A MODEL OF PREDICTIVE CPU SCHEDULERS
OF KNOWN UNCERTAINTY

by

Gene Lyonell Lasseter
TR-8
December 1972

This paper constituted in part the author's thesis for the M.A.
degree at the University of Texas at Austin, December 1972,

This work was supported in part ty National Science Foundation
Grant GJ-1084,

Technical Report No. 8
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

CHAPTER

I. INTRODUCTION ...

I1I. DESCRIPTION OF COMPUTING SYSTEMS AND SIMULATIONS

The Queueing System ..
The Operating System
Job Characteristics

TABLE OF CONTENTS

III. PREVIOUS RESEARCH ON COMPUTER SYSTEM MODELING AND

CPU SCHEDULING
IV. DESCRIPTION OF THE MODEL .

The Computing System

s s o0 000 v

e e e e e s o8 e 0 000 .
oooooo s s s e 000 0

Job Characterization .eecececccenssscnccccsornccconnsons

CPU Scheduling Strategies .. .
Modeling Predictive SBF Strategies ceeenn

Input Data

System Performance Measures

e s 00000000

V. RESULTS AND CONCLUSIONS

Factor Analysis

PRI S

Derivation of Results
Reproduceability cevan

FLOWCHART

BIBLIOGRAPHY

ooooooo

iv

s e e s s s LR B) .
e s s s 2 s e 00 .
-------------- .
ooooooooooooooooo
ooooooooo . .
s e 00 e s o s s 00 s .
s e s s s e . .
. e o s 00 000 .
----------- LU Y

17
22

22
22
24
24
26
27

28
33
34
35

36

LIST OF TABLES
TABLE Page
1. PERFORMANCE MEASURES OF THE MODELS WITH EXPONENTIALLY

DISTRIBUTED CP BURSTS (02 = MEAN) 29

1I. PERFORMANCE MEASURES OF THE MODELS WITH HYPEREX-
PONENTIALLY DISTRIBUTED CP BURSTS (o2 = S#MEAN) 30

I1I. PERFORMANCE MEASURES OF THE MODELS WITH HYPEREXPO-
NENTIALLY DISTRIBUTED CP BURSTS (02 = 10*MEAN) 31

IV. PERCENTAGE CPU UTILIZATION FOR PSBF MODELS OF
DIFFERING CONFIDENCE LIMITS AND CONFIDENCE REGIONS 32

LIST OF FIGURES

FIGURE

1.

QUEUEING MODEL OF A SIMPLE COMPUTER SYSTEM

vi

CHAPTER 1. INTRODUCTION

Modern day computing systems, comprised of complex networks of
computing equipment, have effectively moved beyond the realm of logical hu-
man rationale. Direct insight into optimal arrangement and management of
the devices by the operating system is impractical and almost certainly in-
accurate. "Counterintuitive" is an adjective often used in the description
of proposals for the improvement of the efficiency of computing systems.
Experimentation with types of system configurations is costly, often im-
practical, and impossible for idealized or theoretical systems. Mathema-
tical models of computing systems, a cheaper and more adaptable method,
have been used in many cases to attain the desired insight. They are use-
ful in the study of numerous system characteristics and offer a quite
accurate reflection of the considerable variability and randomness seen in
the operation of most systems. However, statistical and probability models
are attempted only on systems of extreme simplicity. Most real configura-
tions are of such complexity as to render the mathematical models untenable
-- being undevisable, unsolvable, or quite unattractive in solution. Simu-
lation models, as employed in other fields of research, have been proposed
for analysis of computing systems in these more complex circumstances.
These models actually simulate, in a step by step manner, the action in-
curred by the computing systems. A simulated system can be subtly changed
(in simulation) to reflect the performance of various configurations, were
they to be implemented in a real system, A simulation model can be of much

greater detail than a mathematical model, though the detail 1is obtained by

1

an increase of the cost involved, a reduction in generality and adaptability,
and is marked by uncertainty of statistical sampling accuracy. For these
reasons, simulation and mathematical models should be used to supplement and
enhance each other. An analytic model can be used in verification of a
simulation and fbr insigHt into the effects of system modifications that

are beyond the adaptive capabilities of the specific simulation.

The simulation model described in this paper is designed to de-
termine the effects in a batch-processing, multiprogramming environment of
predictive CPU scheduling, as uncertainty of the predictions varies. It
has been widely postulated that the optimal CPU scheduling method would be
the one which assigned the CPU to the job which would compute for the
least amount of time before it relinquished the CPU to await the fulfill-
ment of an 1/0 request. The basic assumption of this postulate is that
1/0 processing cannot keep up with CPU processing, thus forcing the CPU
into periods of idleness. Handling the CPU in the manner which would most
quickly funnel a job into its 1/0 processing phase maximizes the overlap
of the CPU and I/O devices. Attainment of device overlap is the guiding
principle encouraging multiprogramming environments. By the same argument,
the worst scheduling tactic would be the assignment of the CPU to the job
which would retain the CPU for the longest period. All other means of
scheduling the CPU should, in terms of efficiency, fall between these two.
Therefore, if a method could be devised which could accurately predict, by
whatever means the prediction could be realized, the amount of CP time a
job would consume before an I/0 request halted processing, then the CPU
could be scheduled to maximum advantage. Such an exact prediction seems

beyond all possibility of attainment. However, predictive schemes offering

less than total exactness are available. An interesting question is how
detrimental to CPU efficiency is the level of uncertainty associated with
a particular prediction scheme. If one develops a predictive method of
known uncertainty for use in scheduling, what will be the decrease in CPU
efficiency from the theoretic best scheduler? Will this predictive scheduler
be of sufficient value to indicate its use in preference to other "practical"
schedulers? These are questions this paper will endeavor to address.

