MULTIVARIATE POLYNOMIAL FACTORIZATION*
By

David R. Musser

January 1973 TR-11

*Work partially supported by National Science Foundation
grants GJ-239, GJ-30125X, and GJ-1069, the Mathematics Research
Center, and the Wisconsin Alumni Research Foundation. This
paper is a revision and extension of part of the author's
Ph.D. thesis at the University of Wisconsin (1971).

Technical Report No. 11

Department of Computer Sciences

The University of Texas
Austin, Texas 78712

CONTENTS

1. Introductioneeeeeococssssosacsascssasaoccssnccnsone

2, BaSicC CONCEPES +.evveesecsssescnssrsasscsastarrncccocoectses

a. Unique factorization domainscceeveccncennens
b. Homomorphic mappingscoeceiierieneraeccennons
c. Polynomial notationmceveieeiiiriiaiecaccenennn
3. The univariate algorithmcccieiiacnannranennencenes

a. Reduction to a primitive polynomialc.eveenenen

b. Reduction to squarefree polynomialscecvenee.e

c. Choice of a primeeeeeeeraiarreaccsensrocananccenons

d. Complete factorization modulo P......ceeeeerracecenees
e. Computation of factor boundseeeeernecnrenee
f. Construction of a corresponding factorization modulo p
g. Quadratic Hensel constructionc.ceeeeocrrencees
h. Solution of a polynomial equationcccceeecnences
i. Construction of the complete factorizatiom
4. The multivariate algorithmccccoeeeeicrerereaonrenes
a. Reduction to a primitive polynomialccveveenen
b. Reduction to squarefree polynomials
¢. Choice of evaluation pointsceeveererecerenenen
d. Univariate factorizationceevevernecccercacsne
e. Choice of a primeveieeeerrcnononcscanonceccnnnne
f. Computation of factor boundsceeeeernreeennne
g. Construction of a corresponding factorization modulo

] jl jn
P ,(v1 al) ,...,(vn an) e reereissee et

h. Generalized Hensel construction (mod p case)..........
i. Ceneralized Hensel construction (evaluation case)
j. Construction of the complete factorization
Alternative algorithmscoceeverceenrnnenconeroanens
Abstract algorithmseeeeeveenceneanoctecnnrcanravoens
. Squarefree factorizationc.ceecervncnearenrnanenees
Hensel constructionscieeesseccscocceascrconcancsccs

00~

a. Solution of a polynomial equationeccecereroecerens

b. Linear Hensel construction ...c.eec-ceererrienroenecenens
c. Quadratic Hensel construction ...ecceccecereerrere.-. cen
d. Ceneralized Hensel construction.........c.ceevnee e

)
#%
[

. .
« v e
e e e
. .
« o e

.
.
.
.

OO~ PP PwoNdND -

g

.
. .
« .
.« .
.« .

e e e s
e e e e
. e e
.. .
e e s
e ol el
NN O

eennl12
ce...13
be...13
R A

ceee2b
.. 27
ve. 27
c....28
ve...30

9. Corresponding factorizations and refinements of factorizations.37

a. Construction of a corrseponding factorization

b, Multisets.eseeeaornn C e e s e e e s [
¢. Refinements of factorizations.....eeevoee-.. e
10. Construction of a complete factorization BN

a. Homomorphisms and sets of representives

b. R-factorability +-ceeereeeeasssatroraancnnasencen s e
c. A general factorization algorithm c..c.ceceereeneveree.
d. Another application........cceeveeecricrecenroncnnnces
Acknowledgment
References

cene 37
e....38

1. TIntroduction

This paper presents algorithms for factoring a given polvnomial with integer
coefficients into factors which are irreducible over the integers. These algo-
rithms are based on the use of homomorphic mappings and "Hensel's Lemma con-
structions" as suggested by Zassenhaus [7zAS69]. Previous discussions of such
algorithms [kNU69, pp. 390-393], [BER71}, have considered only the univariate
case, but the algorithms described herein (some of which are from the author's
Ph.D. thesis [MUS71]) apply to the multivariate case and also to other problems
such as factorization of multivariate polynomials with coefficients from a
finite field.

The algorithm for the univariate case has been implemented in the SAC-1
system for algebraic calculation [COL71] and tested thoroughly. A detailed
description of this implementation is given in [coL72). Implementation of the
multivariate algorithm is in progress.

Following a brief review of basic concepts in §2, we shall outline the uni-
variate algorithm in 33 and the multivariate algorithm in 34. In order to
present concisely the common theory behind these algorithms and algorithms for

other coefficient domains, we shall define the concept of an abstract algorithm

in z6. Sections 7 through 10 then discuss abstract algorithms for the main

phases of the factorization process.

2. Basic concepts

a. Unique factorization domains

In a commutative ring with identity, zero-divisors are elements Yy

and z such that vy * z = 0. A unit is a divisor of unity, and a prime is
a nonunit element which cannot be expressed as a product of nonunit elements.

An integral domain is a commutative ring with identity which contains no

sero-divisors. A unique factorization domain (UFD) is an integral domain in

which every nonzero element is a unit, or is prime, or has a unique factori-

zation into primes (an expression as a product of a finite number of primes

which is unique except for unit factors and the order of factors).

Primes are also called irreducible elements, and a unique factorization

into primes is often called a complete factorization.

The integral domain Z of integers is a UFD (Fundamental Theorem of
Arithmetic), in which the only units are 1 and -1. Any field F is a UFD in
which every nonzero element is a unit and there are no irreducible elements.
According to a theorem of Gauss [VDW49,§23], the polynomial domain D[xl,...,xn]
is a UFD whenever D is. Thus, for example, Z[xl,...,xn] and F[xl,...,xn] are
UFDs.

b. Homomogphic mappings

A mapping h from a ring R into a ring R is called a homomorphism if

for all a,beR,
(1) h(atb) = h(a) + h(b),
(2) h(ab) = h(a)h(b).
The kernel of h, written Ker(h), is the set of all elements a ¢ R such that h(a)=0.
Ker(h) is an ideal of R, a subring I such that ir,rie 1 whenever i€ I and re R.
If R and R are commutative with identities, h induces a homomorphism of R[x]
into R[x], which will also be denoted by h, defined by h(aO + a x + ...+ anxn) =
h(ao) + h(al)x + ... + h(an)xn.
The application of homomorphic mappings to factorization is based on the
factor preserving property (2). The classical algorithm for factoring poly-

nomials, Kronecker's algorithm [VDW49, §25], is based on the use of evaluation

homomorphismg. For any fixed a <R, the mapping e of R[x] onto R, defined by
ea(P) = P(a) for all P(x)e< R[x}, is homomorphic and is called an evaluation
homomorphism. To factor P(X)é.Z[x], for example, Kronecker's algorithm
evaluates P(x) at several integers, factors the resulting values in Z, and

constructs the factors of P(x) using interpolation.

Another well-known application of homomorphic mappings to polynomial

factorization is the use of mod p factorizations, where p is a prime integer.
Let P(x) & Z[x] and p be a prime which does not divide the leading coefficient
of P. Let hp denote the homomorphism of Z onto Zp’ the ring of integers

modulo p. Zp is actually a field, so Zp[x] is a UFD. 1If hp(P) turns out to

be irreducible over Zp’ then P is irreducible over Z (except possibly for
integer factors). If hp(P) does factor, then its factorization gives an idea
what degrees the factors of P might have, and what residue classes the coef~
ficients modulo p might belong to. These facts have long been used in the
limited number of cases in which hp(P) is easy to factor, e.g. [VDW49,§ 257.
More general applications of mod p homomorphisms have become possible since the
invention by Berlekamp of efficient algorithms for factorization in Zp[x]
([BER68, Ch. 6], [KNU69, §4.6.2]). A second breakthrough was Zassenhaus'
suggestion that a construction based on Hensel's Lemma, from the theory of
p-adic fields, could be used to progress from a mod p factorization to a
corresponding factorization modulo any power of p [zas69]. Taking pj sufficiently
large, we can determine from consideration of all mod pj factorizations all
factorizations over the integers. The resulting algorithm for factoring in
7{x] is much more efficient than Kronecker's algorithm. This algorithm, as
developed in [MUS71], is outlined in the next section. Section 4 then presents
a new algorithm for the multivariate case based on the use of evaluation and
mod p homomorphisms and a generalized Hensel construction, which lifts a
factorization in Z[vl,j..,vn,x] @odulo P> vl-al,'...,vn—an to a corresponding
factorization modulo pJ, (vl-al)Jl,..., (vn-an)J“.

c. Polynomial notation

n
i = ce + i ici ce
A polynomial A(x) a X + + arx ay with coefficients a s 3158y

from a ring R, a_ # 0, is said to have degree n, leading coefficient a s and

trailing coefficient (or constant term) a we write

O;

a s tc(A) = a

]

deg(A) = n, lc(a) 0"

By convention, we define

deg(0) = -e>, 1c(0) =0, tc(0) = 0,

If R has an identity 1, we say A(x) is monic if lc(A) = 1.

3. The umvariate algorithm

The algorithm for the univariate case consists of several major sub-algorithms.
In this section we shall only outline these algorithms, deferring details and
proofs to later sections or references to the literature.

a. Reduction to aprimitive polynomial. We are given a polynomial C(x)€ z[x]

to be factored, i.e. we are given its coefficients s ¢ 17720 and we must
determine the coefficients in Z of its irreducible factors. If C(x) = co€ 2
then we merely have to factor co, in Z. Otherwise, we ompute the greatest common
divisor d of Coste-Cy (called the content of €) and divide C x) by d, thereby
obtaining a primitive polynomial C*(x), i.e. one whose coefficients are rela-

tively prime. Thus C*(x), called the primitive part of c(x) (denoted G

has no proper factors of degree zero, and this property simplifies the task of
factoring C*(x). We proceed to factor d and ¢*(x) and combine the two lists of
factors to produce the list of factors of ¢(x).

It should be noted that the algorithm requires factorization of only one
integer, d, as opposed to the many integer factorizations which are required by
Kronecker's algorithm. (In some applications it will not even be necessary to
factor d, as only the factorization of primitive polynomials will be of interest.)

b. Reduction to squarefree polynomials., Given a primitive polynomial C(x) we

proceed to factor it into "squarefree' polynomials. A polynomial is squarefree
if it is the product of distinct irreducible factors. The method of factori-
zation is based on the observation that if C = Pil ces Pik, Pi distinct and
el—l... ex-1 (where C' is the derivative of
C); hence A = C/B = Pl"°Pk’ the griatest szuarefree factor of C. B can be

irreducible, then B = gecd(C,C') =P P

factored into its squarefree factors with further gcd computations. Details are

given in §7. We thus obtain factors Q1 ,...Qt such that C=Q1Q§...QE, each Qi

is squarefree, deg(Qt)>0, and the Qi are pairwise relatively prime. We then
factor each Qi’ putting i copies of each factor on the list of factors of C.
The reduction to squarefree factors is necessary to the application of
the Hensel construction (83f). Even if it were not, the ease with which gcd
calculations can be carried out with modern modular gcd algorithms [BRO71]
suggests that this phase of the factorization should still be carried out.

