentlally distributed.
Both assumptions will be relaxed later.

Consider the queueing network shown In Fig. 1.
The Brauch TERM for queue i (BTERM(1)) may be de-
fined as the probability that a job gets to queue i
on its way from the origin to the destination.
Thus BTERM(1) = p,, and BTERM(4) = pgy+Pys ¥
p'OZ < Pyye The BTERMs may be defined more
formally as any set of numbers such that BTERM(1i)
= g’BTERM(j)p i all i. The Processing TERM for
queue 1 or PTERM(L) is defined to be the expected
service time in queue i. We assume initially that
there is only one device serving queue i. Let
(nl, ces Dys e nM) be the state of the system
in which there are n, jobs in queue i, all i. The
state (nl, cey Dy oo nM) is said to be feasible
if ny + .. + ny + ., + n, = N, where N is the
total number of jobs in the closed network, and
Nys ees Ty > 0. Jackson [6] showed that the steady-
state probabilities are:
P(nys +es Mys ees) NORMT{{BTERM(i,).PTERM(i)}ni

¢h)

Chandy [3] obtained the same result using local
balance. Since local balance is the key to under-
standing how several queueing models can be solved
with the ASQ system, we will discuss it briefly.
For more detail see Eﬂ . We note that in the ASQ
system, the transition probabilities Pij and the
PTERMs may be specified as polynomial functions

of several variables. The steady-state probabi-
lities, utilizations, throughﬁuts are computed by
ASQ (SectionT).

The Concept of Local Balance

A transition can be made out of state (nl,
ves nM) due to several events. A job can finish
service in queue j and move to queue k, for any
j, ¥, In this case the system transits to state
(nl, .oy nj-l’ ees My + 1, <., nM). Now let us
focus attention on only one kind of transition: &
transition due to a job leaving queue i. This
transition can result in any one of the new states
(nl, cey Dy - 1, ..y 0y + 1, .., nM), k=1, ..y
M, k # 1.

We seek a functional form R(nl, vey nM) which
is the steady-state probability if (nl, ves nM)

is a feasible state. In other words:

P(nl, Py “M) = R(nl, Lo, 0) L (nl, vy nM) is

M
feasible
={ 0 otherwisc (2)
Local Balance lcmma
A sufficient condition for R(nl, P nM) to

be the functional form for steady-state probabili-
ties P(nl.., nM) is that the rate at which the
system leaves state (nl, ey nM) due to a job
moving out of gqueue i is R(nl, eea By gs Oy T 1,
Dyqgs oo nM) . BTERM(1) (3)

The proof is in [3]. We shall refer to equation
(3) as the ceteris paribus equation., The steady-
state probabilities (1) satisfy the ceteris pari-
bus equation since the rate at which the system
transits out of (nl, .y nM) due to a job moving
out of queue i is P(nl, ves nM) - uy where

uy = 1/PTERM(L) .is the service rate in queue i.

Non-exponential Distributions

A service time distribution with a rational
Laplace transform may be represented as a network
of interconnected exponential stages, where the
time spent by a job in stage i is exponentially
distributed with mean lﬁ%i. A job starts at an
entry point, traverses the network and then
finishes service when it reaches the exit point.
The network may have several branches and a path
that a job traces may vary ﬁith each service, We
shall refer to distributions which can be repre-
sented as a network of exponential stages as an
EN (Exponential ﬁptwork) distribution. To describe
the status of a job we now have to describe both
the queue the job is in, and the stage(Fig. 5).

Consider a closed queueing network in which
some of the queues indexed i have EN service
distributions and PS disciplines; other queues
indexed j have EN service distributions and LCFSPR
disciplines; and the remaining queues indexed k
have exponential service distributions and FCFS
discipline. For ease of exposition we shall
merely refer to three queues, i, j, k, though
in reality there may be several of each type. A
state for this network is a set of vectors (yi,
yj’ yk), where:

vy < (Xli’ Xois s in; where L is the num-

ber of jobs in stage r of queue i.

