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ABSTRACT

Algorithm 386 is proved using the inductive assertion method.
In the course of the proof, some errors were found and corrected.
Some additional program changes are necessary for certain implementations

of D@ statements.
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INTRODUCTION

Subroutine GCDN, Algorithm 386 as described in [1,2], computes
the greatest common divisor, IGCD, of n integers A(L),...,A(n) by
using the Euclidean algorithm to compute first gcd(A(1),A(2)), then
ged(ged(A(1),A(2)),A(3)), etc. It also computes integer multipliers
Z(1),...,Z(n) such that IGCD = :E} A(i)Z(i). A proof that a
modified version of GCDN perfor;;lthese two tasks is given behew-

using the inductive assertion method.
PROOF PROCEDURE

The correctness of GCDN is proved by the inductive assertion
method using a slight variation of one of the techniques described
in [3]. Assertions concerning the progress of the computation are
associated with various points in the program. The proof consists of
showing that each assertion at a point is true each time control
reaches that point in the program.

The inductive assertions are inserted as comments in the program
below, assertion j.k being the kth assertion associated with statement
j. A variable name with a zero subscript denotes the initial value
of that variable (its value upon initiating the execution of GCDN)
and a variable name without a subscript denotes the 'current' value
of that variable. The current value is the value of the variable just

before execution of the program statement with which the inductive



assertion is associated. For example, N = NO.A A= Ao is the fourth
of four assertions associated with statement 2. This assertion
states that the current value of N equals its initial value, and
similarly, the current value of A equals its initial value.

The notation A = Ao’ where A is an array name as in 2.4, is
an abbreviation for A(i) = Ao(i) for all i within the dimension
1imits of A. Also in writing the assertiomns, S(I,M,A,Z,ISIGN) is

an abbreviation for the assertion

I T I
ged(A_(1),...,4 (D) = 2, T AG)) 2004 (0 +( T A J(-2+ISTENM1)A (D
k=M+1 \ j=k+1 j=M+1
and R(K,T,M,A,Z,ISIGN) is an abbreviation for
I K-1 K-1 K
16D = 2 Z(DA () -2 z(DA (D) +2 (T Az (1)
=M1 §=M+1 k=M+1\ j=k+1

+ 1%— A()) (—2*ISIGN+1)A(M+1)AO(M).
j=M+-2

Inductive assertions 1.1, 61.1 and 61.2 provide the formal
statement of correctness for GCDN, GCDN will be considered to be correct
provided it has the following property: For every execution of
GCDN initiated with 1.1 (1 £ N0 £ dim(A) = dim(Z)) true, and such
that the executionNterminates, then both 61.1 (IGCD = gcd[Ao(l),...,Ao(No)]
and 61.2 (IGCD = 230 Ao(i)z(i)) are true when the execution terminates.
This is proved bylzie inductive assertion method, and hence, GCDN is
correct. This property often is called 'partial correctness'. The
term '"'correctness' then, is reserved for a program that not only is

partially correct but also terminates for all executions satisfying

the initial assertion. No formal proof is given here that GCDN always



terminates under initial assertion 1.1. However, this can be deduced
from the bounds Bradley describes for the algorithm in [2]. 1In

view of this, correctness does in fact simply amount to GCDN
possessing the preceding property.

In a proof by inductive assertions, a verification condition is
constructed for each control path. These verification conditions are
mathematical conjectures that may be constructed in one of several
forms [3,5]. The form used here is a variation of the path-forward
form described in [3]. The first change is in the method of assigning
alteration counters1 to the program variable names. Let n be the
name of a program variable. Instead of using n, to denote the value

of variable n at the beginning of a path, we simply use n, and then

n. denotes the value of n after the first time it appears on the left

1
of an assignment, n, its value after the second time,.... This change
in notation simply makes the verification condition more readable.

The other change in the form of the verification condition is in the
treatment of statements involving subscripted variables or division.
In [3], it is suggested that an implicit test statement on the
legality of subscripts be inserted before every statement containing

a subscripted variable. Instead of this approach, we use a slightly

different term in the verification condition. Consider, for example,

the term due to statement 10, Z(M) = A(M) / IGCD, along the path

1An alteration counter is a subscript attached to each variable
name that indicates how many times that variable has appeared on the
left of an assignment statement along a particular control path.
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(2,8,9,10,11,61). According to [3], the terms to be used in the
verification condition for this statement are (under the new
alteration counter convention)

Zl(M) = AM) / IGCDl

r# M> zl(r) = z(r).

Instead of these terms, we shall use

(LM £dim(Z)) A (1£M£dim(A)) A (IGCDl # O)Dzl(M)=A(M) / IGCD,

r # Mﬂzl(r) = Z(r).
By including the precondition in the first term, one is forced to
prove that M is a legal subscript for both A and Z and that the
division operation is defined before the term resulting from the
assignment, Zl(M) = AM) / IGCDl, can be used in further steps in the

proof.

