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ABSTRACT

The implementation of a new technique for the formal
definition of programming languages 1is presented. Using as
input the source program and a pair grammar defining a
mapping of BNF string grammar rules into a set of graph
grammar rules, a translator produces a representation of
the source program as hierarchies of directed graphs.

This representation contains explicit semantic information
added through the graph grammar. An associated interpreter
implementation for the program graph is discussed as well.

The routines created for the implementation are
described in detail, along with a new graph grammar syntax
developed to aid in input of the graph grammar rules.

Use of the TWS is demonstrated with a pair grammar which
defines the translation of full Algol 60 into hierarchical
graphs. The construction of a simple interpreter for such
a system is outlined. The TWS is evaluated on the basis

of efficiency, generality, and practical utility.
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I. INTRODUCTION

Since the conception of higher-level programming
languages, techniques for language translation have been
widely discussed and studied. The original and most frequent
motivation for translation has been the generation of
machine code from a high-level programming language; thus
most translators written to date have been compilers or
assemblers. The proliferation of programming languages
has had two results relating to language translation--
first, translators between high-level languages have become
necessary, and second, the mechanization of such translators
has been shown to be a desirable and attainable goal. The
development of translator writing systems (TWS) has begun
from many directions.

The first and to date most successful TWS attempts
have been the automatically constructed recognizers. These
systems typically use grammar characteristics developed
from formal syntactic studies to generate parsers--programs
which accept as inpﬁt a source language string and construct
its derivation or parse tree as output.

One of the earliest such systems was Floyd's
"operator precedence' technique, which works with grammars

of the same name (5). A table of precedence relations




is used as the basic input; the parsing algorithm stacks
source string symbols until a table relation is satisfied

and a reduction can be made. The parse thus performed

"is bottom-up, left-to-right. While this technique hés not
been used in any true TWS's, it has spawned severél extensions
which have had moderate success. Wirth and Weber's '"simple

precedence' technique is less restrictive with respect to

the class of grammars allowed, yet most grammars must be
manipulated considerably before use (16). Among other
matrix-based recognizer techniques is one by Gries which is

based on transition matrices; he has written a matrix

|

constructor which helps in the implementation of a grammar
considerably (7).
Perhaps the technique most widely known is that used

by Floyd (4) and later by Evans (1). A simple interpreter

attempts to match stacked incoming symbols against coded
"production language' statements, calling semantic subroutines
upon request. The technique is efficient, simple, and easy-
to-use; coding in the '"production language'" is still such

an art, however, that its use in a TWS is quite limited.

The job of total language translation is in fact
much more than mere parsing of the source code. The lack of
formal theory in the study of language semantics has so
hindered the full automation of translators that even

those more or less complete TWS's written have been composed
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of hand-coded semantic subroutines which are called when
certain reductions are made and perform specific actions
based upon the structure of the source code stack. Most
of the compiler-compilers (TWS's which generate compilers)
written are of this variety: McClure's TMG system (8), the

BNF-oriented META systems (15), and Reynold's COGENT system

(14) all contain subroutines which insert the language
semantics during parsing. Systems such as Feldman's FSL

(2) and TGS (10) go a step further and provide a new language
to express the semantic code generation parts of compilation.
Yet even in these systems the separateness of syntax and

orvades the entire translarion process. Only

.
=S aglal 1
gemgncice

P(j

recently has the formal work in programming langﬁage
semantics produced a method of representation capable of

being used in a TWS.

Such a representation has been developed by

Pratt (11,12,13). Using hierarchies of directed graphs
(H-graphs), the natural flowchart program representation
has been formalized. Translation from the string-based
program representation (source code) into the graph-based
one is accomplished using a pair grammar. Such a grammar
consists of input and output grammars with rules paired
one-to-one. 1In this application, the input (or left-side)
grammar is an ordinary context-free grammar defining the

programming language's syntax; the output (right-side)
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tree, using specifier-generated tables and lists to construct

the actual program graph. The discussion of this phase
terminates Section III; this part also finishes the TWS
description.