¢. Choice of a prime, Given a primitive, squarefree polynomial C(x) to be

factored, we first perform factorizations modulo several primes, in order to
either prove irreducibility of C(x) or, failing that, to search for a prime p
which yields relatively few irreducible factors modulo p, for use in the Hensel
construction.

We choose only primes p such that C = hp(C) has the same degree as C and is
squarefree over Zp' (A test of whether gcd (5,6') = 1 determines whether C is
squarefree; hp(C) can fail to be squarefree for only finitely many primes P).
The smallest y such primes Pyse-P, are chosen. FEach polynomial hPi(c) is
partially factored over Z_ using a "distinct degree factorization" algorithm

i
([KNU69,p.3?9], [cOL69 1). Given a monic squarefree polynomial A over Zp,
this algorithm produces a list ((dl’Al)""’(ds’As)) where the di are positive

integers, d 4d2<...<ds, and Ai is the product of all monic irreducible factors

1

of A which are of degree di' Thus A = Al"'As and this is a complece factori-
zation just in case no two irreducible factors of A have the same degree.

From the list (<d1’A1>""’(ds’As)) it is easy to construct a list of the
degrees of the irreducible factors of A. In particular, if the list turns out
to be ((deg(A),A)) then A is irreducible, and the input polynomial C must be

irreducible, so the algorithm terminates. More generally, comparison of the

1ists of degrees of irreducible factors for the several primes vields important

information about the possible degrees of factors of C. The set of degrees of

factors of C must be contained in the set Dp of mod p factors for anv prime p,

and therefore must be contained in D ~» D Y...nD .
P Py Py

all sums of combinations of the degrees of irreducible factors mod p, and is

Dp is just the set of

easily computed by an algorithm given in [MUs71, 1.6, %3.3]. If C is irreduc-
ible then we will often find

D D ...= :0, deg(C);
pli pz.l (Mo g(3

after a few primes have been tried, thus proving irreducibility of C.

d. Complete factorization modulo p. Having chosen among pl,...,pv the prime p
for which hp(C) has the minimum number of irreducible factors, we now proceed
to obtain the complete factorization of hp(C) over Zp' We have at hand the
partial factorization ((dl,Al),...idt,At)) such that hp(C) = Al"'At and Ai is
the product of irreducible factors of degree di' Those Ai for which deg(Ai)=di
are irreducible, so we have only to factor the remaining Ai and combine the
resulting lists of factors,

There are several possible algorithms for complete factorization over Zp to
choose from. Berlekamp's most recent algorithm [BER71] appears to be reason-
ably efficient even for very large primes, and its use might permit the choice
of a prime large enough that the Hensel construction (33f) would be unnecessary.
This algorithm is quite complex, however, and it is probably simpler and more
efficient to use Berlekamp's original algorithm with a small prime, followed by
the Hensel construction. (The original algorithm has a computing time propor-
tional to p, while the average time for the more recent algorithm is evidently
proportional to a power of log p.)

A good discussion of Berlekamp's original algorithm is contained in [kNU69,
§4.6.2]. SAC-1 implementations of this algorithm and the "distinct degree fac-

torization algorithm" are described in [COL69,§3.8].

e. Computation of factor bounds. In order to determine how large the modulus,

pJ, must be, it is necessary to have a bound on the coefficients of factors of

C(x). Let us define, for any polynomial A(x) = anxn + ..ot ax +a, € z[x],

' |

s = x 4

‘A\w 02¥%n 135
RAN

One might expect, for any factor A of C, that KAiafzkliﬁ,andXA\l é:\C\l, but a
simple counterexample to both inequalities is given by

x4 +2x3 + 3x2 +2x + 1,

(x-1DA(x) = x5 + x4 + x3 - x2 -x - 1.

A(x)

C(x)
It is not difficult to show, however, that

lA{l o @™ \cl., m=deg(c). (1)

1’

The proof, due to Collins [coL72al, is based on interpolatiba theory. Somewhat
better bounds are obtainable with a little more computation with the coefficients
of C(x), as is discussed in [MUS71, 33.4].

Once a bound b on the coefficients of factors has been computed, it is
necessary to compute the least integer j such that pj/2 >pc(c) »b. This choice

of modulus, pJ, will ensure that any factorization of C(x) will be determinable

from the corresponding factorization modulo pJ, in the algorithm to be described

in §31i.

£. Construction of a corresponding factorization modulo pJ The inputs to this

algorithm are a primitive, squarefree polynomial C(x); a prime p such that deg

(h (C))=deg(C) and hp(C) is squarefree over ZP; a positive integer j; and dis-
P

tinct monic factors Gl""’Gr (r 22) of hp(C), such that

hp(C) = 1c(hp(C))G1...Gr. (L

sl

The goal is to find a corresponding factorization of C modulo pJ, i.

6]
.

Fl,...,Frtizfx] such that

C*1c(C)F,...F_ (mod o)
b (F;)=G; l
(bgFi)=deg(Gi) . i=l,...,r. (2)
Fi is monic
If pj is sufficiently large and the factorization (1) is complete, the corres-
ponding factorization (2) can be used to determine the complete factorization
of C over Z (831i).
The algorithm initially sets ée-hp(C), then, for i=1l,...,t, repeats the
following steps:
1. Set A<G,, B«C/A.
2. Since C is squarefree, A and B are relatively prime; hence there exist
S, ie.zp[x] such thet AS + BT = 1. S and T can be computed via the
Extended Euclidean Algorithm [KNU69,p.377,537].

3. Using the Hensel construction described in 8€3g, applied to p, j, C, A,

B, S, T, obtain A, B€ z[x] such that C=AB(mod pj), hp(A)=A, hp(B)=ﬁ,
deg(A)=deg(A) and A is monic.

4. &mE&eA,C*B,E«E.

g. Quadratic Hensel construction. Given a nonzero polynomial C € Z[x]}; a nonzero

integer p; a positive integer j; A, B, S, Te Zp[x] such that hp(C)=A§ and AS+BT=1;
this algorithm constructs A, B, S, T€ Z[x] such that C£AB and AS+BT=l(mod pj)
hp(A)=A, hp(B)=E, deg(A)=deg(A), and lc(A) is a unit modulo pj. This "quadratic"
construction, so-called because it progresses through factorizations modulo p,

2 4

pP°, P, P ,... in successive iterations, is based on a construction discussed by

Knuth [KNU69, pp.398, 546]. This version differs somewhat from the construction

originally proposed by Zassenhaus [ZAS69], although the ilatter i. :iso quadratic
in nature. {Hensel's original construction [VvDwWw49, pp. 248-7501 was only linear.)
1. Set is<-1, q~p and choose A, B, 5, T ¢ Zl*] such that hp(A)ﬁA, hp(B)=ﬁ,
hp(S)=§, hp(T)=i, and deg(A)=deg(A).
2. 1If i >j, the algorithm terminates.
3. Set U< (C-AB)/q. Using the algorithm in 83h, solve the w ngruence AY+BZ=U
(mod q) for Y, Z € Z[x] such that deg(Z) <deg(a).
4. Set A* <« A+qZ, B¥ < BqY.
5. Set U, « (A*S+B*T-1)/q. Using the algorithm in z3h, solve the congruence

1

+ =
AY1 BZ1 Ul(mod gq) for Y

6. Set S*¥<« S-qY

1 Zl e Z[x] such that deg(Zl)‘—deg(A).

1’ TH «— T-qu.

7. Replace i, q, A, B, S, T by 2i, q2, A%, B¥ S% T%* and go to 2.
A proof of the validity of this algorithm will be given in 88.

Although we have not indicated it in the above description, it is easy to
construct A so that {A\a?pj/Z, and similarly for B, S and T. (The test for ter-
mination must be changed and the modulus used in the last iteration must be
chosen appropriately. Details are contained in [COL72,%5.2]). 1If A is monic

then A can be constructed to be monic also.

h. Solution of a polynomial equation. Let R be the ring of integers modulo q.

Given A, B, S, T, U & R[x] such that lc(A) is a unit of R and AS+BT=1, we may
determine Y, Z € R[x] such that AY+BZ=U and deg(Z) < deg(A) as follows:
1. Set V <TU.
9. Divide V by A, obtaining Q, Z ¢ R[x] such that
Vv = AQ + Z, deg (Z) < deg(A).

3. Set Y<-SU+BQ. (Thus AY+BZ=A(SU+BQ) + B(TU-AQ) = (AS+BT)U = U.)

10

The division in step 2 is possible because 1c(A) is a unit of R. A division
algorithm will be discussed in 86.

i. Construction of the complete factorization.

The inputs to this algorithm are a primitive polynomial C(x) € zx1;
an integer m such that m/ 2 >l1c(C)! b, where b bounds the coefficients of any
factor of C of degree £ d* = \Sdeg(c)/zj; monic polynomials Gl,...,Gr‘i Z[x]
which comprise a '"modulo m refinement" of the complete factorization of C

(see below); and a set D which contains the set gd: d=deg(A), Al C, 0<,d5id*g.

-~

The outputs are irreducible polynomials Fl,...,Fr € z[x] such that C = Fl...Fr

r

the complete factorization of C over Z.

For polynomials Al’ A2""’Ar’ Bl’ BZ""’Bs over a ring R such that

A1A2...Ar = eBlBZ"'Bs for some e & R,

we say that Bl’ B2,..., BS are a refinement of Al’ AZ”"’ Ar if there exists

a partition of El,...,s§ into disjoint subsets Il’ 12, cee Ir for which

A =e !B
] J QeIS k

CIES z[x] a modulo m refinement of F,,...,F_ if hm(Gl),...,hm(Gs)

for some ejL—R, l<jar.

We call Gl"

are a refinement of hm(Fl)""’hm(Fs)'

The set D =D N D N ... ND_ , constructed from the modulo p, factoriza-

tions as described in §3c, can be used as the last input parameter to this
algorithm.
The algorithm, which will be described in detail in §10, considers all
products
A% = 1c(C) Gil...Gi {mod m) (2)
|

\ *\ <m/2,

236

11

testing whether A% divides C¥%= 1c(C)C. If so, A=pp(A¥*) is a tactor of C, and
the alyorithm continues with B=C/A in place ol ¢, the remaining Gi' i#il,...,is‘
beiny a modulo m refinement of the complete factorization of B. The products
(2) are considered in order of increasing degree of A%, so that when a factor
A=pp(A%*) is found, it is known to be irreducible. Only products with degree

d £d%, de D are considered.