Chapter II contains a general description of computing systems,
operating systems, and the simulation of these systems. Previous work in
the modeling of computing systems and the development of CPU scheduling
disciplines is related in Chapter III. Chapter IV describes the system
to be simulated and the means used in its simulation. Results and con-

clusions of the research are detailed in Chapter V.

CHAPTER II. DESCRIPTION OF COMPUTING SYSTEMS AND SIMULATIONS

A computing system is a network of computing facilities managed
by an operating system. Programs, or jobs, submitted to the system request
from the operating system certain facilities. When the facilities are
granted the processes required by the job are performed by these facilities
(not precluding either further facility requests or non-fulfillment of the
processes due to conflicting or poorly defined requests). The facilities
involved are memory space, central processing units, and input/output type
devices. Other facilities might also be involved -- such as channels con-
necting memory to the I/O units -- but the simplest practical machine must
include the three types of resources mentioned. At the time a resource be-
comes available (or is made available), the operating system determines if
there are other requests for its services. If so (and, for instance in
the case of memory requests, if the resource can accommodate the request),
the resource is assigned to the requesting job. Where there is more than
one request for the resource the resource is assigned to that job with the
highest priority for the facility. Priorities are established by the rules
of the operating system. It is in this manner that the orderly flow of
jobs through the computing network is accomplished.

The level of efficiency attained by this flow is not readily
apparent in even a most simple system to even an intense observer. Nor
is it evident how slight changes in the system will affect the system's
performance, Simulation models attempt to relate the efficiency of a
computing system to various standards of measurement. Among the many

evaluation standards employed are the following.

4

Throughput refers to the number of jobs which enter the system and
process to completion within a specific time interval. Due to the diverse
nature of most job streams, this simple count of jobs leaving the system,
inherently favorable to jobs with minimum resource demands, does not pre-
sent a true picture of the overall performance level of a computer system.
Though if it is fully specified and used over an extended time period,
throughput can serve as a rough measure of the performance level.

CPU Utilization (or Efficiency) is the percentage of the total

system active time that the central processor is active.

1/0 Utilization, in reference to a particular I/O unit, is the

percentage of elapsed system time that the I/0 unit is active. This mea-
sure is also closely related to the particular job stream, It would be
most profitably used in the attempt to maintain balance of utilization

levels between identical types of equipment.

Central Memory Utilization is the average percentage of central

memory occupied by active jobs.

Turnaround Time refers to the elapsed time from submission of a

job until its completion. Depending upon the particular application, the
performance goal associated with this measure may be either to minimize the
mean turnaround time or to minimize the maximum turnaround time.

These by no means represent a complete list of evaluation stan-
dards but do cover the measures in general usage. Most computer systems
have been found to be "I/O-bound" -- excluding memory problems. The rate
of 1/0 devices is considerably slower than that of a CPU, thus restricting
CPU utilization. As stated earlier, the ability to keep 1/0 devices opera-

ting results in greater device overlap, and this ability is most sensitive

to the method of CPU scheduling. For this reason and because of its pro-
found effect on all other measures, CPU utilization is generally considered
most reflective of the efficiency levels of systems under investigation.
With the bases for scoring computing system performance estab-
lished, the means of simulating it will be formulated. 1In abstract terms
a simple computing system may be viewed as a collection of queues combined
with some form of priority assignment to the members of those queues. (Fig.l)
The queues are composed of jobs (inputs to the system), which are indivi-
dually characterized as to the length of time they wish to remain at the
head of a queue and which of the other queues, if any, they desire to trans-
fer to when they voluntarily relinquish their membership in their present
queue. External to this sytem is another queue of jobs desiring to enter
the system (i.e. central memory). There might in addition be specific
rules, peculiar to the system at hand, governing various aspects of the
queues. To define and thus simulate a computing system at this level,
one has to designate the appropriate number (and identification) of queues,
establish rules for handling the queues, supply fully characterized job

streams, and institute a means of handling the queueing of jobs to enter

the system.

The Queuing System

Within the computer system there exists one queue for each CPU
and one queue for each I/0 unit. By implication a job possesses (or is
active on) one of the units whenever the job is at the head of that unit's
queue. A record is maintained at the times at which jobs active on a de-

vice will relinquish it. Any other points in time which might affect the

LIXH

walsdg i93ndwo)y ajdurg ® Jo Toapol Bursnand

e e

—

by ndo Tlll,ﬂ

oo T
Ll

sanand (/1

wajsAg Surenand TeUIdIUT

*1 @2and1yg

w
4

a

b

e

anand ndo

(L1owep TeRI3jUD) 104)

anany TRuUI3aIXY

e - ———— a— ———— —— —— ——— m— o~ oo o e

queues are included in the record. In this manner, referred to as event-
ordered simulation, "event-step' updates of the queues are accomplished, the
earliest event and its repercussions (as determined by job and operating
system characteristics) being considered before later events. These reper-
cussions include in some.cases changing or cancelling later events, as

evidenced by queue realignment.

The Operating System

The operating system in a multiprogramming environment handles
the jobs' requests for computing facilities, deciding among any conflicting
requests which jobs will be allotted the disputed facilities. Basically it
is in the manner used to resolve these conflicts that operating systems are
characterized. The first task of an operating system is to determine those
jobs to be assigned to central memory from among those jobs in the "external
queue." Next the operating system determines which of the central memory
resident jobs that have requested the CPU shall bé given its services.

When a job active on the CPU must relinquish the CPU in order to await ful-
fillment of an I/0 request, the operating system handles the reassignment
of the CPU, determines the type of I/0 service required, and attempts to
supply the proper facility's services. If there are conflicting requests
for that facility then the operating system assigns the device in accor-
dance with its algorithms to one of the requesting jobs and maintains a
queue for those rejected for immediate servicing. At the completion of

the I/0 servicing, the impediment to further central processing is removed

and a request for the CPU 1is filed with the operating system.