The final section describes the current implementa-
tion of the interﬁreter necessary to execute the Algol 60
program representation obtained from the translator.
Because the interpreter is mainly a set of routines which
perform graph fransformations, it is closely tied to the
language being translated, and thus is the most language-
specific part of the entire system. |

In all sections, Pratt's Algol 60 definition (12)

will be used z2s an example for trancelation. To date, no

other programming languages have been defined in this manner,

so the translator does not have the benefit of extensive
testing. Tests using the Algol definition, however, show

the translator fully capable of handling a complete programming

language with realistic time/space requirements.




II. GRAPH/PAIR GRAMMARS

Essential to the TWS is its use of graph and pair
grammars, an area where little formal theory has been produced.
fﬁe graph grammars used in translation, however, are quite
intuitive to the interested reader in two ways: they are
formalized representations of the traditional program flow-
chart, and they are direct generalizations of ordinary con-
text~free grammars. Additionally, the pailr grammar concept
as used here is quite simple. For the purposes of this work,
an informal discussion of these concepts will suffice; their

formal development is considered at length in Pratt (11).

Graph Grammars and H-Graphs

A graph language is a language composed of a set

of directed graphs with labeled nodes and arcs. A graph
grammar is a generalization of an ordinary context-free
grammar which defines a graph language. Such a grammar
possesses the familiar terminal and nohterminal sets of
symbols, as well as productions used to generate the terminal
graphs of the language. £tarting with a graph containing a
single nonterminal node, the productions are applied, re-
placing with each a nonterminal node by a graph, until no
nonterminal nodes remain.

The problem of knowing just how to "hook up" the

graph replacing the nonterminal node is solved by analogy

13
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to string replacement: just as a string has a hesad and tail,
every graph is reguired to have an input node and an output
one. Nodes and arcs may be labeled but do not have to be.
All nodes have a value--it may be null, an atomic symbol,

or a graph. Thus, hierarchies of graphs may be built with
nodes whose values are in turn H-graphs.

Ssuch structures effectively model the various levels
of detail in a program. In the ALGOL modsl, for example, flow
of control is represented by high level "program graphs" which
contain only "instruction nodes". Thase nodes may have at
most two exiting arcs, labeled "true" and "fals2". Statically—
datermined flow ot control in an ALGOL program is followad by
tracing the arcs of tha program graph. Should more detail be
dasired, the valués of the instruction nodes are graphs whose
eatry nodes contain the names of primitive operations. Within
the instruction graph, the arcs signify the input-output struc-
ture of the operation, pointing from the input nodes to the
entry node and from it td the nodes whose value will be changad
by the operation. Within this example ALGOL d=finition, all
the s=amantic information not present in the string syntéx
(the necessary static/dynamic chain structures, block and
procedure eantry/exit techniques, etc.) can be added through
the graph grammar using only program and instruction nodes
and graphs.

The notation used in this work is precisely that of




15

Pratt in his model description (12), see Figure 1. In this
rule of the graph grammar, the nonterminal node with value
"primary" is replaced by the two-node graph with an input
nonterminal node "var" and an output instruction node whose
value is an instruction graph. Within this graph, the entry
node (always marked with a * or at the upper lett-hand cornar
of the graph) has as its value the primitive operation "stack".
The operation has the node labeled "TEMP" as its input operand,
and changjas the valu= of its output operand, the node labeled
"E-STACK". I

( <primary> ) ::= O

[stack eex] ]
val E-stacl
| TEMP

Figure 1. Sample right-side H-graph

In gsneral, an oval represents a nonterminal node;
a rectangle represents a terminal one. Nodz2 labels, when
included, are written to the side of the nodss; their values
are inside. The symbol # me=ans a null value. Arcs point
one direction or both. They are labeled like nodes but never
have a value. The input and output nodes of a graph granmar

rule are labeled I and O, respectively.

Pair Gramnmars

A pair grammar is composed of two grammars whose

rules are paired in a one~to-one correspondance. These two
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grammars are dendted as left-side and right-side. With such

a correspondence, it is easy to view it as a definition of

the translation of one language to the other. Given a se—

quence of rules in the pair grammar, sentences may be ganer=-
ated in either language. Alternatively, given a senteance in

one language (normally the ons defined by the left-side grammnar) ,
a translation may be made to the right-side languags using only
a syntactical parse trea. Of particular interest in this work
is the case in which the left-side language is a set of strings
(the usual syntactic definition of programming languages) and
the right-side language is a‘set of H-graphs (the semantic

model) .