MODIFICATIONS OF ORIGINAL ALGORITHM

Some modifications to the original version of GCDN have been
made solely to facilitate the proof of correctness. First, the
original comments are removed and the inductive assertions are
inserted. The original statement numbers have also been removed and
each line of the program has been numbered.

To make explicit the interpretation of D@ statements, all D@ loops

have been rewritten as IF loops. The statements which correspond



with the original D@ loops have a single leading zero in the line
number. D@ statements have been assumed to consist of the following
four steps. (1) Assign the control variable the value of the initial
parameter. (2) Execute the body of the D@ statement. (3) If control
reaches the terminal statement, execute the terminal statement and
increment the control variable by the incrementation parameter.
(4) If the value of the control variable is less than or equal to the
value of the terminal parameter, go back to 2, otherwise the D@ is
"satisfied and execution continues out of the statement.

Also the RETURN statements have been replaced by GP T statements

that go to a single RETURN at statement 61.

CORRECTIONS TO THE ORIGINAL ALGORITHM

Three modifications of the program were necessitated by errors
in the original algorithm., The statements in the code below which
represent changes or corrections have their statement number field
filled with leading zeros. Statements 9 and 10 are necessary in
order to yield a positive greatest common divisor in the event that
all elements of array A are zero except the last and it is negative.
Statement 45 replaces the statement K = I-J+2 which is valid only if
the first element of array A is non-zero. Statement 55 is necessary
in the event that the greatest common divisor becomes one on the last

element of array A. If N0'< dim(Z), then statement 55 may be omitted,



however, this leads to the possibility of the value of the initial
parameter of a DP statement being greater than the value of the
terminal parameter.

For implementations in which D@ statements are not handled as
described above, some additional program modifications may be necessary.
For example, according to the USA FPRTRAN standard [4], at step 1
the value of the initial parameter must be less than or equal to the
value of the terminal parameter and in step 4, if the DY is satisfied,
the control variable becomes undefined. 1In subroutine GCDN, the
only D@ loop in which the value of the initial parameter may be
greater than the value of the terminal parameter is the loop in
statements 44 to 50. The program will give the correct results if
this loop is executed once (as in the proof) or is bypassed, however
if a fatal error will result, then the statement IF (MP2.GT.I)G® T@ 51
should be inserted between statements 43 and 44. In many implementations,
the control variable remains defined at the last value used in execution
of the body of the D@ when the D@ is satisfied, in which case statement
42 may be omitted (as in the original version of the algorithm).

Statement 42 is necessary if the control variable becomes undefined, or
if the control variable remains defined at its last value used in execution,

incremented by the incrementation parameter (as in this proof).



PRESENTATION OF THE PROOF

The verification conditions for each control path are given in
the tabular form described in [3]. First the path with which the
verification condition is associated is given. The inductive assertion
associated with the program statement at the beginning of the path is
not rewritten with the verification condition since under the new
alteration counter convention, the terms in the verification condition
due to the assertion at the beginning of the path are identical with the
assertion itself. The terms above the line in the verification condition
are the terms constructed from the program statements along the control
path. These terms are numbered with their respective program statement
numbers. The terms below the line are the ones constructed from the
inductive assertions associated with the program statement at the end of
the path.

According to the inductive assertion method, if for every verification
condition it can be shown that each term below the line follows from the
terms above the line, including the inductive assertion at the beginning
of the path and assertion 1.1, then the program is correct. For the
sake of brevity, we have exhibited only those proofs which require more
than a few straightforward steps. It is assumed throughout these
proofs that all arithmetic operations are integer operations of arbitrarily

high precision. Also we use the following properties of gcd:



P1.
P2.
P3.
P4.
P5.
P6.
P7.
P8.

P9.

gcd(0,0) 0

ged(l,n) =1

ged (O,n) = |n|

gcd(al,...,an) = gcd(gcd(al,...,an_l),an)
If am + bn = c, then ged(a,b) = gecd(a,c)
gcd(m,n) = ged({mf,n)

If ged(m,n) = 0, thenm =n = 0.

ged(m,n) = ged(n,m)

ged(n) = | nl
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1.1

01
2.1
2.2
2.3
2.4

04
05

00009

00010

11

12

13

14

15

16

17

18
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20.1
20.2
20.3
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20.5
20.6

SUBR@UTINE GCDN(N,A,Z,IGCD)
DIMENSIPN  A(dim(A)),Z(dim(Z))
INTEGER A,Z,C1,C2,Y1,Y2,Q

1« NO£ dim(A) = dim(Z)
M=1
1£MS N
1$ieM-1DA3) =
1€ i$M-122(i) =0
N=N0 A A=A0
IF(A(M).NE.O) G@ T9 8

S Z(M) =0
M=M+ 1
IF(M.LE.N) G@ T¢ 2
IGCD = 0
G TP 61
IF (M.NE.N) G¢ T@ 12
IGCD = TABS(A(M))
z(M) = A(M) / IGCD
GP T 61
MPL =M + 1
MP2 = M + 2
ISIGN = 0

IF (A(M).GE.0) G@ T¢ 18

ISIGN
AM)

1
-A(M)

cl = A(M)
I = MP1
1€ ie€M-1>22Z(i) =0

N

N
o]

A MPL=M+1 A MP2 =M+ 2 Ao 0 = ISIGN =1

24M+ 1 $T &N

Cl =AM = gcd(Ao(l),...,Ao(I-l)) #0
k2 I2AK =A (K
S(I-1,M,A,Z,ISIGN)

- 10 -
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28.
28.
28,
28.
28.
28.
28.
28.
28.
28.

