AN EFFICIENT ROBOT PLANNER WHICH
GENERATES ITS OWN PROCEDURES

by

L. Siklossy and J. Dreussi

1973 TR-10

To appear in: Proc. Third International Joint Conference on Artificial Intelligence, Stanford,

CA, August 1973.

AN EFFICIENT KOBOT PLANNER WHICH GENERATES ITS OWN PROCEDURES®

TR-)0

L. Sikléssy and’ J-. Dreussi

Department of Computer Sciences

University of Texas, Austin, U.S.A.

Abstract

TAWALY is a LISP program which solves robot planning
problems. Given an axiomatic description of its capa-
bilities in some world, she generates her own proce-
dures to embody these capabilities. She executes
these procedures to solve specific tasks in the world.
Hierarchies of subtasks guide the search for a solu-
tion. In sufficiently large worlds, LAWALY has rou-
tinely solved tasks requiring several hundred steps
without needing to learn from previous tasks. The
times to solution grow usually about linearly with the
number of steps in the solution. ‘

LAWALY is extensively compared to another robot plan-
ner based on a theorem prover.
Key words follow references.

1. Introduction: Approaches to Robot Planning.

A robot planning program, or robot planner, attempts
to find a path from an initial robot world to a final
robot world. The path consists of a sequence of ele-
mentary operations that are considered primitive to
the system. A solution to a task could be the basis
of a corresponding sequence of physical actions in the
physical world.

In late 1971 and early 1972, two main approaches to
robot planning were in use. ?ne approach, typified by
the STRIPS family of programs 253 2t the Stanford Re-
search Institute, is to have a fairly general robot
planner which can solve tasks in a great variety of
worlds. The second approach is to select a specific
robot world, and for that world to write a specific
program to solve tasks.?” The program-writing can be
made easier by the use of programming languages spec-
ifically designed for programming gobot-like tasks, as,
for example, PLANNER, MICROPLANNERY or Qas7:8 An ex-
ample of a specialized robot is Winograd's? operating
in a world of blocks.

The first approach has lacked power, in the sense that
some problems requiring only six steps to be solved
push the problem-solver to its practical limitations.
The second approach lacks generality, in that a new
set of programs must be written for each world. On the
other hand, for a given world, the second approach re-
sults in robot planners which can solve tasks well be-
yond the capabilities of the general robot planners of
the first kind, while, on the set of commonly solved
problems, the specialized systems are several hundred
times faster!

To obtain a system that maintains generality, while
having power and good performance, we have designed a
robot planner which builds a specialized set of pro-
grams for each world it is given. Therefore, our sys-
tem--named LAWALY--duplicates (to some extent) what a
human being does when programming a specialized robot
planner. LAWALY builds a procedure for each operator
in the world, and she links these procedures with an
overall monitor. She reorders subtasks so that she
can most efficiently solve them, avoiding dead ends--
which would necessitate backtracking--as much as pos-
sible.

The results have been up to our expectations. LAWALY
is general: she has been applied to more than twenty
worlds. She exhibits good performance: programmed in
ISP on the CDC 6600 and run interpretively, she aver-
ages from 0.4 to about 2 scconds per node in her solu-

*Work ﬁ;;?in]]y supported by grant GJ-34736 {rom the
National Science Foundation,

tion space, depending on the amount of backtracking

and the size of the changing world. Finally, she has
power: she routinely solves tasks that require several
hundred steps. Moreover, the time taken to solve a
task is about linear with the number of steps in the
solution.

The self-generation of procedures by LAWALY, her use of
a hierarchy of subtasks, and the results of her perfor-
mance form the main parts of this article. For the im-
patient reader, Tables 1, 2 and 3 compare the perfor-
mance of STRIPS with LAWALY for the tasks described
graphically in Figures 1, 2 and 3 respectively.