The construction of a paiv grammar given a left-side

programning language is clearly a non-trivial problem. Th=

pair grammar must, in effect, d=fine a mapping from a syntactic
representation of a program directly into a semantic model,

without the extraneous devices of symbol tables and the like.

What semantic information is necessary in the program model
must be present in the grammar, and the problems involved in
constructing such a grammar are comparable to those of writing
a one-pass compiler without tables. Th2 ALGOL 60 definition
used as an example in this work is surprisingly simple; yet
even it must omit many traditional compile~time tasks (type
checking, undeclared variables, etc.). Nevertheless, thase

problems are mainly optimization problems; the pair grammar-
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based TWS is not designed for spead but rather for generality.
Thz specific palr grammax used to test the TW3 is
included in Appendix A. Each rule is numbered uniquely. The
left-side grammar is the ALGOL 60 BNF grammar used in the
original language specification with some very minor modifi-
cations (17). Thé right-side grammar is the graph grammar
which generates the graph moda2ls of ALGOL programs. The

eatire grammar is presented and discussed at length in Pratt

(12).




III. DESIGN OF THE TWS

The translator writing system is diagrammed in
Figure 2. The dssign appears similar to other TWS's with
the exception of some sort of semantic information input,
which is implicit in the pair grawmmar input. The TW3 func-—~
tions as follows:

The right-side grammar of the desired pair grammar
is first input to th= Graph Specifier, which converts each rule
to a sequence of graph generation primitive operations and
tables the results. While the current version of the system
re-inputs this every time, it is a costly process and could
be donz onlv once for each naew pair grammar. Th2 Source
Language Parser is written so that the left-side grammar is
an easily replaced module in it. The Parser accepts the source
code as input and outputs the ssguence of parse rules used to
parse the input, together with the specific terminal symbols
scann=2d. The Graph Generator re~traces this list of parse
rules, using thes tables generated by the Specifier to build
the program graph.

Th=2 overall criteria governing construction of the
system were ganerality and modularity. The TWS was written
to accept any pair grammar as input which had a string-based
context—-fres left-side grammar and a right-side graph gramnar,
Th2 use of a pair grammar to specify the translation greatly

18
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r——-—- -1

I Pair grammart .| Source Lang.

L}eft-side ! Parser

Tt arse tree
el e mee gy r-—=-=--=-- 1
L Source code l Graph __*:gizgﬁam \
Generator 1}?9?%}_,_}
tables, exec

r--—-—-=- 1 sequences for graph

t Pair grammaF?ﬁp Graph generation

{nRight-sing 1 Specifier

Figure 2. Gross structure of the TWS

increased the potential generality of the TWS, because of
formalization of tha programming language's semantics in-
corporated in the right-side grammar. The goal of modularity
was high on the list because the system will be put into
operational status in the near future, and it was desi;ed to
give individual users the Capability to easily and quickly
tailor the system to their own needs. Given a specific pair
grammar, for example, it is trivial for a user to substituta
his own Source Language Parser in place of the generalized
component currently employed, thereby gaining a significant
increase in speasd for his application, Additionally, the
modularity providss a necessary flexibility at this current

formative stage in the semantic modeling field; substantial
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changes have already been proposed for the right-side graph
grammar used in the ALGOL example. Of prime concern at this
point, then, is the ability of the system to evolve as re-
guired-~-the optimization comes later,

The heart of the system is contained within the first
componant—--the Graph Specifier, Thus it is here that the de-

tailed description of system operation and construction begins.

Graph Specifierx

The language chosen for coding the Specifier was
FORTRAN IV, Of foremost importance was the criterion of
spead at this stage in the system; the inefficiency was there
without the languzages, and well over 100 complex right-side
- graph rules had to pbe input, parsed, and stored. Another
important consideration was the space required to store the
tables built; FORTRAN contains reasonable facilities for word-
packing and array manipulation., Furthermore, the use of FORTRAN
meant that the Graph Generator (written in GROPE/FORTRAN) could
be called directly after the Specifier in the samne computer
run, thereby making the program more efficient. Finally, several
sub=-parts of the Specifier were already written in FORTRAN when
the project was begun.