A "trailing coefficient test" is applied to eliminate computation of some
or all of the A%*. Letting tc(A) denote the trailing coefficient (constant
term) of A, we compute

t = lc(C)tc(Gi)...tc(Gi) (mod m)
s
\t\ <m/2.
>

Then t = tc(A%), and if t fails to divide tc(C¥*) then A% cannot divide C*, so

the computation of A% can be skipped.

12

4. The multivariate algorithm

The multivariate algorithm uses evaluation and mod p homomorphisms to reduce
the problem of factoring a given polynomial in Z[vl,...,vn,x} to factorization
of a related polynomial in 72{x]; construction of corresponding factorizations in
Z[vl,...,vn,x] modulo pj, (vl-al)jl,...,(vn-an)jn, where al""’an’j’jl""’jn

are selected integers; and determination, from these factorizations, of all

v xl.

irreducible factors in Z[vl,... n

a. Reduction to a primitive polynomial. Given C(vl,...,vn,x) € Z[vl,...,vn,xj,

n > 0, to be factored, we can proceed initially as in the univariate case by re-

garding C as a polynomial in x with coefficients ¢> Sno10ce in Z[vl,...,vn].

-»Cq

We first compute the gecd d of CosreesC and divide C by d, obtaining C*(x) which

0

is primitive over Z[vl,...,vﬁ]. We recursively factor d(vl,...,vn) and factor
C*(YE""V"X)’ then combine the resulting lists of factors.
n

Except for d(v ..,vn), we are not required to factor any polynomials in

1’

yARY ..,vn]; unlike the multivariate version of Kronecker's algorithm, this

1’7

algorithm is not directly recursive.

b. Reduction to squarefree polynomials. As in a, we can apply the same square-

free factorization algorithm as in the univariate case.

¢. Choice of evaluation points. Given a squarefree polynomial C¢ Z[vl,...,vn,x],

n>1¢(if n = 0, this step is omitted), we choose integers a .,a such that
- n

1
the univariate polynomial C(x) = C(al,...,an,x) satisfies:

(1) deg(C) = degX(C) (degree of C in x)

(2) C is squarefree.
The following recursive algorithm can be used.

1. Set ané——O, c<—1lc(C).

2. Set A-<—c(v Vn—l’an)'

ERERE
3. If A =0, set a < a, + 1 and go to 2.

13

o~ A A

4. Set C(vl,...,vn_l,x) « C(Vl""’vn—l’an’x)’ B « ged(C,C") where the
prime denotes differentiation with respect to x. If deg(B) > 0 (in
which case 6 is not squarefree), set a_ + a_ + 1 and go to 2. (If
deg(B) = 0, then 8 is squarefree; 6 can fail to be squarefree for only
a finite number of integers an.)

5., If n=1, the algorithm terminates. (C(x) = C(al,x) = E(X), hence
deg(E) = deg(a) = degx(C) and C is squarefree.)

6. Apply this algorithm recursively to 6(v1,...,vn_1,x) to obtain
ayseeesd g € Z such that deg(E(al,...,an_l,x)) = degx(a) and

E(al,..,an,x) is squarefree. (Then, since C(x) = C(al,...,an,x) =

E(al,...,an_l,x), we have deg(C) = degx(E) = degx(C) and C is square-

free.)

d. Univariate factorization. Having obtained C(x) from C(v,,...,v_,x) as des-
1 n

cribed in ¢, we now factor C=pp(C) using the algorithm described in §3, obtaining

~ ~ o~ ~

{rreducible Fl""’F ¢ z[x] such that C=F F . If n=0 or t=1, we are done;

t 1Ty

otherwise, we attempt to extend this factorization to a factorization of C in

the following steps.

~

e. Choice of a prime. We now choose a prime integer p such that hp(C) is square-

~

free and has the same degree as C. It is not necessary to use the same prime as

was chosen in the univariate algorithm; it is better now to choose p as large as

possible while less than the bound on single precision numbers for the machine

on which the algorithm is implemented. Now let Gi be the monic associate of

hp(Fi) for i=1,...,t. Thus Gi £ Zp[x] and hp(C) = 1c(hp(C))Gl...Gt. Since hP(C)

= h(C), where h is the homomorphism from Z[Vl""’vn] onto Zp which is the com-

posite of hp and the evaluation homomorphism A(vl,...,vn) g A(al,...,an), we have
h(C) = lc(h(C))Gl...Gt.

It is easy to show (§9) that this is a refinement of h(Fl)""’h(Fr)’ where

l...Fr is a complete factorization of C.

14

f. Computation ofvfactor bounds. The bound 3e-(1) generalizes to multivariate

polynomials. Define |A| and }A‘l for A€ Z[x] as in 8§3e and for A€ Z[vl,...,vn,x]

inductively by:

T i
INCOTRRIN S S I Ayvysev)X,
i=0
|A| = max IA !w,
X i<m
Al =1 la,l
A = A, .
L §=o '
If A, C ¢ Z[vl,...,vn,x] and A divides C, then

2m,
(m;+1)"ifcl,

laf, g
1 _o

o8

where my = degX(C), m; = degvi(C). This theorem (in slightly weaker form)
is due to Collins [COL72a].

If b is a factor bound for CEZ[vl,...,vn,x] and b' is a factor bound for
1c(c)€Z[vl,...,vn], then we must choose the least integer j such that pj/2 > bb'.
We also choose ji = degvi(C) + degvi(lc(C)) K i<n, as a bound on the degree in
A of any factor of the polynomial 1c(C) ¢ C, as will be required in §4j.

g. Construction of a corresponding factorization modulo pJ,(Vl—al)Jl,...,(v -a)Jn.
— LF 3k

This construction is a generalization of the one described for the univariate case
in 83f. The inputs are a primitive, squarefree polynomial C(vl,...,vn,x); a

prime p and integers Apseeesd determining a homomorphism h with kernel (p,vl-al,

...,vn—an) such that deg (h(C)) = degX(C) and h(C) is squarefree over Zp; a
list G = (Gl""’Gr) (r>2) of monic factors of hp(C); and positive integers j,

jl""’jn' The output is a corresponding factorization of C modulom = (pJ,

15

- Ji - jn . i = &, 7]
(v1 al) ,...,(vn an) Y: a list F (Fl,...,Fr) of Fi Z[vl,...,\n,xJ such that

c = 1c(C)F1...Fr (mod M)
N
= \
h(Fi) Gi }
degx(Fi) = deg(Gi) K
Fi is monic i=1,...,r (1)
R pl/2 !

degV (Fi) < jk’ k=1,...,n
k

When applied with G ..,Gr which are a refinement of h(Fl)""’h(Fr)’ the

1’

corresponding factorization (1) is easily shown to be a modulo M refinement

of Fl,...,Fr.

The algorithm is the same as in §3f, except that in step 3 the generalized

Hensel construction to be described in §4h is applied to p, Vv ,V

1'31,... n‘an,J,Jl,

.,vn,x] such that CZAB (mod m), h(A)=A,

————— 1’ll

h(B)=ﬁ, degX(A)=deg(A), A is monic, iA;F, LBlQA pJ/Z and degV (B)< jk,
' k

h. Generalized Hensel construction (mod p case). This algorithm is a generali-

k=1,...,n.

zation of that in 33g in which the ring of coefficients Z is replaced by Z[Vl"°"

vnl, and the kernel (p) of the homomorphism becomes (p,vl—al,

stead of (pJ) we have (pJ,(vl-al)Jl,...,(vn-an)Jn). In 38, we shall give a

ce.,v -a). 1In-
n n

still more general version and a proof of its validity. In that version the

prime p is treated equally with v_-a

1 1,...,vn-an, but for ease and efficiency of

implementation it seems best to handle the extension from a mod p to a mod pJ
factorization as a separate case from the extensions of mod(vi—ai) to mod(vi-
ai)Ji factorizations., The algorithm for the mod p case is as follows:

1. Let h, be the homomorphism from Z[v ,v_], set

...,vn] onto zp[vli"' 0

1,
-+

+ +
C < hl(C) ¢ Zp[vl,...,vn,x], a <« hl(al),...,an <_-h1(an), and apply the

16

algorithm in 841 to a1+,...,an+, jl”"’jn’ C+,A,ﬁ,§,i, obtaining A+,B+,S+,T+, €
. . +_ .t jl _ + jn
prvl,...,vn,x] such that lc(A) is a unit modulo 1 ((v1 ay) ,.,.,(vn a Yy my,

C+~‘-=-A+B+ and A+S+ + B+Tjél(mod'm+), deg(A+)=deg(A), h+(A+)=A and h+(B+)=§ where

h+ is the evaluation homomorphism from Z[vl,...,vn] onto Zp defined by P(vl,...,

a).

vn)~>P(al,..., n

) . + At .

2. Apply the Quadratic Hensel construction to p, J, c, A+, B, S, T. The version
to be used is identical to that of §3g except that, instead of performing
operations in the ring Z, we perform them in Z[vl,...,vn] modulo (vl—al)Jl,

...,(vn-an)Jn. As outputs we obtain A, B, S, TESZ[VI,...,vn,x] satisfying the

conditions stated at the end of §4g and AS + BT =1 (mod m) .

i. Generalized Hensel construction (evaluation case). The inputs are CSZp[vl,...,

6 1 3 A P Q T =—— AG —-=
vn,x], CIEERRLN zp, Jpoeeeodp A,B,S,T ezp[x] such that h(C)=AB and AS+BT=1,

where h is the evaluation homomorphism P(vl,...,vn)k*P(al,...,an). The outputs are
j 3 . _ jl - jn
A,B,S,T ezp[vl,...,vn,x] such that 1c(A) is a unit modulo M=((v, ap) e, (v an)),

C=AB and AS+BT=1 (mod m), h(A)=A, h(B)=B and deg(A)=deg(A).

1. If n=1, apply the Quadratic Hensel construction to vitas jl’ C, A, B, S, T.
The version to be used is identical to that of 83g except that, instead of per-
forming operations in the ring Z, we perform them in Zp[vl]. We obtain A,B,S,TE

Zp[vl,x] satisfying the output conditions stated above, and terminate the algorithm.

2. Let h1 be the evaluation homomorphism P(vl,...,Vn)F+P(v1,...,vn_1,an) of

+ . .
Zp[vl,...,vn] onto Zp[vl,...,vn_l] and h be the evaluation homomorphism

P(v vn_l)P+P(al,...,a). Set C+¢—hl(C), and apply this algorithm recur-

1200 -1
) + : . - - s U S
sively to C , 8seeesdy 15 Jpaeeendp o A,B,S,T, obtaining A ,B ,5 ,T ¢ Zp[vl,

+y o . +_ a3yl - in-1
...,vn_l,x] such that lc(A') is a unit modulo m ((v1 al) ,...,(vn_1 an-l)),

+ - - -
c2aTs" and ATsT + BTTT = 1 (mod 47y, hT(aT)=A, hT(B")=F and deg(a)=deg(R).