.sse)y Where W is the stage 1in

Yy T Gyp oy 53
which the sth job in the the stack is in. The
first job in the stack is always processed, and as
new jobs arrive, they are placed on top of the
stack.

Ye T "k is just the number of jobs in
the queue.

Let BTERM(r, i) be the probability

that a job enters stage r of queue 1.
Note that BTERM(r, i) is the probability
that queue i is entered multiplied by
the conditional probability that stage r
of queue i is entered given that queue i
is entered. Let n, = X, + .. + X4
The functional form of the steady-state
probabilities is :
R(yi.’ yj, yk) = NORM . 'I'ERMi . TERMj . TERMk 4)

ny T YBTERM(r, i) .PTERM(r,i) i
I .. oxgq *

TERMi =

Qhere PTERM(r, i) is the expected time spent by a
single job in stage r of queue 1, when it is the

only job in the queue.
TERM, = TL'{BTERM(ij) . PTERM(wsj;j

TERM, =

1t is easy to verify that this functional form

{BTERM(K) . PTERM(K)}™*

satisfies the ceteris paribus equation. Using
(A)Awe find that the steady-state probabilities
are still given by equation (1). This allows the
ASQ system to analyze this sort of network, with
distribution independent disciplines and EN dist-

ributions.

Job Typing

Let there be T types of jobs labeled 1, .., t,
.., T. Let the probability that a type t job
joins queuve b after finishing service on queue ¢
be Pebe* The different types of jobs may use
varying amounts of system resources. Let the
expected time spent‘by a type t job in stage T of
queue i be PTERM(t, r, 1), if it is the only job
in the queue. Suppose there are m, jobs of type
t in the network at all times. Using the same
notation as in the previous paragraph a state of
the network is a set of vectors (yi, yj, yk)

where

)

Yy =("111’ Xgpgr vvo Xrypr cor *ier o0 *ri
where xtri is the number of jobs of type t in
stage r of quecue 1. yj is similarly defined.
Y = (21 sz’ . sz) where 24 1s the type

of the dth job in the queue. However, we shall
make the assumption that in a queue with a FCFS
discipline, all job types have a common exponential
distribution.

In analogy to the previous case we have:

n 1
TERM, = _};S(_.—T“&TERM(t,r,i).PTERM .
L= il & F
X
(er,0) 7
- T : :
TERM, = 7] rgzm\m(wtsj) PTERM(thj)}

T {BTERM(z,) . PTERM(zg)}

TERMk
It is easy to verify that the ceteris paribus
equation is satisfied. Note, however, that the
local balance lemma will have to be rephrased
slightly, to take into account the different kinds

of jobs.

_Autocorrelated Job Behavior

The CPU burst times for a given job frequently
exhibit a pattern as shown in Fig. In this paper
we present a model for the generation of CPU burst
times, which is in some respects similar to [4]
Denning's models for working set size. . A job
is said to have several "modes," and a job is in
a single mode for the duration of a CPU burst. At
the end of a burst, a job may transit from 1its
present mode to a new mode. Transitions between
modes are assumed to be a discrete-state-discrete-
time Markov process, with each mode corresponding
to a state of the process.

Each mode of a program may have its own
service distribution and branching probabilities.
Thus a program may change its behavior with time,
and its present behavior will depend in some way
on its history,

Consider the mode-transition probability
matrix and the service density functions shown
in Fig. 6 . A possible sequence of modes and
burst times are shown in Fig. 6 . Preliminary
investigations at the University of Texas at
Austin, Computation Center, indicate that some
programs do behave in this manner.

It is easy to show using local balance,

that for distrubution-independent service discip-

lines, the steady-state probabllities and utili-
zations arce independent of the modes of a job,

and depend only on its mean service time, provided
the service distributions in each mode have
rational Laplace transforms and the mode transi-
tion matrix is ergodic. Note that we have used

a partially observable Markov prdcess to describe

CPU burst generation.