The scheduling decisions referred to above are peculiar to a
particular operating system. Each of the scheduling stages has associated
with it numerous possible strategies. Scheduling for central memory is an
important and interesting topic but for the purposes of this paper it has
been ignored. Scheduling of the I/0 devices is a somewhat less robust
topic due to hardware constraints and in this paper, as in many real sys-
tems all I/0 units are assigned to the jobs in the order in which the re-
quests are received. Incorporated in this paper are some of the numerous
schemes for the scheduling of the CPU among the jobs awaiting its services.
These methods are of three general types. The disciplines may be: non-
preemptive, which implies that a job only voluntarily relinquishes the
CPU once it is assigned; preemptive-resume, the CPU may be seized by
another job from the currently processing job for a period of time before
it is returned to the seizure point and processing resumes; or preemptive-
restart, the CPU, if preempted from one job by another, must start from
the job's original request when control is returned. As this last is
patently inefficient and thus to be avoided, the term preemption will
henceforth refer to preemptive-resume type action. Detailed discussions
of some of the more important scheduling disciplines, most of which can
appear in both preemptive and non-preemptive forms, follow.

Shortest Burst First (SBF). The CPU is assigned to the job in

the CPU queue which will process for the least time before it must halt
in order to await completion of an I/0 process. This is in theory the

best scheduling strategy, as the jobs which have had thelr short bursts
processed first can initiate their I/0 cycle while the longer CP bursts

are being processed. The CPU-I/O overlap is maximized, decreasing or

10

or eliminating CPU inactlvity incurred when all resident jobs are awaiting

completion of I/0 requests.

Longest Burst First (LBF). This strategy, assignment of the CPU

to the job in the queue with the longest CPU burst, is assumed to be the
worst possible scheduling method. Overlap of CPU-I/0 activity is reduced
to a minimum through the queuing of jobs in the CPU queue behind a job
that will hold it for a long period. The situation created is thus more
conducive to a total system cycle of CPU processing and then I/0 processing
than to an overlap circumstance.

Round-Robin (RR). A pure round-robin system assigns each job an
identical quantum of CPU service time whenever it enters the CPU queue.
On a first-come, first-serve basis each job is granted the CPU for that
amount of time. If at the end of its time quantum a job has not completed
its burst, the job is moved to the end of the queue, assigned an additional
quantum, and must await further processing. Control of the CPU passes to
the next job in the queue and the process continues. As the assigned quan-
tum becomes arbitrarily small, the discipline becomes known as processor-
sharing, with each job in the CPU queue progressing toward completion of

its burst at identical rates.

First-Come, First-Serve (FCFS). FCFS is a form of RR scheduling

with an infinite quantum. That job in the CPU queue with the earliest
arrival time is assigned the CPU. The CPU remains in its possession until
completion of its burst, at which time the CPU is switched to the job which
arrived next in the queue.

Last-Come, First-Serve (LCFS). This strategy assigns the CPU

to the last job to enter the CPU queue. LCFS is generally considered only

11

in its preemptive form, with a job newly entering the CPU queue immediately
seizing control of the CPU. A job with a long burst is thus more likely
to be preempted than a job with a short burst. This results in a closer

approximation of SBF than is obtainable with the more truly random FCFS

¢

discipline.

Predictive Shortest Burst First (PSBF)., The SBF strategy as de-

tailed above is of no practical use in real systems as the operating system
cannot know in advance the length of every service time. However, the op~
erating system can attempt to predict their lengths. All of the predictive
schemes rely on a review of a job's history to determine an expected burst
length or to assign a priority measure to a job. Some methods of burst

length prediction are:

Complete history (17). This method predicts that the length of

the next CPU service time will be equal to the mean of all previous ser-

vice times for that job. The formula employed‘is:

P = (X

*(n-
n a1t Faoa (n-1))/n,

where X is the i~th burst, Py is the i-th predicted burst, and Py = 0.

Exponential smoothing (20). Using this type predictor allows more

heavy weighting of the most recent past. Both the most immediate past
service and predicted service time are again employed but in "exponential
smoothing' they may be weighted in the manner thought most beneficial. The

formula for deriving the prediction of the n-th burst is:

P = aX

n 1t (1 - a)Pn_

l!

12

with xi and 1 as defined above and & a real number between zero and one.
By larger values of o, the more recent past of a job is more heavily
weighted than earlier bursts. For o = 1, the predicted next burst has ex-
actly the same value as the most recent actual burst. The derivation of

the name of this method:is related to its general formula, which is:

n-1 .
P o= o I (1 -a)tx

i=0 n-i-1

Other prediction schemes have been suggested (including the deri-
vation of priority values from CPU-1/0 burst ratios (13) or from discovery
of long-short burst patterns [2]) but the above have received the most at-
tention in the literature., A modification of these predictive schemes has
been suggested to lessen the detrimental effect caused by particularly in-
accurate predictions inducing the operating system to allow a job requiring
a lengthy service time to monopolize the CPU for long periods. The modifi-~
cation involves placing an upper bound on the amount of time a job can con-
tinuously possess the CPU. If a service time exceeds that bound, the CPU
is removed from the offending job. Its service requirement is repredicted
(possibly using the overflowed bound time as its most recent burst) or some

penalty is applied to that job's future requests.

