A PROGRAM FOR THE AUTOMATIC ANALYSIS OF
QUEULEING NETWORK MODELS

by

Tom W. Keller
TR-6
December 1972

This paper constituted in part the author's thesis for the M.A.
degree at the University of Texas at Austin, December 1972,

This work was supported in part by National Science Foundation
Grant GJ-1084.

Technical Report No. 6
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712



ACKNOWLEDGEMENTS

The author is indebted to Dr. K. Mani Chandy, who made
time to ask and had the patience to answer. Acknowledgement is made to
Dr. James C. Browne, without whose support and perspective this thesis
would not have been possible. Dr. John Howard is thanked for his
suggestions which much improved the tone of this work. The author
also wishes to thank Don F. Towsley for adapting some of his work in
symbolic manipulation for use in ASQ. The development of ASQ was
supported in part by National Science Foundation Grant GJ-1084,

"Design and Analysis of Multi-Programmed Computer Operating Systems.'

December, 1972

iv



ABSTRACT

This work presents a computer program which automatically
analyzes certain types of queueing network models while allowing
parameters of the network to be algébraic functions. Queueing networks
are important models of a number of important systems, including
multiprogrammed computer systems and communications networks. The
theoretical work which led to the implementation of the program, the
spectrum of queueing networks the prograﬁ is capable of analyzing, and

its importance as an analytical tool are discussed.



TABLE OF CONTENTS

CHAPTER
I. INTRODUCTION .
I1. ANALYSIS OF CLOSED QUEUEING NETWORKS
III. ASQ
IV. COMPARISONS AND CONCLUSIONS
APPENDIX A: FEXAMPLES OF INTERACTIVE SESSIONS WITH ASQ
APPENDTX B: THE PROGRAM ASQ

BIBLIOGRAPHY

vi

PAGE

20

33

40

49

69



FIGURE

1.

(W21

LIST OF FIGURES

A State Transition Graph
A Classical Computer Model

Distribution Functions and Density Functions Derived From
the Exponential and Their Equivalent Exponential Stages

A Closed Queueing Network
Schematic of Control Flow in ASQ

Syntax of the Polynomial Representations in BACKUS-NAUR
Form . e e

Examples of the Polynomial Representations
Model of a Hierarchical Memory

A Graph of System Behavior

viii

PAGE

11

14

23

23

31

32

40

48



CHAPTIR I
INTRODUCTION

The richness and complexity of modern computer and communications
systems precludes intuitive or abstfact analysis of their detailed
properties. This thesis describes a computer program which allows the
systems analyst to reason at an intuitive and abstract level while
still dealing in some detail with systems of great complexity. Computer
and communications systems are modeled by systems analysts and designers
in order to evaluate the effects of changes in the system and to
anticipate the desirability of possible system configurations.

Queueing networks are important models of these systems.

A computer network can be modeled as a network of interconnected

servers and their queues, through which jobs are routed in a probabilistic
fashion. Servers are system resources; central processing units,

memory and channels, for example. Jobs in the system compete for

service at these finite resources, resulting in jobs queueing up for
service at the various devices. Communications networks can be

modeled as queueing networks because of similar properties.

Both simulation and analytic techniques are used by the
analyst in evaluating queueing network models. During the preliminary
stages in analyzing a system simulation techniques are too costly and

too slow. The program presented in this work automatically analyzes

queueing network models by analytic techniques. Although the class of



(8]

queueing networks analyzable by the program may not include an exact

model of the desired system, an easily and quickly obtained automatic
analysis of a network which is a well characterized approximation to

the system is frequently preferable‘to a more detailed and expensive

simulation study.

The computer program ASQ, for Algebraic Solutions to Queues,
departs notably from previous work in automatic queueing network analysis
in two ways. Firstly, the parameters defining the queueing network may
be analytic functions or numerical values. The program responds to
queries on system performance with the appropriate algebraic or numeric
result. Its answers are exact. Secondly, the program allows the
analyst to construct an almost arbitrary queueing network for analysis.
The network is composed of servers, queues, and their probabilistic
interconnection, any of which can be changed by the user in real-time.
This gives the analyst considerable freedom in constructing a model
best suited to his purposes.

Certain queueing networks may be analyzed as Markov processes.
Chapter II describes Markov processes and the classic method of their
analysis. The class of queueing networks which can be described as
Markov processes and also analyzed by ASQ is defined. The equations
characterizing these processes, and an approach to their solution
suggested by Chandy [1] are then presented.

Chapter II1 describes the ASQ system in detail. The format

for representing a queueing network to the program and the set of



queries evaluating the network the uscer may address to the program
are given. The representations for algebraic information, both for the
user and within the program, are discussed.

The last chapter describes related work done in the field of

)

automatic analysis of Markov processes, comparing those approaches with
ASQ. Conclusions on the limitations, applications, and extensions of
ASQ follow.

Appendix A gives examples of interactive sessions with ASQ

which might prove valuable to prospective users. Appendix B is a

listing of the program itself.



CHAPTEL 1T

ANALYSIS OF CLOSED QUEUEING NETWORKS

Markov Processes

A finite state continuous parameter (stochastic) process
is a representation of a system which, at any time, is in one (and
only one) of a finite number of possible states and which, at any time,
may change to some other possible state. The transitions between
states is governed by probabilistic laws. Figure l, a state transition
graph, depicts such a system. Each state is numbered and the system
can move from state i to state j if an arc is drawn from state i to

state j.

Figure 1: A State Transition Graph

Let us denote the probability of a transition between state
i and state j at time t by Pij(t)' Consider that at time t, the
system is in state Sa and at time tb the system is in state Sb' A

process is called stationary Markov if it meets two conditions:

1. The probability that the system is in state Sb at time

ta is dependent upon the interval tb—ta but independent



of the time ta, which is to say the probabilistic
laws governing the state transitions do not change with
time.

2. The above probability depends upon the state Sa’ but not

upon the manner in which the system reached state Sa'
This is the Markov property.

There are four types of Markov processes. We will be
concerned with one - the discrete state continuous transition case,
as certain types of closed queueing networks can be represented as
such a process. Transitions between states may occur at any (continuous)
time. A process is Piosson if a transition between states occurs
randomly but at some fixed average rate . The fact that A is fixed
satisfies condition (1). Condition (2) is satisfied if the probability
of finding the system in some state at some random time is not a function
of the preceding state of the system. These concepts can be developed
mathematically to obtain the probabilities of finding the system in a
specific state at some random time.

The condition that the transition from state 1 to state j
occurs randomly at some fixed average rate kij implies that if the
system is in state i at time t, then the probability that the system
transits to state j in some time interval At is

Aij At + o(At)
where o(At) is the probability that the system moves through some

intermediate states to reach state j in time At. Note that



o(ht) _

lim X

At>0

0. (2.0)

Given that Pj(t) is the probability that the system is in state i at
time t, we can obtain the Pj(t + At) that the system is in state j
at time t + At in the following manner. The system will be in state
j at time t + 4t if any of the following events occur:
a) The system is in state j at time t and does not transit
out of that state during the succeeding time increment At.
b) The system is in some state i1 at time t and transits
so as to be in state j at time t + At.
By (2.0) we will ignore higher order terms in At. The equations of

balance for the m state probabilities are then

P.(t + At) = P, (t)(1 - ,2, A., At) + ,Z_ P.X,., At 2.1
J( ) J( )¢ ity T3t ) i#j iij (2.1
The first term on the right-hand side expresses the probability of
events (a) and the second term the probability of events (b). If

we define

Ay, = - .E. Ayi for all j

we see:

P.(t + At)-P, (t)
i A

YA
At 1 1] Py ().

Letting At » 0, we take the limit to be

ap, (t) Iz“
—— = Lh Ay Pi(t) j=1,...,m. (2.2)

The set of differential equations (2.2) together with the



set Pj(O) of initial conditions definuvs the time-dependent state
probabilities. These equations may be stated in matrix notation. Let
P(t) be the system state row vector where Pi(t) has its usual definition.
Let the matrix Q be defined by

Oy Tty BF

Q..
ii

I

-l b 1Ak
K

Thus (2.2) may be expressed as

dP(t) _

T P(t)Q. (2.3)
Also,

m

) P, (t) = 1.

i=1
If the coefficients of the Pi(t)s are bounded and independent of t,
then the equations have a solution and the system will eventually

reach an equilibrium or steady state [24]. That is, the probabilities

Pi = lim Pi(t)

et

exist, according to the general ergodic theorem for Markov processes,
and are independent of the initial conditions of the system. Pi is
the fraction of time the system spends in state i at steady state.
(2.3) is then

dP(=)
dt

= P(oo)Q = 0.
The set of Pi for the system is the most detailed knowledge
of the system's behavior we can obtain. All other desirable equilibrium

information about the system can be obtained from these steady state

probabilities. Upon getting (2.3) we can find the Pi(w) by the



following method. Let Si be the matr.x resulting from the replacement
of the i1th ¢olumn of Q by the column consisting entirely of ones. This

leads to the system of equations

P(») Si =00 ...010 ... 0]

]

with the 1 in the jth place. Assuming Si to be nonsingular we obtain
Pe) =[00 ... 010 ... 013;1.
Thus P(w) is the ith row of S;l.

The inversion of the matrix Si is an extremely difficult task
for non-numerical values of the Aij’ even if the Aij are simple
analytical functions of one variable. The reason for this is the fact
that the number of elements in the matrix increases factorially with
the complexity of the process. Using symbolic manipulation techniques
now available, the inversion may not be tractable. Analytical
solutions for P(») have been obtained by inspection [9,10,19,25] if
the structure of the process has a regularity that lends itself to
easy analysis. Engelman and Kleinman [12] have developed a program,
using the MATHLAB system, tO invert the analytical matrix Si' Matrices
larger than 4 x 4 can not always be inverted because of storage
requirements or singularities. Alternatively, if the coefficients
of (2.3) are numerical then the numerical Pi are obtainable. Again,

the factorially increasing size of Si determines a computational limit

to the complexity of the processes which can be solved.

Queueing Networks

Queueing theory is a branch of probability theory concerned



with the application of mathematical «wnalysis to models composed of
servers (or devices) and the queues of customers (or jobs) that await

service. A queueing network is a system of interconnected servers and

queues. To every server there is associated a queue. For ease in

¥
exposition, a server and its queue will be called a node. Upon
completion of service at a device a customer leaves that device's
queue and enters the queue of another device, there to await service.
Customers move from queue to queue in a probabilistic fashion. This

is reflected in a set of branching probabilities. The probability

that a job enters node j upon completion of service at node i is the

branching probability pij' The amount of time a customer is served
at a device is governed by a probability distribution, the service

distribution for that device. The manner in which customers enter,

wait, and are served in a queue is the queueing discipline associated

with that queue. An example of a queueing discipline commonly
encountered is the First Come First Served (FCFS) discipline.

A queueing network is closed if jobs neither may enter nor
leave the network, thus making the number of jobs in a closed network
a constant. A queueing network in which a job enters the network
precisely when another job exits can be considered closed, as the
number of jobs in the system remains constant. The closed queueing
networks we will consider can be drawn so that all jobs must pass
through two common points, an origin and destination. A job enters
the network from the origin, traverses the nodes, and exits via the

destination. A job queues up for and receives service at the nodes.



10

The branching probabilities define the probabilistic routing of a job
through the network. Upon reaching the destination, a job immediately
re—enters the network via the origin. The destination to origin path
means jobs continually circulate through the queueing network. We

y
shall call a queueing network "loop-free'" if a job can obtain service
only once at any device before reaching the destination. This means
that the only loop in the network is the destination to origin to
destination loop.

A closed queueing network of this type can serve as a rough
model of some computer systems [7,10,25]. Typically, the model
restricts itself to two types of devices, central processing units
(CPU) and input/output (I/0) devices. An example taken from Baskett
[25] is a closed queueing network composed of one CPU and several 1/0

units, which have exponential service distributions (Figure 2).

The network is labeled according to the conventions described.

Queueing Disciplines

We shall consider three queueing disciplines:

First Come First Served (FCFS)
Jobs enter the queue and receive service in the order of
entry. The device services a single job at a time until
completion of the job's service need (to completion of its
service request).

Processor Sharing (PS)

The PS discipline is the limiting case of the zero-overhead



queue server

— [[H®

1/0 device

gueue queue server

server

P —

©+

S’pm
branching probability

=1

1/0 device

queue server

; ) 1/0 device
Py,"P137 Py

O: origin D: destination

Figure 2. A Classical Computer Model



12

Round Robin Fixed Quantum discipline as the time quantum
becomes arbitrarily small. All jobs in the queue receive
service simultaneously — if n jobs are being serviced by

the device then each job receives service at 1/nth the

1}

rate afforded a single job by the device, n > 0.
Last Come First Served Preemptive Resume (LCFSPR)

The queue is a stack. The job most recently entering the

queue receives service to completion of its service request

or until it is preempted by another job entering the queue.

When a job is preempted it is 'pushed down" to await service.
The state space of the system is the cartesian product of the states
of its individual queues. A network state is the number of jobs in
each of its nodes.

The implication that all service times of a network be
exponentially distributed is frequently too severe a restriction. A
recourse is to replace a "non-exponential' service process by an
interconnection of several artificial exponential processes [23].
Unfortunately, the cost of this approach is the addition of more state
variables 1in order to make the holding times of the states memoryless.
This increases the complexity of the model to the degree that the
concept of state is no longer intuitive to the analyst and analytic
tractability is lost. A host of service distributions is available
by this strategem, namely all with a rational Laplace transform (RLT).

Figure 3 shows several derived distributions which find important



13

applications in the modeling of computer systems and their equivalent
exponential stages. A job's traversal through this network of stages
is probabilistic, reflected by branching probabilities. The time
spent in service by a job at each sFage is exponentially distributed.
The average service time of the derived distribution is the sum of the
average service times at each of the stages, weighted by the probability
that a job reaches that stage. The additional state variables designate
which stage is "active' for each of the jobs receiving service in
the network.

Some queueing disciplines allow us to forego the cost of
the additional state variables with the "stageing" technique. Chandy
showed in [1,5] that queueing networks of LCFSPR and PS nodes behave
in the same manner for all RLT service distributions. This result
means that FCFS networks with memoryless service distributions and
LCFSPR and PS networks with RLT service distributions behave identically
for equal network topologies, branching probabilities, and mean service
rates, even if they must be analyzed differently. The remainder of
this section analyzes a FCFS network with exponential service
distributions - which is equivalent in behavior of a network arbitrarily
comprised of FCFS queues with exponential service distributions and

PS and LCFSPR queues with RLT service distributions.