A typical job is now described by four
parameters: its type &, the mode m of the job
(different types will have different modes),
the stage of the distribution (different modes
will have different stages), and of course the
queue that the job is in. We shall define BTERM
(t,m,r,i) in the usual way: it is the probability
that a type t job in mode m enters stage r of
queue i on its passage from the origin to the
destination. BTERM(t,m,r,i) can be computed
readily. The steady-state probabilitles are
analogous to the earlier paragraph on jeb typing.
Once again it is relatively simple to cteck that
the ceteris paribus equation is satisfied. The
ASQ system will handle certain kinds of auto=-

correlated behavior.

Queueing Network Models -- Summary

In all the networks analyzed here, the
probability that there are n, jobs of a given
type, mode etc. in queue 1 is proportional to
the nith power of the product of the probability
that the given type of job gets to queue i and
the expected service time of this type of job in
queue 1. We also see that local balance is a
very power ful analytical tool. Several other
interesting results on computer queueing mode ls
can be derived using local balance. These
results will be incorporated in the ASQ system,
as the system 1is developed and extended.

Paucity of space prevents us from discussing
these results here.

We shall now discuss the ASQ system in some
detail. 1In the following discussion we define
the throughput of a closed network to be the
rate at which jobs enter the network at the

origin, or leave it at the destination.

The ASQ System
The program ASQ (Algebraic Solutiouns for

Queues) will currently accept an arbitrary closed

.

network composed of any pumber of branches, joins
and queues with devices. We will assume that the
branching probabilicies are the same for all jobs

of all types, and are constant, We will also
assume that the service distributions in all
queues with FCFS discipline are exponential, and
the same for all types of jobs, at all times.

In queues with PS or LCFSPR disciplines, the
service distributions may have EN distributions
(i.e. distributions with rational Laplace trans-
forms), and may exhibit autocorrelated behavior

in the manner described in the previous sectioun.
It is assumed that there is nb limit on the number
of jobs in a queue. All jobs enter the network at
the origin, travel through the network and go

to the destination. A job can enter a given queue
at most once on its passage from the origin to the
destination. A queue may be serviced by more

than one device. If so, the devices are assumed
to be in parallel, although they may have different
exponential service rate distributions. A queue
and its devices are called a node. The label
(name) of a node is the label of the queue. Devices
do not possess labels.

Nodes are connected by branches and joins.
1f upon completion of service at node J a job can
go to more than one node, then branches are drawn
from J to those nodes. Associated with a branch
from some node J to a node K is the probability
Pyg? the probability that upon completion of ser-
vice at J the job will enter K. Naturally, the
sum of the branching probabilities from a node
must be 1. If upon completion of service at node
J a job can go only to node K, then a join (a
branch with probability 1) is drawn from J to K.
The triple (J,pJK, K) is called an edge, and
establishes the existence of J, K, and the prob-
ability of a job entering node K upon completion
of service at node J. All jobs enter the network
from the origin and exit the network through the
destination.

A state of the system is defined by the
number of jobs n, in each node i. 1Lf a queue i
is serviced by m devices, then for ni(nxall jobs
are being serviced, while for n > m there are m
jobs being serviced and m—nijobs waiting for
service. The sum of all ni's must equal the cons-

tant, N, the total number of jobs in the system

at all times, Thus a state is defined by a state
vector (nl’nZ""’“L) where L is the number of nodes
of the system and n, {s the number of jobs in node
i, The template for the state vectors of a system
is the 1ist of queue labels defining the state
vector convention. Thus for the network of figure
2, if (Q1,Q2,Q3,Q4,Q5) is the template then the
system is in state (2,1,1,0,0). 1If (Q3,Q1,Q5,Q2,
Q4) is the template then the state vector is (1,
2,0,1,0).

Branching probabilities are input as poly-
nomials. The service rate for a device is defined
by a mean service time and is also considered a
polynomial. The analytic technique of ASQ and the
polynomial representation of all parameters allows
information of the system to be a function of
arbitrarily many variables.