Job Characteristics

Each job in the computing system has individual requirements for
CPU time, type of I/0 service, and I/0 time., A trace-driven model (such
as 16) employs known features of specific jobs to simulate realistic job
streams. These allow extremely accurate representation of the actions of

real computing systems. However, the required data is difficult and

13

expensive to obtain and is probably of finer detail than needed for many
simulations. Most simulations use job characteristics drawn from probabil-
ity distributions. These probability distributions, defined by the mean
and type of function, are discovered for each characterlstic by analysis

of experimental samplings‘of real systems., Various types of distributions
may be applicable. Some common probability distribtuions are discussed

below.

Exponential Distribution. This distribution has the characteris-

tic that the probability of an event's occurrence in a small time interval
is constant and this probability is statistically independent of the pas~
sage of time. A random variable X is said to have an exponential distri-

bution 1if its density function is defined as:

f X) = ae_ax

for >0 and a non-negative uniformly distributed random number x. The

cumulative distribution function of X is:

FO = [fae™ de=1-e
The mean value M of X is given by:
M= [T Xae™™ dx = 1 .

Now F(x) is uniformly distributed between 0 and 1. If G is the random
variable described by F(x), then G(x) and 1 - G(x) are equal, due to the

symmetry of the uniform distribution. Thus:

oax -Q0x

G(x) =1 -0G(x) =1-(L-e) =ce

14

Changing to logrithmic form;

oax = - logeG SN loger, 0<r<1.

Rearranging and substituting for a:

- .
i = - [(——— = = *
(1) X (=) log,r M*log r.

The exponential cumulative probability is thus completely charac-
terized by one parameter, its mean. Sampling from this distribution re-
quires only a random value r, uniformly distributed between zero and one,
for use in equation (i). The standard deviation of the distribution is
equal to the mean.

Hyperexponential Distribution. The hyperexponential distribution

is similar to the exponential distribution but produces random variables
more likely to have "extreme" values. More of both very small and very
large random variables appear in the distribution, causing its standard
deviation to be larger than its mean. The hyperexponential distribution
function is represented by a combination of two or more properly weighted

"exponential" distribution functions. A typical such function would be:

2WaX - e—2(l-W)aX

(ii) F(X) = We (1 - W) 0<W<1/2.

’

To generate random numbers from an hyperexponential distribution
of this type requires two random values ry and s each uniformly distri-~
buted between zero and one. Equation (ii) involves two distributions, one
with a mean value of M/2w and the other with mean M/2(1 - w). These dis-

tributions have likelihood of being chosen of w and (1 - w), respectively.

15

The value of r dictates this choice. Once this decision is made generating
the random number mimics that of the exponential distribution. The genera-

ting equations (from which one is selected) are:

(iii) X

i

- *
' loge r, M/2W, (for r

¢

LW,

(iv) X

i

- loge r, * M/2(1 - W), (for r,> W).

1

Cumulative Frequency Distribution. Often random numbers with un-

usual distributions or random numbers fitting observational data are de-
sired. A method of developing such a system is to display it as a fre-
quency distribution, indicating the number of times the variable is to

fall (or has fallen) in the different intervals. The corresponding cumu-
lative frequency distribution can be displayed by listing the percentage of
the total values in the entire range that falls at or below a specified
point. For x, a discrete random variable, with P(x = bi) = pi, the fol-

lowing table is applicable,

X Frequency Distribution Cumulative Frequency
i n
b P(X = b,) = P, q, = L P/ L P,
i i i i j=1 R j=1 j
by ! 1
b,) 9,
b P q =1

16

The denominator in the cumulative frequency column is useful
only where the frequency distribution refers to number of occurrences
rather than probability of occurrence.

One can then use a table lookup procedure to derive discrete
random variables from the desired distribution. A uniformly distributed
random variable r, 0<r<l, is generated. The table is searched to de-

termine the valucs where qy <rsq, and x 1s set equal to bi'

1

CHAPTER III. PREVIOUS RESEARCH ON COMPUTER SYSTEM MODELING AND CPU

SCHEDULING

The modeling of computing systems has been a popular topic of
research for séveral ye;rs. MacDougall in 1970 (11) offered a tutorial
paper describing the general basis for and design of simulation models for
a multiprogramming computer system. The structure of a simulator, job
generation, maintenance of queues, and performance evaluation are each
discussed in detail.

Hellerman and Smith (8) struck a different course with their
presentation of an idealized analytic model of a simple, paging, mono-
programming computer system. Any system with possible overlap of p pro-
cessors (of identical speed) can at best g0 p times as fast as a system
with no overlap capabilities. They conjectured that if standard compute
times and access and flow times for auxiliary storage are all considered
in particular processor overlap configurations, then the constraint on
system performance from complete overlap can be calculated. They pre-

sented formulas for this determination, geared towards discovery of op-

timal configurations under stated timing conditions.

A much more complex probability model was developed by Gaver (6).
This model, with a constant level of multiprogramming, one CPU, and iden-
tical I/0 units, investigated the manner in which throughput, or CPU
efficiency, is affected by CPU and I/0 device speed, type of distribution
displayed by CPU bursts, and core size. To this end the model was ana-
lyzed at the various levels of standard deviation on CPU burst distribution;

17

18

number of job segments in core; number of I/0 devices (including an un-
Iimited amount); and the /0 rate. Provisions for consideration of double
buffering and the intervention of CPU priorities were also indicated.