The Balance Equations for a Closed Queueing Network

In this section we apply the methods of solution of Markov

processes developed previously to the class of queueing networks



- {
1O |
B i
- "
p(ry [ :
L. b 1
0.5+~ |
5 !
' Q
{
| S ) : 1 1 1
oO ! 2 3
ut
[
1.0 <
a
| d
L d
Ldp P
dr i
i I Il -
0 [ 2 3 ut
OO0 020
2 22
n >
Figure 3 (from Morse). Distribution functions and density functions
derived from the exponential and their equivalent exponential stages.
The mean of each distribution is 1/u. (a) Exponential (b) Hypo-

exponential of degree 2 (c) Hypoexponential of degree 5 (d) Hyper-
exponential, second order.



15

defined in the preceding section.

For an arbitrary, closed queueing network the set of regular
Markov balance equations must be solved imn order to obtain the steady
state probabilities of the queueing‘system. A state of the system

can be represented by a state vector (n .,nL) where n; is the number

10

of customers in the ith node and there are L nodes in the network.
The number of customers circulating in the network is at all times the

L
constant N, thus E n, = N.

i=1

Each vector is a state in a finite-state Markov chain.

Transition paths between Markovian states exist due to the network
paths between nodes. The system changes state when a customer moves
from one node to another. Consider the queueing system to be in some

..,n_). The

—l,nj+1,. L

1

N, n
1_17’ I

state S, = (n n. +1l,n
i i

EEERE 41 j-l’nj

svstem can move to state Sj = (n,,...,0 1 +1,

1 i-1 T M e

nj+l""’nL) if a customer, finishing service at node i, goes to node j.
This transition will be referred to as the transition from state Si

to state Sj due to the movement of a customer from the ith to the jth
queue. Note that, in general, Si can be entered from many states and
that the system can transit from Si to many other states. The system
can move out of state Si in as many ways as customers can exit the

nodes populated according to the state vector of Si. The system can
move into some state Sj from any state in the set {Si:pij >0; 1i=1,L},

where Pij is the branching probability from node i to node j.

A Markov process achieves steady state if it forms a finite,



16

irreducible, Markov chain [17]. The state space is obviously finite
as the total number of jobs in the system is constrained to be a
constant. The states form an irreducible chain because all states
communicate, i.e., a state transition path exists between any two
§

states because the jobs recirculate through the network. So the
system achieves steady state.

At steady state, the rate at which the system transits
from some state S must equal the rate at which it transits into S.

Denote the steady state probability of state (nl,...,nL) by P(nl,...,n ).

The Markovian equations of balance for a state are thus

¥

L
121 % P(nl’ LR ’nj_l’nj+l7nj+l, LAY ,ni—'l’nj—l’ni"*'l, LI S )n J)Uj})ji

L

= i£1 P(nl,...,ni_l,ni,ni+1,...,nj_l,nj,nj+l,...,nL)ui (2.4)

where Pji is as defined and uy is the average service rate of node i
(and is thus the inverse of the mean service time By of node 1i).
These coupled linear equations can be solved by methods already discussed
or similar matrix techniques if the branching probabilities and service
rates are restricted to numerical values. Jackson [19] and Gordon and
Newe]l [9] found analytic solutions to (2.4) if the service distributions
of the devices are exponential.

For the class of closed queueing networks already defined a

much stronger condition holds, the local balance condition that:

The rate of transition into any state, due to the



17

movement of a job into the ith queue is equal
to the rate of transition out of that starte,

due to the movement of a job out of the ith

queue. [1] )
This condition was discovered in 1971 by Chandy and developed to
include many types of queueing networks [1,5], of which the networks
considered in this work are a subset. The fact that the local balance
condition holds true allows us to equate a single term on the left-
hand side of (2.4) with a single term on the right-hand side of (2.4);
in effect, "loosening' the coupling of the equations. Following is
the proof that (2.5) are sufficient for (2.4) and that solutions of a
very simple form exist.

Given the local balance equations for the steady state

probabilities:

Lk ok Ky sk R

) Pl nonky okgtloky ),

= cee oK, 1seee,k, L k.t S iasere syt , 2.
P(kl, ’kj—l’kj kJ+l ,kl—l kl l’k1+l KL)u1 (2.5)
which state that the rate of transition into state (kl,...,kj_l,kj,
e + e i i
kj+l’ ’ki—l’ki l’ki+l’ ,kL) due to a customer moving into queue

i equals the rate of transition out of the same state due to a job
L

moving out of queue i. Note 2 ki = N-1. We assert that (2.5) == (2.4)
i=1

simply by adding. We can prove solutions (2.5) exist of the form

L s
- . I btm, 1
P(nl,...,nL) NORM i1 [ 1] (2.6)
u,
i
where NORM = 2 P(nl,...,nL) and btmi is to be defined.

all states



Define a term E such that

L btm, ki

E = NORM - 1 -
i=1 ui

Then the left-hand side of (2.5) is

R k.t e
Z P(kl) )kj_l’r\'j l’kj+l’ b
]

k-1
Y E -« (u,)d - btm *u
3 3 J

]

]

E - btm, * p..
Z 3 le
J
and the right-hand side is

e 2.,k .
P(kl, ij_l’kj’ j+1’

i-1

ji

cok ok Lk

18

k,,k S
bl ,kL)Ujpji

i’ i+l

i+1’ "

so if we let btmi = E . btmi be any function such that

btmi = Z btmi pij
N}
then (2.6) solves (2.5).

L

.,k )ui

That the local balance equations are sufficient conditions

for the usual balance equations can be shown by merely adding all L

cases of (2.5), thus

L
YooY Pky,eeank, Lk ALk o,
- +
=1 1 i-1’73 i+l
L
= ) P(k,,..e5k, Lok kK
121 1 §-1""3° j+1 i
By changing notation we obtain:
L
2 5 P(n,,...,n, ,,n,+l,n, .,...,
i=1 j 1 i-1’7j j+1i
L
= jzl P(nl""’ni—l’ni’ni+l" .,0

Q.E.D.

k k
ki—'l, i’ i+l’ ’ L)UJ
L
ni_l,ni-l,ni+l,...,nL)u
j_l,nj,nj+l,...,nL)u



19

In general there are L terms on either side of (2.4). Thus
one equation of the form (2.4) gives rise to L equations of the form
(2.5). Many of the equations of (2.5) may be redundant. The proof
shows that (2.5) are sufficient, bug not necessary, conditions for
(2.4) to hold. Intuitively, btmi is the probability that a job reaches
node i in a single traversal through the network, with the btm of the
origin and destination being 1.

Chandy has shown [1-5] that local balance holds for a wide
variety of queueing networks. These queueing networks may be open
or closed, with or without the "loop-free' property, and customers may
be partitioned into "types'. Each type observes different branching
probabilities and service distributions, while obeying the same network
topology. Solutions of form similar to (2.6) can be obtained to all

queueing networks for which local balance holds.



CHAPTER ITI

ASQ

The program ASQ accepts a representation of an arbitrary
closed queueing network of the class defined in the previous chapter.
All jobs are assumed to be of the same type, that is, branching
probabilities and service time distributions are independent of the
job. Queues are assumed to be of infinite capacity and FCFS, PS, or
LCFSPR. Nodes that are FCFS must have exponential distributions.

Any service distribution with a rational Laplace transform is accepted
for PS and LCFSPR nodes. The service distribution for a node may be
dependent upon the number of jobs in its queue. If so, the mean
service time for each number must be specified. This can be thought
of as there being more than one device servicing the queue, with the
devices in parallel. 1In the following figures this dependency is
represented by parallel devices, where each device serves only one job
at a time. A node is specified by its queue's label q,- Devices do
not possess labels.

A probabilistic path between nodes is specified by an edge,
the triple (qi,pij,qj) where Py is the previously defined branching
probability. Such an edge specifies the existence of a;s qj, and the
unigque pij' The service distribution(s) of a node q is specified by

a list of mean service times ul,uz,...,um, m > 1, where uj is the mean

20



21

service time when there are j jobs in the queue. For j Z m the mean
service time is W This corresponds physically to m parallel devices
servicing the queue. A state of the network is (nl,nz,...,nL) with

o, the number of jobs in node 4 and L the number of nodes in the
'L
network. As the network is closed 2 n, = N, where N is the total number
i=1
of jobs. The integer index i for node label q is assigned to each

node according to its position in the template, which orders all

node labels in a list (ql,qz,...,qL). Branching probabilities and

mean service times are polynomials, which are discussed in the next

section.

A network is described to the program in the following manner.
Program responses are merely indented from the left whereas user
responses are not. The example is taken from Figure 4. 1t may be
helpful to refer to the program flowchart in Figure 5.
%*INPUT EDGES: NODE/PROBABILITY/NODE;

ORIG/X/Ql;
ORIG/1-X/Q2;
Q1/0.43/Q3;
Q1/0.57/Q4;
Q2/2*M/Q3;
Q2/V/Qb;
Q2/1-2%M-V/Q5;
Q3/1/DEST;
Q4/1/DEST;
Q5/1/DEST;

>3

o,
3

The character is the line delimiter for the user,

while "»" signals end of user input for that passage.



22

*INPUT MEAN SERVICE TIMES: NODE/TIME (1 JOB)/TIME (2 JOBS)//;

Q1/0.183/;
Q2/W-W~2/0.5%W-0.5%W~2/;
Q3/W/;

Q4 /Z+5%W/ ;

Q5/1.4%W/;

e d 5 y

At this point the program checks the network for any nodes
not reachable from the origin and any nodes from which the destination
cannot be reached. If no such nodes are found the program goes into

command mode, in which user commands are accepted and evaluated. If

such nodes are found the network is not properly connected and an
error message is output to the user. When this occurs, only the network

changing set of commands is accepted as user input (such as dedge and

amean). Upon the receipt of a command not in the network changing set,

the validity of the network is again checked, and the above procedure
repeated if necessary. When ASQ is in command mode any network changing
command is accepted, but a valid network must be represented in the
program structure before any of the non-network changing commands is
evaluated. The network changing commands are useful because they allow
the user to more strongly interact with the network model. After
the evaluation of some network, the user may change the network on the
basis of that evaluation without having to re-input a slightly
different network in its entirety. This is a valuable trait for a network
design process.

After an analyzable network is obtained, ASQ gives the user

the option of specifying the template. This is solely for the



23

Q1

origin

Q2

NETWORK

N =4
Q3
J
| 0
} B
i
w
J
0]
B
Q4
estl-
nation
z + 5w
Q5
1.4w

Figure 4. A Closed Queueing Network

INPUT
TEMPLATE

SPECIFY
TEMPLATE

ACCEPTABLE
NETWORK

INPUT

?

OUTRUT
ERROR

TEMPLATE

MESSAGES

BRANCH
CHANGES
MADE

INPUT
NETWORK

CHANGES

END/

Y

GENERATE
& STORE

B TERMS

[INPUT COMMANDS:

util/...
sspb/...
snrm/
tput/
tble/...

COMPUTE ¢

DESIRED

INFORMATION

Figure 5: Schematic of Control Flow in ASQ



| 24

convenience of the user, who may wish to order the state vector
representation to his liking.
*DO0 YOU WISH TO SPECIFY THE TEMPLATE ?: YES/NO;
A "yes" response requires inputting the template vector.
YES; ,

T:

(Q5,Q4,Q3,Q2,Q1);

1f the user does not wish to specify the template, one is
supplied by the program, and output with the same format. The user is
then requested to input the origin and destination labels and the
total number of jobs in the network. We again use the network in
Figure 4 as an example.
*INPUT ORIGIN LABEL
ORIG;
*INPUT DESTINATION LABEL
DEST;
*INPUT TOTAL NUMBER OF JOBS IN NETWORK
45
The labels for origin and destination, as for any node, may
be arbitrary LISP atoms. The origin and destination may be labeled
points, as in the example, or nodes. If they are nodes, then the
appropriate node label must be given. The path between the destination
and origin is implied and need not be specified.

When the program is in command mode the following commands



25

are available to the user.

Network Changing Commands:

AMEAN/qi/ul/u2/.../um;
AMFAN specifies a new mean list for a node with label q; -
If the node already exists then the previous mean list is
destroyed. If the node did not previously exist then a new node with
label 9y is created in the network.
ANEDGE/qi/pij/qj;
ANEDGE creates a new edge (qi’pij’qj)'
DEDGE/qi/qj;
DEDGE destroyes the edge with nodes a and qj.
JOBS/N;

JOBS changes the total number of jobs in the network to

N, an integer.

Evaluation Commands:

1 1 1 .
SSPB/(nl,n ..,nL)/(nl,nz,...,nL)/.../,

e
SSPB outputs the unnormalized steady state probability
for each of the specified state vectors.

SNRM/ ;

SNRM outputs the normalization factor for the steady
state probabilities.

TPUT/;

TPUT outputs the unnormalized throughput rate for the

queueing network.



IDLE/nodel/nod

ASSP/:

Other Commands

CTPL/;

END;

TBLE/ command;

26

82/"'/;
IDLE returns the unnormalized fraction of time for which

no jobs occupy each respective node in the node list,

where nodei is a node label.

¥

ASSP returns a table of all unnormalized steady state

probabilities for the network.

CTPL results in the program again asking if the user

wishes to specify the template.

END terminates command mode, with the control level

returning to interactive LISP.

TBLE is a special command, useful when some behavior

of the queueing network is desired for study as the
function of a single variable. The commands SSPB and
one attendant state vector, IDLE and one attendant

node label, or TPUT may be used for command. A
polynomial is obtained as the answer to the evaluation
command given. The user then supplies a single variable
label to the program. The user then inputs numerical

values for all other variables in the polynomial, which



27

results in the program vbtaining the polynomial as a
function of a single variable. A lower limit, upper
limit, and incremental step are then input for this
variable - resulting in a table of polynomial values
versus variable value;. The maximum and minimum values
of the polynomial, and the corresponding variable values
are also output.
Examples of the uses of these commands may be found in
Appendix A, the examples of interactive sessions with ASQ. ASQ may
also be run as a batch program, in which case the user's "responses'

to the program prompting must be anticipated and assembled into a data

file.

Polynomial Representations in ASQ

The problems of choosing a functional form for algebraic
information in ASQ fell squarely in the area of symbolic and algebraic
manipulation. Research in that field has clearly emphasized that the
form must be chosen to suit the purposes of the application. It was
decided that a polynomial in one or more variables was sufficiently
general. Rational functions are unnecessary because the algorithms
for obtaining the unnormalized steady state probabilities for polynomial
service times and branching probabilities can be formulated without
division. Normalized steady state probabilities are available to the

user by simply performing the division of the unnormalized probabilities



28

by the normalizing factor, which is also obtainable without division.
The throughput rate of a network cannot be formulated without division;
however, it can be expressed as a sum of fractions on the printed page,
the numerators and denominators of the fractions being polynomials.
Y

Such a superficial external representation is satisfactory because the
throughput rate need never be used in the program as an algebraic
entity.