17

+ 4
3. Apply the Quadratic Hensel construction to votals jn’ c, A+,B ,S+,T+. This

time, instead of performing operations in the ring Z, we perform them in

1)Jn-l. We obtain A,B,S,TE Zp

ca)il -
Zp[vl,...,vn] modulo (v; al) ,...,(vn_1 a__

v ,x] satisfying the output conditions stated above.

;
[viseeeVy

18

j. Construction of the complete factorization. The inputs are C = Z[v v,

1,..., n

x] which is primitive over Z[v .,vn]; an integer m such that m/2 >bb', where

10

b bounds the coefficients of any factor of C of degree €d% = kﬁdeg (C)/QJ and
X

b' bounds the coefficients of any factor of 1lc(C); and polynomials Gl,...,Gr

such that

c = 1c(C)G1G Gr (mod M) where m =0m(vl-al)J1,...,(vq—ar)Jn) and a

gt 10

. yeee,V ,X], monic, lei-r,

i 1 n

3 = 5 + < i«
Jg degvi(C) degvi(1C(C)), l=i«n,

and G .,Gr are a modulo m refinement of the complete factorization of C over Z.

e

The outputs are irreducible polynomials F ..,Ft & Z[vl,...,vn,x} such that C =

17

Fl"'Ft’ the complete factorization of C in Z[vl,...,vn,x].

The algorithm is much the same as in the univariate case. All products

* = 1¢(C)G, ...G, (mod),
i i
\ ‘ 1 s
A% < m/2, deg (A%) ¢ j;, lein,
i
are considered, but no degree tests or trailing coefficient tests are applied,

since in fact, with G ,Gr constructed as in 34d - 4g (but denoted by F

1,"' 1,..-,

Fr in 34g), it is probable that each Gi corresponds to a factor of C.

19

5. Alternative algorithms.

The reader may be dismayed by the complexity of the muitivariate algo-
rithm and wonder whether simpler alternatives exist which are of comparable
efficiency. Several somewhat simpler versions were considered by the author
before the discovery of the generalized Hensel construction:

a. By regarding a polynomial C in Z[vl,...,vngd as a polynomial in Q(vl,...,

vn)[x], where QCVl,...,vn) denotes the field of rational functions of Viseres

Vo and a factorization of C(vl,...,vn_l,an,x) £ Q(vl,...,vn_l)[x] as a fac-

torization of C modulo vn—an, a quadratic Hensel algorithm can be ?sed to lift
]

n
this factorization to a corresponding factorization modulo (vn—an) , which

)

can then be tested for being an actual factorization. Since Q(vl,...,vn_1
is a field, the theory presented in §8 shows that such a Hensel construction
exists. Thus the original problem is reduced recursiveily to a problem in
one fewer variable and ultimately to factorization in Q[x], which can be
handled by a minor extension to the algorithm for Z[x]. The problem with
this approach is that rational function computations are required, which

are generally much more expensive than computations with polynomials, be-
cause of the gcd computations required to keep results in lowest terms.

b. Another approach, probably somewhat better than a, would be to map C
into C in Zp(vl""’vn)[X] for an appropriately chosen prime p. A recur-
sive algorithm can be used for factoring in Zp(vl,...,vn)[x], similar to

the one for Q(vl,...,vn)[x] described in a. Then a factorization of C can
be lifted by means of a qudratic Hensel construction to a factorization of

C modulo pj, which can be tested for being an actual factorization of C.
Again, however, the computations required in Zp(vl,...,vn) and in Q[vl,...,

vn] would be very costly.

20

¢. Instead of working in Q(vl,...,vn) or Zp(vl,...,vn), the computations can

be restricted to the integral domain J= Z[vl,...,vn] or Zp[vl,...,vn], by

using a "trial Hensel construction.'" This construction uses polynomials S,T «.

1

J[x] and re) for which AS + BT = r in an attempt to find a factorization C
AB(mod pj), A,Bﬁ.J[x] corresponding to a factorization C = AB(mod p). The
construction may fail, but it is not difficult to arrange the computation so
that the construction is guaranteed to succeed if A and B correspond to actual
factors of C. This approach has two apparent drawbacks. The trial construc-
tion is only linear, being based on Algorithm H of 38. Secondly, the polynomials
S and T must be obtained independently (by a version of the Extended Euclidean
Algorithm), rather than as a byproduct of the Hensel construction, as they are
in the generalized version.

In summary, these alternate approaches, while possibly less complex than

the algorithm of §4, would probably be considerably less efficient.

21

6. Abstract Algorithms

In this paper we shall use "abstract algorithm” descriptions in order
to present compactly the common theory behind factoring algorithms for
both the univariate and multivariate cases and for a number of coefficient

domains. An abstract algorithm is one in which the domains of the inputs

and outputs are abstract sets or algebraic systems such as rings, integral
domains, or fields. An example of an abstract algorithm is:

Algorithm D (Division of polynomials over a ring). Let R be a
commutative ring with identity. Given polynomials A, B < R[x] with 1lc(B)
a unit of R, this algorithm computes polynomials Z, R ¢ R[x] such that

A = BQ + R and deg(R) < deg(B).
(1) Set Q « 0 and R « A.
(2) Now Q, R€¢ R{x} and A = BQ + R. If deg(R) < deg(B), exit.
(3) Set n « deg(R) - deg(B), T <« (Le®)/(1c(BNK", Q< Q+T,
R + R - TB (this reduces the degree of R), and go to .
In dealing with abstract algorithms we leave open the question of what
assumptions are required about the abstract domains involved in order to

prove effectiveness of the algorithm. (Such questions have been dealt with

elsewhere, e.g. [RAB60].) We shall however, require that, under the
assumption that each step can be effectively performed, the algorithm will
terminate in a finite number of steps. A proof of termination of Algorithm
D is indicated in the parenthetical assertion in step (3): by the choice
of the term T of the quotient polynomial Q, both R and TB have the same
leading coefficient, hence the new value of R, Rl = R - TB, is of smaller
degree than that of R, and thus the condition tested in step (2) must
eventually be satisfied.

If we do not require effectiveness in our abstract algorithms, the

22

reader may well ask, by what criteria do we construct them? For we could
in some steps of our algorithms merely cite the existence of some quantity
without any indication of a method of constructing the quantity. However,
all of the algorithms to be presented have been written with the purpose
of generalizing methods which are known not just to be effective in par-
ticular domains, but to be '"very effective,”" or "efficient'" methods. This
is meant in the sense that each step of the abstract algorithm is of suf-
ficient simplicity that there are known to be efficient algorithms for
carrying it out in at least one particular domain. In Algorithm D, for
example, each step involves only simple arithmetic op erations for which
efficient algorithms are known, when R is the ring of integers, or the
rational number field, or a finite field.

Besides the proof of termination, we are also interested in proving

the validity of the algorithm: That when applied to inputs which satisfy

the input assumptions, the algorithm produces outputs which satisfy the
output assertions. The method of proof to be used is based on the method
of "inductive assertions" described in [FL0O67] and [KNU68, Section 1.2.1].
The basic idea of the method is to associate with some or all of the steps
or substeps of the algorithm assertions about the current state of the
computation, and to prove that each assertion is true each time control
reaches the corresponding step, under the assumption that the previously
encountered assertions are true. If this can be done in such a way that
the assertions associated with the first step are the input assumptions
and those associated with the terminal step(s) are the output assertions,
then the algorithm is necessarily valid, by induction on the number of
steps performed.

In applying the method we have usually not attempted to list all of

the assertions which actually hold at each step; in general we have tried

23

to maintain about the same degree of explicitness as is usual in a con-
ventional proof of a theorem. In Algorithm D, we have included only two
assertions, in step (2), for the purpose of proving validity (the asser-
tion in step (3) was included for the sake of proving termination, as
discussed previously). It is trivial that these assertions were true the
first time step (2) is executed. Assuming them true at a given execution
of step (2), they may be shown to be true at the next execution as follows:
let Ql =Q+4+ T and R, = R - TB; since lc(B) is a unit, T € R[x], hence

1

so are Q1 and R also BQl + R, =B(Q+T) + R -TB &« B¢ +R =4; since

1;
Q is set to Q1 and R to R

1

1 in step (3), the assertions Q, R € R[x] and
A = BQ + R still hold when step (2) is reached again.

The abstract algorithm concept may be easily formalized in terms of
conventional set theory, and in fact such a formalization is given by
Knuth in his initial formal definition of algorithms [KNU68, pp 7-8].
(Knuth goes on to modify this definition to include the property of

effectiveness.) The inductive assertion method is also easily formalized

in terms of Knuth's model, as shown in [MUS71].

24

7. Squarefree factorization

A polynomial is said to be squarefree if it has no nonconstanc factor
which is the square of another polynomial. If C is a polynomial over a UFD
which is nonconstant, primitive and squarefree, then C has a complete factor-
ization C = PlPZ"'Pn where the Pi are distinct prime polynomials of positive
degree.

Elements x and y in a ring D are said to be associates if x = uy for some

unit u of R. We write x~y (this is an equivalence relation).

The charaeteristic of a ring D is the smallest positive integer n such

that nx = 0 for all x in D, or zero if no such integer exists. (If D is an
integral domain, the characteristic is prime if it is not Zero.)
Theorem S. Let D be a UFD, C be a nonconstant, primitive polynomial over

D, and B = gcd(C,C') where C' denotes the derivative of C. Let C = Plel...Pnen

be a complete factorization of C.

a. If deg(B) = 0 then C is squarefree.

el—l en—l
b. 1f D has characteristic zero, then B~ P1 ...Pn .

c. 1f D has characteristic zero and C is squarefree, then B ~ 1.
d. 1If D has characteristic zero, then c/B ~ Pl"'Pn’ the greatest
squarefree divisor of C.
Proof: a. Suppose C is not squarefree; thus C = P2Q for some P and Q
over D, deg(P¥y>0. Then C' = PZQ' + 2PP'Q is a multiple of P, hence P|B,
hence deg(B) > 0. Thus deg(B) =0 implies C is squarefree.

él...P S

b. Since B|C, B~P, , where qugif:ei,]_iié n. To show that

§; =e;-l, let P =P, e =e; and Q = C/P®. Then C = P°Q and C' = PeQ' +
ePe_lP’Q, hence Pe—l\B. Suppose PeiB. Then Pe\C', hence p© ePe_lP'Q, and

since D is an integral domain, P\eP'Q. But P and Q are relatively prime, so P)ePL
Since the characteristic of D is zero, eP' # 0, hence deg(eP') 2 deg(P), a

\
contradiction. Thus P® 1B, while Pe'l\B, so éi = e-1 = ei—l.

25

c,d. Obvious from b.