Tsao, et al. (18, 19) constructed a multi-factor experiment on
paging, statistically aéalyzed to study the interactive effects of the
various factors. The factors studied included the type of replacement
algorithm (for paging), memory size, size of programs, and type of group-
ing of system routines. By actual experimentation the most important fac-
tors affecting the paging process were determined, along with discovery
of the most useful measure for comparison of the various replacement
algorithms,

CPU scheduling has been of some concern in much of the recent
research in computing systems. A detailed view of the several CPU sched-
uling orientations was presented by Coffman and Kleinrock (4). Four basic
properties were noted as characterizing CPU scheduling techniques. These
are: (1) preemptive vs. non-preemptive scheduling, (2) resume vs. restart
(if preemption occurs), (3) how the priority is determined, and (4) when
the priority is determined. The third property was discussed at length,
The authors specified the various algorithms in general use for assignment
of priorities, including those deriving priorities from the '"'state" of
the computing system and from external considerations. A further variety
of CPU scheduling disciplines was described in a later paper by Kleinrock
(9). 1In it dynamic scheduling algorithms (for a time-sharing environment)

were presented as a continuum dependent on the rates at which priorities are

modified.

19

0f more direct relevance to this paper are the relatively few
papers concerned with the theory and application of predictive CPU sched-
uling methods. Among the first of these was Stevens (17). He hypothesized
that the goal of an efficient multiprogrammed computing system would be
to maximize the number of jobs doing I/0 simultaneously. Furthermore, to
attain this the CPU should be given to the job which will relinquish it
soonest (i.,e. the job which will begin I/0 processing soonest). The prior-
ity of a job is calculated periodically, at system intervals, as a function
of the ratio of compute (CP) time consumed to I/0 time consumed. In the
implementation of this predictor, the computing system experienced a sub-
stantial (18%) increase in CPU utilization, though concurrent system changes
make isolation of its true effect difficult. Stevens further suggested
that a superior measure might be a similar priority determination using
only more recent times and thus more sensitive to current processing
realities.

Wulf (20) offered propoals quite similar to those of Stevens,
though in a more formal manner. He defined the priority of a job in

the (i + 1)th system time interval to be Pi/ci’ with

= * y
Pi wi Pi—l + ri , O<wl<l,

C. =W, *C + B, , O<W,<l.
i 2

Ti is the CP time consumed during the ith time interval by the job in
question, while Bi is similarly the I/0 channel time. The welghts Wy

and w, are arbitrarily assigned to exponentially downgrade the values

previously calculated. Though other changes muddle Wulf's results, the
reported improvement in CPU utilization was considerable, in the range of
20 to 25%.

Marshall (13), to fulfill his goal of placing "I/0-bound" jobs
at a high priority for CPU use, considered two scheduling approaches. irst
he implemented a reward/penalize scheme of assigning larger/smaller time
slices to a job according to whether the job requested I/0 before its
current time slice expired. The purpose was to give I/0-bound jobs longer
slices of CP time while limiting the time a compute-~bound job could mono-
polize the CPU, The results showed this not to be a particularly effective
idea. Marshall then considered the assignment of priorities for CPU use in
a manner corresponding closely to the proposals of Stevens and Wulf. The
priority was based on the ratio of wait time to CP time plus wait time, a
value he thought to be a reasonable measure of the I/0-boundness of a job.
The priorities of all jobs in core were reassessed at fixed system in-
tervals. In actual operation, Marshall reported performance improvements
in throughput of up to 23%.

Ryder (15) instituted a similar scheme to classify jobs as either
1/0- or CPU-bound. The classification was based generally on the evidence
exhibited by the job's most recent burst. However, factors other than
this partition were used to affect CPU scheduling and the reported system
improvements cannot be traced exclusively to the predictive mechanism.

Chandy and Lo (2), in a paper principally concerned with the
analysis of queuing models of computer systems, suggested prediction of
CPU bursts as either long or short, dependent on burst patterns discovered

during the processing of a job. Observations of burst duratioms on a

21

CHC 6600 indicated that such long/short patterns do exist. Knowledge of
Lhese patterns could lead to more efficient assignment of the CPU to
jobs with the predicted short bursts.

Sherman, Baskett, and Browne (16) presented a simulation model
incorporating microscopih level job stream data obtained by software
probes of the system. This is an example of the previously mentioned

trace-driven model. Various types of CPU schedulers were modeled, in-

cluding several "exponential smoothing" type-predictors and "complete

history" predictors. With each of these predictors, the percentage of
correct decisions (CPU assignments to the job with the shortest burst)
was consistently good -- between 72 and 78%. When an upper bound was
placed on the length of time a job could continuously possess the CPU,
the predictive schedulers induced quite good system efficiency levels,

exceeding that of all other realistic scheduling methods.

CHAPTER IV. DESCRIPTION OF THE MODEL

The Computing System

To attain maximum reflection of the specific effects on CPU
utilization of the various scheduling strategies, the model was formu-
lated simply but with realistic parameterized data taken from a real sys-
tem (UT-2). A constant level of miltiprogramming is assumed, eliminating
queuing for central memory and creating the effect of a closed system.
There is a single CPU and four identical I/0 units. The I/0 units do not
have equal selection probability though each I/0 reference is independent
of any previous reference. The operating system handles the queuing for
1/0 service on a first-come, first-serve basis and the queuing for CPU
service according to a predetermined CPU scheduler. CPU switch time and

time for "dummy" job loading are disregarded.

Job Characterization

A job is fully characterized by: (a) total CPU cervi.ce re-
quirement, (b) a set of CP bursts, (c) a set of I/O bursts, and (d) a set
of 1/0 device specifications corresponding to each of the I/0 bursts.
Parameterized mean values for total CPU time, CP bursts, and I/0 bursts
and their respective service time distributidns are used to describe the
individual jobs. When a job is "loaded" into the system, its total CPU
service requirement is randomly obtained from an exponential distribution
function. The usual method of sampling from this distribution is employed.

Given mean AVG and a 0-1 uniformly distributed random number R, the value

22

23

may be determined by equation (i) in Chapter II. As will be explained
below, this produces only an approximation to the actual CPU service

requirements.