O 0 N & BwN -

ot
]

20
21
22

23
24
25
26
27

28
29
30
31
32
33

34
35
36
37
38

IF(A(I).NE.O) GP TP 23

A(T) =1

Z(I) = 0

Go TP 39

Yl =1

Y2 =0

C2 = IABS(A(I))
Q=¢2/cl

C2=C2-Q*Cl
1¢isM-122({) =0
N
2 M4+ 1€ 1¢% N

AQD = ged(a_(1),...,A (I-1)) # 0

k 2 IDAK) = A (k)

gcd(Cl,C2) = gcd(Ao(l),...,Ao(I))
A_(T) #0

S(I-1,M,A,Z,ISIGN)

A(I) divides Cl - Y1 * A(M)

A(I) divides C2 - (Y2 - Q * Y1) * A(M)
IF(C2.EQ.0) G@ TP 36

Y2 = Y2 - Q * Y1

Q=2Cl/c2

Cl =Cl - Q*C2

IF(C1.EQ.0) G@ T 34

Y1 =Yl - Q * Y2

Gp TP 26

Cl =C2

Yl = Y2

Z(I) = (C1 - YL * A(M)) / A(I)
A(D) = Y1

AMM) = C1

N A MPL=M+1 A MP2=M+2 A 02 ISIGN 1

- 11 -
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39.
39.
39.
39.
39.
39.

49.
49.
49,
49.
49,
49,
49,

[« NN, B S R GC I S N

39
040
041

00042

43

044
00045

46

47

48

U« S T S U S

049
050
51

52

53

54
00055
56
057
58

1]

itM-1D22Z(@() =0

[}

N
2!M+1$I$No

Cl = AM) = gcd(Ao(l),...,Ao(I)) £ 0

k »2I2Ak) = Ao(k)
S(I,M,A,Z,ISIGN)
IF(C1.EQ.1) G§ T@ 55

I=1+1
IF(I.LE.N) GP T@ 20
I=N

IGCD = A(M)

J = MP2
K=1-J+ MpPl

KK = K + 1

Z(K) = Z(K) * A(KK)
A(R) = A(K) * A(KK)

18 is$sM-1>22z2(i) =0
I+1¢i¢N D2z2(i) =0
MPL =M+ 1 A MP2 =M+ 2 A
2eM+ 1 €T EN A MP2£J
K=1-J+MPl
R(K,I,M,A,Z,ISIGN)

IGCD = ged(A_(1),...,A (N ))
J=J+1

IF(J.LE.I) G@ T@ 45

Z(M) = A(MP1)

IF(ISIGN.EQ.0) G@ T@ 54

ZM) = -Z(M)

Gp TP 61

IF(I.EQ.N) G@ T¢ 43

IPL =1+ 1

J = 1Pl

Z(J) =0

0 € ISIGN$ 1

- 12 -

NOI\MP1=M+1A MP2 =M+ 2 A 0 ¢ ISIGN ¢ 1
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59.
59.
59.
59.
59.
59.

61.
61.

SN W

059
060

61

1 3
W

i

+ 1€

£M+
A(M) =

0
0

M- 122z(@)
i £ 3D2Z(1)

1«1 &«J¢ No
ged(A_(1),...,A (1)) = ged(A (1),

S(I,M,A,Z,ISIGN)

J=J+
IF(J.LE
GP TP 4
IGCD
1GCD
RETURN
END

1

.N) G¢ 19 58

3
gcd(Ao(l),..,,Ao(No))
£ A wz)

1
I
N=NOI\MPl=M+1A MP2 =M+ 2 A 0 %2 ISIGN 2 1
2

ees ,AO(NO))
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Path (1,2).
1 M1 =1
2.1 1€M &N

1 o)
2.2 1$ifMl-1:‘>Ao(i)=

< - 2y =
2.3 1 ¢ i M1 15 Zo(l)
2.4 N =N A& A =A

o o

Path (2,3,4,5,2).

2 1¢ M € dim(A) D A(M) = 0
3a 15 M2 dim(Z)>D Zl(M) =0
b r#M:DZl(r) = Z(r)
4 M1=M+l

MIQN
2.1 liM_J_S N0
2.2" 1£1ieM - 1DA®E) =0
2.3" 1€ i-Ml-lbzl(i)=0
2.4 N=NOA A=A0
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pPath (2,3,4,5,6,61).

2 1% M 4dim(A)D AM) =0
3a 1¢ M % dim(Z) D Zl(M) =0
b r # M::Zl(r) = Z(r)
4 M =M+ 1
M1 ? N
6 IGCD1 =0
61.1 IGCD1 = gcd(Ao(l),...,Ao(NO))
Proof. Note that all elements of A are zero.
o
61.2 IGCD1 = j_§1 Ao(l)Zl(l)

path (2,8,9,10,61).