2. Procedure Generation for an Operator.

As in [1], we consider worlds consisting of sets of
predicates such as AT(BOX1 Al). The world can be
changed by applying to it an operator. An operator
can be applied to a world only if the world satisfies
the preconditions of the operator. The changes of the
world as a result of the application of the operator
result from deleting from the world the delete set of
the operator, then adding to the resultant world the
add set of the opérator. Two typical examples of oper-
ators, which will be used below, are:

push(objectl object2), meaning: robot pushes objectl
next to object2.

Preconditions: PUSHABLE(objectl) ONFLOOR NEXTTO(ROBOT
objectl) INROOM(object2 rm) ARMSEMPTY.

Delete set: AT(ROBOT $ $) NEXTTO(ROBOT $) AT(objectl

$ $§) NEXTTO(objectl $) NEXTTO($ ROBOT) NEXTTO($ objectl).
Add set: NEXTTO(objectl object2) NEXTTO(ROBOT objectl)
NEXTTO(object2 objectl).

gonextobj(object), meaning: robot goes next to object.
Preconditions: INROOM(ROBOT rm) INROOM(object rm)

ONFLOOR.
Delete set: AT(ROBOT $$) NEXTTO(ROBOT $) NEXTTO($ ROBOT).
Add set: NEXTTO(ROBOT object) NEXTTO(object ROBOT).

Note: This is only one of several possible axiomatiza-
tions for these operators. Since our emphasis here is
on the solution of tasks, and not on how they should
best be axiomatized, we make no claims as to the '"cor-
rectness” of any of the operator axiomatizations chosen.

We shall now attempt to describe the procedure genera-
tion used by LAWALY. The types of procedures that are
obtained resemble those that have been hand-coded by
various individuals. If it is sometimes difficult to
explain programs that manipulate some world, it is even
more difficult to explain (and to program') programs
that generate programs that manipulate some world. To
avoid being submerged in coding details, our descrip-
tion must remain sketchy.

IAWALY is coded in LISP, and for each operator a LISP
EXPR is gencrated. Taking gonextobj as an example,
the LISP function will be:

(GONEXTOBJ (LAMBDA (AL1S OBJECT) (PROG (RM) ...))).
The body of the PROG includes parts that perform the
selection of bindings and the interaction with the mon-
itor.

2.1 Sclection of Bindings.

Bindings must be found for all the LAMBDA-variables
(excepting ALIS) and TROG-variables. Variables may be
bound from the call of the function, for example if we
happen to want to execute gonextobj(BOX1) then OBJECT
is bound to BOX1l; or if the ALIS is not NIL it contains
alternate bindings (this is used in backtracking.) All
unbound variables are passed, together with the precon-

ditions of the function, to a binding procedure., This

procedure attempts to bind these variables for the
smallest cost of satisfying the preconditions. The
cost of a choice of bindings is inversely proportional
to the number of predicates of the precondition of the
operator that are satisfied in the world. If, for ex-
ample, RM is bound to the room ROOMC which satisfies
(INROOM BOX1 ROOMC), then the precondition (INROOM
OBJECT RM) will be satisfied immediately. The various
alternatives for bindings are computed, and they will
eventually all be tried. Alternate bindings are kept
on the ALIS.

2.2 Interaction with the Monitor.

The preconditions that the operator must satisfy are
reordered according to the hierarchy of subtasks (see
section 3 below), and sent to the monitor. For each
condition in turn, the monitor checks whether the con-
dition holds in the world. If it does, the monitor
passes to the next condition. If it does not hold, the
monitor selects one (of possibly several) operator(s)
which might change the world into one in which the de-
sired condition holds. Before this operator is eval-
uated, using the LISP function EVAL, a node is created
in the search space of operators. An example will
clarify the process.

Assume an initial world W1 of three boxes and the robot
in one room ROOM. An axiomatic description would be:
(AT ROBOT A) (AT BOX1 Al) (AT BOX2 A2) (AT BOX3 A3).
The BOXes are assumed PUSHABLE, the robot's arms are
empty and she is on the floor. The desired final state
is (NEXTTO BOX1 BOX2) (NEXTTO BOX2 BOX3). Monitor
starts working to satisfy (NEXTTO BOX1 BOX2), since the
other subtask of the goal has the same rank (see sec-
tion 3.) To achieve this subtask, either (PUSH BOX1
BOX2) or (PUSH BOX2 BOX1l) can be tried. The first
choice is attempted, and the second saved for back-
tracking. A node Gl is created for the move (PUSH

BOX1 BOX2) in the operator tree, and the choice kept
there. (See Figure 4.)