Thus to factor C one could compute the greatest squarefree divisor
A = C/ged(C,C') and factor it to obtain the Pi’ then divide C by Pi as
many times as possible, to determine the e, However, we can do better
than this if C is not already squarefree, for we will show that we can

then partially factor C and determine the e by means of further gcd cal-

culations.
Let Q, = TTje E, Pj, where E, = {j:ej = 1i}.
(Qi = 1 when E, is empty.) Then, for t = max {el,...,en} we have

2 t
C = QlQZ"'Qt’ Qi squarefree,

deg(Qt) >0, gcd(Qi,Qj)% 1 for i#j. @)

We call (1) a squarefree factorization of C, since each Qi is either unity
or a squarefree polynomial of positive degree. The Qi are uniquely determined

by the conditions in (1), except for unit factors.

By Theorem S, if B = gcd(C,C') and A = C/B then B Vv Q Qz...Qt_l and
273 t

A Q1Q2...Qt. If D = gcd(A,B) then D 02Q3...Qt, hence Ql v A/D.

The following algorithm shows how we can continue, computing QZ,...,Qt:
Algorithm S (Squarefree factorization). let D be a UFD of character-
jstic zero. Given a primitive polynomial C of positive degree, let
C = Qng...QE be a squarefree factorization of C. This algorithm computes
Ny - v .
t and A1 Ql,. ,At Qt
(1) Set B « ged(C,C'), A <« C/B, j <« 1.
2 t-j

i i " "N
(2) (At this point B Qj+le+2°"Qt and A Qij+l...Qt). If
B~ 1 then set t <« j, At < A, and exit.
(3) Set D « gcd(A,B), Aj < A/D. (Then D Qj+le+2"'Qt and Aj N Qj.)

(4) Set B+« B/D, A< D, j + j+1, and go to (2).

The reader may easily verify the inductive assertions in the algorithm,

26

Algorithm S is based on an algorithm presented by Horowitz in
[HOR69, pp. 58-60, 69-70], which in turn was based on an algorithm due
to Tobey. Horowitz' version is equivalent to Algorithm S with steps (3)
and (4) replaced by:

' ' 2 t-j-1
(3') Set E « gcd(B,B'), D « B/E, Aj < A/D. (Then En Qj+2Qj+3"'Qj ’

D vQ,.4Q Qs Aj v Qj.)

JHLTiH2°T

(4') Set B+ E, A+ D, j <+ j+l, and go to (2)

Note that D and F = B/D are computed in both versiomns, but in
different ways. Algorithm S appears to require slightly less computation
than Horowitz' version, but its main virtue seems to be that it can
be easily adapted for squarefree factorization over finite fields (which
are of prime rather than zero characteristic), whereas it appears to

be rather difficult to adapt Horowitz' version for this problem. Algorithms

for the finite field case are discussed in [MUS71].

27

8. Hensel algorithms

The algorithms of this section are based on the classical theory of
p-adic fields, which was first investigated by Hensel about 1900. The appli-
cation of Hensel's constructions to practical factorization of polynomials
was suggested by Zassenhaus [ZAS69]. The next two algorithms are based, how-
ever, on Van der Waerden's presentation of Hensel's Lemma (Reducibility Cri-
terion) ([VDW49], pp. 248-250).

a. Algorithm S (Solution of a polynomial equation).

Let E be a commutative ring with identity. Given A,B,S,T,U € E[x]
such that 1lc(A) is a unit of E and AS + BT = 1, this algorithm computes
Y,Z € E[x] such that AY + BZ = U and deg(Z) < deg (A).

(1) Set V + TU.

(2) Using Algorithm D of 86, compute Q,Z € E[x] such that
V = AQ + Z, deg(Z) < deg(A).

(3) Set Y « SU + BQ and exit. (Then AY + BZ = A(SU + BQ) + B(TU - AQ) =
(AS + BT)U = U).

Theorem S. Under the assumptions of Algorithm S, the polynomials Y
and Z are uniquely determined.

Proof: Let AY1 + BZl = U with deg(Zl) < deg(A). Then AY, + BZ, =

1 1
AY + BZ, which may be written
A(Y; - Y) = B(Z - Z)). 1)
Upon multiplying both sides by T and adding AS(Z - Zl) to both sides, we
obtain
Als(z - Zl) + T(Y1 - Y)] = (AS + BT) (Z - Zl) =7 - Zl'
Unless the polynomial in brackets is zero, the degree of the product on the

left side is > deg(A), since lc(A) is a unit. But deg(Z - Zl) < deg(A), so

we conclude that Z = Zl and by (1) we then have A(Y1 -Y) = 0, which, with

28

the fact that lc(A) is a unit, implies Yl =Y,

b. Linear Hensel construction.

The following lemma will be required in the proof of the next algorithm.

Lemma 1. Let D be a commutative ring with identity and a,b € D. 1If
a is a unit modulo b then, for any positive j, a is a unit modulo bj.

Proof: For some s € D we have as = 1 (mod b). Let j > 1; we may as-—
sume by induction that as* = 1 (mod bj-l) for some s* € D, Hence there exist
t, t* £ D such that as + bt = 1, as* + bj—lt* = 1. Therefore

asbd !+ ple = pI7E,

1 = as* + bj—lt* = as* + (asbj—l + bj t)t*,

= a(s* + sbj—lt*) + bj tt*,

as+ = 1 (mod bj),
where s+ = g% + sbj_lt*. Thus a is a unit modulo bj.

Algorithm H. (Hensel method for censtructing a factorization mod pj
from a given factorization mod p). Let D and E be commutative rings with
identities, p € D, and h be a homomorphism of D onto E with kernmel (p). This

algorithm takes as inputs p; a positive integer j; C € D{x]; and K,ﬁ,g,f €

E[x] such that lc(Ad) is a unit of E, h(C) = AB, and AS + BT = 1. The outputs

are A,B £ D{x] such that C = AB(mod pj), h(A) = A, h(B) = B, deg(A) = deg(a),
and 1lc(A) is a unit modulo pJ.
(1) Set i « 1, q < p and choose A,B € D[x] such that h(A) = A, h(B) = B,

deg(A) = deg(A).

(2) (Now A,B € D[x], C = AB (mod q), h(A) = &, h(B) = B, deg(A) = deg(A) and
1c(A) is a unit modulo q.) TIf i = j, exit.

(3) Set U « (C - AB)/q, U <« h(U). (Since C = AB (mod q), we know U € D[x],

hence U € E[x].) Using Algorithm S with inputs A,B,S,T,U solve AY + BZ =

U for ¥,Z ¢ E[x] such that deg(Z) < deg(A).

29

(4) Choose V,Z € D[x] such that h(Y) = ¥, h(2) = Z, deg(2) = deg(2y. (Thus

[

AY + BZ = U (mod p) and deg(Z) < deg(A).)
(5) Set A« A+qZ, B+« B+q¥, i« 1i+1, q+qp, and go to (2).
The assertions at step (2) obviously hold for the first execution of
the step. To show that they still hold for subsequent executions, let A* =
A+ qZ, B¥ = B + qY, q* = qp. Then

C -~ A*B*

]

C - AB - q(AY + BZ) - q2YZ

q(U - AY - BZ) - q%YZ

1l

1l

0 (mod qp),

i.e. C = A*B* (mod q*). Also we have h(A*) = h(A) = A, h(B*) = h(B) = B,
deg(A*) = deg(A) = deg(A) and lc(A*) = lc(A); since 1lc(A) is a unit modulo p,
1c(A*) is a unit modulo q*, by Lemma 1. Thus from step (5) we return to step
(2) with all of the assertions still valid.

The following theorem, concerning the uniqueness of the polynomials
computed by Algorithm H, will be of central importance in the proof of the
validity of later algorithms.

Theorem H. Let D be a commutative ring with identity, p be an element
of D which is not a zero-divisor, and j be a positive integer. Let A,B,Al,
B, € D[x] satisfy

1
a. AlB1 = AB (mod pj)
b. deg(a;) = deg(A), Le(A;) = lc(a) (mod P
C. Al = A and B1 = B (mod p);
d. 1lc(A) is a unit mod p.
Then A; = A and Bl = B (mod pj).

Proof: From c¢ we have the conclusion when j = 1. Let j > 1. From a,
we have AlBl = AB (mod pJ—l), and from b, 1c(Al) = 1c(A) (mod pj—l), so we

may assume by induction that Al = A and B1 = B (mod pj_l). Hence there exist

30

%,Z € Dix] such that Ay = A + pJ 'Z, By = p +p’ Y. Thus
2
AB, = AB + o3 hay + B2) + pH TRy

0

]

YZ,

HE

pj_l(AY + BZ) (mod pj).

From this congruence and the assumption that p is not a zero-divisor follows
AY + BZ = 0 (mod p).

Also, by c we have deg(Z) < deg(A) and in fact p}lc(Z). Hence by Theorem S

applied to the ring D/(p) we have Y = Z = 0 (mod p), from which we obtain the

conclusion of the theorem.

¢. Quadratic Hensel construction.

In this section we discuss a variation on Algorithm H which was first
proposed by Zassenhaus [ZAS69]. Given a factorization over a ring D modulo p,
this algorithm computes factorizations modulo pz, Y, pa,... in successive
{terations. In the case D = Z, the algorithm turns out to be much more effi-
cient than algorithm H for factoring polynomials with large coefficients.

The algorithm also has another, perhaps more important, virtue. It allows

the development of a '"generalized Hensel algorithm" (Algorithm G in the next
section) which is the basis of the practical method of factorization of multi-
variate polynomials described in §4. The algorithm is based on a version
discussed by Knuth [KNU69, pp. 398 and 5461.

Algorithm Q (Quadratic Hensel Algorithm). Let D and E be commutative
rings with identities, p € D, and h a homomorphism from D onto E with kernel
(p). The inputs to the algorithm are p, a positive integer j; C € D[x]; and
K,ﬁ,g,T € E[x] such that 1c(d) is a unit of E, h(C) = AB and AS + BT = 1.

The outputs are A,B,S,T € D[x] such that 1lc(A) is a unit modulo pj C = AB and

?

AS + BT = 1 (mod pJ), h(a) = A, h(B) = B and deg(A) = deg(R).

il

(1) Set i + 1, q « p and choose A,B,S5,T € D[x] such that h(a) = A,...,h(T) =

T and deg(A)

deg(A).

31

(2) (Now A,3,S,T € D[x], 1lc(A) is a unit mod q, C = AB and AS + BT = 1 (mod
q), h(A) = A, h(B) = B and deg(A) = deg(a).) If i > j, exit.

(3) Set U« (C - AB)/q. (Since C = AB (mod q) we know U € D[x].) Using Al-
gorithm S of 88a with inputs A,B,S,T,U, solve the congruence AY + BZ = U
(mod q) for Y,Z € D[x] such that deg(Z) < deg(A).