2 1% M¢ dim(A)=> AQM) # 0

8 M =N

9 1S Ms dim(A) = IGCD, = TABS(A(M))

10a (1¢ M % dim(Z)) a (1 £ M £ dim(A)) & (IGCDl +0)> Zl(M) = A(M)/IGCDl
b r# M2z (r) = Z(r)

61.1 IGCD1 = gcd(Ao(l),...,Ao(No))

Proof. Ao(No) is the only non-zero element.

61.2 GC 21\'110 A (i i
: 160D, NCSLACH

i=1



pPath (2,8,12,13,14,15,16,17,18,19,20).

2 1¢ M % dim(A)D AM) # 0
8 M# N
12 MPl1 =M+ 1
13 MPZl =M+ 2
14 ISIGN1 =0
15 14 M% dim(A)D AM)< O
16 ISIGN2 =1
17a 1 €M% dim(A)> Al(M) = -A(M)
b r# MDA (r) = Ar)
18 14 M % dim(A)= Cl; = A (M)
19 I1 = MPl1
20.1 € i%M-1227(1l) =0
= = A
20.2 N N0 A MI’].1 M+1 MPZ1
20.3 25M+l‘.‘IlﬁN
20.4 Cl1 = Al(M) = gcd(Ao(l),...,Ao(
Proof. Cl1 = Al(M) # 0 from 2,
gcd(Ao(l),...,Ao(Il-Z))
gcd(Ao(l),...,Ao(Il-l))
gcd(Ao(l),...,Ao(Il—l))
20.5 k2 11:> Al(k) = Ao(k)
20.6 S(Il-l,M,Al,Z,ISIGNz)

Proof. gcd(AO(l),...,Ao(Il-l))
Il-l <M+ 1
gcd(Ao(l),...,Ao(Il-l))

Il-l
+ CT Al(
j=M+1

- 16 -

=M+ 2 A O‘-‘ISIGNZ‘_' 1

I,-1)) #0
18.

0 from 2.2,12,19.
[Ao(Il-l)\ = ‘AO(M)' :
Al(M) from 15,17,

[}

-AO M) from 20.4

L;-1 I,-1
- Al(J Z(k)Ao(k)

k=M+1 j=k+1

;9 (-2"<ISIGN2 + 1)A0(M)



path (2,8,12,13,14,15,18,19,20).

2 14 M¢ dim(A)> AM) # 0

8 M#N

12 MPl1 =M+ 1

13 MP21 =M+ 2

14 ISIGN1 =0

15 16 M ¢ dim(A)=> A(M) 20

18 1¢ M £ dim(A) 2 Cl1 = A(M)

19 I, = MPl1

20.1 14 isM-122(1) =0

20.2 N=N_ A MPl1 =M+ 1n MPZ1 =M+ 2 A 0% ISIGle

20.3 22 M+ 1% Ils N0

20.4 cl, = A(M) = ged(A_(1),...,A (I;-1)) # 0
Proof. See 20.4 on previous path.

20.5 ke 11:3 Ak) = Ao(k)

20.6

§(1,-1,M,A,2,ISTGN,)

Proof. See 20.6 on previous path.

- 17 -
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pPath (20,21,22,39).

- 18 -

20 1¢ T & dim(A)=D A(I) =0
2la 12 12 dim(A)>D Al(I) =1
b r # ISAl(r) = A(r)
22a 12 1% dim(Z2)=> Zl(I) =0
b r# I=22,(r) = 2(x)
39.1 12 is M-19DO Zl(i) =0
39.2 N=N0A MPL =M+ 1A MP2 =M+ 2 A 0% ISIGN €1
39.3 2 M+ 1% IiNo
39.4 ClL = A (M = ged(A (1),...,A (1)) # 0
Proof. Cl = gcd(Ao(l),...,Ao(I)) # 0 from 20.4, 20.
cl = Al(M) = gcd(AO(l),...,Ao(I)) # 0 from 20.4 since
Al(M) = A(M) from 21b.
39.5 k>1 :DAl(k) = Ao(k)
Proof. See 20.5, 21b,.
39.6 S(1,M,4,,Z, , ISIGN)

Proof. S(I—l,M,Al,Zl,ISIGN) from 20.6, 21b, 22b,
AO(I) =0 from 20.5, 20.

I-1 I
T A () = T A (§) from 2la
j=k+1 j=k+1

k=M1 \ j=k+1

I-1 I
ged(A (1),....A (D) = X (T Al<j>z1<k>Ao<k>

I
+ (J"ﬂ' Al(j> (-2*ISIGN + l)AO(M) from

=M+1
above statements

S(I,M,A ISIGN) since Zl(I) = 0 from 22a.

1227



Path (20,23,24,25,26,27,28).