There exist several forms for the internal representation of
a polynomial in many variables {11,15,21}. Because the storage for
a polynomial must be dynamic, as polynomials can be of arbitrary
complexity, and because algebraic manipulations lend themselves to
list-structured recursive techniques, a MACSYMA - like representation
[11] in the programming language LISP was chosen. A polynomial in a
single variable in this representation is a list of (coefficient. exponent)
dotted pairs [16]. Thus 3x2 + 2x + 1 can be represented as the list
(¢(3 . 2)(2 . 1)@ . 0)) with the variable x being implicitly understood.
A desirable property of any representation is that it be canonical,
i.e., unique. Thus a canonical representation of (x2 + 2x - 1) + (1 - x)
would be ((1 . 2)(1 . 1)) and not ((1I . 2)(2 . 1)(-1 . 0@ - 01« 1)).
We can impose uniqueness upon this "list of pairs' representation by
requiring that all pairs with identical exponents be combined, and
that pairs be ordered by decreasing exponents.

For a polynomial in two or more variables this structure
becomes more complex. Uniqueness may be achieved by imposing an

ordering upon the variables, such that one variable takes precedence



29

over another. For a precedence relation of x > y the polynomial
3x2y2 4+ 2yx + 1 can be structured as

(((3 .2) .22 .1 .1 .0 .0))
where each coefficient in an x-pair is a term in the next-ordered
variable y; thus ((3 , 2) , 2) corr;sponds to [3y?]x’. An important
drawback of this method lies in the fact that each algebraic term must
be considered to contain as many factors as variables. Thus for a
precedence relation u > v > w > x>y > 2 the term u-y must be
structures ul-v0~wo-xo-yl-zo which is ((((((1 . 1) . 0) . 0) . 0) . 1) . 0).
For "sparse' terms, terms of few variables, a more economical representation

is possible by explicitly stating the variables. The above example

could be structured as (u((y(l . 1) . 1)). More formally, if

P(XI’XZ" .,xn) is the polynomial P of precedence ordered variables
X 7 ¥, > > X then a canonical form can be recursively defined
as
e
= i
P(xl,...,xn) izl Pl(xl,. ’Xn—l) x 1,

where e>e,> .. >e, > 0 and the Pi(xl""’xn—l) are all
non-zero.
In the internal polynomial list, X is the first element in a list of
dotted pairs, the first element of a pair being Pi(xl,...,xn_l) and
the second element the integer ei.
Obviously there is a tradeoff between implicit and explicit

internal representation. A polynomial in many variables but with

sparse terms is better represented in the explicit manner, while



30

polynomials in few variables or with non-sparse terms are better
represented in the implicit manner. The explicit representation was
chosen for ASQ as the former type of polynomial was anticipated to be
the more common. A formal syntax is given in Figure 6 for the
Y

external polynomial representation, which is the representation for
user/program interaction, and the internal program representation of
polynomials. Routines in ASQ make the appropriate translations
between external and internal representations. Examples of these
representations can be found in Figure 7.

The fact that a polynomial can be recursively defined
implies that the operations of addition and multiplication upon two

polynomials can be achieved by recursive algorithms.

r e,
= - l
As P(xl,...,xn) .Z Pi(xl""’xn—l) X
i=1
r
then Pl(xl,...,xn)+P2(xl,...,xn) = izl [Pli(xl’ ’Xn—l)
. i
+ Py ey P Xy
r s
% =
and Pl(xl,...,x ) PZ(Xl’ ’Xn) 'Z Z Plr(xl’ X
i=1 k=1
ei+ek
*
P21 (Xl, e ,Xn_l)] X
where e1 > e2 > L. > er > 0 and el > e2 > ... 2 eS > 0.

Again, the recursive features in the programming language LISP make

the implementation of these algorithms straightforward.



External Representation

<polynomial> ::= <term>Isaddop>sterm>}*

<term> ;:= <factor>{<mulop><factor>}*

<factor> ::= <primary>{t<integer>}

<primary> ::= <number>‘<variable>|(<polynomial>)
<number> ::= <integer>|<integer>,<integer>
<variable> ::= <letter><char>*

<char> ::= <letter>‘<digit>

<integer> ::= <digit><digit>¥

<addop> ::= +|-

<mulop> ::= %

Blanks may appear anywhere within a polynomial

Internal Representation

<polynomial> ::= <number>l(<variable><term><term>*)
<term> ::= (<coefficient>-<exponent>)

<coefficient> i:= <polynomial>l<real number>
<exponent> ::= <integer>

<variable> ::= <letter><char>*

<char> ::= <letter>|<digit>

Figure 6. Syntax of the Polynomial
Representations in BACKUS-NAUR Form



32

Precedence Relation: u>v>w>x>y>z

X

(X (1.0000000000 . 1))

1.565%%X+2

(X (1.5650000000 . 2))

1.5%X42%Y42 + (1.4 + Y)*X

(X ((Y (1.5000000000 . 2)) . 2) ((Y (1.0000000000 . 1)
(1.400000000 . 0)) . 1))

25X+ 340 . 9% X+ 2*Y-2%Y*Z+1

(X (2.000000000 . 3) ((Y (0.9000000000 . 1)) . 2) ((Y¥ ((z (
-2.0000000000 . 1)) . 1)(1 . 0)) . 0))

X42 + Y42 + Z42 4+ U43 + Vté

(U (1.0000000000 . 3) ((V (1.0000000000 . 4) ((X (1.0000000000 . 2) ((
Y (1.0000000000 . 2) ((z (1.0000000000 . 2)) . 0)) . 0)) . 0)) . 0))

X*Y*Z*U*VAY

(U ((V (W ((X (Y ((z (1.0000000000 . 1)) . 1)) . 1)) . 1)y . 1)) .1
))

1.3*%X45 + 2.9%X43 + 0.33%X42 + X + 1
(X (1.3000000000 . 5) (2.9000000000 . 3) (0.3300000000 . 2) (
1.0000000000 . 1) (1 . 0))

Figure 7. Examples of the Polynomial Representations



CHAPTER IV

COMPARISONS AND CONCLUSIONS

Other Work in Automatic Analysis of Markov Processes
!
Wallace and Rosenberg [14] presented a program in 1966

capable of analyzing any closed queueing network that could be modeled
as a finite state Markov process. Their approach was to obtain the
qumerical matrix characterizing the Markov balance equations of the
network and then manipulate the matrix by a power-iteration technique
to obtain the steady state probabilities. Storage for the elements
comprising the matrix was the limiting factor of their program. A
sparse matrix representation was used and some of the program implemented
in machine code, with the result that 1,000 state networks could be
analyzed numerically. The solutions were not exact, but iterations
were made until the solutions were as exact as desired. The thrust of
their work was to provide a cheaper alternative to the analysis of
computer systems than simulation. They argued that as computer systems
become more complex and more susceptible to interference between tasks,
simulations become either too expensive or their probability estimates
too imprecise, since accuracy incurs the expense of very large samples.
Fngleman and Kleinman [12] developed a program in 1972 that
obtains analytic solutions of finite state Markov processes. Input
to their program consists of the state transition matrix characterizing

the Markov process, the elements of the matrix being analytic functions.

33



34

Solutions to the steady state probabilities are obtained by standard
matrix techniques, with the operations being supported by MATHLAB,

a system for symbolic computation. This approach is similar to that of
Wallace and Rosenberg, only symbolic rather than arithmetic operations
are performed. Thus the usual stor;ge problem is present, only made
worse by the additional storage requirement of the symbolic coefficients.
Also, the symbolic coefficients make the advantageous power—-iteration
technique impossible. These limitations make the analytic solution of
all but the most trivial closed queueing networks infeasible.

ASQ attacks the analysis differently. For those closed
queueing networks for which local balance holds, the steady state
probabilities are obtained from the network topology, rather than from
a transition matrix. Thus a large matrix need not be constructed nor
manipulated. FEven the states of the network need not be stored, only
enumerated. The user has the choicé of numerical or algebraic solution.
For the later approach a network topology need be analyzed only once
by the program, as the solutions are functions of the algebraic network
parameters. The solution of the network for any particular values of
branching probabilities and mean service times 1is obtained by a simple
substitution into the polynomial.

Whether it is to the advantage of the user to use values or
functions or a combination of both for the network parameters depends
upon the problem. Suppose it is desired to find the maximum throughput

rate of a network with n unknown branching probabilities. Assume the



35

values of the mean service times are rnown. The analyst must therefore

search an n-variable space for the throughput maximum. He may assign

aumerical values to the probabilities and obtain a value for the

throughput every time the value of a parameter is changed. Taking this
|

approach means ''solving' the network at each iteration of the search.

The other approach is to assign simple variables pl,pz,...,pn to the

probabilities, and then obtain the throughput polynomial P(pl,pz,...,pn)

by solving the network once. The polynomial is then evaluated for its

maximum. Which approach is the more practical depends upon the nature

of the polynomial, a function of the complexity of the network topology

and the number of jobs in the network. Also, the number of iterations

necessary in the first approach, must be considered. The choice of

which course of analysis to pursue in general is in the realm of

numerical versus symbolic analysis. The advantage of algebraic

solutions is that they contain a much greater amount of information

about system behavior than a set of solved numerical "network configurations'.

This additional information allows the asymptotic behavior of the network

to be easily derived from a polynomial. The disadvantage of algebraic

solutions in this case is that the particular information the user

might desire can too often be buried in pages of lengthy polynomials.

Where the tradeoff lies between numerical and symbolic evaluation of

the class of equations characterizing queueing networks is a question

for further research.



36

Applications

ASQ was envisioned as a recourse to the time-consuming
efforts required in constructing and evaluating models of multi-
programmed computer systems. Beforg the realization of local balance
the system of linear equations characterizing a queueing network of the
type in Appendix A with PS and LCFSPR disciplined queues could require
a great deal of work toward a solution. Local balance reduced the
complexity of the system of equations, transforming the nature of the
analysis into still tedious algorithms. ASQ implements the algorithms.
The analysis of models now requires little more of the analyst's time
than the description of the network. Freeing the analyst from the
characteristic equations raises the level of abstraction in the analysis.
ASQ 1is then an analytical tool, and importantly, one that can be used
by that naive analyst -- the student. As a convenient and interactive
teaching tool, ASQ allows students to develop an intuition for network
analysis -- and at a much lower cost than simulation.

Another application for the program is the verification of
simulation studies. Analytic techniques are very helpful in simulation
validation in at least two ways. The simulation model must be constrained
to be analytically tractiable or a simpler model used for validation.
Firstly, when analytical results and simulation results do not agree an
error in code can be suspected in the simulation program. Secondly,
analytical results are useful in the justification of running times
(i.e., has the simulation run long enough to produce statistically

reliable results?) An estimation of valid times can be obtained by



37

running the simulation until the simulation results agree. Lasseter [20]
used ASQ to verify a simulation of a multiprogrammed computer system.
Foster [22] verified a simulation study of a computer memory hierarchy
with an analysis of his model performed by ASQ. (A simplified version

]

of Foster's study may be found in Appendix A.)

Limitations

A severe limitation of the program is the storage requirement
for algebraic analysis. Even simple network topologies generate large
polynomials due to the many products in the algorithms. There is also
the classic nagging doubt that '"90% of the computation is spent on 10%
of the important information', in our case, the important characteristics
of system behavior. One recourse would be to implement decision routines
to discard "non-significant" terms during the polynomial multiplications.
This is impractical unless bounds are placed upon the ranges of the
variables in the analytic functions by the user -- which begins to
defeat the purpose of algebraic analysis, its generality. An obvious
recourse is to constrain all network parameters to numerical values,
and settle for a set of numerical points on a graph. This, of course,
is what has been done previously. The ASQ algorithms are still faster
than the matrix methods currently available.

The most important limitation is in the generality of acceptable
queueing netwogks. Many important queueing network models lie outside
the realm of "local balance." 1In some instances it is possible to

develop an analyzable network which behaves in almost the same manner



38

as the unanalyzable network and apply the results. In general, this

is not the case.

Extensions

ASQ has proved a useful tool in aiding the systems analyst
in studying certain kinds of queueing systems. This work clears the
way for the construction of a program to analyze all queueing network
models satisfying local balance, one in which the punitive effect of
some limitations in ASQ can be avoided with care. Work has begun on
this extended version of ASQ [261], implemented in the programming
language FORTRAN. Use of a compiled, rather than interpreted, language
will result in shorter runniné times for analyses. Another run-time
advantage results from the network evaluation routines in the FORTRAN
ASQ being partitioned so that evaluation proceeds in either a numeric
or an algebraic mode. This means that the algebraic manipulation
routines need be loaded only if necessary, resulting in considerable
storage savings when only numerical results are required. Algebraic
operations are handled by a slightly modified SAC-1 system {15 1.
The usual wealth of trivial improvements gained by hindsight is being
incorporated into the extension. Improvements in processing efficiency
for the FORTRAN ASQ and its ability to analyze a more complex class
of models will result in solutions richer in detail being made available
to the analyst. Further extensions in analytic capability are anticipated
as new developments in queueing theory result in new algorithms for

model evaluation.



39

It is important to note that the implementation of a practical
analytical tool was possible only because of a theoretical advance.
The author feels that the scope and direction of future systems for
automatic analysis in the field of queueing theory are tightly bound

)

to theoretical developments. The Gordian knot of factorially increasing
complexity can not be resolved by new programming techniques nor
improved machinery, but only by unifying assumptions that raise the
level of abstraction in which we consider the problem. Furthermore,
breakthroughs in theory must be made available to the practicing
systems analyst such that they can be put to use simply and effectively.
Theory is a means to an end: the better analysis of systems, and

theoretical advances must be rendered into readily usable forms.

ASQ is a step in that direction.



APPENDIX A

EXAMPLES OF INTERACTIVE SESSIONS WITH ASQ

Two examples are provided. In the first, a queueing network
model of a memory hierarchy is analyzed (Figure 8). The purpose of
the analysis is to determine the optimal partitioning of accessable
data for a maximum "fetch' rate; that is, the partition of data
between the two drums so that fetches from main memory proceed at an
optimal rate. This corresponds to obtaining the value of x in the model
for which the throughput rate is maximized. The branching probability
x is the probability that a fetch is aimed at the fast drum. The

aumbers in the figure are the unitless mean service times for each device.

r— +
fast drum
|
main memory X 4.30&2‘10'3
1+190-6 1ex slow drum

i

1.70042°107

Z

Figure 8. Model of a Memory Hierarchy

ASQ determines the throughput of the closed network as a function of x

for degrees of multiprogramming 3 and 4 during the session. The model's

40



41

throughput rates as a function of x for degrees of multiprogramming
1,2,3, and 4 are plotted in Figure 9.
In the second example a queueing network model with the same
network topology pictured in Figure‘A is described to ASQ. All
network parameters are numeric. Various commands are exercised throughout

the interactive sessions for the purpose of demonstrating their usage.