The length of each CP burst is generated by gampling from an ex-
ponential distribution, ;s in (1), on the first series of runs and from
an hyperexponential distribution on the second series. Generation of the
value from an hyperexponential distribution requires a preset value w
(0<w<1/2) to specify the standard deviation of the distribution, two 0-1
uniformly distributed random variables, the mean of the distribution, and
two equations (iii) and (iv) given in Chapter II. The duration of each
I/0 burst is sampled from an exponential distribution as described by (1).

A cumulative frequency probability distribution is used in a
table lookup procedure to specify the I/0 unit to relate with each I/0

burst. A 0-1 uniformly distributed random number is associated with the

cumulative probability to determine the 1/0 unit identification number

inthe following table.

I/0 Unit ID Cumulative Probability
1 0.500
2 0.667
3 0.833
4 1.000

I/0 unit #1 thus has three times the probability of being selected as each

of the other three units.

A job is considered to consist of a pattern of CPU-I/0 bursts

with an associated I/0 unit for each pair of bursts. When the generation

of a CP burst reduces the job's total remaining CP requirements to below
the mean for CP bursts, the newly generated pair of bursts are specified
as the final pair for that particular job and the total CP time expended

on that job 1s adjusted accordingly.

¢

CPU Scheduling Strategies

Several different schemes for scheduling the CPU were modeled.
These were:

(1) SBF - both preemptive and non-preemptive forms,

(2) PSBF - preemptive with both confidence regions and

confidence levels varied,

(3) FCFs,

(4) LCFS -~ preemptive form,

(5) RR -~ with quanta of 8, 16, 32, and 64 milliseconds,

(6) LBF -~ with a preemption quantum of 32 milliseconds.

Modeling Predictive SBF Strategies

For the purposes of this paper, the particular strategy used by
the computing system to obtain a burst prediction is disregarded. The im-
portant factor is the degree of accuracy of the predictions. Thus rather
than attempt to model one of the previously mentioned prediction methods,
a predicted burst length is derived from the true burst by employing only
the required level of accuracy for the predictions., It is assumed that,
with a particular parameterized level of confidence, one can guarantee

that the predicted burst lies within a certain confidence interval of the

24

truc burst. These predictions are uniformly distributed within this al-
lotted confidence interval. The width CI of a confidence interval, given
the true burst time T and the allowable percentage variation VAR, is de-

termined by the formula:

CI = 2 * VAR * T,
To obtain the predicted burst P, a 0-1 uniformly distributed random variable

R is used in the following:
P=T+ClL * (R-0.5).

Generating those (randomly determined) predicted bursts which
do not conform to this intcrval entails a table lookup procedure. A 0-1
uniformly distributed random number is compared with the cumulative pro-

babilities listed in the following table to attain the multiplicative

factor M.
MULTIPLICATIVE FACTOR M CUMULATIVE PROBABILITY
-4.0 0.1426
-3.0 0.2085
-2.5 0.2603
-2.0 0.3303
~-1.75 0.3757
-1.50 0.4310
-1.25 0.5000
1.25 0.5690
1.50 0.6243
1.75 0.6697
2.0 0.7397
2.5 0.7915
3.0 0.8574
4.0 0.9388
6.0 0.9725
8.0 0.9876

10.00 1.0000

The multiplicative factor obtained in this tabular search is

used in the following cquation to produce a predicted burst outside the

proscribed confidence interval.,

P+T+ M * CIL.

If the predicted burst derived in this manner is less than

zero it is set equal to zero.

Input Data

The data input to the model for the purposes of job generation,

prediction generation, simulation control, and software control are the

following:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

the

tabular values required to derive the multiplicative

factor for use in the burst prediction routine,

the

the

the

the

the

the

the

number of jobs to be generated during the course of
gsimulation,

fixed level of multiprogramming,

mean total CP service time,

mean CP burst time,

mean I/0 burst time,

length of the quantum to be used for CPU scheduling

purposes in the model,

a flag indicating whether or not the scheduling scheme is

predictive,

the

confidence level to be used for burst prediction

generation,

(10) the confidence interval to be used for burst prediction

generation,

System Performance Measures

Several performance measures are recorded for evaluation of the
various CPU scheduling strategies., These arc:
(1) the number of times the CPI is switched from one job to
another,
(2) a device utilization percentage for tie CPU and each
I/0 unit, and
(3) the number of jobs completed per simulated second

(throughput).

CHAPTER V. RESULTS AND_ CONCLUSIONS

Tables 1 through IV display the results of the simulated models.
The performance levels attained for the various CPU scheduling disciplines
are consistent for each of the three burst distributions. CPU utilization
appears to be the most responsive of the performance measures. As expected
the SBF strategy produced levels of efficiency superior to that of any of
the other schedulers. On only a slightly lower level were the several pre-
dictive schedulers. The CPU utilization measure for these schedulers ap-
proximately ranged from 1% to 4% below this measure for SBF scheduling,
depending upon the degree of uncertainty imposed on the predictions. RR,
with small quantum, and LCFS strategies produced performance levels at the
lower end of this range. Lt is only when the predictions are substantially
inaccurate that these two disciplines can match the efficiency of the pre-
dictive schedulers. FCFS scheduling falls from 1% to 4% below these, the
degradation increasing as the standard deviation of the burst lengths in-
creases. The CPU utilization for LBF, easily the worst of the strategies,
forms a lower bound for the measure on these models. 1Its utilization fac-
tor is 10 to 12% lower than that of SBF.