We now EVALuate (PUSH BOX1 BOX2). Precondition (NEXTTO
ROBOT BOX1) is found not to hold, control returns to
the monitor which finds that (CONEXTOBJ BOX1) might
lead to a world satisfying (NEXTTO ROBOT BOX1l). Node
G2 is created, LAWALY EVALuates (NEXTTO ROBOT BOX1),
and we obtain a new world W2, (NEXTTO ROBOT BOX1) (AT
BOXi Ai), i=1,2,3. At that point, EVALuation of (PUSH
BOX1 BOX2) can be completed, to give a new world:

W3: (NEXTTO ROBOT BOX1) (NEXTTO BOX1 BOX2) (NEXTTO
BOX2 BOX1) (AT BOXi Ai), i=2,3. Monitor turns atten-
tion to the second subtask of the final goal, (NEXTTO
BOX2 BOX3). To realize this subtask, either (PUSH

BOX2 BOX3) or (PUSH BOX3 BOX2) can be tried. Starting
with the first (node G3), the subgoal (NEXTTO ROBOT
BOX2) is generated, with operator (GONEXTOBJ BOX2) as
the way to obtain the goal (node G4). Operator G4
applied to world W3 gives world W4: (NEXTTO BOX1 BOX2)
(NEXTTO ROBOT BOX2) (AT BOXi Ai), i=2,3. At that point
operator G3 has all its preconditions satisfied, so it
could be applied. But communication between monitor
and G3 indicates that a previously satisfied subgoal,
(NEXTTO BOX1 BOX2) would be deleted if G3 were applied.
Backtracking descends to node G4, where no alternate
operator is found. Backtracking then ascends to C3,
where the alternate operator (PUSH BOX3 BOX2)--node
G3'--is selected. To apply this operator, its precon-
dition (NEXITO ROBOT BOX3) must be satisfied. Hence,
node G5 with operator (GONEXTOBJ BOX3) is created. G5
can be, and is, applied to world W3, to yield world W5.
G3' is applied to W5 to yield W6, our final solution.

It is seen that the operator tree is created in pre-
order, while the successive states of the world cor-
respond to the applications of the operators as the
operator trec is traversed in endorder. Backtracking
occurs in the operator tree in rcverse preorder, but
no easy relationship exists between reverse precorder

[

and endorder; hence operator nodes in the operator tree
point to the state of the world which is current when
the node is created.

During backtracking, alternate paths are taken most
frequently on the choice of operators that might real-
ize a subtask, as has just been exemplified. The sec-
ond most frequent mode of alternate paths makes use of
the alternate bindings in the ALIS variable of the op-
erator-procedure, as discussed in section 2.1. The
least frequent backtracking mode consists of permuting
the subtasks in a hierarchical group, as will be dis-
cussed in section 3. (Another ordering of the three
backtracking modes might have been chosen.)

3. Hierarchies of Subtasks.

In [1], the robot can turn on a lightswitch if it is

on some box, BOX1, which is close to the lightswitch.
So two of the preconditions of the operator turnonlight
would be: (ON ROBOT BOX1) (NEXTTO BOX1 LIGHTSWITCH).
It is obvious that the second precondition should be
satisfied first, then the other one. In this way, we
arrive at the concept of hierarchies of subtasks: if
several subtasks must be accomplished, it is safe to do
some before others. By safe we mean that if subtasks
are solved in the order of their hierarchy, then the
task can be solved. There may also be solutions which
violate the hierarchy, and some of these may be 'better"
--for example, requiring fewer steps--but our aim here
is to obtain a solution in a reasonable time. An opti-
mizing post-processor which tries to improve on an al-
ready existing solution is nearing completion.