NETINO)

«INPUT EDGES: NODE/PRORARILITY/NODE:

ORIG/Z1/NMAINNFEN; .
MAINNMEN/X/FASTDRUMS Y

MAINMEVK /7 1-X/SLOWDRUN;
FASTDRUN/ ] /DEST
SLOWDRUNMZ1/DEST:

ladH

*INPUT MEAN SERVICE TINMES: NODE/TINME (1 JOK) /TIME (2 JOBS) 7/ /3;
MAINMEM/0.000001/;
FASTDRUNM/70.0043042/;
SLOWDRUN/0.0170042/:
~

TEMPLATE=(MAINVMENM FASTDRUM SLOWDRUNM)
*INPUT ORIGIN LABEL

GRI1G;

*INPUT DESTINATION LABEL
DEST:

*INPUT TOTAL NUNMBER JOBS IN NETWORK

3

*D0 YOU WISH TO SPECIFY THE TEMPLATE >: YES/NO;
NO;

T= (MAINFEM FASTDRUM SLOWDRUM)
*COMMAND

SSPR/C1,1,1)7(2,0,137(3,0,0)/;

(11 D
~0«731H94TTEL4E-10*X12 + 0.731894T764E~10*X

(2 0 1) .
-0+1700420000E-13*X + 0.1700420000E~13

(3 0 0)

1 -CO0O0000000E~-18 .
*COMMAND

SNRN/:

1/ -0+3907395732E~5%X13 ¢ 0.1257612650E~4+%X12 + =0.1350590349E-4%X
0.4916931460E-5 ’



*CONMMAND

TPUT/:

UNNORMALIZED THROUGHPUT RATE )

+( 0+23447947T6E-9%X12 + -0.5051088576E~9*X + 0.2891598228E-91/(
1.0000000000E-61

*CONMNMAND

IDLE/FAINVMEN/FASTDRUM/ SLOWDRUN/

UNNORKMALIZED FRACTION OF IDLE TINME OF NODE MAINNMEM
~0.3907395732E-5%X13 + 0.1257569202E-4%X12 + -0.1350539838E-4#X
0.4916642300E-5

UNNORMALIZED FRACTION OF IDLE TIME OF NODE FASTDRUN
~0.4916642300E-5%X13 + 0.1475021604E-4%X12 + -0.1475050520k-4%X
0-491£931460E-5

UNNORMALIZED FRACTION OF IDLE TIME OF NODE SLOWDRUNM
0.7974020163E-7#X13 + 0.1852613764E~10%X12 + 0.4304200000E~-142%X
} «000000N0000E-18
*COMMAND

ASSP/;

(0 0 3)
c0+4916A42300E-5%X13 + 0.1474992690E~4#X12 + -0.1474992690E-4%X

0.4916642300E-5

(01 2)
O-1244528516E-5*X13 + -0.2489057031E-5%Xt2 + 0-1244528516E-5%X

(1 02)
0.2R9142B1TEE~9%X12 + ~0.5782856353E~9*X + 0.2891428176E-9

(02
-0.315022149TE-6*%X13 + 0.315022149TE-6%X12

€y 11
~0<731894TTOELUE-10%Xt2 + 0+731B347764E~10%X

(2 0 12
-0.1700420000E-13%X + 0.1700420000E~13

(0 3 0
0.7974020163E-7%X13

(1 2
0.1852613764E-10%*X12

(2 1t 0
0.4304200000E~14%*X

(3 0 0
1.0000000000E~-}8B

43



*COMNMAND

TELE/TPUT/:

*VAR =
X3

LOWLIM/HIGHLIM/STEP =

001704970053

1.0000000000E-1
0.1500000000
0.2000000000
0.2500000000
0.3000000000
0.3500000000
0.+4000000000
0.4500000000
0.5000000000
0.5500000000
0.6000000000
0.6500000000
0.7000000000
0.7500000000
0.8000000000
0.8500000000
0.9000000000

*VAX 0.9000000000
*¥IN 1.0000000000E-1

*CONMNMAND

TBLE/TPUT/;

*VAR =
X3

LOWLINM/HIGHLINM/STEP =

0.9/1.00/70.013

0.9000000000
0.9100000000
0.$200000000
0.9300000000
0.9400000000
06.9500000000
0.9A00000000
0.9700000000
0.9800000000
0.9900000000
1. 0000000000

*MAX 0.9100000000
*¥IN 1.0000000000

€£.5341917439E+]
6.93181159014E+1
7¢3493781022E+1
T-B36B8B34672E+1]
B.331715€6832E+1)
9.0277338850E+1
9.7622968551k+1
10617065S107TE+2
1.1618690683E+2
1.279B85726TE+2
1.4192328034E+2
1+58299307H86AE+2
1.772021738B6E+2
1+9809705507E+2
2+.1915269434E+2
2.3660179385E+2
2+4541940106E+2
2.4541940106E+2
6+5341917439E+1

2.4541940106E+2
2+4580523842E+2
2.4571469464E+2
2.4516411502E+2
2.4418285703E+2
2.428129537€E+2
2+4110815989E+2
2¢3913245342E+2
2.3695812083E+2
2+3466359227E+2
2.3233121137E+2
2.4580523B42E+2
2.3233121137:1+2

44



«COMMAND

JOBS/4;

*COMFAND

TPUT/

UNNORVMALIZED THROUGHPUT RATE

40 =0.3907395732E-11%X13 + 0.1257612650E-10*X12 + =-0.1350590349E~-10*X
+ 0.491€6931460E-11170 1.0000000000E-61]

*CONMMAND

TBLE/TPUT/;

*UAR =
Xs

LOWLIVM/HIGHLINM/STEP =
0.86/09370.013;
0.8600000000 2.516174B442E+2
0.8700000000 2.5273286B69E+2
0.8800000000 2.5326518742E+2
0.8900000000 2.5323426666E+2
0.9000000000 2.5267779072E+2
0.9100000000 2.51FURF44T)E+2
0.9200000000 2.5021283974E+2
0.9300000000 2.4844211402E+2
«¥MAX 0.8800000000 2-.5326518742E+2
*MIN 0.9300000000 2.48442)11402E+2
«COVMAND

DEDGE/NMAINMEM/FASTDRUM;
*COMMAND

DEDGE/NMAINVMENM/SLOWDRUM;
* CONMMAND

ANEDGE/MAINMENM/0.88/FASTDRUYV
*COMMAND

ANEDGE/NMAINMENM/0.12/SLOWDRUM;
*COMNMAND

TPUT/;

UNNORMALIZED THROUGHPUT RATE

+f 0.1079079612E-12)/{ 1.0000000000E~6]
*COMMAND

SNRM/;

1/ 0.4260670892E~-9
*COMVFAND

END/;



NETINCO)

*INPUT EDGES: NODE/PROBAFILITY/NODE;

ORIGIN/0.57Q1; ) v
ORIGIN/O.S5702;

©1/0-437Q3;

0170577043

0270.17Q3;

02/70.6704;

02/0+3/705;}

03/ 1/DESTINATION;

04/1/DESTINATION/ ==

05/1/DESTINATION;

-3

*INPUT MEAN SERVICE TIMES: NODE/TIME (1 JOB) /TIME (2 JOBS) 7/ /;

61/0.183/:
0270-183/0.09157/}
0370.001/:
04/0.017/3
05/70.0014/;
3
TEMPLATE=(Q]1 02 Q3 04 05)
*»INPUT ORIGIN LABEL

ORIGIN;
* INPUT DESTINATION LABEL
DESTINATION:
« INPUT TOTAL NUMBER JOBS IN NETWORK
43
*DO YOU WISH TO SPECIFY THE TEMPLATE »: YES/NO;

NO;
T= (@1 @2 B3 04 @S)

*COMMAND
SSPRB/7(0,1,12121)73

(01 11 1)

0.5063969137E-10
*COMMAND
SSPB/(0,2,2,0,0)/3 .

(0220 0)
0.2939706281E~9

46



*CONMMAND

TPUT/:

UNNORMALIZED THROUGHPUT RATE

+{ 0.2145484370E-33/70 0.18300000001]

+{ 0.7904039452E-41/( 0.i18300000003 ,
+[ 0+6775402124E-41/{ 0+9150000000E-1]

* OMFAND

SNR¥/;
1/ 0.2258450767E~3
*COMMAND

AMEAN/G2/0.02/7;
*COMMAND

IDLE/Q1/Q27/03/Q4/057;

UNNORMALIZED FRACTION
0.5138921108E-7
UNNORMALIZED FRACTION
0.790506A090E-4
UNNORMALIZED FRACTION
0.B848695427E-4
UNNORMALIZED FRACTION
0.7910397329E-4
UNNORMALIZED FRACTION
0.8854026666E~4
*«COMMAND

SNRM/;
1/ 0-.8874382307E-4
*CONMNMAND

JOBS/ 13
*COMMAND

TPUT/:

oF

OF

oF

oF

OF

IDLE

IDLE

IDLE

IDLE

IDLE

UNNORNMALIZED THROUGHPUT RATE

+{ 0.9150000000E-131/{ 0.183000000013

TIME

TIME

TIVE

TIME

TIME

OF

oF

oF

OF

oF

+{ 1.0000000000E-23/{ 0.2000000000E~1]

*COVMNMAND
SNRNM/ ;

1/ 0.1119200000
*COMMAND

END/

NODE

NODE

NODE

NODE

NODE

Ql

e2

Q3

Q4

@5



48

621L2°¢

s2

1928°¢¢ge
.

n2
ne 2

neLEnie

ajey ndysnoayg

L1286°pel  6SED°SLT  26T0°9St  S26S°9f1  [SUI'LVI @b669°Ls £282°%9L sse9’es
L] L] . L] L] L] . [

eeee’!?
8ags’

' 2ans’

' 2226*

! 2006°

! goee’

L eB99°

2 ! 2ang®
¢ ' 2a29"

2 1 20089°

£ z ' goeL®
£ z 1 ee9L’

v 't 2 ' geny®

£ 2 ! ae2L"®
1 £ 2 1 ceoL?®
v 2 t pee9*’

LARY 2 i 6239°

F i 2 1 TN

B Y 4 1 0e29°

[ Y 4 1 (4L N

LI ! eess’

ng 2 1 2296°

£e ! ) o8ns"

£ 1 oe2s*
v 2 1 poes’

v e H gagn*®

n2 1 zase*

ne 1 2enn’

nege ] gaznt

X4 1 pogn’

v 1 203¢"

ne ' g9g’

ne I pent*®

v 1 eg2¢’

v 1 poef’

LI o2’

b1 . ge9z’

v 1 gon2*

v 1 geze*

nt gee2"*

n gogtl"*

vt 091"

L2 egnt’

LA peet’

nt seet’

L] eege’

nt pege’

v ¢anp*

Branching Probability X
Figure 9. A Graph of System Behavior

] peed‘e



APPENDIX B

THE PROGRAM ASQ

49



50

L ASQ@Y ALGEBRAIC SOLUTIONS FOR QUEUEING NETWORKS i

4 NOTE: THE DOCUMENTATION IS DELIBERATELY BRIFEF,
FOR IN MOST CASES THE VARTABLE AND FUNCTION [LABELS ARE
SELF EXPLANATORY, 4

L GLOBAL VARTABLES
VLISTt THE LIST OF VARIABLE LABELS DEFINING PRECEDENCE
VERTICESs THE LIST OF DEVICE: LABELS, SET BY AMEANREAD»
OR ATEMPLATER,
EDGESs THE LIST OF EDGES, SET BY REDGREAD»s
| MLOPt THE LIST OF PAIRS OF THE FORM (VERTEX LABEL,MEAN)
SET BY AMEANREAD»
BTLOPt THE LIST OF PAIRS OF THE FORM (VERTEX
LABEL,BTERM), SET BY ATOPSORTe
ORIGINs THE _ABEL OF THE ORIGIN VERTEX
DESTINATIONY THE LABREL OF THE DESTINATION VERTEX
DEGMULPROG: THE TOTAL NUMBER OF JOBS IN THE SYSTEM, IE,
THE DEGREE OF MULTIPROGRAMMING I

4 COMMANDS IS THE INTERACTIVE DRIVER PROGRAM, INTERPRETING AND
EXECUTING USER COMMANDS,
(COMMANDS (LLAMBDA () (PROG(LEXLINE COM VECTOR N DUM
END TPUT SSPB IDLE SNRM ASSP TFLAG)
(TERPRI)
(SETQ CYPL(QUOTE CTPL))(SETQ TBLE(QUOTE TBLE))
(CSETQ EDGEFLAG @) (SETQ TFLAG @)
(SETQ END (QUOTE ENDJI)(SETG TPUT (QUOTE TPUT))
(SETQ SSPB (QUOTE SSPB))(SETG IDLE (QUOTE IDLE))
(SETQ@ AMEAN(GUOTE AMEAN))(SETQ OFDGE(QUOTE DEDGE))
(SETQ ANEDGE(QUOTE ANEDGE))(SETQ JOBS(QUOTE JOBS))
(SETQ SNRM (QUOTE SNRM))(SETQ ASSP (QUOTE ASSP))
READLINE (PRINT (QUOTE =COMMAND))
(SETQ LEXLINE (LEXICAL (READER)))

T (SETQ@ COM(CAAR LEXLINE))
(SETQ LEXLINE (CDR LEXLINE))
A (COND

((EQ COM DEDGE) (GO DEDGE))
((EQ COM ANEDGE) (GO ANEDGE))
((EQN EDGEFLAG 1)(GO 8))
((EQ COM END)I(RETURN NIL))
(CEQ COM SSPB) (GO 8SPB))
((EQ COM TPUT)(GO TPUT))
((EQ COM IDLE)(GO IDLE))
(CEQ COM SNRM) (GO SNRM))
(CEQ"COM ASSP) (GO ASSP))
(CEQ COM CTPL) (GO CTPL))
(CEQ COM AMEAN) (GO AMEAN))
((EQ COM JOBS) (GO JOBS))
(CEQ COM TBLE) (GO TBLE))
(T (GO READLINE))
)
S (CHECK!Y ORIGIN EDGES VERTICES)




51

(CHECK2 DESTINATION EDGES VERTICES)
(TOPSORT CRIGIN DESTINATION)
(CSETQ EDGEFLAG @)
(GO A)
SSPB  (CONDC(NULL(CDR LEXLINE))(COND((ZEROP TFLAG) (GO READLINE))
(Y(PROG2(SETQ P COMI(GO V3))) ))
(SETG LEXLINE (CDDR LEXLINE))
(SETR VECTOR NIL)
SSPB1 (SETGE N (CAR LEXLINE))
(SETO LEXLINE (CDR LEXLINEY)
(COND((EQ@ N RPAR) (GO B3)))
(SETQ VECTOR (APPEND VECTOR (LIST NJ)))
(GO SSPBY)
B3 (SETQ@ COM (SSPROB VECTOR))
(PRINT BLANK) (PRINY BLANK)
(PRINT VECTOR)(SETPR COM)(TERPRI)
(GO SSPB)