Th=z structure of the specifier is depictaed in detail
" in Figure 3. Input occurs with the entities to the left of

. the vertical dotted line being read in fxom top to bottom.
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1. Reserved Words: A seguence of reserved words

is read in first and hash-coded into a permanent table. This
list was specifically required for the ALGOL example to dis-
tinguish the primitive operation names (EVAL, REALDIV, etc.
from other atomic: names input in the same context (INTESER,
BRANCH, etc.). The list of actual reserved names choseﬁ to
correspond to the instructions in the graphs is includad in
Appendix B. Since the interpreter (described later) treats
these names as function calls, they had to be reduced to at
most seven characters. Thus, the primitive operation "get-
branch-label" is represeanted by the name (and function in the
interpreter) GIBRLBL. This reserved nam2 list is consulted
whaenever a node with an atomic value is to be constructed.

If the nodé's values is on the list, that value is flagged as
a function. Tha usefulness of this reserved name list in
other language traaslations is not completely clear, although
it seems likely that most will contain some sort of primitive
overations which require recognition on input.

2. Graph Mini-Langquage: The other sections of the

Specifier form a recognizex (with very primitive semantic
opaerations) for the grammar of Figure 4, This gramnar was
dasigned to solve the dilemma of graph representation-~how
can a hierarchy of directed graphs best be represented in

string form? A number of solutions ware considered before it
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was determined that the construction of an entirely new string
language specialized for this project would be necessary.

The mini~language produced by the grammar of Figure 4
is the best representation for the right-side graph grammar
found to date. Ths main goals of simplicity and ease of
coding were met guite well with the development of this

language, as was a secondary goal of generality.

rr‘;a;e;v:aé—{ | SETRW/ A
word (P RESWORD
%}ﬁF__j | |maintains
- ‘ reserved
: word table
- 1 {
|\ FEPs to ( | | FEPLOAD PARSER EXECSYN
?arse graph ot inputs FEFs interprets .| saves seq.
1nput rep. for graph "IFEPs parsing of EXEC
- - - || input reps. graph reps. calls in
I into EXEC common
| calls /MATCH/
‘ A \
7]
; right-sidel SCANNER/ . PACK
1 graph reps ' | GETCHAR performs
L - - t { |input graph actual
{ reps. save of
{ EXEC calls
i

Figure 3. The graph specifier
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<replacement> ::= <number> '.' <ponterm> '=' <nodeset> '/'
<nodeset> ::= <node> | <node> <arcset> | <node> <arcset>
<nodeset>

<node> ::= <nonterm> | <atom-node> | <graph-node>

<nonterm> ::= '<' <nt-label> <value> >

<atom-node> ::= '(' <n-label> <value> ')’

<graph-node> ::= 'T' <pn-label> <value> !

<n-label> ::= '*' <ident> | X

<value> ::= <ident> | X

cnt-labels ::= 'SNTL' | 'ENT2' | ... | "*NTLO' | % .
carcset> ::= <arc> <arcset> | é
carc> ::= <to-arc> | <from-arc> | <tofrom-arc> 4
<to-arc> ::= '}' <n-label> <a-label> <n-label> '}’

- from-arc> ::= '}’ <n-label> <a-label> <n-label> '4'

<tofrom-arc> ::= '=' <n-label> <a-label> <n-label> '='

<a-label> ::= <ident> | X\
<ident> ::= letter followed by up to 9 letters or numbers

<number> ::= integer of up to 10 digits

Figure 4. Syntax of the mini-language

e RS R T
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Construction Meaning
<number> the following replacement is to

be pair grammar rule # 'number'

<nonterm> = <nodeset> / search the graph for the nontermingl
'nonterm'; change all incoming arcs
to point to the first node of the
nodeset; change all outgoing arcs
to originate at the last node of the
nodeset; delete 'nonterm' from
the graph

< <nt-lab> <value> > construct a nonterminal node; label
: it 'nt-lab' if present, 'NONTERM'
if not; make its value 'value' if
present, 'NULL' if not

( <n-lab> <value> ) construct a terminal node; label
it "n-lab' if Present; search the
reserved name table for 'value';
if found, make itsg value the
function 'value'; otherwise, make
its value the atomic entity 'value'