The hierarchy of subtasks is also connected with the
intuitive idea of freedom: 1f the robot first pushes

a box to some place, it can be presumed that she sub-
sequently can, i.e., still has the freedom to, climb

on whatever (or whomever) she wants. On the other hand,
if she first climbs on the box, she usually has no free-
dom left to move the box. Similarly, since turning on
the light requires moving a box, the subtask (STATUS
lightswitch ON) will have a higher rank in the hierarchy
than (NEXTTO box something). If we assume that boxes
remain boxes, i.e., cannot be burnt, then unchangeable
subtasks, such as (TYPE BOX1 BOX), have the highest
rank. Typically, the robot's position has the lowest
rank.

In all the worlds that we considered, a static hierar-
chy could be found; i.e. subtasks had a hierarchical
rank independent of the current and desired state of
the world. 1In sufficiently complex worlds, it might
not be feasible to find a static hierarchy for the pos-
sible subtasks.

As an example, the hierarchy of subtasks for the world
of [1] (see Table 1 and Figure 1 for the results) would
be:

Rank O: (ON x y) (ONFLOOR).

Rank 1: (ATROBOT x) (NEXTTO ROBOT x).

Rank 2: (INROOM ROBOT x).

Rank 3: (NEXITO x y) (AT x y).

Rank 4: (STATUS x ON) (STATUS x OFF).

Rank 5: all the unchangeable subtasks.

Presently, we are perfecting a heuristic program which
will derive the hierarchy of subtasks from the opera-
tors of the robot. The same algorithm also discovers
which operators are relevant to achieve some subtasks:
for instance (PUSH OBJ1 OBJ2) and (PUSH OBJ2 OBJ1)

to achieve (NEXTTO OBJ1 OBJ2) in the example of section
2.2. However, to allow additional experimentation
(see section 7) the information on hierarchies and on
relevant operators were input to the system. If the
above mentioned heuristic program holds up to its pro-
mises, the only input to LAWALY beyond the description
of the world, operators and tasks is a maze-running
algorithm. This algorithm is a bi-directional secarch
procedure which finds a (shortest) path between two

points in a maze (of rooms, doors, elevators, etc.).
Without her maze-running capability, LAWALY has no
sense of direction; with it, she has at least some in-
dications on which way to go.

4. The Use of Hierarchies.

When a task is given to LAWALY, the subtasks which
specify the goal are partitioned in sets of tasks hav-
ing the same hierarchical rank. These sets are named
hierarchical groups. For example, in task f, Table
and Figure 1, threec of these sets are obtained, which
are in decreasing rank:

highest rank: (STATUS LIGHTSWITCH1 ON).

next rank: (NEXTTO BOX1 DOOR1) (NEXTTO BOX2 DOOR1)
(NEXTTO BOX3 LIGHTSWITCH1).

lowest rank: (ATROBOT G).

TAWALY will first try to solve the tasks in the high-
est ranked hierarchical group, -then in the.next high-
est, etc. Once the subtasks in a hierarchical group
are solved, the operator tree and the list of worlds
are erased, thereby reclaiming memory. No backtrack-
ing occurs from one hierarchical group into one ranked
higher, since, by definition, it is assumed that a
lower ranked task can be accomplished (at least in
some way) without disturbing a higher ranked task.
Within a hierarchical group, we do not know in which
order to try the subtasks, and if necessary all per-
mutations of the subtasks are tried. We shall see an
example in section 4.1.

4.1 Backtracking within a Hierarchical Group.

In the world of [1], as well as in the condensed ver-
sion given in section 2.2, the goal state:

(NEXTTO BOX1 BOX2) (NEXTTO BOX2 BOX3) (NEXTTO BOX3
BOX1), which is a more symmetric description of the
state "the three boxes are next to each other”, is

not achievable. A disproof of this goal, i.e. 2 proof
that there is no possible sequence of operators which
leads from the initial to the goal state, necessitates
much additional machinery9 and is beyond the scope of
this paper. LAWALY does determine, in 47.8 seconds
(see task d, Table 1) that she cannot find a solution.
Her failure does not mean that the goal is indeed un-
achievable, although it hints this. (See section 8
for a solvable task which LAWALY fails to solve.)