SNRM  (SETQ DUM (NORMS DEGMULPROG (LENGTH VERTICES)))
(PRIN{ BLANK)(PRIN{ (QUOTE 1))(PRIN{ (QUOTE /))
(SETPR RECNORM) (TERPRI)

(GO READLINE)

ASSP (SETG DUM (NORMSPR DEGMULPROG (LENGTH VERTICES)))
(GO READLINE)

TPUT (COND((ZEROP TFLAG)(GO TPUT1)))

(SETG TFLAG 2)(TBLETPUT) (GO READLINE)

TPUTY (SETQ DUM (TPUT))

(PRAUOTE 3 (UNNORMALIZED THROUGHPUT RATE))
(PRTPUT DUM) (GO READLINE)

CTPL(SETQ DUM(TEMPLATE)) (GO READLINE)

AMEAN(SETG DUM(CAMEAN(CDR LEXLINE))) (GO READLINE)

ANEDGE (SETQG DUM(ANEDGE(COR LEXLINE))) (GO READLINE)

CEDGE(SETQ DUM(DEDGE(CDR LEXLINE))) (GO READLINE)

JOBS(CSETQ DEGMULPROG (CADR LEXLINE))(GO READLINE)

TBLE (SETQ TFLAG 1)(SETQ LEXLINE(CDR LEXLINE))(GO T)

V (TBLE P)(SETQ TFLAG @) (GO READLINE)

IDLE (COND((NULL(CDR LEXLINE)) (GO READLINE)))

(SETQ LEXLINE(CDR LEXLINE))

(SETQ N(CAAR LEXLINE))

(SETQ LEXLINECCDR LEXLINE))

(SETG DUM(IDLE N DEGMULPROG (LENGTH VERTICES)))

(PRQUOTE(APPEND(QUOTE (UNNORMALIZED FRACYION OF
IDLE TIME OF NODE))I(LIST NJ)))

(SETPR DUM)(SETQ TFLAG @) (TERPRI)

(GO IDLE)D

) )

¢ MEANREAD PROMPTS THE USER TO INPUT THE MEAN SERVICE TIME(S) FOR
EACH DEVICE AND SETS GLOBAL VARIABLES wMLOPsP AND AVERTICESH», I
(MEANREAD(LAMBDA () (PROG(MEANS QMEANS LINE LEXLINE LEXPOLY
POLY VERTS)
(TERPRI)
(PRQUOTE (QUOTE (wINPUT MEAN SERVICE TIMES:



52

NODE/TIME(1 JOB)/TIME(2 JOBS)Y/ /3
1))
(PRIN! BLANK)
(PRINT BLANK)
(SETQ@ VERTS NIL)
(SETQ MEANS NIL)
READLINE (SETQ LINE (READER)) .
(COND ((EQ (CAR LINE) RARROW)(GO OUTI))
(SETO LEXLINE (LEXICAL LINE))
(CONDC((NOT(MEMBER (CAAR LEXLINE) VERTS))
(SETQ VERTS (CONS (CAAR LEXLINE) VERTS))))
(SETQ GMEANS (CAR LEXLINE))
(SETG LEXLINE (CDDR LEXLINE))
AA (SETQ LEXPOLY NIL)
A (COND (C(FQUAL (CAR LEXLINE) SLASH)Y(GO B)))
(SETO LEXPOLY (APPEND LEXPOLY (LIST (CAR LEXLINE})))
(SETQ LEXLINE (CDR LEXLINE))(GO A)
B (SETO POLY (EXPRESSION LEXPOLY))
(SETQ QMEANS (APPEND QMEANS (LIST POLY)))
(COND ((NULL ((CDR LEXLINE))(GO C1))
(SETQ LEXLINE (CDR LEXLINE))
(GO AA)
C (SETQ MEANS (APPEND MEANS (LIST QGMEANS)))
(GO READLINE)
ouT (CSETQ MLODP MEANS)
(CSETQ VERTICES(REVERSE VERTS))
(PRINY{ BLANK)(PRIN! (QUOTE TEMPLATE=))
(PRINT VERTICES)
(RETURN (REVERSE VERTS)) )Y M)

\ EDGREAD PROMPTS THE USER TO INPUT THE EDGES, WHICH IT ASSEMBLES
INTO THE GLOBAL VARIABLE #EDGESe,
(EDGREAD(LAMBDA () (PROG(EDGS LINE LEXLINE NI NO LEXPOLY POLY)
(TERPRI)
(PRQUOTE (QUOTE (xINPUT EDGESs NODE/PROBABILITY/NODEs)))
(SETQ EDGS NIL)
READLINE (SETQ LINE (READER))
(SETQ LEXPOLY NIL)
(COND((EQ (CAR LINE) RARROW) (GO 0OUT)))
(SETQ® LEXLINE (LEXICAL LINE))
(SETQ NI (CAAR LEXLINE))
(SETG LEXLINE (CDDR LEXLINE))
SKIM (COND(C(EQUAL(CAR LEXLINE) SLASH)(GO ASSMBL)))
(SETQ LEXPOLY (APPEND LEXPOLY (LIST (CAR LEXLINE))))
(SETQ LEXLINE (CDR LEXLINE)) (GO SKIM)
ASSMBL (SETQ NO (CAADR LEXLINE))
(SETQ POLY (EXPRESSION LEXPOLY))
(SETQ EDGS (CONS(LIST NI POLY NO) EDGS))
(GO REACLINE)
ouT (CSETQ EDGES EDGS)
(RETURN NIL) ) ))



53

¢ INOD PROMPTS THE USER FOR THE ORIGIN LABEL, DESTINATION LABEL,
AND DEGREE OF MULTIPROGRAMMINGy SETTING THE GLOBAL VARIABLES
PORIGIN®, PDESTINATIONs, AND PDEGMULPROGPH, $
(INODCLAMBDA () (PROG(O D)

(PRQUOTE (QUOTE (wINPUT ORIGIN LABEL)))

(CSETQ ORIGIN (READATOM))

(PRQUOTE (QUOTE (»INPUY DESTINATION LABEL)))

(CSETQ DESTINATION (READATOM))

(CHECK1 ORIGIN EDGES VERTICES)

(CHECK?2 DESTINATION EOGES VERTICES)

(TOPSORT ORIGIN DESTINATION)

(PRQUOTE (QUOTE(*INPUT TOTAL NUMBER JOBS IN NETWORK)))

(CSETG DEGMULPROG (READATOM))

(RETURN NIL) ) ))

J FILENETIN READS A NETWORK DESCRIPTION FROM FILE PFNAME, I
(FILENETINCLAMBDA(FNAME) (PROG()

(CSETQ VLIST NIL)

(REWIND FNAME)

(RDS FNAME)

(EDGREAD) (MEANREAD) (INOD)

(RDS (QUOTE TTY))

(COMMANDS)

(RETURN NIL) ) ))

{ NETIN PROMPTS A NETWORK DESCRIPTION FROM THE USER, ¢
(NETINCLAMBDA () (PROG()

(CSETQ@ VLIST NIL)

(EOGREAD) (MEANREAD)

(INOD) (TEMPLATE) (COMMANDS)

(RETURN NIL) ) )

i PRQUOTE PRINTS THE CHARACTERS OF LIST oLe,
(PROQUOTE(LAMBDA(L) (PROG()
A (CONDC(NULL LI(PROG2 (TERPRI) (RETURN NIL))))
(PRINY{ BLANK)
(PRIN1 (CAR L))
(SETQ L (CDR L)) (GO A) ) ))

i\ TBLE DOES THE »TBLEP OPERATION UPON A POLYNOMIAL mP»m i
(TBLECLAMBDA(P) (PROG(V L VALS W 8 R M N M{ NI NORM)
(SETQ M1 «1,0E300)(SETQ@ N{ {,0E300)
(SETQ M Q) (SETG N Q)
(PRINY ®x) (PRIN] ®VAR)(PRIN! BLANK)(PRINi{ mz)
(SETQ V(READATOM))(CSETQ TBLVARS(LIST(CONS V(LIST V
(CONS 1 1))
(SETQ P(SUBS P))(NORMS DEGMULPROG (LENGTH VERTICES))
(SETQ NORM RECNORM)
(SETQ NORM (SUBS NORM))
(PROUOTE ®(LOWLIM/HIGHLIM/STEP =))
(SETQ L(READATOMS))(SETQ H(CADR L)) (SETQ S(CADDR L))
(SETQ L(CAR L))



54

(TERPRI)
A (COND(CCLESSP K L)Y(GO B)))(SETQ R(SUB(CDR PILI)(PRINI L)
(OSPACE (DIFFERFNCE 30 (OSPACE 1)))
(SETO R (GUOTIENT R (SUB(CDR NORMIL)))
(PRINY{ R)Y(TERPRI)
(COMD((GREATERP R M1)(PROG2(SETQ M L)(SETQ M1 R))))
(CONDC((LESSP R N{)(PROG2(SETQ N L)(SETQ N1 R))) )
(SETQ L(PLUS L S8))(GO A)
B (PRINI ®x)(PRINY EMAX)(PRINY{ BLANK)(PRIN1 M)
(OSPACE (DIFFERENCE 308 (OSPACE 1)))
(PRIN{ MI)(TERPRI)(PRINI ®x) (PRINI ®MIN)(PRIN{ BLANK)
(PRINY N)(OSPACE (DIFFERENCE 3Q@(0SPACE 1))
(PRINY N1)(TERPRI)(RETURN NIL) ) ))
(SUB(LAMBDAC(P V) (PROG(S T)I(SETR § @)
A (CONDC(NULL P)Y(RETURN 8)))
(SETQ S (PLUS (TIMES(TOTHEN V (CDAR P))(CAAR P))S))
(SETQ P(CDR P))(GO A) ) ))
(SUBS(LAMBDA(P) (PROG(V VL PRS 8)
(SET® S§ NIL)
(COND((NUMBERP P)(RETURN P)))
(SETQ V(CAR P))(SETQ PRS(CDR P))
(SETQ@ VL (GY V))
A (COND((NULL PRS)(RETURN 8)))
(SETQ P (RATPD(TOTHEN VL(CDAR PRS))(SUBS(CAAR PRS))))
(SETQ S (RATAD P S))
(SETQ PRS(CDR PRS)I)I(GO A) ) 1))
(GYAL (LAMBDACV) (PROG(A)
(PRIN1 E*)(PRINY BLANK)(PRIN! V)(PRINI BLANK)(PRIN{ ®=)
(SETQ ACREADATOM))C(RETURN(CLIST(CONS V A))) ) )
(GV(LAMBDA(V)(PROG(Z)(SETQ Z TBLVARS)
A (CONDC(NULL Z)(GO B))
((EQ(CAAR Z)V)I(RETURN(CDAR Z))))(SETQ Z(CDR Z))(GO A)
B (SETQ Z(GVAL V))
(CSETOQ TBLVARS(APPEND Z TBLVARS})
(RETURN (CDAR Z)) ) )
4 TBLETPUT DOES THE ATABLE® OPERATION UPON THROUGHPUT =
NHICH IS THE SUM OF RATIOS OF POLYNOMIALS, ¢
(TRLETPUT(LAMBDAC)(PROG(V L VALS W S R P M N M{ NI NORM)
(SETQ M1 =1,.RE3P0)(SETQ N1 {,0E300)
(SETQ M A)Y(SETQ N @)
(PRINY Bx)(PRIN{ 2VAR) (PRIN{ BLANK)(PRIN{ u=)
(SETQ V(READATOM))(CSETQ TBLVARS(LIST(CONS V(LIST V
(CONS 1 1)))))
(SETQ P(TPUT)) (NORMS DEGMULPROG (LENGTH VERTICES))
(SETQ P(RREAKQUT P))(SETQ P(TPUTSUBS P))
(SETQ NORM (SUBS RECNORM))
(PRQUOTE B(LOWLIM/HIGHLIM/STEP =))
(SETQ L(READATOMS))(SETQ H(CADR L)) (SETQ S(CADDR L))
(SETQ L(CAR L)) (TERPRI)
A (COND((LESSP H L)(GO B))I(SETQ R(SUBTPUT P L))(PRINI L)
(OSPACE (DIFFERENCE 30 (OSPACE 1)))
(SET® R (QUOTIENT R (SUB (CDR NORMILIM)
(PRINY R)Y(TERPRI)



55

(COND((GREATERP R M{)(PROG2(SETE M L)(SETG M! R))))
(COND((LESSP R N{)(PROG2(SETA N L)(SETQ@ N{ R))) )
(SETQ L(PLUS L 8))(GO A)
B8 (PRIN1 mw) (PRINY EMAX)(PRIN{ BLANK)(PRIN{ M)
(OSPACE (DIFFERENCE 3@ (OSPACE 1)))
(PRINI M1)(TERPRI)(PRINY ®#) (PRIN{ ®MIN)(PRIN{ BLANK)
(PRIN{ N)(OSPACE (DIFFERENCE 3B(OSPACE 1)))
(PRINI N1)(TERPRI)(RETURN NIL) ) ))
(SUBTPUT(LAMBDA(X L) (PROG(S N D)
(SETQ § @) '
A (CONDCC(NULL X)(RETURN S§)))
(SETQ N(CAAR X)) (SETQ D(CADAR X)) (SETQ X(CDR X))
(CONDCU(NOT(NUMBERP N))(SETQ N(SUB(CDR N)LJ)))
(COND((NOT(NUMBERP D)) (SETQG D(SUB(CDR D)L)I))
(SETQ S(PLUS § (QUOTIENT N D))
(GO A) ) M)
(TPUTSUBS(LAMBDA(P) (PROG(S C D)
A (CONDCCNULL P)(RETURN §)))
(SETQ C(CAAR P))(SETQ D(CADAR P))(SETQ@ P(CDR P))
(SETQ S(CONS(LIST(SUBS C)(SUBS D))S8))
(GO A) M)
(RREAKOUT (LLAMBDA(P) (PROG(S C D)
A (COND((NULL P)(RETURN 8)))
(SETQ C(CAR P))I(SETG P(CDR P))
B  (CONDCCNULL C) (GO A)))
(SETQ D(CAR C))(SETQ@ C(COR C))
(SETQ@ S(CONS D S))(GO B) )))