[ <n-lab> <nodeset> ] construct a terminal node; label
it 'n-lab' if Present; construct
@ graph and make it the node's
value; all nodes in 'nodeset' will
be created on thig gra?h; the

first node in 'nodeset' will be the
graph's entry node.
In the following construction, "A' or 's! may be substi-
tuted for '§'. If "AT jg substituted, 'from' and 'to' are
reversed; if '=', then 'from' and 'to' are added:

¢ <n~1abl><a-lab><n-lab2> fconstruct an arc from node 'n-1lab, '
to node 'n-lab,' named 'a-lab'; i%
'n-lab,' is mi%sing, use the
closest actual node to the left
as the fromnode; if 'n-lab.' is
missing, use the closest n%de to
the right as the tonode; if 'a-1lagb!
is missing, the arc is unnamed;
both 'a-1ab' and 'n-1ab, ' may
not be deleted at the sime time

Figure 5. Semantics of the mini-language
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A cursory glance at the productions which form this
language reveals the occurrence of many A's, which represent
Places in the coding where default options are present. Thase
d=tault options complicate the semantics ot the language some-
what; yet they do.so muach to simplify the coding that their
use is clearly justified. The semantics of the languaga are
informally dascribed in Figure 5; most of the dgfault options
are explained at this point. Appendix C contains the complete
/grapn representations for the sample right-side graph grammar
usad in this work. Perhapé the best way to gain familiarity
with the languags is to compare the graphs in Appendix A with
the notations in Appendix C. Using the semantics developed
in Figure 5, tha interested readar should be able to Program
his own H-graphs in the mini-language reasonably soon. The
fact that the entire semantics of ALGOL 60 were reduced to
these few pages testifies to the conciseness of the graph
representation.

The mini-language is designed to be general enough
to uses for most programming language graph representations.
This claim has yet to be proven, ot course, but it seems
likely that most languages will be represented graphically in
mach the sans way as ALGOL. 1In ganeral, most language imple-—
mentations can be viewed as the definition of a new "virtual

machine" in which certain operations are primitive, and others
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(as dzfined by the semantics of the language) are merely
combinations of these primitives (13). The mini-language
developed for this work gives the designer concise ways of
handling these primitives and the H-graphs of which they are
a.part.

There are several things to remember when using the
mini-languags--several points that are not immediately clear.
Consider, for example, rule 41 of the sample pair grammar.
Wﬁen this rule is used in building the program graéh, three

nonterminals <arith. expr.> are generated. When the list of

parse rules is further processed, which <arith. expr.> will

be parsed first? Which nonterminal node <arith. expr.> will

be retrieved when the s=arch is mades upon processing a rule
<ARITHEXPR> = ., . . ?

The answers to these and other similar guestions aré implicit

in the design of the Parser, Graph Generator, and Specifier.

In the current version, the Parser always follows the right-

most branch of the parse tree. When nodes are created during

graph genceration, they are stacked onto the lists which are
searched when a particular nonterminal is needed. Thus, the
solution is to always make the right-most nonterminal the last
named in the graph representation in the mini-languags. A look
at the representation of graph rule 41 reveals that this is

. not always the most natural thing to do.
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41: <for list elem.> ::= <arith. expr;> step <arith. expr,>
until <arith. expr3>
I
(:<arith. expr,> i:)
Y
(: <for list elem.> ﬁj) = eval [« id FOR.INDEX
val
Y
l ITEMP
Y
add[ stk E-stack »1[ simple-assign[¥sStK™”
- , locn E-stack
t || TP
s T ’ —
stack STK | iﬁ—stack .
fval -
TEMP |_stack }—— E-stack
A
val
‘ TEMP
. id
eval | FOR, INDEX ‘ ¥
\'vaféf:ii:‘\~\\\sg (¥ <arith. expr3> :)
TEMP ¥ # $
A

‘ (; <arith. €Xpr,> :)
(;* <arith. expr,> ‘j)
A

24
test-step-until-extistH
evai [T—73] FOR.BODY
= o < f br E-stack
val ;Elp B false BRANCH
T CIP CEP
' true
0
#

]

Figure 6. Pair grammar rule 41
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3. The Mini-Language Processor: As was noted before,

the Specifier is mainly a language processor for this mini-

language. It is not particularly innovative, using FEP's to
parse the source code (which in this instance is the string

representation of the right-sids graph grammar) and célling

some trivial execs which simply build tables. The routines

ot Figure 3 interact as follows:

The required FEP's (about fifty productions) are
inpat and tabled by FEPLOAD. Thz PARSER is then called to
interpret the FEP's using the source code. In manipulating
this input string, the usual lexical SCANNER is used. It
uses a routine called GETCHAR to input the source cards and
the "class" of exch chavacter {letter, digit, etc.). This
scanner is patterned atter many of the common ones in use
today, most notably the one dsscribed in Gries (7).