To illustrate the use of permutations of subtasks in

a hierarchical group, we turn to LAWALY's attempt at
solving the goal of the boxes symmetrically next to
each other. We abbreviate (NEXTTO BOXi BOXj) as NEXTij.
LAWALY first tries to solve the task in the order
NEXT12 NEXT23 NEXT31l. She does obtain NEXT12 NEXT23 as
before (section 2.2). To obtain NEXT31, she can do
(PUSH BOX3 BOX1) or (PUSH BOX1 BOX3), but either opera-
tion would delete one of the already achieved subtasks.
Hence backtracking occurs: there is none possible with
the ALIS, and backtracking on the choice of operators
eventually fails too. Backtracking is non-destructive,
and when it reaches the initial state of the world, the
next alternate permutation of the hierarchical group is
selected: NEXT12 NEXT31 NEXT23. (Successive permuta-
tions are selected so that the right-most parts of the
permutation change most often.) Instead of trying the
whole new permutation from the initial state of the
world, LAWALY notices that she has backed from an un-
successful solution which does however achieve the
first subtask of the new permutation: NEXT12, So pro-
cessing hops to the statc in which NEXT12 is satisfied,
thereby saving some computation. As the solution is
continued, the old paths are destroyed. In effect,
LAWALY learns from her failures. More than just know-
ing that she fails, she keeps the information contained
in the failure, and, as this example shows, can reuse
large parts of it in further problem-solving.

4.2 Observations on Solution Times.
With no backtracking, the time needed by LAWALY for a

solution will grow about linearly with the number of
steps in the solution. The exact time per step will
depend on the size of the dynamic world (see section
6.3), the size of the set of preconditions, etc. When
backtracking occurs (as in problems b, d, e, m), the
overhead per node increases. Since backtracking is
limited by the use of hierarchies (see section 4),
total solution time often grows only about linearly
with the length in steps of the solution.

5. Storage Structure of the World.

The processes described so far are independent of the
storage structures used for the worlds. The results

in the next two sections were obtained with the follow-
ing storage structure:

- the static world (i.e. the parts of the world which
are unchangeable) is stored using property lists. As

a result, significantly larger static worlds barely
affect LAWALY's performance, as shown in section 6.3.

- the dyunamic world is stored in a list. During the
processing of a hierarchical group, each dynamic world
is kept separately, It is seen that this storage struc-
ture is not very efficient, and that much processing
(additions, deletions, membership tests, etc.) will be
slow. Average processing time by node does indeed in-
crease with the size of the dynamic world. Our main
objective has been to work on the more serious prob-
lems of procedure generation and search. Various alter-
native storage structures are presently investigated to
improve the efficiency of the system in space and time.

6. Comparison with the STRIPS Programs.

LAWALY was asked to solve all the tasks that STRIPS
solved (as available from all the documents to which

we had access) and we threw in some others in the same
worlds. The same version of LAWALY was used for all
the runs (and for those of the next section too), while
at least two versions of STRIPS were used: one of these
uses MACROPs, and the other one does not. A MACROP
(macro-operator) is the generalization of a task, so
that a single new macro-operator replaces several
original elementary operators. To use MACROPs, a se-
quence of related consecutive tasks must be given to
STRIPS.

The times given for the STRIPS solutions are in par-
tially compiled LISP on the PDP-10, excluding garbage
collection. LAWALY's times are in interpreted LISP

on the CDC-6600 and include garbage collection. The
6600 is estimated to be about 8 times faster than the
PDP-IOIO; however the gain in speed due to compilation
and the exclusion of garbage collection times make the
two sets of times about directly comparable as given,

6.1 Comparison with STRIPS of [1].

Figure 1 shows the tasks; the performances are summa-
rized in Table 1. Of the 24 predicates in the initial
world, 16 are static. Seven operators are used. The
additional node in the search tree of LAWALY corre-
sponds to a call to the maze solving routine. (The
same comment holds for some of the other examples.)
Task b involves some backtracking, hence the longer
average time per node in the search tree.