I EXPRESSION ACCEPTS AS AN ARGUMENT AN EXTERNAL POLYNOMIAL
REPRESENTATION, WHERE EACH SYNTACTIC TYPE OF THE REPRESENTATION
IS SURROUNDED BY PARENTHESIS, IT RETURNS THE INTERNAL POLY~
NOMIAL REPRESENTATION,
(EXPRESSION(LLAMBDA(E) (PROG(EXP X Y)
(COND((NULL E)C(RETURN()))
(CEQCCAR E)PLUSS) (COND((NOT(SETG X(TERM(CDR E))))
(RETURN())) (T X)))
((EQ(CAR E)DASH) (GO M))
((NULL(SETQ X(TERM E)))(RETURN ())))
(SETQ@ EXP(CAR X))
E (CONDCCNULLC(CDR X)) (RETURNCCONDC(NULL EXPIB)I(T EXP))))
((MEMBER(CADR X)(QUOTE(+ =)))T)
(TC(RETURNCCONS EXP(CDR X)))))
(CONDC(NULL(SETG Y(TERM(CDDR X3))))(RETURN())))
(SETQ EXP(RATAD(COND((EQCCADR X)DASH) (NEG(CAR Y)))
(TCCAR Y)))EXP)) (SETQ@ X Y)(GO E)
M (COND((NOT(SETG X(TERM(CDR EJ})))(RETURN())))
(SETG EXP(NEG(CAR X1))) (GO E) ) ))
(TERM(LAMBDACE) (PROG(X Y 2)
(SETQ X(SECONDARY EJ)
A (CONDCCORCNULL X)IC(NULL(CDR X)))(RETURN X)))
(SETG Z(CDDR X))
(COND((EQCCADR X)STARI())ICTC(RETURN X)))



56

(COND((SETQ@ Z(SECONDARY Z))
(SETQ@ X(CONS(RATPD(CAR X)(CAR Z))(CDR Z))))
(TCRETURN X)))
(GO A) ) )
(SECONDARY(LAMBDA(E)(PROG(X Y)
(COND((NULL(SETQ X(PRIMARY E)))(RETURN()))
(CNULLC(CDR X)) C(RETURN X))
((NOT(EQ(CADR X)IUPARROW))(RETURN X))
CCOR(NULL(CDDR X)) (NOT(NUMBERP(CADDR X))))(RETURN()))
(T(RETURN(CONS(LIST(CAAR X)(CONS {,B(CADDR X)))
(CDDOR X3)3))) )
{(PRIMARY (LAMBDACE) (PROG(X)
(COND((SETQ@ X(VARIABLE E))(RETURN X))
(CSETQ X(CONSTANT E))(RETURN X))
((NOT(EQ(CAR EJLPAR))(RETURNC()))
((NOT(SETG X(EXPRESSION(CDR E))))I(RETURN()))
C(NULLCCDR X)) (RETURN()))
((EQ(CADR X)RPAR)(RETURNCCONS(CAR X)(CDDR X))))
(rey y N
(VARIABLECLAMBDA(CE) (PROG(A)
(COND((OR(NUMBERP(CAR E)) (ATOM(CAR E)))(RETURN())))
(SETQ A (CAAR E))
(COND((MEMBER A VLIST)())
(T(CSETQ VLIST(CONC VLIST(LIST A)))))
(RETURN(CONS(LIST ACCONS 1,2 {))CCDR E))) ) )

I RATADS R1,R2 INTERNAL POLYNOMIALS
RETURNS (R{ ¢ R2) ¢
(RATADCLAMBDA(R! R2)(CONDC(NULL RI)IR2)((NULL R2)RY)
(CAND (NUMBERP R1) (NUMBERP R2))(COND((EGN RI(MINUS R2))())
(T(PLUS R{ R2)))) '
((NUMBERP R1)(POLAD! R2 R1))
((NUMBERP R2)(POLAD! Ri R2)) :
((EQ (CAR R1)(CAR R2))(CONS(CAR R{)(POLAD2(CDR R{)(CDR R2)))) !
(CLESSP(POSIT(CAR R1))(POSIT(CAR R2)))(POLADI R{ R2))
(T(POLAD! R2 R1)) ) )
(POLADI (LAMBDA(RY R2)(PROG(X Y)(SETQ X(CDR R1))
(SETQ Y(LIST(CAR R1)))
A (CONDC(NULL X )(RETURN(CONC Y(LIST(CONS R2 2)))))
(C(ZEROP(CDAR X)) (RETURN(CONC Y(LIST(CONS(RATAD(CAAR X)R2)2))))))
(SETQ@ Y(CONC Y(LIST(CAR X ))))
(SETQ@ X(CDR X))(GO A) ) )
(POLAD2(LAMBDA(RY R2)(COND((NULL R{)R2)
((NULL R2)RY)
((LESSP(CDAR R1)(CDAR R2))(CONS(CAR R2)(POLAD2 RI{(CDR R2))))
((LESSP(CDAR R2)(CDAR R1))(CONS(CAR R1)(POLAD2 R2(CDR R1))))
(CNULL(CSETO XX(RATAD(CAAR R{)(CAAR R2))))(POLAD2(CDR R1)(CDOR R2) f
)) .
(TCCONS(CONS XX(CDAR R1))(POLAD2(CDR R1)(CDR R2)))) ) M) g
(RATPD (LAMBDA(RY R2)(PROG(I J K A B TM X M N)
(CONDCCOR(NULL R1IC(NULL R2))C(RETURN())))
(CONDCCAND(NUMBERP R{)(NUMBERP R2))(RETURN(TIMES Ri R2)))



¢

57

CCAND(NUMBERP R1)(ONEP R1))(RETURN R2))
((NUMBERP R1)(RETURN(NUMPD R1 R2)))
(T(SETQ I(POSIT(CAR R1)))))
(COND((AND(NUMBERP R2) (ONEP R2))(RETURN R1))
((NUMBERP R2) (RETURN(NUMPD R2 R1)))
(TC(SETQ J(POSIT(CAR R2)))))
(COND((LESSP I J)(GO A))) ,
(SETO N IVY(SETQ I JI(SETG J N)(SETQ A(CDR R2))(SETG B R})
(SETO K R1)(SETQ M(CAR R2)) (GO B)
(SETQ ACCDR R{))(SETQ B R29(SETQ@ K R2)(SEYQ M(CAR R1))
(SETG B(COND((NUMBERP B)B)(T(CDR B))))(SETQ N B)
(CONDCC(NULL A) (RETURN(CONS M X))))
(SET@ TM(CAR A))
(COND((LESSP I J)(GO E)))
C(COND((NULL B) (GO D)))
(SETQ X(POLAD2 X(LIST (CONSCRATPD(CAR TM)(CAAR B))
(PLUS(CDR TM) (CDAR B))))))
(SETQ@ B(CDR B)) (GO C)
E (SET@ X(POLAD2 X(LIST (CONS(CRATPD(CAR TM)K)(CDR TM)))))
D (SETQ@ A(COR A))(SETG B N)(GO F)
) )
(NUMPD(LAMBDA(N R) (PROG(X Ri TM)(SETQ RI(CDR R))
A (COND((NULL R1)(RETURN(CONS(CAR R)X))))
(SETQ TM(CAR R1))
(SETQ X(CONC X(COND((NUMBERP(LIST(CONS(TIMES N
(CAR TM))Y(CDR TM))))
(TCLISTC(CONS(NUMPD N(CAR TM))(CDR TM)))))))
(SET@ RY(CDR R1))(GO A) ) ))
(NEG(LAMBDA(P) (CONDC(NULL P)())
((NUMBERP P)(MINUS P))
(CATOM(CAR P))(CONS(CAR P)(NEG(CDR P))))
(TCCONS(CONS(NEG(CAAR P))(CDAR P))(NEGCCDR P)))) ) M)
(POSIT(LAMBDA(A) (PROG(CTR VL)
(SETQ CTR {)(SETQ VL VLIST)
A (CONDCCEQ ACCAR VL))(RETURN CTR)))
(SETQ CTR(ADDY CTYRII(SET® VL (CDR VLII(GO A) ) ))

M >

READATOM(S) READS ONE LINE, THE LINE IS ASSUMED

TO BE AN ATOM(S) FOLLOWED BY A SEMICOLON, IT RETURNS
THE (LIST OF THE) NUMBER(S) OR ATOM(S) FOUND BEFORE
THE SEMICOLON, ¢

(READATOM(LAMBDA () (PROG(X Y)

A

(SETQ Y NIL)

(SETG X (ADVANCE))

(COND((EQ@ X BLANK) (GO A))

((OR(EQ X EOR)(EG X SEMICOLON))(GO ON)))
(SETQ Y (CONS X Y)}(GO A)

ON (SETQ Y (REVERSE Y))

(ENDREAD)

(CONDC(C(LITER (CAR Y))(SETQ Y (CAAR (LEXICAL Y)1}))
(T (SETQ Y (CAR (LEXICAL Y)))) )

(RETURN YJ) ) )



58

(READATOMS (LAMBDA() (PROG(X Y F 2)
(SETQ@ F ?)
A (SETQ X(ADVANCE))
(CONDC(EQ X BLANK)(GO A))((EQ X SEMICOLON)(PROG2(SETQ F 1)
(G0 1)))
(CEQ X SLASH) (GO I)))(SETQ Y(CONS X Y))(GO A)
I (SETQ Y(REVERSE Y))(CONDC((LITER(CAR Y))(SETQ Y
(CAARCLEXICAL Y))))
(T(SETO Y(CAR(CLEXICAL Y)))))
(SETQ Z(CONS Y Z))(SETQ Y NILY
O (COND((ONEP F)(RETURN (REVERSE Z)))) (GO A))))

¢ LEXICAL ASSEMBLES A STRING OF SINGLE CHARACTERS
INTO A LIST OF ELEMENTYS, EACH ELEMENT A SINGLETON LIST
OF EITHER AN ATOM OR NUMBER, OR LIST OF SAME,

(LEXICAL(LAMBDA(S) (CONDC(NULL 8)())

(TCLEX*(CAR S8)(NCONC(CDR S8)(QUOTECEOR)))(CLEARBUFF))) ) ))

CLEX*(LAMBDACX Y Z)(CONDC(NULL Y)())

((EQ X COMMA) (LEX*(CAR Y)(COR Y)()))
(CLITER X)CLEXV(CAR Y)(CDR Y)(PACK X)))
((DIGIT X)(CLEXCCCAR Y)(CDR Y)(PACK X)))
(TC(CONS X(LEX* (CAR Y)(CDR Y)()))) ) )
(LEXR(LAMBDA(X Y Z)(PROG(COUNT NOB NORM)
(SETQ COUNT B) (SETG NOB (NUMOB)) (CLEARBUFF)
A (SETQ X (CAR Y))
(SETQ Y (CDR Y))
(COND((NOT(DIGIT X)) (GO B)))
(PACK X)
(SETQ COUNT (ADD1 COUNT)) (GO A)
B (SETQ NORM (EX1@ COUNT))
(SETQ NCRM (QUOTIENT (NUMOB) NORM))
(SETQ NOB (PLUS NOB NORM))
(RETURN (CONS NOB (LEX® X Y (CLEARBUFF))Y)Y) ) )
(EX1BC(LAMBDA(N) (PROG(SUM C)
(SETQ@ SUM 1)(SETQ C @)
A (COND((EGN C N)(RETURN 8UM)))
(SETQ@ SUM (TIMES SUM 10,0))
(SET@ € (ADDY C€)) (GO A) ) ))

(LEXV(LAMBDACX Y Z)CCONDC(NULL Y)CLISTCLIST(INTERN(MKNAM)))))
(CORCLITER X)(DIGIT X)) (LEXV(CAR Y)(CDR Y)(PACK X)))
(TCCONSCLISTCINTERN(MKNAM))) (LEX* X Y(CLEARBUFF)))) ) ))

(LEXCC(LAMBDA(X Y Z)(CONDC(NULL Y)(LIST(NUMOB)))

((DIGIT X)I(LEXC(CAR Y)(CDR Y)(PACK X)))
(CEQ@ X PERIOD)CLEXR () Y () ))
(TCCONSC(NUMOB) (LEX* X Y(CLEARBUFF)))) ) )
(READFR(LAMBDA() (PROG(X Y)
A (SETQ X(ADVANCE))
(COND((EQ@ X BLANK) (GO A))
(CEQ@ X EOR) (GO A))
(CE@ X SEMICOLON) (PROG2(ENDREAD)(RETURN(REVERSE Y)))))
(SETQ Y(CONS X Y))(GO A) ) )



59

L SETPR PRINTS THE CHARACTER STRING OF THE EXTERNAL
REPRESENTATION OF THE INTERNALLY REPRESENTED POLYNOMIAL
PPP, ¢
(SETPR(LAMBDA(P) (PROG() (PRINI BLANK)
(CONDCCNULL PY(PRINS 2))(T(SPRIY PCICITI)) ) )
(SPRIS(LAMBDA(P N M L)YC(PROG(X Y A)(COND((NUMBERP P) (GO A)))
(SETQ A(CAR P))(SETQ P(CDR P))
(COND((SETQ X(AND N(NOT(NULLC(CDR P)))))(PRINY LPAR)))
B (SETG Y(ZEROP(CDAR P))) \
(SPRI{(CAAR PIT(CONDCY MICT TI)CCONDCCAND Y X)())(T TJ)))
(CONDCY(GO G)I))(PRINI A)

(COND(CONEP(CDAR P)) (GO F)))(PRIN{ UPARROW) (PRIN1(CDAR P))

n

(CONDC((AND(NOT X)M L)(PRINY STAR)))

G (CONDC(NULL(CDR P)) (GO H)))
(PRINY BLANK)(PRIN{ PLUSS)(PRIN{ BLANK)(SETQ P(CDR P))
(SETG M()) (GO B)

H (COND(X(PRIN1 RPAR)))(RETURN())

A (COND((NULL M)(CONDC((ZEROP(CADR(DIVIDE P 1)))
(PRINY(FIX P)))(T(PRINI P))I)IC(ONEP P)())

(CONEP(MINUS P))(PRINI DASH))(T(PROG2
(COND((ZEROP(CADR(DIVIDE P 1)))(PRINI(FIX P)))(T(PRINI P)))
(PRIN1 8TAR))))
) ))

I TOPSORT PERFORMS A TOPOLOGICAL SORY UPON THE VERTICES
OF THE NETWORK, CREATES BTYERMS BY SETTING GLOBAL VARIABLE
»BTLOPp, !
(TOPSORT(LAMBDA(GN TN)
(PROG(SORTS 8IQS S0GS REM BTS )
(SETQ SORTS NIL)(SETQ BTS NIL)
(SET@ REM NIL)
TESTYT (COND ((NOTIN (SETQ SIQS (SIQ GN)) SORTS )(GO BACK))
((MEMBER GN SORTS) (GO BACK)))
(SETG SORTS (APPEND SORTS (LIST GN)))
(SET@ BTS (APPEND BTS (LIST(CRBTM GN SIQS EDGES BTS))))
(CONDC(CEQ GN TN)(GO 0OUT)))
(SETQ GN (CAR (SETQ 8068 (S0@ GN))I))
(SET@ REM (APPEND REM (CDR 80Q8)))
(GO TEST)
BACK (SET® GN (CAR REM))
(SETQ REM (CDR REM))
(GO TEST)
ouT (CSETQ@ BTLOP BTS) (CSETQ SORTLATY SORTS)
(RETURN NIL) ) 1))