20 1418 dim(A)D A(I) # 0
23 Yl1 =1
24 Y21 =0
25 14 I¢ dim(A)>D C2; = IABS(A(D))
26 Claéo::>Q1=cz1 / Cl
27 €2, = C2) - Q * Cl
28.1 1¢ i€M-1222(i) =0
28.2 N=NOA MPL =M+ 1 A MP2=M+ 2 A O % ISIGN 5 1
28.3 2¢ M+ 1% 1S N0
28.4 AM) = ged(A_(1),...,A (I-1)) # 0
28.5 kZ2 I2Ak) = Ao(k)
28.6 gcd(Cl,CZz) = gcd(Ao(l),...,AO(I))

Proof. gcd(Cl,CZz) = gcd(Cl,CZl) from 27 and P5

= gcd(Cl,Ao(I)) from 25
= gcd(AO(l),...,AO(I)) from 20.4, P4

28.7 AO(I) #0

Proof. See 20.5, 20.
28.8 S(I-1,M,A,Z,ISIGN)
28.9 A(I) divides Cl - Yl1 * A(M)

Proof. Cl = A(M) from 20.4

Yll =1 from 23
A(I) divides 0 = C1 - Yl1 * A(M)

28.10 A(I) divides CZ2 - (Y21 - Q1 * Yll) * A(M)

Proof. C22 - (Y2l - Q1 * Yll) * AM) = CZ1 -Q1

from 23,24,27.

from 20.4,25.

A(T) divides |A(D)| = 02, - (Y2, - Q * YL}) * AQY)

- 19 -

* Cl+ Q * AQD

c2, = |A(Iﬂ since C1 = A(M)
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pPath (28,36,37,38,39).

28 c2=0
36a 1471 ¢dim(Z)ale M& dim(A)A 1 % I ¢ dim(A)a A(T) # 0:21(1)
=(Cl - YL * A(M)) / A(T)
b rf 122,(r) = Z(r)
37a 1£ 1% dim(A)=> A((T) =71
b r # I‘DAl(r) = A(r)
38a 1¢M e din(A)>A,M) =Cl
b r # M2 A, (r) = A (1)
39.1 16 is M-122,(1) =0
39.2 N=N A MPL=M+1A MP2 =M+ 2 A 0¢ ISIGN® 1
39.3 24 M+ 14 15N
39.4 Cl = A, (M) = ged(A (1), ...,A (1)) #0
Proof. gcd(AO(l),...,Ao(I-l)) # 0 from 28.4
ged (A (1),...,A (D) # 0 from P7
Cl = A, () = gcd(Ao(l),...,Ao(I)) # 0 from 28.6, 28, 38a, P3
39.5 k> I2A,(k) = A (k)
Proof. See 28.5, 37b, 38b.
39.6 S(I,M,A,,Z,,ISIGN)

Proof. (a) S(I-1,M,A,Z,ISIGN) from 28.8

I-1 I-1
() AQ) = 2 QTI‘ A2<9 z, (A (k)
k=M+1 \j=k+1
I-1
U AZ(%> (-2*ISIGN + l)AO(M) from
j=M+1

28.4, 36b, 37b, 38b.
(¢) cC1 Zl(I) * A(I) + Y1 * A(M) from 28.9, 36
(@) c1 Zl(I) * AO(I) + AZ(I) * A(M) from 28.5, 37a, 38b
(e) gcd(Ao(l),...,Ao(I)) = Zl(I) * AO(I) + AZ(I) * A(M)
from 28.6, 28, P3.
(£) S(I,M,AZ,ZI,ISIGN) substitute (b) into (e).

1]

]
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Path (28,29,30,31,32,33,26,27,28).

28 c2#0
29 Y21=Y2-Q*Y1
30 C2#0:>Q1=Cl/C2
31 €1, = Cl - Q *C2
32 c1, #0
33 Y11 = Yl - Q1 * Y21
26 C11¥09Q2=CZ/C11
27 €2, =C2-Q, * 1,
28.1' 1% i€ M-1=272(i) =0
28,2' N=N A MPL =M+ 1 a MP2=M+ 2 a 0% ISIGN ¢ 1
28.3' 24 M+ 12 1% N
28.4" A(M) = gcd(Ao(l),...,Ao(I—l)) #0
28.5' k2 IDAKk) = Ao(k)
28.6" gcd(Cll,Czl) = gcd(Ao(l),...,Ao(I))
Proof. See 28.6, 27,31.
28.7' AO(I) £0
28.8' S(I-1,M,A,Z,ISIGN)
28.9' A(I) divides Cl1 - Yll * A(M)
Proof. Cl, - Y1 *A(M) = (C1-Q *C2)- (Y1-Q; *¥2,)*A(M) from 31,33

(Cl—Yl*A(M))-Ql(CZ- (Y2-Q*Y1)*A(M)) £from 29

A(T) divides (Cl-Yl*A(M))-Ql(CZ—(YZ—Q*YI)*A(M)) from 28.9,28.10.
28.10' A(I) divides C21—(Y21-Q2*Y11)*A(M)

Proof. C21-(Y21-Q2*Y11)*A(M)=(CZ-QZ*Cll)-((YZ-Q*Yl)-QZ*Yll)*A(M)
from 27,29.
=(C2- (Y2-Q*Yl)*A(M))-Q2(C11-Y1 l*A(M))

A(I) divides (C2-(YZ-Q*Yl)*A(M))-Qz(Cll-Yll*A(M))

from 28.10, 28.9°'.