As the Parser uses the FEP's to process the source
string, exec calls are made, as in the usual compiler. How-
ever, rather than gensrating the graph directly at this point
with the semantic execs (which could easily be dons), the
calls are re-directed to a routine called EXECSYN, for "syn-
tactic exec". This routine merely packs into linear arrays
the exec nuunbers called, and the stack elements necessary for
the semantic execs to use in building the graph. It uses the
routine PACK to accomplish the task of packing ten integers

into one 60-bit CDC word. The structure of the tables generated
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is defined in Figure 7. The specific tables generated for the

ALGOL graph grammar are included in Appendix D.

LITRUL NSTART ___NEXEC

program ~ > 05 05 02 06 08 14 09 11 05 01
branch /! ~ 00 00 00 00 00 00 00 00 07 06
q // \\ 00 00 00 15 14 04 05 12 06 01
fch ___\\\‘\ |

fchins | -
cip ': |
block | i | ,
unlabblock ‘ :

]

Figure 7. Table structure generated by the specifier

The tables are structured as above. If N is the
graph rule member, then NSTART (N) contains pointers to the
positions in LITRUL and NIXEC where the list of literals and
seguence of exec calls for rule N are stored. Exec calls are
packed 10/word right-to-left with 0-fill in the last word.
These tables then contain representations of the
right-side graphs in terms of seguences of graph~building

semantic exec calls. Each rule of the pair grammar now is a

N S s e SRR e S S S S
s R

7
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éet of instructions for doing the actual graph-building. Be-—
fore proceeding on with the description of other parts of the
system, it is both interesting and enlightening to note the

structure taking form. If one views the entire graph=-building

system as a n"virtual machine”, then these exec calls become

tha primitive operations of such a machine. The mini-language
processor becomes a traditional compiler in that each right-

side graph rule read in represents a statement in a higher-

level language which reguires translation into a sequence of

primitive operations. The complete set of graph rules form

a program, whose "compiled coda" is conveniently stored

awaiting interpretation. The Graph Generator sub-system is
the interpreter of this virtual machine, executing the “state-
ments" of the source program not saguentially but as directed

by output from the string~representation Parser.

Source Language Parser

The segment of the.Tws which parses the source pro-
gram turned out to be the most trivial part, but only because
some very powarful 5euristics could be employed by it. Written
in SNOBOI4, the parser makes use of the pattern-matching and
tracing facilities built into the SNOBOL system.

The grammar of the source language, rather than
being read in as data, is defined as a very large pattern in

the SNOBOL parsing program. Th2 left-sids grammar itself is
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expressed, using SNOBOL statements, as a seguence of pattern—
valued variables, each used in subsequent statements and all
"building the giant pattern 'PROGRAM' (or whatever the language's
starting symbol is). Within each of these sub-patterns, con-—
ditional valuz assignments are made to elements of a V-array.
The indices of these array elements correspond to the pair
gramnar rule numnbers that the associated pattern will match.
Once this pattern is built, it merely has to be
inserted into the SNOBOL program. With the appropfiate pro-
grammer—defined trace turned on, an attempt can then be mada
to match the input string (tné source program) with the pattern

'PROSRAM'. The programmer-defined trace saves a list of the

index values of the V-array which were referenced. Hence, if

a successful match is performed, the list saved is the sagasnce
of matches mads in the successful path, and this forms the
parse trez.

As an illustration, consid=sr the following language:

1: <program> ::= <addend> + <addend>
2: <program> ::= <addend> - <addend>
3: <addend> ::= <term>

4: <addend> ::= <term> * <addend>

5: <term> ::= X | Y | Z

The SNOBOL pattern structure, as defined above, to

match it would be as follows:

PROGRAM = (ADDEND '+' ADDEND) . V[1] |
+ (ADDEND '-' ADDEND) . V[2] .
ADDEND = *TERM , V[3] 1 *TERM '#*' *ADDEND) . V[&]
TERM = ('x' | 'Y' | 'Z2") . V[5]
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The use of unevaluated expressions accomplishes
three things: it allows the use of forward references and
recursive dafinitions, and it saves space.