{ S0Qt SET OF OUTGOING QUEUES
SIQGs SET OF INCOMING QUEUES
NOTINS SET MEMBERSKWIP TEST
CHECK{,CHECK2t CONTINUITY TESTS OF NETWORK
GRAPH FROM ORIGIN AND DESTINATION
UNIONt® SET UNION {



60

(SOQC(LAMBDACVTEMP)

(S0Q* VTEMP EDGES) ))
(SIGC(LAMBDA(VTEMP)

(SIGx VTEMP EDGES) ))
(SOQ* (LAMBDA(VTEMP LEDGES)

(COND

((NULL LEDGES) NIL)

((EQ (CAAR LEDGES) VTYEMP)

(APPEND (CDDAR LEDGES) (90Q~ VTEMP (CDR LEDGES))))

(T (S0G~ VTEMP (CDR LEDGES))) ) )
(SIGx(LAMBCA(VTEMP LEDGES)

(COND

((NULL LEDGES) NIL)

((EQ (CADDAR LEDGES) VTEMP) (APPEND (LIST(CAAR LEDGES))

(S1Qw VTEMP (CDR LEDGES))))

(T (SIQG~ VTEMP (CDR LEDGES))) ) ))
(NOTIN(CLAMBDA(X Y)

(COND

CONULL X) NIL)

((MEMBER (CAR X) Y)

(NOTIN (CDR X) Y))

(T (CONS (CAR X) (NOTIN (CDR X) Y)J)) 3} ))

(ONEP(LAMBDA(N) (COND((ZEROP(SUBL NI)XTIC(T NIL)) )

(CHECKY (LAMBDA(SOURCE EDGS VERTS)
(PROG (STACK VL VTEMP SUCCESSORS)
(SETQR VL (LIST SOURCE))
(SETQ STACK VL)
LOC! (COND ((NULL STACK)(GO L1)))
(SETG@ VTEMP (CAR STACK))
(SETQ SUCCESSORS (S0Q« VTEMP EDGS))
(SETQ STACK (APPEND (NOTIN SUCCESSORS VL) (CDR STACK)))
(SETQ VL (UNION SUCCESSORS VL))
(GO LOCY)
L1 (SETQ@ STACK (NOTIN VERTS VL))
(CONDC(NULL STACK) (GO A)))
(PRQUOTE (APPEND(QUOTE(* NODES NOT CONNECTED FROM
ORIGIN =))(LIST STACK)))
A (RETURN NIL) )))
(CHECK2 (LAMBDA(SINK EDGS VERTS)
(PROG(STACK VL VTEMP PREDECESSORS)
(SETQ VL (LIST SINK))
(SETQ STACK VL)
LOCY (CONDC(NULL STACK)(GO L1)))
(SETG VTEMP (CAR STACK))
(SETQ PREDECESSORS (SIQ+ VTEMP EDGS))
(SETQ@ STACK (APPEND (NOTIN PREDECESSORS VL)(CDR STACK)))
(SET@ VL (UNION PREDECESSORS VL))
(GO LOCY)
L1 (SETQ STACK (NOTIN VERTS VL))
(CONDC((NULL STACK) (GO A)))
(PRQUOTE (APPEND(QUOTE (% NODES NOT CONNECTED TO
DESTINATION «))(LIST STACK)))



61

A (RETURN NIL) ) ))
(UNION(LAMBDA(LATY LAT2)
(COND

CCNULL LAT1) LATZ2)
((MEMBER (CAR LAT{) LAT2) (UNION (COR LAT1) LAT2))
(T (CONS (CAR LATL{) (UNION (CDR LATY1) LAT2))) ) ))

L SSPROB RETURNS UNNORMALIZED STEADYeSTATE
PROBABILITY OF STATE PVECTORe, '
(SSPROB(LAMBDA(VECTOR )(PROG(S PDT NI V L)
(SETQ@ S VERTICES)(SETQ PDT 1) (SETQ L (LENGTH VECTOR))
A (COND((NOT S)(RETURN PDT)))
(SETQ V (CAR S))(SETQ § (CDR 8))
(SETQ NI (CAR VECTOR))(SETQ VECTOR (CDR VECTOR))
(SETQ PDT (RATPD PDT (TRM V NI BTLOP MLOP)))
(GO A) ) ))

L TRM(I)=(BTERM(I)I*PTERM(I))I®N(I)
(TRM(LAMBDA(I NI BLOP MLOP)(PROG(BTERM PTM)
(SETQ PTM (PTERM I NI MLOP))
(SETQG BTERM (GSLOP I BLOP))
(SETQ BTERM (TOTHEN BTERM NI))
(RETURN (RATPD BTERM PTM)) ) ))

\ PTERM(I)=PTERM OF NODE IDENTIFIED BY INTEGER I
(PTERM(LAMBDA(I NI LOP)(PROG(M 8 C)

(SETG § 1)

A (COND((ZEROP NI)(RETURN §)))
(SETQ S(RATPD S (GETMEAN I NI LOP)))(SETQ NI(SUBY{ NI))
(GO A) ) )

I TOTHEN(TERM N)= (TERM)®N I

(TOTHENCLAMBDA(CTERM N)(PROG(SUM PDT)
(SETQ@ SUM )
(SET@ PDT 1)

LOOP (COND((EQN SUM N)(GO OUT)) )
(SETQ PDT (RATPD PDT TERM))
(SETQ@ SUM (ADD{ SUM))
(GO LOOP)

ouT (RETURN PDT) ) )

L CRBTM RETURNS THE CALCULATED BTERM OF NEW NODE
PNODEm, GIVEN NONRE PLACEMENT IN NETWORK
(CRBTM(LAMBDA(NODE SIQS EDGS BTMS)

(PROG(SIQ SUM PDT BTM ONE)

(SETQ® ONE 1)

(SETQ SUM (1))

(CONDC((NULL BTMS) (GO C)))
A (CONDC(NULL SIGS) (GO B)))

(SETG SIB (CAR SIQS))

(SETQ@ SIQS (CDR SIAS))

(SETQ PDT (RATPD(GTRPROB SIQ NODE EDGS)(GSLOP SIQ BTMS)))



62

(SETQ SUM (RATAD SUM PDT))
(GO A)

(RETURN (LIST NODE 8UM))
(RETURNCLIST NODE ONE)) ) ))

[ I o)

i GTRPROB RETURNS THE BRANCHING PROBABILITY GIVEN TWO

NODES, 1

(GTRPROB(LAMBDA(NODEY NODE2 EDGS)
(PROG(EDG) '

A (COND((NULL EDGS) (GO C)))

(SETQ@ EDG (CAR EDGS))

(SETO EDGS (CDR EDGS))

(CONDC(ANDCE@ (CAR EDG) NODE1)(EQ (CADDR EDG) NODE2))
(GO B))) (GO A)

(RETURN (CADR EDG))

(PRINT (QUOTE EDGESEXHAUSTED))

(RETURN NIL)) ))

O D

{ GSLOP GETS THE SECOND ELEMENT FROM A LIST OF PAIRS GIVEN
THE FIRST ELEMENT OF A PAIR, $
(GSLOP (LAMBDA(MATCH LIST)(PROG()
A (CONDCC(NULL LIST)(GO C))
(CEQUAL MATCH (CAAR LIST))(RETURN (CADAR LIS8T))))
(SET® LIST (CDR LIST))
(GO A)
c (PRINT(QUOTE GSLOP«FINDS#NULL*LIST))
(RETURN NIL)) )

4 GETMEAN SEARCHES »MLOPs FOR SERVICE MEAN GIVEN VERTEX
IDENTIFYING LABEL »QF AND THE NUMBER OF JOBS »NBRe IN QUEUE, ¢
(GETMEANCLAMBDA(Q NBR MEANS) (PROG(CTR MEAN)

(SETG CTR @)
A (COND((NULL MEANS) (GO E))

((EQ G (CAAR MEANS)) (GO B)))

(SETQ MEANS (CDR MEANS)) (GO A)
B (SETG MEANS (CDAR MEANS))
c (COND((NOT MEANS) (GO D)))
(SETQ MEAN (CAR MEANS))
(SETQ MEANS (CDR MEANS))
(SETQ CTR (ADDY CTR))
(CONDCC(EQN CTR NBR)(RETURN MEAN)))
(60 C)
(RETURN MEAN)
(PRINT(QUOTE ERROR#GETMEAN)) (RETURN NIL) ) ))

mo

L NORMS GENERATES AND RETURNS THE SUM OF ALL THE UNNORMALIZED
STEADY=STATE PROBABILITIES, ¢
(NORMS (LAMBDACN L)(PROG(VECTOR P C K VECTLIST CV CVECT Ti 72
SPROB)
(SETG K @)(SETQ VECTOR (LIST N))(SETQG P L)
(SET® CVECT NIL)I(SETQ T§ ())(SEYQ T2 ())



SK

C1

co

Pi

VP

our

63

(SETO K (ADDY K))

(COND((EQN K L)(GO C1)))

(SET@ VECTOR (CONS 2 VECTOR))

(GO SK)

(SETQ VECTLIST (LISTY VECTOR))

(SETG T1 (RATAD Ti1 (SSPROB VECTOR)))

(SETQ C 2) .

(COND(C(EQN N (CAR VECTOR))(GO 0OUT)))

(SETQ VECTOR (PAE VECTOR P (SUBI (GAE VECTOR P))))
(SETQ@ C (ADD! C)) '

(CONDC(ONEP P) (GO S8)))

(SETQ P (SUBtL P))

(SETG VECTOR (PAE VECTOR P (PLUS (GAE VECTOR P) C)))
(SETQ VECTLISY (CONS VECTOR VECTLIST))

(SET@ SPROB (SSPROB VECTOR))

(SETQ@ Tt (RATAD T1 SPROB))

(COND((ZERQP(CAR VECTOR)) (GO CO0)))

(SETQ T2 (RATAD T2 SPROB)) (GO CO)

(SETQ@ C (ADDI (CAR VECTOR)))

(SETQ VECTOR (PAE VECTOR { 2))

(SET@ CVECT VECTOR)

(SETQG P @)

(SETQ P (ADDY P))

(SETQ@ CV (CAR CVECT))

(SETQ@ CVECTY (CDR CVECT))

(COND((EQGN CV B)(GO P1)))

(SETQ VECTOR (PAE VECTOR P (8SUBf CV)))

(SETQ@ P (SuBt P))

(SETG VECTOR (PAE VECTOR P (ADD! C)))

(SETG SPROB (SSPROB VECTOR))

(SETQ 71 (RATAD T1 SPROB))

(CONDC(NOT(ZEROP(CAR VECTOR)))(SETQ T2 (RATAD T2 SPR0B))))
(SEYQ VECTLIST (CONS VECTOR VECTLIST))

(GO0 CO)

(CSETQ RECNORM T1)(CSETQ UNORMA41 T2)(RETURN VECTLIST) ) ))

¢ NORMSPR GENERATES AND PRINTS ALL THE UNNORMALIZED
STEADY=STATE PROBABILIYIES AND RETURNS THEIR SUM,
(NORMSPR(LAMBDA(N L) (PROG(VECTOR P C K Cv CVECT Y1 T2 SPROB)

SK

Ct

co

(TERPRI)

(SETQ K 2)(SETQ VECTOR (LIST N))Y(SETG P L)

(SETQ@ CVECT NIL)(SETG T1 ())(SETQ T2 ())

(SETQ@ K (ADD! K))

(COND((EQGN K L)(GO C1)))

(SETG VECTOR (CONS @ VECTOR))

(GO SK)

(SETQ SPROB (SSPROB VECTOR))

(SET@ T4 (RATAD T1 SPROB))

(PRINT BLANK)(PRIN{ BLANK)(PRINT VECTOR)(SETPR SPROB)
(TERPRI)

(SETG C @)

(CONDCCEQGN N (CAR VECTOR)) (GO 0OUT)))

(SETQ VECTOR (PAE VECTOR P (SUBY (GAE VECTYOR P))))



64

(SETQ € (ADD1 C))
(COND((ONEP P) (GO §)))
(SETQ P (SUBY P))
(SETG VECTOR (PAE VECTOR P (PLUS (GAE VECTOR P) C)))
(SETQ@ SPROB (SSPROB VECTOR))
(SETQ T1 (RATAD Y1 SPROB))
(PRINT BLANK) (PRIN{ BLANK)(PRINT VECTOR)(SETPR 8PROB)
(TERPRI)
(COND((ZERQP(CAR VECTOR)) (GO €CO0)))
(SETQ T2 (RATAD T2 SPROB)IGO CO)
S (SETQ@ C (ADDY (CAR VECTOR)))
(SETQ VECTOR (PAE VECTOR { @))
(SETQ CVECY VECTOR)
(SETQ P 2)
P1 (SETQ P (ADDY P))
(SET@ CV (CAR CVECT))
(SETQ CVECT (CDR CVECT))
(COND(C(EGN CV @) (GO P1)))
VP (SETQ VECTOR (PAE VECTOR P (SUBf CV)))
(SETQ@ P (SUBY P))
(SETG VECTOR (PAE VECTOR P (ADDi C)))
(SETQG SPROB (SSPROB VECTOR))
(SETQ T! (RATAD T{ SPROB))
(PRINT BLANK)(PRIN{ BLANK)(PRINT VECTOR)(SETPR SPROB)
(TERPRI)
(COND((NOT(ZEROP(CAR VECTOR)))(SETQ T2 (RATAD T2 SPROB))))
(GO C0)
ouT (CSETG RECNORM T1)(CSETQ UNORMA&{ T2)(RETURN NIL) ) )

{ IDLE COMPUTES THE SUM OF ALL UNNORMALIZED
STEADY=STATE PROBABILITES IN WHICH NO JOBS EXIST
IN NODE #NODEp, LINUMBER OF DEVICES Ni1TOTAL NUMBER
OF JOBS {
(IDLECLAMBDA(NODE N L) (PROG(A)(COND
( (NULL(SETQ A(PLACE VERTICES NODE))) (GO B)))
(RETURN(GEN A N (SUBY L) 2))
8 (PRQUOTE =®(NODE NOT IN NETWORK))(RETURN NIL) )))

\ GEN CALCULATES ALL UNNOMALIZED STEADY=STATE
PROBABILITIES AND THEIR SUM FOR WHICH THERE ARE NO
JOBS IN NODE SPECIFIED BY INTEGER ePLe,
(GENCLAMBDA(PL N L 0)(PROG( VECTOR P € K VECTLIST CV CVECT T1
SPROB)
(SETQ K P)I(SETQ VECTOR (LIST N))I(SETQ P L)
(SETQ CVECT NIL)(SETQ T1 ())
SK (SETQ@ K (ADD! K))
(CONDC(EQN K L)(GO C1)))
(SETQ@ VECTOR (CONS @ VECTOR))

(GO SK)
Ci (SETQ T1 (RATAD T{ (SSPROBK VECTOR PL 0)))
co (SETG C @)