Path (28,29,30,31,32,34,35,36,37,38,39).

I€ dim(Z)a 1€ Mg dim(A)a 14 I € dim(A)a A(T) # O:DZl(I)

= (Cl,-Y1; * AQD) / A(D

28 c2#0
29 Y21 = Y2-Q * Y1
30 c2#0=Q, =Cl/C2
31 Cl1 = Cl—Q1 * C2
32 C11 =0
34 Cl2 = C2
35 Yl1 = Y2l
36a 14
b r# I> Zl(r) = 2(r)
37a 1% 1 ¢ dim(A)> Al(I) = Y11
b r # IDAl(r) = A(Y)
38a 14 M £ dim(A)D A, (1) = C1,
b r # MDAz(r) = Al(r)
39.1 16 i¢ M1 Zl(i) = 0
Proof. See 36b.
39.2 N = No A& MP1 =
39.3 24 M+1¢1 ¢ NO
39.4 C12 = AZ(M) = gcd(Ao(l),..
Proof. gcd(Cl,C2) = gcd(Ao(l),...
gcd(Cll,CZ) = gcd(Ao(l),..
c2 = gcd(AO(l),..
C12 = A2(M) = gcd(Ao(l),..
39.5 k> IDAz(k) = Ao(k)

Proof. See 28.5, 37b, 38b.

M+1 a MP2=M+ 2 Ao 0% ISIGN% 1

AL D) # 0

,AO(I)) from 28.6
.,AO(I)) from 31, P5
.»A_(I)) # 0 from 28,32
.,AO(I)) # 0 from 34,38a
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39.6 S(I,M,A,,2, ,ISTGN)
Proof. (a) S(I-1,M,A,Z,ISIGN) from 28.8
_I-1 I-1 .
) 800 = F (A0 2040

k=M+1 \j=k+1
I-1
T Az(j) (-2*%ISIGN + 1)A (M) from 28.4,
. o
=M+1

36b,37b,38b.

(¢) A(I) divides C2-(Y2-Q * Y1) * A(M) from 28.10

(d) A(I) divides C12-Y11 * A(M) from 29,34,35

(e) Cl2 = Zl(I) * A(I) + Yl1 * A(M) from 36a
(£) c2 = Zl(I) * A(D) + AZ(I) * A(M) from 34,37a,38b

(g) ged(Cl,C2) = Zl(I) * A(I) + AZ(I) * A(M) from 31,32,P3,P5
(h) gcd(AO(l),...,AO(I)) = Zl(I) * A(I) + AZ(I) * AM) from 28.6

(i) S(I,M,Az,Zl,ISIGN) substitute (b) into (h).



Path (39,40,41,20).

39 cL#1
40 I, =I1+1
&
41 I £ N
20.1 4 i¢eM-1D2Z{E) =0
20.2 N=N A MPL=M+1 A MP2Z=M+2 a 0% ISIGN= 1
20.3 26 M+ 1% L& N
20.4 Cl = AQD = ged(A_(1),...,A (1;=1)) #0
20.5 k2 1,2 Ak = A (K)
20.6

S(I1,-1,M,A,2,ISIGN)

pPath (39,55,56,57,58,59).

39 cl1 =1

55 I#N

56 IP11 =I1+4+1

57 Jl = IPl1

58a 1€ J1 ¢ dim(z)> Zl(Jl) =0

b r # Jer Zl(r) = Z(r)

59.1 1% i% M-1D Zl(i) =0

59.2 I+1$i$J1:DZl(i)=0
Proof. See 56,57,58.

59.3 N=Nol'MP1=M+1I\MP2=M+2A0§ISIGN-‘-1

59.4 2,‘:M+1£I<Jlf: N,

59.5 AM) = gcd(Ao(l),...,Ao(I)) = gcd(Ao(l),...,Ao(No))
Proof. See 39.4,39,P2

59.6 S(I,M,A,Z, ,ISIGN)

1’
Proof. See 58b.
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Path (39,55,43,44,45,46,47,48,49).

39 cL=1
55 I=N
43 14 Me din(A) > IGCD1 = A(M)
44 J1 = MP2
45 K1=I-J1+MP1
46 KK1 =K, + 1
47a 1s Kj's dim(z) o 1 = KKﬁ'é dim(A) > Zl(Kl) = Z(Kl) * A(KKl)
b r # K1:D Zl(r) = Z(r)
48a 14 K1 € dim(A) A 1 € KK1 £ dim(A)=D Al(Kl) = A(Kl) * A(KKI)
b r # K1:> Al(r) = A(x)
49.1 121ieM-1D Zl(i) =0
Proof. See 47b.
49,2 I+1%is N = Zl(i) =0
Proof. See 55.
49.3 MPI =M+ 1 A MP2 =M+ 2 A 0% ISIGN %1
49.4 2£M+1$I£NOA M1’25..T1
49.5 Ky = 1-J, + MP1
49.6 R(Ky,I,M,A,,2, , ISIGN)