Tasks d, e and f were additional tasks given to LAWALY.
Task d is the impossible task (in the axiomatization)
of the three boxes being symmetrically next to each
other. Task e attains a physically impossible goal
--the robot being in two different places at the same
time--which can be reached in the axiomatization of
[1]. STRIPS would not be able to solve this problem
due to some built-in heuristic (R. Fikes, personal
communication). Task f requires 15 steps: no task
requires a longer solution in this world.

6.2 Comparison with STRIPS of [2].
Figure 2 shows the tasks; the performances are summa-

rized in Table 2. Of the 66 predicates in the initial
world, 47 are static. Seven operators are used. Task
i is another physically impossible task which has a
solution in the axiomatization of [2].

6.3 Comparison with STRIPS of [3].

Figure 3 shows the tasks; the performances are summa-
rized in Table 3. Of the 100 predicates in the initial
world, 75 are static. Nine operators are used. Re-
sults for both versions of STRIPS, with or without
MACROPs, are given. STRIPS alone cannot solve task n.
Tasks requiring six steps (k and m) appear to be in the
upper range of its capabilities.

The world in [3] included an additional 67 static pred-
icates, none of which were needed by LAWALY. With the
entire 167 predicates, LAWALY's solution time increases
by an insignificant 0.267%. Further augmenting the size
of the world to a total of 528 predicates,. increases
LAWALY's original time by 7.2%; however, at least 50%

of this increase can be attributed to one additional
garbage collection. Hence we can conclude that LAWALY's
performance is only marginally affected by the size of
the static world.

We note that in all the solvable tasks in Tables 1, 2
and 3, LAWALY always found a shortest solution. In
general, LAWALY does not always find a shortest solu-
tion.

7. Some Harder Problems Solved by LAWALY.

The tasks described in section 6 and its subsections
are no challenge to LAWALY. Since the world of [1]
had no tasks requiring more than 15 steps, and since
the other two worlds were not much larger, we have
built up larger worlds in which fairly hard tasks can
be given. LAWALY was made to operate as a robot-
janitor; she dries terraria with hot winds, or waters
them with a pail that she must fill at a faucet; she
empties trash baskets, sweeps floors with brooms and
uses a dustbin in the process; she can carry objects,
but must put them down to close doors. Moreover, she
turns lights on (and also off), blocks doors with box-
es and climbs onto boxes. There are 120 predicates in
the initial world, of which 75 are static, and 26 opera-
tors. Subtasks are divided into nine priority ranks,
and the ranks have been changed to study the effect of
changes in the hierarchy of subtasks.

Figure 5a shows the initial "superworld". Figure 5b
shows the first final state considered. The task was
run with two different hierarchies. When the rank of
a door being blocked is smaller than something being
in a room, the task is solved in 198 steps. When the
ranks are reversed for these two subtasks, all else
unchanged, the task is solved in 209 steps. The tasks
required 348 and 372 seconds, respectively, including
24 and 25 garbage collections. The time to generate
the procedures was about 20 seconds, and is not included
in the above times,since procedure generation is per-
formed only once for the given set of operators.

With the same initial world, but Figure 5c as the final

world, and the first of the hierarchies mentioned above,
the solution found had 275 steps, and took 433 seconds.

Upper limits on LAWALY's capabilities would be caused

by memory limits, since, as mentioned, the internal rep-
resentation of the world is inefficient, and ... econom-
ic considerations!