(COND(CEQGN N(CAR VECTOR))(RETURN T1)))
(SETG VECTOR (PAE VECTOR P (SUBY (GAE VECTOR P))))



65

(SETQ C (ADDI C))
(COND((ONEP P) (GO 8)))
(SETG P (SUBY1 P))
(SETQ VECTOR (PAE VECTOR P (PLUS (GAE VECTOR P) C)))
(SETQ SPROB (SSPROBK VECYOR PL 0))
(SETQ@ T1 (RATAD T1 SPROB))
(60 CO)
S (SETQ C (ADD1 (CAR VECTOR)))
(SETQ VECTOR (PAE VECTOR { @))
(SETQ@ CVECT VECTOR) v
(SETG P Q)
P1 (SETG P (ADDY P))
(SET@ CV (CAR CVECT))
(SET@ CVECY (CDR CVECT))
(CONDCCEQN CV B)(GO P1)))
VP (SETQ VECYOR (PAE VECTOR P (SUBY CV)))
(SETQ@ P (SUB1 P))
(SETQ@ VECTOR (PAE VECTOR P (ADDY C)))
(SET@ SPROB (SSPROBK VECTOR PL 0))
(SETQ T{ (RATAD T1 SPROB))
(GO C2) ) )
(SSPROBK (LAMBDA(CVECTOR PL N)(SSPROB(PUTIN VECTOR PL N 1)) ))
(PLACE(LAMBDACL E)(PROG(N)
(SET@ N 1)
A (CONDC(NULL L)CRETURN NIL))
((EQ ECCAR L)) (RETURN NJ)J)
(SETQ L (CDR L))
(SETQ N (ADD1 N))I(GO A) ) )
(PUTINCLAMBDA(VCTR N NEW)(PROG(Z NCOUNT)
(SETQ@ NCOUNT 1)(SETQ@ Z NIL)
LP (COND(CEQGN NCOUNY N)(RETURN (APPEND Z (CONS NEW VCTR)))))
(SETG NCOUNT (ADDI NCOUNT))
(SETQ Z (APPEND Z (LIST(CAR VCTR))))
(SET@ VCTR (CDR VCTR))
(GO LP) ) ))

i GAEt GET ARRAY ELEMENT
PAE: PUT ARRAY ELEMENT
(GAE(LAMBDACARRAY N)(PROG(SUM)
(SETG@ SUM 1)
LP (CONDCCEQGN SUM N)(RETURN (CAR ARRAY))))
(SETQ@ SUM (ADD!1 SUM))(SETYQ ARRAY (CDR ARRAY))
(60 LP) ) ) )
(PAE(LAMBDA(VCTR N NEW)(PROG(Z NCOUNT)
(SETQ NCOUNT 1) (SETQ Z NIL)
LP (COND(CEQN NCOUNT N)(RETURN (APPEND Z (CONS NEW
(CDR” VCTR)III)
(SETQ NCOUNT (ADDI NCOUNT))
(SETQ@ Z (APPEND Z (LIST(CAR VCTR))))
(SET@ VCTR (CDR VCTR))
(G0 LPY ) )



i AMEAN READS A NEW »MEANp FROM INPUT, IF VERTEX
SPECIFIED EXISTS IT REPLACES OLD mMEANe, IF VERTEX
DOES NOT EXIST IN NETWORK IT CREATES A NEW VERTEX
WITH MEAN SERVICE TIME AMEAN#, )
(AMEANCLAMBDACLEXLINE) (PROGC(LINE I P M L N)

(SETG M MLOP)(SETG L NIL)

(SETQ 1 (CAAR LEXLINE))

(SETQ LEXLINE(CDDR LEXLINE))(SETQ N(LIST I))

(COND((NOT(MEMBER 1 VERTICES)){CSETQ VERTICES
(CONS 1 VERTICES))))

AA (SETQ P NIL)
A (COND((EQUAL (CAR LEXLINE) SLASH) (GO B)))

(SETQ P (APPEND P (LIST (CAR LEXLINE))D))

(SETQ@ LEXLINE (CDR LEXLINE))

(GO A)
B (SETQ@ P (EXPRESSION P))

(SETQ NCAPPEND N(LIST PJ)))

(COND((NULL (CDR LEXLINE))(GO C)))

(SETQ@ LEXLINE (CDR LEXLINE))

(GO AA)
C (CONDC(NULL M) (GO D))

(CEQ I (CAAR M))(GO CC)I))
(SETQ L C(APPEND L (LIST (CAR M))))
(SETQ@ M (CDR M))

(60 C)

cc (CSETQ MLOP (APPEND L (CONS N (CDR M)))})
(RETURN NIL)

o) (CSETQ MLOP (CONS N MLOP))

(PRQUOTE(CONS ICOPY(QUOTE(MEANS NOW DEFINED))))
(PRQUOTE(APPEND(QUOTE(T =))(LIST VERTICES)))
(RETURN NIL) ) )

{ DEDGE DESTROYS THE EDGE (NI P NO) FROM LIST OF
EDGES mEml,
(DEDGE(LAMBDA(L) (PROG(NI NO E P)

(SETQ E EDGES)

(SETQ NI (CAAR L))(SETQ NO (CAADDR L))

(SETQ L NIL)
A (CONDC(NULL E)(GO Q))

(CAND (EG NI (CAAR E))Y(EQ NO (CADDAR E)))
(GO 0) )

(SETQ L C(APPEND L (LIST (CAR E))))

(SETG E (CDR E))(GO A)
0 (CSETQ EDGES (APPEND L (CDR E)))

(CSEYQ EDGEFLAG 1)

(RETURN NIL)
Q (PRQUOTE(QUOTECEDGE NOT FOUND)J))(RETURN NIL) ) ))

{ ANEDGE?: IDENTICAL LOGICALLY TO PAMEANs d
(ANEDGE (LAMBDA (L) (PROG(NI NO P E)

(SETQ E EDGES)

(SETQ@ NI (CAAR L))

(SETQ® L (CDDR L))



67

SKIM (COND((EQUAL(CAR L)SLASH) (GO ASSMBL)))
(SETQ P (APPEND P (LIST (CAR L))))
(SETQ@ L(CDR L))(GO SKIM)

ASSMBL (SEYQ NO (CAADR L))
(SET® P (EXPRESSION P))
(SET@ L NIL)

GET (COND((NULL E) (GO @Q)) :

(CAND(EG NI(CAAR E))(EQ NO(CADDAR E)))
(G0 0)))

(SETQ L C(APPEND L (LIST(CAR E))))
(SETQ@ E (CDR E))

(GO GET)
0 (CSETQ EDGES (APPEND L(CONS(LIST NI P NO)(CDR E})))
(RETURN NIL)
8 (CSETQ EDGES(APPEND EDGES(LIST(LIST NI P NO)J)))

(CSETQ EDGEFLAG ()
(RETURN NIL) ) ))

{ TPUT: RETURNS UNNORMALIZED THROUGHPUY RATE I
(TPUT(LAMBDA() (PROG(D P @ PL B)

(SETQ D (SO0QG ORIGIN))
A (CONDCC(NULL D)CRETURN P)))

(SETQ Q(CAR D)) (SETQ@ D(CDR D))

(SETQ PL(PLACE VERTICES @))

(SETQ B(LENGTHMEANS Q@ MLOP))

(SETQ P(CONS(TPUTY @ PL BIP))I(GO A) ) )

4 TPUT1: RETURNS UNNORMALIZED TWROUGHPUT OF NODE Q
(TPUTL(LAMBDA(Q PL B)(PROG(A SUM MEAN | C)
(SETQ@ A DEGMULPROG)(SETQ SUM NIL)(SETQ C NIL)
(COND((GREATERP B DEGMULPROG) (SETQ B DEGMULPROG)))
(SETQ L(SUB1(LENGTH VERTICES)))
w (COND((GREATERP B A) (GO V)))
(SETQ@ MEAN(GETMEAN Q@ B MLOP))
(SETQ SUM (RATAD(GEN PL (DIFFERENCE DEGMULPROG A) L A)SUM))
(SETQ A (SUBY A)) (GO W)
vV (SET@ SUM (LIST SUM MEAN))
(SETQ € (CONS SUM C))
(COND((ZEROP A)(RETURN C)))
(SETQ SUM NIL)(SETQ B A)Y(GO W) ) ))

4 PRTPUT: PRINTS THROUGHUT GIVEN THE RESULTS OF #TPUTe
(PRTPUTC(LAMBDA (X)) (PROG(C D)
A (CONDCC(NULL X)CRETURN NIL)))
(SETG C(CAR X)) (SETQ@ X(CDR X))
B (CONDCI(NULL C)(GO A)))(PRIN{ BLANK)(PRIN{ PLUSS)
(SETQ D(CAR C))(SETQ@ C(COR C))
(PRIN{ LBRACK)(SETPR(CAR D)) (PRINY RBRACK) (PRIN1 SLASH)
(PRIN{ LBRACK)
(SETPR(CADR D)) (PRINY RBRACK)(TERPRI)(GO B) ) )
(LENGTHMEANS(LAMBDA(Q L) (PROG()
A (CONDC(NULL L)(PROG()(PRQUOTE ®m(MEANS NOT DEFINED FOR NODE =))
(PRIN{ B)(RETURN NIL)))



68

(CEQCCAAR L)Q)(RETURN (LENGTH (CDAR L)))))
(SETQ@ LC(CDR L)) (GO A) ) ))

{ TEMPLATE DEFINES THE TEMPLATE TO USER SPECIFICATION
IF REQUESTED BY SETTING GLOBAL VARIABLE WVERTICESs,!
(TEMPLATECLAMBDA() (PROG(D N)
(SETQ D(PRQUOTE(GUOTE(«DO YOU WISH YO
SPECIFY THE TEMPLATE 21 YES/NO1))))
(COND((EQUAL(LEXICAL (READER)) (QUOTEC((YES)))) (GO A))
(T(PROG2 (PRQUOTE(APPEND(QUOTE(T=))(LIST VERTICES)
JI(RETURN NILI)))
A (SETG D(PRQUOTE(QGUOTE(T=))))
(SETQ@ D(COR(LEXICAL(READER))))(CSEYQ® VERTICES NIL)
8 (SETQ N(CAR D))
(COND((EQUAL(CADR DIRPAR) (GO C)))
(SET@ D (CDR D))
(CSETQ VERTICES(APPEND VERTICES N))(GO B)
c (CSETQ VERTICES(APPEND VERTICES N))(RETURN NIL) ) ))



(4]

(5]

[6]

[9]

[10]

[11]

BIBLIOGRAPHY

. M. Chandy, '"Exponential and Processor-Sharing Queueing Network

Models for Computer Systems', unpublished manuscript, (1972).

M. Chandy, "The Analysis and Solutioms for General Queueing
Networks,'" Proc. Sixth Annual Princeton Conference on
Information Sciences and Systems, Princeton Univ., Princeton,
N. J. (March 1972).

. M. Chandy, T. W. Keller and J. C. Browne, "Design Automation

and Queueing Networks', Proc. Ninth Annual Design Automation
Conference, 9, pp. 357-367 (June 1972).

M. Chandy, "Queueing Models in Computer Systems', Proc. First
Texas Symposium on Computer Systems, pp. I-4-1-1-4-7,
Univ. of Texas at Austin (June 1972).

M. Chandy, '"Local Balance in Queueing Networks with Several
Classes of Customers', SIAM Annual Meeting, Philadelphia
(June 1972).

. Palacios-Gomez, "An Analytic Model of a Multiprogramming

System Including a Job Mix", Computer Sciences Dept.
Report TR-4, Univ. of Texas at Austin (June, 1972).

_ Baskett and F. Palacios-Gomez, "Processor-Sharing in a Central

Server Queueing Model of a Multiprogramming System With
Applications", Proc. Sixth Annual Princeton Conference on
Information Sciences and Systems, Princeton, N. J. (March 1972).

Baskett and R. R. Muntz, "Queueing Network Models with
Different Classes of Customers', Proc. COMPCON 72,
San Francisco (Sept. 1972).

_ J. Gordon and G. F. Newell, "Closed Queueing Systems with

Exponential Servers'", Opns. Res., 15, pp. 254-267 (1967).

. Buzen, Queueing Network Models of Multiprogramming, Ph.D.

Thesis, Division of Engineering and Applied Science, Harvard
University, Cambridge, Mass. a9e71).

_ A. Martin and R. J. Fateman, "The MACSYMA System', Proc.

Second Symposium on Symbolic and Algebraic Manipulation,
Los Angeles, Calif . pp. 59-75, (1971).

69



[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

70

. Engelman and A. J. Kleinman, "Machine-Made Analytic Solutions

to Finite State Markov Processes', MITRE Corp. Report M72-91,
(July, 1972).

. B. Irani and V. L. Wallace, "On Network Linguistics and the

Conversational Design of Queueing Networks', JACM 18,4,
pp. 616-629, (Oet. 1971).
)

. L. Wallace and R. S. Rosenbérg, "Markovian Models and Numerical

Analysis of Computer System Behavior', Proc. AFIPS SJCC,
Vol. 28, pp. 141-148, (1966).

E. Collins, '"'The SAC-1 System: an Introduction and Survey",
Proceedings of the Second Symposium on Symbolic and Algebraic
Manipulation, Los Angeles, (March, 1971).

. McCarthy, et. al., LISP 1.5 Programmers Manual, 2nd ed.,

The MIT Press, Cambridge, Mass. (1969).

. Parzen, Stochastic Processes, ist ed., Holden-Day, San

Francisco, Calif. (1965).

 G. Coffman and L. Kleinrock, "Feedback Queueing Models for

Time-Shared Systems,' JACM 15, 4, pp. 549-576 (Oct. 1968).

R. Jackson, "Jobshop-Like Queueing Systems,' Man. Sci.,
10, pp. 131-142 (1963).

. Lasseter, A Model of Predictive CPU Schedulers of Known

Uncertainty, M.A. Thesis, Dept. of Computer Sciences, Univ.
of Texas at Austin, Austin, Texas (1972).

C. Hearne, "REDUCE2, A System and Language for Algebraic
Manipulation', Proc. of the Second Symposium on Symbolic and
Algebraic Manipulation, Los Angeles, (1971).

. R. Foster, private communication, (1972).

. M. Morse, Queues, Inventories and Maintenance, John Wiley,

New York, (1958).

.R. Cox and W.L. Smith, Queues, Metheun, London, (1961).

Baskett, Mathematical Models of Multiprogrammed Computer
Systems, Ph.D. Thesis, Dept. of Computer Sciences, Univ.
of Texas at Austin, Austin, Texas, (1970).

. W. Keller, D. F. Towsley, K. M. Chandy, J. C. Browne, "A Tool

for Network Design: The Automatic Analysis of Stochastic
Models of Computer Networks', to appear in Proc. COMPCON 73,
San Francisco (Feb. 1973).