Proof. (a) K1 = I-1 from 44,45
(b) KK1 = K1 + 1 =1 from 46
(¢) S(I,M,A,Z,ISIGN) from 39.6
(d) M+ 1% I andMs K1 from 39.3
CASE 1: I =M+ 1, K1=M
(e) gcd(Ao(l),...,Ao(I)) = Zl(M + l)Ao(M + 1)
+ Al(M + 1) (-2*ISIGN + 1)AO(M) from (¢), 47b,48b

(£) R(Ky,I,M,A,2;,ISIGN)



49.7
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CASE 2: I>M+1,K > M

1
(8) AQD = Z(DA_(I) + ADZ(I-1)A (I-1)
1-2 I
+ 2 (T A(j>z(k)Ao(k)
KM\ j=kt1

I
T A} (-2*%ISIGN + 1)A_ (M) from (c),39.4
j=M+1 °

Il

(h) IGCD Z(I)A (I) + A(KKl)Z(Kl)AO(I-l)

C A<j> Z (k)A_ (k)
k=M1 \ j=k+1

¢<:1r A(_]> (-2*ISIGN +1)A_(M) from (a), (b),43
M+

Zl(I)Ao(I) + Zl(Kl)AO(I-l)

Kl-l K1
+ > T Al(j> Zl(k)Ao(k)

1

() I6CD,

Kl \j=k+1

oc-r A (J> (-2*ISTGN + 1)A_(M) from 47,48
. Kp-1

(j) 1I6CD, = Z (J)A (3) - z,. (DA _(3)
! j=%/[—:+1 -%1 1

K, -1 K,
+ , AL (G) 2. (A (k)
k§M+1 (g-:nl:ﬂ 1> 170

K
+f T Al(j> (-2%ISIEN + 1)A_(M)

j=M+1

(k) R(K;,T,M,A;,2,, ISIGN)

I6CD, = gcd(Ao(l), . AO(NO))

Proof. See 39.4, 39, 43, P2.



Path (39,40,41,42,43,44 ,45,46,47,48,49).

39 clL #1
40 I1 =T+ 1
41 I1 > N
42 I2 =N
43 1$M ¢ dim(A)= 16CD; = AQM)
44 Jl = MP2
45 K1 = IZ-Jl + MP1
46 KK1 = K1 +1
47a 1< K1 € dim(Z) o 1 8 KK1
b r # K1: Zl(r) = Z(x)
48a 1% K1 € dim(A) ~ 1 % KK1
b r # K1:> Al(r) = A(r)
49.1 14168 M—l:Zl(i) =0
Proof. See 47b.
. e N o
49.2 12+1! i€ NODZl(l) 0
Proof. See 42,
49.3 M'P1=M+10\MP2=M+20\05:[SIGN91
49.4 2$M+1’125N0AMP29J
49.5 K1 = IZ-J1 + MP1
49.6 R(K;,1,,M,A,2,, ISIGN)
Proof. See proof of 49.6 on previous path.
49.7 IGCD1 = gcd(Ao(l),...,Ao(No))

Proof. See 39.4, 39, 43,P2,

£ dim(A)D> Zl(Kl)

£ dim(A) D A, (K))

]
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Z(Kl) * A(KKl)

A(Kl) * A(KKl)



Path (49,50,45,46,47,48,49).

m

(;=j+1

A(%» (-2*ISIGN + 1)AO(M)A(M + 1) from
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Z(Kl)* A(KKl)

= A(Kl) * A(KKl)

K
A(% Z()A, (3)

49 J1 =J+1
50 Jl_é I
45 K1 = I—J1 + MP1
46 KK1 = K1 +1
47a 1% K 4 dim@) & 15K s dim()= 2, (X))
b r # K, =2 Zl(r) = 72(r)
48a 1€ K, ¢ dim(A) 5 1 % KK, £ dim(A) = Al(Kl)
b r # K= Al(r) = A(r)
49.1" 1¢ 1i% M-1D Zl(i) =0
Proof. See 47b.
49,2° I+1% 1i¢ Noszl(i) =0
Proof. See 47b.
49,3’ MPlL =M+ 1 A MP2=M+ 2 A 0% ISIGN$ 1
49.4" 2£M+1£15NOAMP2£-J1
49,5' K1 = I--J1 + MpP1
49,6" R(Kl,I,M,Al,Zl,ISIGN)
Proof. (a) R(K,I,M,A,Z,ISIGN) from 49.6
db) M+ 1% K-1&T
I K-1
(c) T16CD = 2, Z(NA () + 5
j=k j=M+1
K
uig
k=M+2
(a), (b).
() K, = K-1 from 49.5,45,49
I
(e) IGCD = 2, z, (DA (I) + AR Z(K-1)A (K-1)
j=K
K-2 K
+ (T
j=MHL \k=j+1

=M+2
from (c¢),(d)

A<k>z<j)A0<j>

K
™ A(k>(-2*ISIGN + DA_(DAM + 1)
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J=K1+1
Kl-l Kl
P (T A ) (M M)

from (d),47,48

I K,-1
1
(g) 16D = 25z, (DNA_(3) - Z, (DA _(3)
2 .j-—%l 170
+ 37 (T Al(k> 2, ()4 (3)
oML \k=j+1

K
+ j£i2 A1(€> (-2*ISIGN + 1)AO(M)A(M + 1)

(h) R(K;,I,M,A,Z;,ISIGN)

] —
49,7 IGCD = ged(A_(1),...,A (N))
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path (49,50,51,52,53,61).