8. Example of a Failure by LAWALY.

We shall
ble, yet
The task

illustrate a case of a problem which is solva-
for which LAWALY does not find a solution.

is illustrated in figure 6. The initial state
could be axiomatized as INROOM(ROBOT A) CLOSED(DOOR)
INROOM(BOX B), while the final state is: CLOSED(DOOR)
NEXTTO(ROBOT BOX). LAWALY may decide to work first on

the CLOSED(DOOR) condition, or first on the NEXTTd(ROBOT

BOX) condition.
Consider the first case. LAWALY finds the door already

closed in the initial state; hence she wants to obtain
the NEXTTO BOX condition. To do that, she must enter
Room B, thereby going through the DOOR. But that would
mean opening the DOOR, and hence undoing what she has
already achieved --CLOSED(DOOR)-- and so she decides to
try to permute the goal subtasks. To be NEXTTO(ROBOT
BOX), she goes to DOOR, opens it, goes through it, and
then goes NEXTTO BOX. At that point, she realizes that
she must still CLOSE the DOOR. However, that would
make her undo something she wanted and had already
achieved, namely NEXTTO(ROBOT BOX), so she quits, having
failed.

The reason for LAWALY's failure is apparent: once she
has focused attention on one subtask, she does not
switch to another one until she either succeeds or fails
to achieve the subtask. Her stubbornness is the cause
of her downfall.

Perhaps LAWALY should not be blamed too much! She
solves the task without difficulties if the specifica-
tion of the final state includes INROOM(ROBOT B), or if
this further specification is added by some (rather
trivial) "transitivity of location" program.

9, The Advantages of Procedure Generation.

The goal-oriented programming language56’7'8 were de-
signed, in part, to facilitate the writing of robot
planners. We can expect that, for a long time, programs
such as LAWALY that write procedures will often be less
versatile than human beings. On the other hand, when
available, programs such as LAWALY offer a measure of
consistency and a lack of errors which is missing from
programs produced by humans. Human programmers will
often be tempted to take shortcuts, and may introduce
bugs in their interpretations of the world.

A typical example of what happens--selected because it
is the only documented case at our disposal--is a set
of programs in QA4’>° to solve the robot problems in
[1]. A shortcut is taken by treating the parameterless
predicate (ONFLOOR) as a boolean flag. As a result,
unintentional consequences creep into the QA4 programs:
the robot cannot push two boxes next to each other if
it starts on a box, since it never "thinks" of climbing
off the box. The introduction of bugs is illustrated
by the turnonlight operator: in [1], the robot must
climb on BOX1 next to the lightswitch to turn the light
on; in [7,8] the robot must have a box next to the
lightswitch (not necessarily BOX1) and then climb onto
BOX1, independently of the location of that box.

10. Learning.

As in [3], our robot system might improve her speed by
building macro operators that combine a fixed sequence
of operators. Such macros must be selected with care,
since an indiscriminate generation of new operators
could only lead to a cluttering of memory, additional
choices to achieve a subgoal, and probably to costly
reorganizations of the code generated for the operators.

Our approach to robot planning can be viewed as a form
of learning: the robot studies her own environment and
capabilities, and learns to interact efficieatly with
it. We can call this type of learning: procedural
learning, and contrast it with statistical learuoing
--where improvement in performance results from changes
in parameters--and structural learning--where improve-
ment in performance results from the building and modi-
fication of structures--. Many works in pattern recog-
nition and the checker-playing program of Samuel are
examples of statistical learning. The generation of
MACROPs may be considered a form of structural learn-
ing; other examples are [11] and [12].

| A

=
o]

I

INITIAL STATE

B]L N

?

FINAL STATE

I

& [l 23]
A %\ #\ f\ A

INITIAL STATE k FINAL STATE

)

| |

INITIAL STATE 1 FINAL STATE

)m
AI

)I T 23K /[

INITIAL STATE m FINAL STATE m

A

/1{11[2:1 [2]
&M ||

INITIAL STATE n FINAL STATE n

Figure 3.