A polynomial may consist of any number of
variables (including none)., Exponents in the
polynomial must be integers. Thus a branching
probability, mean service time, steady state prob-
ability, etc.,, could be:

X
l-x

4x3 + xzy - 0.8x +yz - 2-3 - 0.7
0.427

with input/output formats:

X
1-X

LKA 34X 4 237 -0,8%X-2% ~3-0.7
0.4217

No provision is made for inputting fractions, as
the polynomial manipulation routines will not do
division. 1If necessary, a “fraction' is output
by the program by printing a numerator and
denominator. However, this does not correspond
to any internal polynomial representation in the
program.

A network is described to the program in
the following manner: (Program responses are in
upper case, user responses in dropped lower casa)
#INPUT FDGES: NODE/PROBABLLLTY/NODE;

(The user must input all edges of the net-
work. This establishes all nodes and their labels,
all branches and branching probabilities, and all
joins, Consider the network in figure 2 in this
and the following example, The user would res-

pond:)

q1/0.43/q3;
q1/0.57/a4;
q2/2*m4% 3/q93;
q2/v/ab;
q2/1-2*mt 3-v/q5;
>3

The character ";' is the line delimiter and
" " gignals the end of user imput.
% INPUT BRANCHES FROM ORIGIN: PROBABILITY/NODE/;
x/ql;
1-x/q2;
>3
* INPUT BRANCHES TO DESTINATION: NODE /PROBABILITY/;
q3/1/;
q4/1/;
q5/1/3
>3

(The number of devices in a node is implied
by the number of different mean service times of
the node. The node label must be input and the
mean service time for 1 job in the node, the mean
service time for 2 jobs in the node, etc. In the
case of more jobs than devices in the specified
node the program uses the mean service time for
all devices occupied, which is the last time
input on the list. For example, the devices of
Q2 each have a mean service time of w—wz. Thus
the mean service time for 2 or more jobs in node
Q2 is Y(w-u’).) v
INPUT MEAN SERVICE TIME(S): NODE/TIME (U JOB)/
TIME(2 JOBS)/.../;

q1/0.183/;
q2/w-wt 2/0.5%w-0.5%w r2fy
q3/w/s
qb/zt5™/;
q5/1.4%w/;
-+
* INPUT LOTAL NO. JOBS 1IN NETWORK :
4

INTEGER:

After the network is thus described the
program checks it for any nodes not reachable
from the source and for any nodes not rcachable
to the sink. [f no such nodes are found the
program accepts & command from the user. Tf
such nodes are found they are output in error
message (). For example, the result of the
nctwork of figure 3 being input would be:
FNODES NOT CONNECTED FROM SOURCE - (B3 Bb B7)
*NODES NOT CONNECTED FROM SINK - (BS Bo B7)

In such a case the program goes into a mode such
that only commands by the user changing the net-
work are accepted. In the case of figure 3, the
user éould make an acceptable network by adding
a join from BS5 to the sink, adding a branch from
B2 to B3, and delcting B6 and B7.

After an acceptable network is defined to
the program, ASQ asks if the user wishes to
specify the template.

*DO YOU WISH TO SPECIFY THE TEMPLATE?: YES/NO;
yes;

A yes response requires the user inputting the
template vector.

T = (45,93,91,42,97,94,96);

If the user does not wish to specify the

template the program generates it and outputs

it by the same format,

The following commands are executable at this
stage, with the given output in polynomial form.
Sst/(“l’nZ’""nL)/(ni’né""’“i)/"’/;

outputs an unnormalized stecady state prob-

ability for each of the specified vectors.
snrm/;

outputs the normalization factor for the

steady state probabilities.
tput/;

outputs the throughput of the system.
util/nodel/nodez/node3/.../;

returns the utilization of each node speci-
fied.

assp/;
returns a table of all the unnormalized
steady state probabilities.