16 M ¢ dim(z) A 1% MPL & dim(A)> Zl(M) = A(MP1)

49 Jl =J+1

50 J1 > I

5la
b r # MDZ(r) =2(x)

52 ISIGN # 0

53a 1$ M$ dim(Z)>D ZZ(M) = —Zl(M)
b r # MDZz(r) = Zl(r)

61.1 IGCD = gcd(Ao(l),...,Ao(No))

Proof. See 49.7.
61.2

N
16CD = 33 A_(i)Z, (1)
i=1

Proof. (a)
(b)

(c)

(d)

(e)

R(K,I,M,A,Z,ISIGN) from 49.6
K€M+ 1 from 49.3,49.5,49,50

I

I6GCD = 2, Z,(3)A,(3)-A (DAQL + 1) from (a) ,49.3,
. ) )
j=M+1
51b,52,53b.
M-1 1
16CD = 3 2, (DA (D-AQPDA () + F5  Z,(DA (D)
‘ 2 o o . 2 o)
j=1 §=M+1
No
+ 33 Zz(j)A (j) since first and last terms
. )
j=1+1
are zero 49.1,49.2
N
I6CD = 30 A_(1)2,(j) from 5la,53a.

1

e
]
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Path (49,50,51,52,61)

49 J1 =J+1
50 J1,> I
5la 14M=2dim(z) A 1 £ MPL < dim(A) D zl(M) = A(MPL)
b r# Mo Zl(r) = 7Z(r)
52 ISIGN = 0
61.1 IGCD = gcd(Ao(l),...,Ao(No))
Proof. See 49.7.
61.2

NO
IGCD = ¥ A_(1)z, (1)
i=1

Proof. (a) R(K,I,M,A,Z,ISIGN) from 49.6
(b) K€M+ 1 f£from 49.3, 49.5, 49,50

I
(c) I6CD = 27 z,(A (3) + AMPL)A ()
J=M+1
from (a),49.3,51b,52.
, M-1 1
(d) 16CD = z, (DA () + z, MDA D) + _g:] z, (DA ()
J=1 _]—M+1

No
+ Zl(j)A (3) since first and last
j=T+1 °

terms are zero, 49.1,49.2,51a.

NO
(e) I6CD 3 2, (A (3)
j=1



pPath (59,60,58,59).

59 Ji = J+1
60 Jq ¢ N
58a 1 ¢ Jq % dim(Z)2D Zl(Jl) =0
b r # N Zl(r) = Z(r)
59.1' 1¢ 1i¢M-1D Zl(i) =0
Proof. See 59.1,58b
59.2' I+ 1% i¢ J1:> zl(i) =0
Proof. See 59.2,58b.
59.3" N=N0!\M:Pl=M+1l\MP2=M+20 02 ISIGN € 1
59.4"' 2&£€M+1¢% I‘Jlé N
Proof. See 59.4,59,60
59.5' AM) = gcd(Ao(l),...,Ao(I)) = gcd(Ao(l),...,AO(No))
59.6" S(I,M,A,Z. ,ISICGN)

1,
Proof. See 59.6, 58b.



Path (59,60,43,44,45,46,47,48,49).
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Z(Kl) * A(KKl)

A(Kl)* A(KKl)

59 J1 =J+ 1
60 Iy >N
43 1€ M % dim(A)> IGCD1 = A(M)
44 J2 = MP2
45 K1 = I-J2 + MP1
46 KK, = K, + 1
47a 1 ¢ Kl § dim(zZ) o 1% KK1 S dim(A)D Zl(Kl) =
b r # K1:> Zl(r) = Z(r)
48a 14K % dimA) A 1% KKl‘.‘ dim(A)™ A, (K)) =
b r # K1:D Al(r) = A(r)
49.1 1% 4i¢% M-lzbzl(i) =0
Proof. See 59.1,47b,
49.2 I+1¢ 1% Nozzl(i)=0
Proof. See 59.2,47b
49.3 MPL=M+1a MP2=M+ 2 a4 0 % ISIGN § 1
49.4 2§M+1§I$NOA MPZ‘J2
49.5 Ky = I-J, + MP1
49.6 R(K ,I,M,A;,Z;, ISIGN)
Proof. See 49.6 on Path (39,55,43,44,45,46,47,48,49).
49.7 IGCD, = gcd(Ao(l),...,Ao(No))

Proof. See 59.5,43