Almost all previous research had shown PSBF to be a viable al-
ternative for CPU scheduling. Sherman, Baskett, and Browne (16) in their
trace-driven model had produced results consistent with these. However,
they used a real system and definite predictive methods, and thus general
formulations cannot be deduced. The results reported here indicate for
any system the degree of accuracy needed for a predictive scheme to in-

duce system improvements over the ordinary schedulers. This degree of

28

Table 1: Performance Measures of the Models with Exponentially

2
Distributed CP Bursts {(y~ = MEAN)

¢

Measure % CPU Throughput CPU Switches
Scheduling Utilization (Jobs/second) (Thousands)
Discipline

Preemptive SBF 71.8 1.41 36.2
Non-Preemptive SBF 69.8 1.39 25.6
PSBF, CL = 0.9, VAR = 257 71.5 1.40 35.0
VAR = 757 70.9 1.39 34.9
VAR = 1007 69.3 1.41 33.6
RR, Q = 8 68,2 1.37 99.8
Q = 16 68.6 1.39 59.2
FCFS 67.9 1.33 25.9
LBF, Q = 32 62.3 1.21 48.3

29

Table 1I: Performance Measures of the Models with Hyperexponentially

Distributed CP Bursts sz = S5*MEAN)

Measure % CPU Throughput CPU Switches
Utilization {(Jobs/second) (Thousands)
Scheduling
Discipline
Preemptive SBF 71.3 1.38 75.0
PSBF, CL = 0.9, VAR = 25% 71.1 1.37 74.7
VAR = 1007 69.4 1.33 73.0
VAR = 300% 67.7 1.31 70.3
' CL = 0.5, VAR = 257% 69.9 1.31 70.3
VAR = 1007% 68.4 1.32 71.2
VAR = 3007% 67.3 1.31 69.6
RR, Q = 8 67.5 1.27 210.2
Q = 16 67.6 1.31 213.7
LCFS 67.2 1.29 86.0
FCFS 65.7 1.29 51.4
LBF, Q = 16 61.0 1,20 139.7

30

Table II1: Performance Measures of the Models with Hyperexponentially

" Distributed CP Bursts (02 = 10*MEAN)

Measure % CPU Throughput CPU Switches
Utilization (Jobs/second) (Thousands)
Scheduling
Discipline
Preemptive SBF 71.5 1.31 82.0
PSBF, CL = 0,9, VAR = 257 70.8 1.28 80.6
VAR = 1007% 68.8 1.25 17.5
VAR = 3007 67.3 1.21 76.1
RR, Q = 8 67.1 1,22 217.2
Q =16 67.0 1.20 134.8
LCFS 66.7 1.21 91.4
FCFS 62.5 1.14 56.0
LBF, Q = 32 59.7 1.09 103.9

31

Table IV: Percentage CPU Utilization for PSBF Models of Differing
Confidenée Limits and Confidence Regions (Hyperexponentially

Distributed CP Bursts, 02 = 5%MEAN)

CL 0.9 0.8 0.7 0.5 0.3
VAR

25% 71.1 70.7 70.5 69.9 69.8

507% 71.0 69.9 70.4 69.4 68.7

100% 69.4 70.0 68.8 68.4 68.3
200% 68.1 68.2 67.9 68.1 68.0
300% 68.4 67.9 67.6 67.3 67.6
500% 67.7 67.6 67.7 68.1 67.4

32

33

accuracy is shown to not be particularly extraordinary. This might ex-
plain the excellent results obtained by the relatively primitive prediction
algorithms used in some experiments. (15, 17). The tables show that the
CPU utilization measure is moderately insensitive to variations in the pre-
diction's confidence level and confidence region. As the predictive ac-
curacy becomes smaller the further system degradation also becomcs pro-
gressively smaller (Table IV). It appears that the important factor is

not the preciseness of the prediction but whether the prediction is to even
a small degree related to the true burst. The previously mentioned pro-
positions advanced by Chandy (2) are most harmonious with these results.
Scheduling of the CPU according to derivation of long/short burst patterns
would approximately coincide with PSBF scheduling with ample predictive
uncertainty, and thus should be a beneficial discipline. Both RR and LCFS
require much greater numbers of CPU switches than PSBF. For those systems
which consume non-trivial amounts of system overhead in CPU switching, per-
formance improvements associated with a PSBF scheduler would indeed be

significant.

Factor Analysis

Table IV displays the percentage CPU utilization of the PSBF
model for various levels of the percentage confidence region VAR and the
confidence level CL. The results in the table were further analyzed to
determine the relative sensitivity they exhibited to these two factors.
Both linear and non-linear models were examined in a multiple regression

analysis. The linear model used was:

34

P = * CL + * VAR + c.,.
F Cl CL c2 VAR c3

The non-linear model was:

Fo= Cl * CL +‘CZ * VAR + Cy + y * CL * VAR.

I in hoth cases represented the measure of CPU utilization. The cocefficients

discovered were markedly similar in both analyses.

Analysis Results <1 c27 Cy 4 Std.¥hrfgi
Linear Model -2.65 -0.68 71.14 - 0.412
Non~linear Model -2.61 ~-0.70 71.30 -0.13 0.495

The results indicate that the relationship is more nearly linear
-- indeed the standard error is larger for the non-linear model. If the

coefficients c and <y are normalized (as the variables CL and VAR have

different numerical ranges), ¢, remains somewhat larger than Cos suggesting

1
that the model is slightly more sensitive to changes in the confidence level

than to the width of the confidence region.

Derivation of the Results

In the simulation models some standard parameters were used for
all runs. These were:

Level of multiprogramming 5

Mean total CP time.......... ... 500 milliseconds

Mean CP bBUIStL. ...ttt it iiet ittt nnnns 40 milliseconds

35

MeAN 170 BUFSE e et et aniien e 100 milliseconds
Total number of jobs generated
Exponentially distributed CP bursts2000

Hyperexponentially distributed CP bursts ...4000

The results listed in the tables represent average values of
three loops through the simulation. These loops are differentiated by
different starting points for the random number generator and produce three
completely different job streams. For hyperexponentially distributed CP
bursts two series of runs were made. On the first the standard deviation

of the distribution was 5*MEAN (w = 0.2) and on the second it was 10*MEAN

(w=0.1).