(4) Set A* « A + qZ, B*¥ « B + q¥. (Thus

C - A*B*

i

C - AB - q(AY + BZ) - q°YZ

q(U - AY - BZ) - ¢°*YZ

0 (mod q%);

furthermore h(A*) = h(A), h(B*) = h(B); and, since deg(Z) < deg(A),
deg(A*) = deg(A) = deg(A) and lc(A*) = lc(A). By Lemma 1 of §8b, lc(A%)
is a unit modulo q2.)

(5) Set U; < (A*S + B*T -1)/q. Using Algorithm S with inputs A,B,S,T,U;,
solve the congruence AY1 + BZl = U (mod q) for Yl,Zl ¢ D[x] such that
deg(Z,) < deg(A).

(6) Set S* « § - q¥,, T « T - qu. (Thus

A*S* + B*T*

A*(S - qYl) + B*(T - qu)

A*S + BXT - q(A*Y, + B*Z

1)

1+ q(Uy - A%y, - B*Z,)

1+ q(U1 - AY1 - le) (mod q2)

1 (mod q2%).)

(7) Replace 1,q,A,B,S,T by 2i,q%,A*,B*,S*,T* and go to (2).

d. Generalized Hensel construction.

This section develops generalizations of Algorithm Q and Theorem H in
which the kernel of the homomorphism h of D onto E may be generated by more
than one element. These generalizations form the theoretical basis for the

practical multivariate factorization described in 84,

32

Lemma 1. Let R,S,T be commutative rings, V be a homomorphism of R
onto S and o be a homomorphism of R onto T. Let Ker (v) ¢ Ker(a). Then:
a. there exists a (unique) homomorphism 8 from S onto T such that B o v = a
b. Ker(R) = v(Ker(a)).

This lemma can be derived as a corollary to the so-called "Rectangle
Theorem" for rings (see [GOL70], p. 120), or can easily be proved directly.

Algorithm G (Generalized Hensel Algorithm). Let D and E be commuta-
tive rings with identities, Pyse 9Py be elements of D and h be a homomorphism
from D onto E with kernel p = (pl,...,pn). The inputs to this algorithm are
PyseeesPys positive integers jl,...,jn; C £ D[{x]; and A,B,S,T € E[x] such
that lc(A) is a unit of E, h(C) - AB and AS + BT = 1. The outputs are A,B,S,

i
T € D[x] such that lc(A) is a unit modulo m = (ml,...,mn), where m, = p;‘;

AB and AS + BT = 1 (mod m); h(A) = A, h(B) = B, and deg A = deg A.

c

m/
=)
%

Remark: The above diagram will aid in following the statement and proof of

the algorithm. (The definitions and proofs given in the algorithm will show

that the diagram commutes.)

(1) If n = 1, apply Algorithm Q to pl,jl,C,K,§,§,T, obtaining A,B,S,T € D[x]
satisfying the required conditions. Exit.

(2) Let h1 be a homomorphism defined on D with kernel (pl) and let D+ = hl(D).

33

Let h+ be the homomorphism of D+ onto E such that h+°h1 = h. (The existence
of h+ is guaranteed by Lemma 1; also Ker(h+) = hl(Ker(h)) = hl((Pl,...,pn)) =
(hy(py)s---shy(p)) = (0,0 (py)s-.-5hy(p D)) = (hy(py)s--.shy(p)).) Set

+ + +34 +

Py © hl(pi) and let m, = (p;)°*, for 2 <1<n. Also set C =+ hl(C). Working

+
in D+ and E, apply this algorithm recursively to p{,...,pn, j2""’jn’ C+,

+ 4+

- +
A,B,S,T, obtaining outputs A ,B ,S ,IT € D+[x]. (Thus 1c(A+) is a unit mod

-+

+ + +
m = (mz,...,mn), C

+ + + + + - 4, 4+
= a"8" ana atsT + BTTY = 1 (mod mh), nTAD) = &, b (B)
= B and deg(A’) = deg(@).)

+ + +
(3) Let h2 be a homomorphism defined on D with kernel (mz,...,mn) and let E*
=h, (0"). Set A + hy (A1), B* < h2(3+), Sk « hz(S+), T « hy(T'). (Thus
1c(A*) is a unit of E*, deg(A*) = deg(ah), hy (hy (€)) = A*XB* and AXS* + B*T*
= 1).

(4) Let h, be a homomorphism defined on D with kernel (mz,...,mn) and let D*

3

= h3(D). Let h* be the homomorphism of D* onto E* such that h*°h3 = h2°hl'

(Ker(hzohl) = (pl,mz,...,mn), as will be shown below, hence Lemma 1 guaran-

tees the existence of h* and furthermore shows that Ker(h*) = h3(Ker(h2°h1))

3

= = * * *
hy((pysmy, .- -5m)) = (hy(py)).) Set py <« hy(py), mf « (PP, C* < hy(C).

(Thus h*(C*) = h*(h;(C)) = hy(h (0)) = A*B*.) Working in D* and E*, apply

Algorithm Q to p¥, j,, C%, A*,B%,S* T*, to obtain outputs A*,B*,S* T* ¢ D*[x].
1 1

|
i1

(Thus lc(A*) is a unit modulo m¥, C* = A*B* and A*S* + B*T* = 1 (mod mi),
h*(A%) = A%, h*(B*) = B* and deg(A*) = deg(A*).)

(5) Choose A,B,S,T € D[x] such that h3(A) = A% h3(B) = B%, h3(S) = Sk, h3(T)
= T* and deg(A) = deg(A*). (Then h3(C) = h3(A)h3(B) (mod h3(ml)), hence h3
(C - AB) = h3(P)h3(ml) for some P € D[x], hence h3(C - AB - Pml) = 0, hence
C - AB - Pm1 € (mz,...,mn), hence C - AB £ (m
(ml,...,mn)). Similarly, AS + BT

1,...,m.n), hence C = AB (mod

1 (mod(ml,...,mn)). Since hz(hl(A)) =

1

+
A+ (mod m). Hence it

bh*(hy(A)) = h* (A%) = A% = hz(A+), we have hq(A)

34

follows that hl(A) = A+ (mod (hl(pz)""’hl(pn))); i.e. hl(A) - A; £ Ker(h+),
hence h+(h1(A)) = h+(A+) = A, and finally h(A) = A. Similarly, a(B) = B. Also
deg(A) = deg(A*) = deg(A*) = deg(A+) = deg(A). Lastly, we have h3(lc(A)) =
1c(A*), from which it is easily shown that lc(A) is a unit modulo (ml,...,mn).)

The assertion in step (4) that Ker(hz,hl) = (pl,mz,...,mn) may be
proved as follows:

d e Ker(hzohl) < hl(d) £ Ker(hz) = (m;,...,m;) < hl(d) =

hl(dz)hl(mZ) +...+ hl(dn)hl(mn) for some d2,...,dn €D

<=> hl(d -d - ee. - dnmn) = 0 for some d2"'°’dn €D

2™
<=> d - dzm2 - e — dnmn € Ker(h1}= (pl) for some d2""’dn €D

<=>d-d -dm =d

2m2 — e P 1Py for some dl,...,d eD

n

<=>d € (pl,mz,...,mn).

Before proceeding to generalize Theorem H of §8b we shall prove a
lemma which generalizes Lemma 1 of that section.

Lemma 2. Let D be a commutative ring with identity, Pysee+sPy e D,
m, = pil,...,mn = pin for some positive integers jl""’jn’ p= (pl,...,pn),
m = (ml,...,mn). Let a € D be a unit modulo p. Then a is a unit modulo m.

Proof: We use the notation of Algorithm G and divide the proof into
steps corresponding to those of Algorithm G:
(1) If n = 1 then Lemma 1 of §8b applies and we are domne.
(2) Assume n > 1 and let a+ = hl(a). Since a is a unit modulo p, there is a
b € D such that ab - 1 € p, hence atbT - 1¢ p+, where b = hl(b) and p+ =

(hl(pz)""’hl(pn))' Hence a+ is a unit modulo p+, and we may thus assume,

. + . +
by induction on n, that a 1s a unit modulo m .

(3) Let a* hz(a+). From the conclusion of step (2), a* is a unit of E*.

(4) Let a*

"

h3(a). Then h*(a*) = a*, i.e. a* is a unit modulo p{. Applying

Lemma 1 of §8b, we find that a* is a unit modulo mi.

35

(5) Suppose a*b* = 1 (mod mi). Choose b € D such that h3(b) = b*, Then
h3(a)h3(b) - 1= h3(d)h3(ml) for some dl € D, nence hB(ab -1 - uml) = 0,
hence ab - 1 - dlml € (mz,m3,...,mn), hence ab = 1 (mod m).

Theorem G. Let D be a commutative ring with identity; pl,...,pn be
h|

elements of D which are not zero-divisors; m = pll,...,m

= p_ 0 for some
n n

positive integers jl,...,jn; p = (pl,...,pn); m = (ml,...,mn). Let A,B,Al,

B, € D[(x] satisfy

1
AB (mod m);

11

a. AlBl
b. deg(Al) = deg(A) and 1c(Al) = 1c(A) (mod m);

c. Ay =Aand By = B (mod p);

d. lc(A) is a unit modulo p.

Then A1 = A and B1 = B (mod m).

Proof: Again we use the notation of Algorithm G and divide the proof
into steps corresponding to those of Algorithm G:

(1) If n = 1, Theorem H of §8b applies and we are done.

+ + _+

(2) Assume n > 1. Let A;,Bl,A ,B be the images under hl of Al,B A,B. Let

l’
+
p = (hl(pz),...,hl(pn)). By c, Al - A= dlpl + ...+ dnpn for some di e D(x].
_ + o+ +
Hence hl(Al) - hl(A) = hl(dZ)hl(pz) + ...+ hl(dn)hl(pn)’ hence Al -A ep.
In this way we can prove
+ ot

c . A B" (mod p+),

+
1 and B1

at. 1c(A+) is a unit modulo p+,

at. A-IB-{ = aAT8Y (mod mh),

and, using Lemma 2, the second part of
b+. deg(AI) = deg(A+) and 1c(AI) = lc(A+) (mod m+).
The first part of b+ follows from b and d. We may now assume, by induction on

+ + _ _+ +
n, that A, = A+ and B, = B (mod m).