The trace routine merely stacks the V-index onto a
list whenever that array element is changed in value; if the
rule is one which matches only literals (such as 5), then the
index number is preceded by a minus sign and the actual literal
matched follows it.

The string X * Y + Z would thus be parsed as follows

(the rule number is in parentheses following the nonterminal

parsad) :
<program> (1)
<addend> (4) + <addend> (3)
<term> (5) \§ <addend> (3) <term> (5)
g{ <term> (5) 7!
Y

The SNOBOL program's output list for this string

(13

would then be
13-5243=5Y-5X
The complete listing of the SNOBCL program including
the ALGOL grammar is located in Appendix E. Several attempts
have bean mads to optimize the program specifically for the
ALGOL example. For instance, in the listing shown, code to
break the incoming source string into separate strings of

"begin-end" pairs was used to break the pattern-matching job
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:into small pieces. The ordering of alternatives, particu-
_larly in recursive rules, was found to be guite important
ih optimization.

Nonetheiess, the parser is duite straight-forward,
and, for the most part, a switch to another left-sids language
would merely entail a re-coding of the pattern for that lan-
guage. Th2 generality of this parser is such that any language
whose gramnar can be expressed as SNOBOL code can be accepted

by it.

Graph Generatox

The final stage of the TW3 comes with the actual
Vgeneration of the program graph. Tha languags chosen for
_ this stage was GROPE, daveloped at the University of Texas
_by Friedman and Slocum (6). Its graph construction and pro-
cessing facilities are usable as FORTRAN functions, so that
the languags may be easily interfaced with othaer FORTRAN
sub-programs. Additionally, tha use of FORTRAN as a host
language for GROPE provides the added advantages of spead,
eas=2 of use, and flexibility.

1. GROPE description: The GROPE graph-processing

functions are quite intuitive, and an informal discussion of
the nomenclature as it applies to this work should suffice:
The basic GROPE items fall into thres classes:

atomic valu=s, elements such as nodes, lists, graphs, sets,
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" arcs, etc., and readers. Every element within a GROPE graph
structure {graphs, nodes, arcs, etc.) possesses an object and

a value. The object is the element's name or label--that by
which it can be referenced. A value is said to be hanging from
an element; if nothing is hanging, the element's value is null.
Many system s=ts exist which contain, for example, all the
graphs generated, all the nodes on a certain graph, all the
nodes with a given object, and the like. The existence of

an element may generally ba determined by its pressnce in one
of th2s= sets. Readers are useful elements which allow tracing
through graphs, lists, system sets, and the like, examining

" each of the elements one at a time. Within any particular

. graph, an entrv node exists which is the value of that graph.

Every arc on a graph has a tonods and 2 fromnode, the defini-
- tions of which are obvious. Arc system sets which are helpful
_includs tha sets of all incoming/outgoing arcs from a particu-

lar node (RSETI, RSETO).

Within the specific use of GROPE for this program
graph model, restrictious are placed on some aspects of ths
graphs ganerated. Every graph must have an entry point node.
A nodz may have a programmer~dafined object (used as its label)
and/or value; if h= does not designate an object, the system
generates an atomic integer for it. A nodz's value may be

null, an atomic value, or a graph. Graphs never have designated
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objects but are always referred to as the "value of a certain
node". Arc labels are the objects of arcs; if unlabeled, an
arc has an object of 0. A double-ended arc is represented by
two arcs on the graph generated betwsen the same two nodes,
each pointing different directions. All nonterminal nodes
have the atomic valus 'NONTERM' as their object; thszir values
are their atomic names.

2. Generator Structure and Opexration: With this

background of GROPE, then, the third and final stage of program
graph construction can be detéiled. Figure 8 shows the block
diagram from parse tree input to graph output. The routine
functions are outlined there.