Reproduceability

The results of the various simulation runs seemed notably steady
and the variation among different runs of the same model was slight. Pro-
bably runs encompassing a much shorter length of simulated system time
would have produced results of nearly equal accuracy but the greater time
was employed so that the system would be assured of approaching a steady-
state balance. The simulation model was verified analytically by the ASQ
system (as described in 3) for FCFS scheduling with exponentially distri-

buted CP bursts.

36

129

3IST1

INZA3 woid
swyl noyiaydwod
s3] 2aomay

ypeadmaad
qof 9ATIOV
s1

qerl
AATIOV 104

anand
ndo 3308

s$a1nsean mUuum«uﬂum
&OHw ﬁ.ﬂm 3leialusd
anding pug 1221100
0t Qof #2Rje o
€ 91813Ud3H

3ISTT IMAZ O3
w1l woyiafdme)

23189¢ 0/1

$37 PPV ay3 21e18

—

; K3dug
anand 14D

ay3 s1

ITu IBYL 10
anand Iyl
uy qQor 33eld

oy woFIETNWES 3yl 3O J1eyomoTd PeZF{BI2U3)

. 3sang 40
i a8yl I0TPp3rd

,aa71dmanigd qor o3
BurNPIURS £373011d
s1 ndo udyssy
0L 3ISTT IN3IAY ao1asq 0/1
oy v 031 uwotlaydwod
on jo suyl PPV 2yl 31e1sdy

S3x

rnuamaaaou
qof 2yl 81

qor @AFIOY @
STNPAYOE -

aoynad 0/1
pa3e]O0ss
23 2UuYWIIIA

qor uoed
103 818ang

1108

Jumiuend
jo pug uo
JueA3 SI

OR

S3%

Juoj3aydmoy
3sang O/1 pue
juaag S1

qor yoel

3ISTT INEA3 ud anand
amyl wojieydmo 1d
ugyssv 108

2} 140 2OBTJ

o1 £317301143

14 :mﬁw.:

sisang 38113
172Ul YITM sqof

1811J 23IBIVIH

SATAVI¥YA SHALARVUV

FZITVILING LndNT

BIBLIOGRAPHY

1.

Baskett, F., Mathematical Models of Computer Systems, Ph.D. Disserta-

tion, University of Texas at Austin, 1970.

Chandy, K. M., "Queueing Models in Computer Systems," Proc. of the

First Texas Symposium in Computer Systems, University of Texas,

Austin, Texas (June 1972).
Chandy, K. M., T. W. Keller, and J. C. Browne, 'Design Automation and

Queueing Networks,”" Proc. Ninth Annual Design Automation Conference,

9, pp. 357-367 (June 1972).
Coffman, E. G., and L. Kleinrock, "Computer Scheduling Methods and

Their Countermeasures,' Proc. AFIPS 1968 Spring Joint Computer

Conference, Vol. 32, pp. 11-21.

Fenichel, R. R., and A. J. Grossman, "An Analytic Model Multi-Programmed

Computering," Proc. AFIPS 1969 Spring Joint Computer Conference, p

717,

Gaver, D. P., Jr., "Probability Models for Multiprogramming Computer

Systems," Journal of the ACM, Vol. 14, No. 3, July 1967, p 423.

Gordon, G., System Simulation, Prentice-Hall, Englewood Cliffs, N. J.,

1969.

Hellerman, H., and H. J. Smith, '"Throughput Analysis of Some Idealized
Input, Output, and Computer Overlap Configurations,” Computing
Surveys, Vol. 2, No. 2, June 1970, p 111,

Kleinrock, L., "A Continuum of Time-Sharing Scheduling Algorithms,"

Proc. AFIPS 1970 Spring Joint Computer Conference, Vol. 36, pp.

453-458,
37

12,

173,

14,

15,

16.

17.

18.

19.

38

Lan, J. C., "A Scudy of Job Scheduling and Llts Interactijon with
CPU Scheduling," TSN-24, Computation Center, Unliversity of Texas
at Austin (December 1971).

MacbDougall, M. H., "Computer System Simulation: An Introduction,"

Computing Surveys, Vol. 2 (September 1970), pp. 191-209.

McKinney, J. M., "A Survey of Analytical Time-Sharing Models,"

Computing Surveys, Vol. 1 (June 1969).

Marshall, B. S., "Dynamic Calculation of Dispatching Priorities
Under 0S/360 MVT," Datamation (August 1969) pp. 93-97.

Ramamoorthy, C. V., K, M. Chandy, and M. J. Gonzales, "Optimal
Scheduling Strategies in a Multiprocessing System," IEEE-TC
Vol.‘C—Zl, No. 2 (February 1972).

Ryder, K. D., "A Heuristic Approach to Task Dispatching,” IBM

System Journal 8, 3 (1970), pp. 189-198.

Sherman, S., F. Baskett, and J. C. Browne, 'Trace Driven Modeling
and Analysis of CPU Scheduling in a Multiprogramming System,'
University of Texas at Austin, 1970.

Stevens, D. F., "On Overcoming High-Priority Paralysis in Multi-
programming Systems: A Case History," Comm. ACM, 11 (August
1968), pp. 539-541.

Tsao, R. F., L. W. Comeau, and B, H, Margolin, "A Multi-Factor
Paging Experiment: I. The Experiment and the Conclusions,"
IBM Research Report RC 3443 (July 1971).

, and B, H, Margolin, "A Multi-~Factor Paging Experiment:

II. Statistical Methodology," IBM Research Report RC 3522

(August 1971).