1 1
T e T + 4+ +
(3) Let Ai,B{,A*,B* be the images under h2 of Al,Bl,A ,B+. Then, from the con-

clusion of step (2), K{ = A* and ﬁt = B*,

36

(4) Let A%*,B* A% B* be the images under h3 of A, ,B.,A,B. From the equation

1°71 1’71
= *
h2°hl h °h3, we have
= h* = = A% = A%
h* (Aii) h (h3(A1)) h, (hl(Al)) A = A

hy (hy (4)) = h*(hy(A)) = h*(a%).
In this manner we obtain
* ® = A% % % = B *
c*, Al = A* (mod pl) and Bl = B* (mod pl).
From a,b,c and the definition of h3 and m{, we have
* *B% = A*B* *
a%*. AlBl = A*B* (mod ml)
b*, deg(Ai) = deg(A) and lc(Ai) = 1c(A*) (mod mf).
We may prove
d*., 1c(A*) is a unit modulo p{
as follows: From d+ and Lemma 2, we know that lc(A%*) is a unit modulo m+.
Furthermore, lc(A%*) = hz(lc(A+)), hence lc(A*) is a unit of E*. Finally, h¥
(lc(A*)) = 1c (A*), hence d* follows. Now Theorem H implies Ai = A* and BI =
B (mod mi).
(5) From the conclusion of step (4), h3(A1 - Al) is a multiple of h3(ml), say

h3(d1)' Thus h3(Al - A - dml) = 0, hence a; - A-d = d2m2 + ... +dm

1M1 nn

for some d2""’dn £ D[x]. Hence Al = A (mod m) and similarly, B1 = B

(mod m).

37

9. Correspconding factorizations and refinements of facrorizaticss

a. Construction of a corresponding factorization modulo in.

In order to make use of any of the Hensel algorithms discussed in the

previous section, we must be able to find polynomials S, TEE[x] which

satisfy AS + BT = 1 for factors A and B of h(C) ¢ E[x]. Sufficient conditions
for this are that E be a field and A and B be relatively prime over E, for
then S and T can be computed by the Extended Euclidean Algorithm. We are
thus led to the following abstract algorithm which provides the theoretical
basis for the algorithms of sections 3f and 4g. 1In the algorithm we use

the fact that if the input A to Algorithm H is monic then, in step (1) of
Algorithm H, A can be chosen to be monic, in which case the final output A

is monic.

Algorithm C (Construction of a sequence of factors modulo M correspond-
ing to a given sequence of factors modulo p). Let D be a commutative ring
with identity, Pyse-esP ¢ D, and h be a homomorphism of D onto a field E
with kernel ty = (pl,...,pn). The inputs to the algorithm are Pysee+sP 3 POS-
itive integers jl,...,jn; C ¢ D[x] for which h(C) is squarefree; and Gl""’Gt’

a sequence of monic polynomials over E such that h(C) = lc(h(C)) Gl--- Gt

The outputs are U, Fl, cees Ft € D[x] such that C = UFl...Ft (mod 111),
j1 jn
where 71T\ = (p1 seeesP); h(Fi) = Gi’ deg(Fi) = deg(Gi), and Fi is monic,
for i =1,..,t.
(1) Set C « h(C), 1 « 1.

(2) (Now we have:

a. Cqy & CF...F,

b. h(Fk) =G, deg(Fk) = deg(Gk), and Fk ig monic for k = 1,...,1-1;

(mod), where C0 was the initial value of C;

c. C=nh() = 1c(h(C))GiGi+l...Gt;

3

(%)

(5)

(6)
(7)

38

d. C is squarefree.)
Set A < Gi’ B « C/A. (Thus h(C) = AB, A is monic, and A and B
are relatively prime over E, by d.)
Using the Extended Fuclidean Algorithm, obtain S and T over E such
that AS + BT = 1.
Apply Algorithm G to pl,...,pn, jl,...,jn, C, Z, E, §, T and let
A and B be the output. (Thus A,B € D[x], C = AB (mod 1), h(4) = &,
h(B) = B, deg(A) = deg(A), and we may assume that A is monic, as
noted above.)
Set Fi <« A, C+« B, €+« B, i « i+1. (Thus conditions a,b,c, and d
remain valid).
If i< t, go to 2.
Set U <« C and exit.

In ©9¢c we shall prove a key theorem about the output of Algorithm C.

Some of the definitions and notations used in the statement and proof of

this theorem and later algorithms and theorems involve the "multiset™

concept recently introduced by Knuth [KNU69, Exercise 4.6.3-1917.

b.

a finite number of times.

Multisets

A multiset is like a set, but may contain identical elements repeated

aM¥p, (e, (Ulp, (- as follows: an element x occurring exactly a

times in { and b times in b occurs exactly

a+ b times in (|W »
max(a,b) times in ({}7p
min(a,b) times in U1

max(a-b,0) times in [L—(ﬁ

If[? and > are multisets we define new multisets

39

1f (_ic a finite multiset with elements from s set on which 2 commuta-
tive addition operation is defined, then by v, we shall mean a sum in which
an element x is included as a term exactly as often as it occurs in (1. We
define I¢ = 0 where ¢ denotes the empty multiset. Assuming commutative mul-
tiplication, IIQ is defined analogously, with the convention e = 1.
If (i= {al,...,an} is a finite multiset with elements from a set on
which a function f is defined, then f(3) is the multiset-{f(al),...,f(an)}.
As an example of this notation, let f{=-[x2 +1, x -1, x3 -3x +7,
x2 + 1} and f = deg, the degree function; then
deg(:) =1{2,1,3,2},
deg () = % deg(®) = H2,1,3,2} = 2+1+3+2 = 8.
In the context of factorization, if C is an element of a UFD and ;fis
a multiset of prime elements such that C =/, then it is convenient to
’

refer to ' as a complete factorization of C.

c. Refinements of factorizations

Let D be a commutative ring with identity and (Q=[A1,...,Ar}and LA
be multisets of polynomials over D for which H(} = elll) for some ec D.
Then » is said to be a refinement of (¢ if there exists a partition (p=
[ji ... E:CBr such that
Aj = ejﬁxzﬁ for some ej € D, KKr.
(This definition is a restatement of one given in 331, using multiset

notation.) If E is another ring and h is a homomorphism of D onto E with

kernel 1, then o is said to be a modulo m refinement of ({ if h(H 1is a

refinement of h(().

Obviously, if D is a UFD and .- is a complete factorization of a

polynomial C over D, then > is a refinement of any other factorization of

40

C. In particular, if D and E are UFDs, h is a homomorphism of D onfo

E with kernel 111, C is a polynomial over D and G is a complete factori-
zation of pp(h(C)), then G is a refinement of h(F), where F is the complete
factorization of C.

Theorem C. Given the assumptions of Algoritim C, let G = {Gl""’Gt}
and F = {Fl""’Ft}' Also assume Pj,...»P, are not zero—divisors, 1lc(C) ¢
(pl,...,pn), and G is a refinement of h(.J), where 4 is a complete factor-
ization of C. Then F is a modulo 11 refinement of I .

Proof: We have, from the algorithm, C= Ul F(mod m). Since TIF is
monic, deg(C) = deg(U) + deg(lTF). Also, since 1c(C) ¢C?=(pl""’Pn)’ deg (C)
= deg(h(C)) = deg(li€) = I deg(G) = T deg(F) = deg(lIF). Hence deg(U) =0
and U = 1c(C) (mod M), so

N4=C = 1c(CYIF (mod 7T1))
Now let 47= {jlf""Jy}' By assumption, there is a partition G = Hl ...

r

S, Hr such that h(JS) = ejHHj for some ej ¢ E, 1<j<r. Partition F into

Klii)...\j)Kr such that Kj contains the Fi corresponding to the Gi in Hj'

Define
A= 31
B = ClJ,
A1 = lc(A)I[K1

B, = le (B)L(F-X,)
Then from (1) we have AlBl = 1c(C)IF = C(mod), so AlBl = AB(mod 7). We
will show that the other assumptions of Theorem G of 884 are satisfied:
First, since 1lc(C) ¢3>and lc(A)|1c(C) we have 1c(A)¢<§), so deg(h(A)) =
deg(A) and h(lc(a)) = le(h(a)). Thus h(Al) = h(lc(A)) h(nKl) = 1c(h(A))IIH1 =

h(A), so A1 = A(modcp). Similarly, B1 = B(modi?). Next, deg(Al) = deg(HKl) =

41

X deg(Kl) = deg(Hl) = deg(HHl) = deg(h(A)) = deg(a). Tinally, 1:7C)
ii‘,,\a)) implies that 1lc(C) is a unit modulol\]w, since D/\;)x is a field. From
Theorem G we therefore conclude that A = Al (mod '), hence that 31 =
1c(J1)HK1 (mod m). By symmetry, 3:] = le(d)HKj (mod 1), and this proves

3

that F = K, ... K. is a modulo mrefinement ofJ={jl, .. .,jr}.

42

10. Construcztion of a complete factorization

In preparation for the discussion of an abstract algorithm for this
final stage of the factorization process, we first review in 310a some con-
cepts and terminology relating to the use of homomorphisms in practical
computation, and in §10b the concept of an "R-factorable” polynomial, a
generalization of the property of polynomials over the integers that a
bound can be given for the coefficients of factors.

a. Homomorphisms and sets of representatives

Throughout this section we assume that D and E are sets and h: D> E
is a mapping of D onto E. The set P = {h_l(e): e € E}, where h-l(e) =
{d € D: h(d) = e}, is a partition of D. Let R be a subset of D such that
for each set S € P, R n S contains exactly one element. Then R is a
(complete) set of representatives of P. 1In other worids, for each e £ E there
is a unique d € R such that h(d) = e. We assume this property of R in
what follows.

We denote by hR the restriction of h to R. The map hR: R > E is one-
to—one. We denote the inverse map of E onto R by h;l.

We now assume that (D,+,.) and (E,+1,'l) are commutative rings with
identity, and that h is a homomorphism of D onto E. We recall that the
residue class ring D/Ker(h) = {d+Ker(h): d € D} is isomorphic to E. The
partition P of D, as defined above, is in this case the set D/Ker(h).

The set R of representatives of D/Ker(h) may be made into a ring as

1

follows. Let H = h; ° h, and for a,b € R define

a+, b= ﬁ(a+b), a-°, b= ﬁ(ab). 1)

2 2

We know that b;l: E > R is one~to-one and onto. Let al’bl e E and

43

a = hR (a.¥y, b = hR (bl). Then
h-l(a, 4. b.) = h_l(h(a) +, h(b)) = hii(h(a + b))
R 1 1 1 R 1 R
= ﬁ(a+b) =a+, b = h’l(a)y + h'l(b)
2 R 1 2 R 17
and similarly h—l(a . b.,) = h—l(a)y - h—l(b) From these relations
' R 1 1 1 R 1 2 R 17

the ring axioms for (R, + '2) is a ring isomorphic to (E, +l, '1) under h;l.

2’

Furthermore, h is a homomorphism of D ornto R: for a,b € D,

h(a+b) = h;l(h(a+b)) = h;l(h(a) +, b))
-1 -1
= hp (h(a)) +, hp"(h (b))
= h(a) +, h(b),

and similarly for multiplication.

The point of this is that if we can do arithmetic in the ring D (i.e.
if we have algorithms for performing the operations + and * on symbols rep-
resenting the elements of D), then we can also do arithmetic in E, provided
that we also have an algorithm for ﬁ: we represent the elements of E by the
symbols representing the elements of R and perform addition and multiplication
on these symbols according to (1).