When thz pars= tree has been generated and the
tables of exec calls compiled, control is given to CRGRAPH.
Using a scanner for the parse treas, it calls RSIDE for each
of the rules scanned. Within this routine, which acts as
the interpreter for the virtual machine, table pointers are
followad to the starting locations of the lists of literals
neadad for that rule and the segaence of exec calls required
to generate the graph. Using UNPACK, RSIDE calls EXECSEM
successively, passing the exec number and, if reguired, literal
needad. This continues until all the packed exec numbers for
the parse rule are processed (0 is uapacked froum the tablé),
‘then CRGRAPH continues with the next parse rule. Tha semantic

. exec routine EXECSEM is merely a set of separate graph building
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coda segaences which manipulate a common semantic stack, re—
trieving literals to be usad as node labels, etc. and placing

the new nodes, graphs, and arcs back onto the stack. The

several worker routines mentioned in Figure 8, GETNT, CRINODE,
and RDECOD/NDECOD, are some routines many of the code sections i
have in common. A complete lising of both the Graph Specifier .
|
and Generator is includsd in Appendix F. 1
GETNT
“““““ =" searches for : ;
ltables of ‘ t ¢ CRTNODE/ 4
1 11 nonterm to |
exec calls,) replace CRETGR creates ;
@;gL_I_ _ terminal node
} Lo o
-
'CRGRAPH RSIDE EXECSEM ! program I
executive |l interpreter--i—> performs actual L graph |
graph- traces thru graph building | IR
creation packed table work
routine of exec calls Py
b A
. \(
Moarse! |NRULE UNPACK RDECOD/NDECOD TRGRAPH
tree ) scanner unpacks converts display] {scans prog. .
Lw—~—' |for parse table of code numbers graph created
tree exec calls| |to numeric tracing.
A
TRNODE
outputs node,
value, RSETI,
RSETO

Figure 8. Graph generator structure.
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The final program graph is generated within the GROPE
system; no capabilities currently exist for saving it on ex-
ternal storags. The programs which eventually uss the graph
(such as the interpreter) will have to be executed from tha

same main program as the Graph Generator.

3. Graph Output: Once the graph has been generated,

it is desirable to see if the translator has done its job
properly. For small programs, at least, a hand-translation
can be made fairly quickly and compared to the actual program
translation if a means of graph output can be found.

Th2 routines TR3RAPH and TRNODE are the first
faltering steps in that direction. Since tha program graph
is really an intermediate step in tha larger task of correct—
ness studies, it was decidsd to not spend too much time on |
graph tracing/output facilities. Certainly a conversion
back to the input form for output would involve too much
pattern-recognition to be practical.

2 method of output detailed in Figure 9 was finally
chos2n as a compromis=. This type of trace was easily pro-
grammable, and the output, while not easily readable, is
unambigusus and may be used to re-draw the entire program
graph quickly and accurately. A sample of the graphs genex-
ated using test ALGOL programs is included in Appendix G.
Both the graphical and trace output forms are includad for

comparison.
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(NODE: <n-label> VALUE: <value>)

(RSETIL: set of inpointing arcs, in (<a-label> <from-
node> format))

(RSETO: set of outpointing arcs, in (<a-label> <to-
node> format)
If node is a graph, indent two spaces and begin
tracing the nodes on its value graph. Otherwise,
output ''mext" node on same graph. Order of node
trace is determined by position in the NDSET (graph) .

Figure 9. Graph output format.

4. Tracing facilities: As a final note, the inter-—

ested user should be aware of the many tracing facilities
built into the design of the TWS. The first card read in
during system operation is the tracing flag; in the comment
saction of the main program are tha octal digits corresponding

- -~ T £ . - . .
to each of the raesalts below. Th:

{v

£fnlevainag tracae ontions Are
= oIing TYaca pLtions are

available by setting their associated bit number:

Bit 1: Outpat the FEp table. Additionally, print the junp
pointers and left and right side element counts. -

Bit 2: Print the hashed ressrved word table. It is currently
a 54-place table using a hash bucket/chaining techniqu

Bit 3: Trace the syntactic stack during the initial parse of
the graph grammar rules. This is us2ful when syntacti
errors in th2 mini-languag:s recur.

Bit 4: an Bit 3 is set, also trace the semantic stack durin
initial parse.

Bit 5: During graph gsneratiomn, trace samantic stack. This
is guite useful if an error persists in graph generati

Bit 6: Print literal table, packed exec ssjuence table, and
starting pointer table generated by the specifier. An
example of this output is located in Appendix D.