/O\

Gl = PUSH(EOX1, BOX2)

choice: PUSH(ROX2, BOX1) = G1' choice: PUSH(BOX3, BOX2) = G3'

@3 = PUSH(BOX2, BOX3)

IGZ = GONEXTOBJ(LOX1) J

[c4 = cowsxross(rox2) | |65 = conexroi(sox3) |

(a) Operator Tree

b

[Wl

AT(ROBOT, A) J

c2 |

x
N
"

NEXTTO(RCBOT, ROX1) |

c1y

[W3 = FEYTTO(F Y1, ROX2) NEX:TO(SCBOT, BrX3) J

G4 G5

W4 = NEXTTO(BOX1,

BOX?) W5 = MEXTTO(BOX1, BOX2) NEXTTO(ROBQT, BOX3)

NEX’I’I‘O(}:OI}-C%T . BOXZ2:
NONO ¢ G3'

W6 = NEXT. “(BOX1, BOX2) NEXTTO(IOXZ, E0X3)

NEX{,O(20TOT, BPX3)

Figqure 4.

(b) List of States (main features)

Froof of NEXTTO(BOX1, B0OX2) a NEXTTO(BCX2, BOX3).

aﬁ terrarium

dustpan

I 8 D B

terrariun watered

pail

broom trash basket 4 4
< w* ; @ s ﬂ
dirt tap @ ; [Z] [I] ’
LEGEND INITIAL STATE - SUPER WORLD
! Figure 5a.
/ /] a / | i
El = A
[
f e :\\F--+\ L et

=

® {hBds

FINAL STATE - SUPER FRORLEM #1

Pigure 5b.

INITYL.L

FINAL STATE - SUPER PROBLEM #2

Figure Sc.
A B
_HDoor
1 Box
FINAL

Theorem proving|Number of operator applications f??e per :ode in Number of nodes
TASK time in seconds{On solution path!In search tree 1;652$2§Zs tree in LAWALY's
STRIPS W, T ¥ ini
I IAWALY| STRIPS |[LAWALY {STRIPS |LAWALY STRIPS TLAWALY initial world
Turn on the lightswitch 46.5 1.627 6 4 6 4 7.75 0.407 24
Push the three boxes
together 92.5 4,095 4 4 6 5 15.42 | 0.819 24
Go to a location in
farthest room 103.0 2.625 5 5 5 6 20.6 0.438 24
Some other problems given to LAWALY in the same world.
Push the three boxes toge- no
ther symmetrically (Impos- -- 47.796 .- soln. -- 50 -- 0.956 24
sible task in model) found
Go next to box 1 and box 2
without pushing them toge- -- 3.114 -- 3 -- 3 -- 1.038 24
ther (phvsically impossible)
Turn on the lightswitch,
push box 1 and box 2 next to| -- 10.268 -- 15 -- 16 -- 0.642 24
door 1, push box 3 next to
the lightswitch and go to a
location in another room
Table 1. Some tasks in the robot world of (1).
Block door FG in room F not not not
with box 1 known 6.228 known > 3 6 known 1.038 66
Unblock door FG in room not not not
*
F Knowa 5.546 Known 5 5 6 Known 0.924 66
Another problem given to LAWALY in the same world.
Block doors FG and BF with
box 1 in room F -- 6.871 -- 5 -- 6 -- 1.145 66
(physically impossible)
Table 2. Some tasks in the robot world of (2).
Push box 1 next to box 2 125.0 4 10 12.5
.36 .
and go into room A 125.0% 7.366 4% 4 10% 3 12.5% 1.473 100
Push box 2 next to box 3 494.0 6 33 14.97
0. .
and go to room C 142.0% | 10-389 6% 6 9% 8 15.78% | 1324 100
. 352.0 5 . 22 16.00
Go into room C 318 0% 7.710 5% 5 L% 6 29 .71% 1.285 100
746.0 7 51 14.63
Push three boxes together 180 .0% 13.859 6% 6 9% 8 20 .00% 1.732 100
Push box 1 next to box 2
fails fails fails fails
22: zush box 3 next to 149 0% 18.60 11% 11 14% 12 24 .93% 1.55 100

Notes:

Unstarred items are for STRIPS without MACROPs.

Starred items are for STRIPS with MACROPs.

Table 3.

Some tasks in the robot world of (3).