tble/parameter/;
is a special command, given to generate the
parameter desired in polynomial form, output
it, and then accept numerical values for
substitution into all variables except one -
thus making the polynomial a function of one
variable. A lower limit, upper limit, and
incremental step are then input for this
variable - resulting in a table of the para-
meter values versus the variable values. The
maximum and minimum values of the parameter
and the corresponding variable values are
also output, Parameters may be specified
as sspb(n}, nyy «eey nL), snrm, tput, or

util(node). For example, suppose the unnorm-

alized steady-state probability of a state
(i, 0, 1, 2, 0, 1) is x2 + 3xy - 4y2 + 0,382z
- 0.4 and the user wishes to find the behavior
of this parameter as a function of x as x
ranges from 2.0 to 2.5 in steps of 0.1 while
y is set to 0.2 and z to 0.1. 'The user would
enter the following command:

tble/sspb(l, 0, 1, 2, 0, 1)/; resulting in:

#*X12 + 3%y - 4*Yt2 + 0,38%2 - 0.4 with the
user specifying:

*VAR =
%
* =
Y 0.2,
* =
Z=0.1;

*LOWLIM/HIGHLIM/STEP/ = 2/2.5/0.1/;

results in the following table

2.000000000 4,678000000
2.100000000 5.148000000
2.200000000 5.638000000
2.,300000000 6.148000000
2.400000000 6.678000000
2.500000000 7.178000000
*MAX 2.500000000 7.178000000
*MIN 2,000000000 4,678000000

end/;

terminates the program.

This completes the discussion of user options

with the program.

Some Applications

1. Optimization of branching
Consider Fig. 2. Suppose queues 1 and 2

handle the same sorts of requests. Thus we might
vary x, the fraction of Jobs which go to queue 1.
Suppose we wish to find the value of x which maxi-
mises throughput for this network, with v = 0.2,
m= 0,3, z=0, w=0.1. We compute the throughput
as a polynomial in x, and then using the "tble"
function, proceed to get a table of throughput for
different values of x. The maximum throughput in
the table and the value of x for which it is ach-
ieved will be cutput automatically.
2, Optimum service rates

Consider Fig. 1. Suppose all the parameters
except the service rates are fixed and given. Our
objective is to buy devices for queue 1 and queue

2, Various kinds of devices are available, and

gonerally the more expensive devices have faster
service. Given a budget, our objective is to
share the budget between the two devices to maxi-
mise throughput. Let C be the total budget, and
C1 the amount spent on device 1. We imput the
mean service time for queues 1 and 2 as a function
of C and Cl' We may then obtain the throughput
as a polynomial in C and Cl' The function of
throughput will be extremely useful to management
in deciding how much it wants to spend on each
device.
3. Evaluating several alternative devices.

Suppose for a given network, we wish to
determine the throughput for several alternative
values of the parameters., We may obtain the
throughput as a polynomial in all the parameters
that have to be varied. Once the polynomial
is obtained, it is merely evaluated for each set
of values of the parameters.

Conclusions

The automated analysis of queueing models is
undoubtedly helpful to the computer systems analyst.
Iraci and Wallace[S]have discussed a system for the

conversational design of queueing networks. However

our system is different in one very important respect:

we are primarily interested in obtaining algebraic

solutions. Algebraic and numerical solutions together

can be very helpful to the analyst, and in system
optimization.

We have discussed the ASQ system which will
provide algebraic solutioms for queueing network
models. We have discussed distribution independent
service disciplines and shown how the results of
the ASQ system are valid for networks with these
service disciplines and non-exponential service
distributions with rational Laplace transforms,

A partially observable Markov process model was
developed to describe the sequence of CPU burst
times generated by a glven job., The assumption
commonly made in queueing models that successive
service times are independent is not valid, and
the partially observable Markov process is a more
realistic description of the situation, It was
shown that the results of the ASQ system were
valid, even if successive service times were not
independent in queues with distribution independent
service disciplines. Queueing networks with

different types of jobs were discussed. Job

typing will be implemented in ASQ in the future.
The importance of local balance and the ease with
which apparently complex queuelng networks can be
analyzed using local balance was demonstrated. It
may be noted that ASQ will handle most of the
queues analysed by Baskett and Palacios[l}, Baskett
(2], Buzen(7, 8], Gordon and Newell[9], Jackson[6],
and Chandy [3].

ASQ .is written in LISP 1.5.9 as implemented
at the University of Texas at Austin. The program
can be run either by batch or interactively on the
CDC 6600/6400 system with only minor differences
in the commands and command éequence. Since the
program is written in a straightforward manner, a
user with a basic knowledge of LISP and the struct-
ure of the program can tailor it to sult his own
needs. ASQ was written in LISP because of the
availability of polynomial routines written in that
language. The authors would like to acknowledge
the invaluable assistance of Don Towsley who
prepared the routines.

References

1, F. Baskett and F. P. GComez. Processor shar-
ing in a Central server queueing model of multi-
programming with applications, Proc. 0f the Sixth
Annual Princeton Conference on Information Sciences
and Systems, Princeton University, Princeton, N.J.
(March 1972).

2. F. Baskett, Mathematical models of mumlti-
programmed gomputer systems, TSN-17, Computation
Center Report, The University of Texas at Austin
(January 1971).

3. K. M. Chandy. The analysis and solutions for
general queueing networks, Proc. of the Sixth
Annual Princeton Conference on Information Sciences
and Systems, Princeton University, Princeton, N.J.
(March 1972).

4. P. J. Denning and S. C. Schwartz. Propertles
of the orking- et M del. Comm ACM, vol. 15, No.3,
(March 1972), pp.191-198.

5. K. B, Irani and V. L. Wallace. On network
linguistics and the conversational design of
queueing networks. J. ACM, Vol 18, No. 4,
(October 1971), pp. 616-629.

6. J. R. Jackson. Jobshop-like queuecing systems
Man. Sci. Vol. 10, (1963), pp. 131-142,

7. J. Buzen. Analysis of system bottlenecks using
a queueing network model. Proc. ACM-SIGOPS Work-
shop on System Performance Fvaluation, Cambridge,

Mass. (April 1971). pp. 82-103.

Re ferences cont'd

8. J. Buzen, Queuelng network models of multi-
programming. Ph.D, Dissertation, Division of
Engineering and Applied Physics, Harvard University,
Cambridge, Mass. (June 1971).

9., W. J. Gordon and G. P, Newell. Closed queueing
systems with exponential servers. Operations

Research, Vol. 15, No. 2, (April 1967), pp.254-265.

<
Q3
Py3 ™3
Q1 Q4
1 oin\J
o mg,
P01 1 //
Pay Q5
¢origin
s
Po2 Q2 25
P26 Q6
Port Poz = ! "
Pyt Py = 1

Pyyt Pps * Py = 1

p: branching probability
m: mean service time

Figure 1

or

-
BS _
B2 B4
Lgin nSLE%ﬂ
B3
B6 B7

I
3

Figure 3

INPUT
NETWORK

Figure 2

Q3
J
| 0
| B
i
w
Q4
esti-
nation
z + 5w
Q5
1.4w

INPUT
TEMPLATE

NETWORK
CHANGES

h 4

GENERATE
& STORE

COMPUTE
DESIRED
INFORMATION

B TERMS

[INPUT COMMANDS:
util/...
sspb/...
snrm/

tput/
tble/...

Figure 4

STAGE 2 MODE TRANSITION MATRIX:
to MODE 1 MODE 2
from MODE 1 0.9 0.1

MODE 2 0.8 0.2

(example of a mode transition matrix)

STAGE 3
The stages of an EN distribution moda 1
(example) .
mode 2
stage 2 f
The time spent in each stage
must have an exponential
TIME
distribution i -—P
f CPU burst time distributions in each mode
E . (example)
stige 3 ‘
0 TIVME ——P> '
Density functions for the different stages
(example) MODE 2 X %
MODE 1| X x ¥ X %X XX % X X
A A) 1 1 i A A 1 [} 1 1
A sequence of CPU burgts ———P»
(example)
0 TIME ——P»
Density function for the EN distribution T bursts in mode 2
Figure 5
CPU
burst
times X
X
‘" X *
x
X % + x
olllllll*lllll

A sequence of CPU bursts ———p
(example)

Figure 6