As an example, take D = Z (integers); m a positive integer; E = Z/(m),
the residue class ring of integers modulo m; and h the canonical map n -+ nt+(m).
R = {0,1,...,m-1}is a set of representatives of E. Define a map ¢m: Z > 7 by
¢m(n) = least non-negative remainder on division of n by m. Then h;l(n+(m)) =
¢m(n) and ﬁ = ¢m. Thus if we define

a +2 b = ¢m(a+b), a *, b = ¢m(ab) (2)
on R then (R, +

X °2) is a ring isomorphic to E, and is the homomorphic image

o Zunder d)m.

44

Now sunpose we take D = Z, E {0,1,...,m41}wi£h 4, and ¢. delined on

E by (2), and h = ¢m. If we take R = E = {O,l,...,m—l}, then we have a

particularly simple situation: hR and h;l are the identity map of R and

A

h = h. The same situation occurs in general when we have ECD and take R = E.
When D = Z and E is isomorphic to Z/(m), it is often most convenient
to take

R = {—F‘?_-J,...,o,l,...,%}

(with, say, —E%l omitted if m is even); this will be seen to be true in the
applications discussed in the following section. With E = {0,1,...,m-1}and
h = ¢m’ as above, we have

n, if n < [m/2],

]

hil(n)
n-m, otherwise;

~ ¢ (n), if ¢m(n) < Lmlzja
h(n) m

¢m(n)-m, otherwise.

Another important example is D = F[x], F is a field; E = Fix}/1,
where I is an ideal generated by a polynomial G(x) of degreen > 0; and h =
canonical homomorphism A(x) » A(x) + I. R = {A(x) € Flx]: deg(A) < n} is a
gset of representatives of E. We then have

h;lz A(x) + I > A(x) mod G(x),
ﬁ: A(x) » A(x) mod G(x),
where A(x) mod G(x) is the remainder on division by G(x).

Although we have in this section distinguished between the binary
operations of D and E, we shall in the remaining discussion follow the usual
convention of allowing the context to determine which operation is intended;
for example if a,b € E then a + b means a +1 b where +1 is the addition opera-

tion on E.

45

b. R-factorabllity

If R is a subset of an integral domain D and C is a polyncemial over D,

let us say that C is R-factorable if R contains the coefficients of every

factor A* of C* = 1c(C)*C for which deg(A%*) 5_[§eg(A*)/2j and lc(A*)]|1lc(C).
(Let us regard O to be a coefficignt of every polynomial, so that 0 € R.)
For D = Z, if R = {1i: |i] < be1lec(C)}, where b is a bound on the coef-
ficients of any factor of C, then of course C is R-factorable.
Lemma 1. Let D be an integral domain, R be a subset of D, and C be
a polynomial over D which is R-factorable. Then any factor of C is also
R-factorable.

Proof: For C

AB we shall show that A is R-factorable. Let lc(A)°*A =
AlAZ where deg(Al) f_[deg(A)/zj and 1c(Al)|1c(A). Then Alllc(C)°C, deg(Al)
< L@eg(C)/zJ and lc(Al)llc(C); hence R contains the coefficients of A,,
proving that A is R-factorable.

c. A general factorization algorithm

The following abstract algorithm and its proof provide the theoretical
basis for the algorithms of §31 and $4j.

Algorithm P (Factoring a primitive polynomial via a factorization of
its homomorphic image). Let D be a UFD and E be a commutative ring with
identity. Let h be a homomorphism from D onto E with kernel ™ and R be
a set of representatives of D/yy. The inputs are a primitive polynomial C
and a multiset G of polynomials over E such that

a. C is R-factorable;

b. G is a refinement of h(F), where the multiset F is a
complete factorization of C.

c. The leading coefficient of each polynomial in G is not

a zero-divisor.

46
The output of the algorithm is a multiset F, a complete factorization of

(1) Set F+« ¢, d« 1,
(2) Set ¢ + 1lc(C), c + h(c), C* « c-C.
(3) 1fd> ngg(c)/gj, set F « F & {C} and exit.
(4) For each H< G such that ZIdeg(H) = d:
(a) Set Ap + TH, Al + (/lc(Ac))As, A% « hil(A).
(b) If A*|C*, set B* « C*/A* and go to (6).
(5) Set d+d+ 1 and go to (3).
(6) Set A « pp(A*) (with 1c(A) € D,), F + Fid {A}, C « B*/1ic(a),
G +« G~H, and go to (2).
Notea: The meaning of step)(4) is that steps (4a) and (4b) are to be per-
formed for every distinct multiset HCG for which the sum of the degrees of
the members of H is d. An efficient way of generating all of the multisets
HC G with deg(H) = d is discussed in [MUS71, 81.6, §3.3].
Validity proof: We let C, be the initial value of C and prove that at

0
the beginning of each execution of step (3) the conditions a,b, and c of

the input assumptions and the following conditions all hé&ld:
d. CO = C1F;
e. all A e F are prime, primitive polynomials;
f. ¢ = 1lc(C), ¢ = h(c), C* = cC.
g. C has no factor B such that 0 < deg(B)< 4.
These conditions hold after performing steps (1) and (2). Assume then that
we arrive at step (3) with the conditions valid and that d f_Lﬁdeg C)/ZJ.
We first show that 1lc(h(C)) = h(lc(C)). Since C is R-factorable, we

have both 0 and ¢ = 1c(C) in R. Since h 1is a homomprphism, h(0) = 0, and

47

thus since R is a set of representatives of D/m we cannot also have h(c) = 0.
Thus deg(h(C)) = deg(C) and lc(h(C)) = h(c).

By f, we thus have that 1c(h(C)) = c.

Next we show that, for any H < G such that Ideg(H) = d, the product
A, = TH is of degree d and lc(Ao)‘E. By d, we have deg(A,) = deg(mH) =
IZdeg(H) = d. Also, for some e € E, h(C) = enG = em(H & (G-H)) = eA,B, where

B, = m(G-H). Lc(A,) cannot be a zero—divisor, so deg(h(C)) = deg(Ay) +

deg(B,) and c = 1lc(h(C)) = e*lc(Ag)lc(Bo). Thus lc(Ao) fc.

Thus if A = (c/1c(Ao)) A, then A

h;l(Al) then A* € D[] and deg(A¥*) = d.

€ E[x] and deg(A1)= d, and if A% =

Now consider the case in which C has no factor of degree d. For any
A* which divides C*, pp(A*) divides C, hence C* can have no factor of degree
d. But, as we have just shown, every A* computed in step (4a) is of
degree d, so the division test in step (4b) must fail for each H. Control
thus passes to step (5) where d is increased, but condition g, as well
as all of the other conditions, remains valid as we return to step 3).

Now assume C does have a factor A of degree d. By f and the fact
that C is primitive, we know that A is irreducible. Thus, by b there exists
an H C G such that h(A) = emH for some e € E.

Let A, = TH, A = (c/lc(Ac))A. and A% = h£1(Al). We shall now show
that A* = bA, where b = 1c(C/A).

We have h(bA) = h(b) h(A) = h(b)eA,. Since e = lc(h(4)) / lc(Ao)

and h(b)+lc(h(a)) = 1c(h(C)) = c, we have h(bA) = (c/lc(As))A. = A;. But
1c(bA) = ¢, (bA)lC*, deg (bA) f_L§eg(C)/2J, and C is R-factorable; hence R
contains the coefficients of bA. Thus bA = h;l(Al) = A*, as was to be

shown.

48

We thus have pp(A*) = pp(bA) = pp(A) = A. We see that step (4)
computes from H a polynomial A* such that A*[C* and pp(A*) = A. Thus
we must eventually find a factor of C of degree d: either A or some other
D, factor of degree d.

Assume that A is the factor found; then in step (6) we put A into F.
A is irreducible, so condition e remains valid. Also B*/lc(A) = (C*/A*)/1lc(A) =
(cC/bA)/1c(A) = C/A, so the new value of C satisfies condition d. By Lemma
1, condition a remains valid and conditions b,c and g obviously do also. After
executing step (2), condition f is again valid. We thus return to step (3%
with all of the conditions holding.

Termination of the algorithm is ensured by the fact that the non-
negative integer deg(C) -~ d deereases between successive executions of
step (3). When we find d flgeg(c)/ZJ, we put C into F and terminate. By
g, C has no factors of positive degree i_Lgeg(C)/%J, hence no proper factors
at all. Thus C is prime and by d and e, the final value of F contains only
prime polynomials and C, = mF. This concludes the proof.

d. Another application

In the algorithm of §3i, we have an application of Algorithm P with
D=2; m= (m), where m = pj, E = Zm’ and R = {i:i € Z and Iil <m/2}. In 841,
we have D = Z[vl,...,vn], m = (m, (v1 - al)jl,...,(vn - an)jn), and R =
{AeD:]All < m/2 and degvi(A) <j;1cd < n}. As another example,
take D = F[v] where F is a field and m to be an ideal generated by an ir-
reducible polynomial A[v]. A set R of representatives of E = D/m is givén
by the set of all polynomials in F[v] of degree < n = deg(A). A polynomial
C & F[v,x] will be R-factorable if all of its coefficients (as polynomials

in F[v]) are of degree < n.

49

Thus, if we know how to factor over E, which is an extension field of
F, we can use Algorithm P to factor polynomials in F{v,x] of degree < n
in v. In particular, if F = Zp = GF(p), then E = GF(pn), the Galois field
of order pn. [BER71] describes a reasonably efficient algorithm for fac-
torization over GF(pn). For factorization in Zp[v,x], the Hensel construc-
tion would thus be unnecessary, but the complexity of the algorithm of
[BER71] probably makes the whole process more complex than if a Hensel con-

struction were used.

Acknowledgement. The author gratefully acknowledges his indebtedness
to Professor George E. Collins for his suggestions, encouragement and

guidance throughout the course of this work.

REFERENCES

[BER68] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, Inc.,
New York, 1968.

[BER71] E. R. Berlekamp, Factoring Polynomials over Large Finite
Fields, Mathematics of Computation, November, 1971.

[COL69] George E. Collins, L. E. Heindel, E. Horowitz, M. T.
McClellan, and D. R. Musser, the SAC-1 Modular Arithmetic
System, University of Wisconsin Technical Report No. 10,
June, 1969.

[COL71] George E. Collins, the SAC-1 System: an Introduction and
Survey, Preceedings of the Second Symposium on Symbolic and
Algebraic Manipulation, Los Angeles, March, 1971.

[cOL72] George E. Collins and D. R. Musser, the SAC-1 Polynomial
Factorization System, Computer Sciences Technical Report
No.

[COi72a] George E. Collins, unpublished lecture notes.

[FLO67] Robert W. Floyd, Assigning Meanings to Programs, Proceedings
of a Symposium in Applied Mathematics, Vol, 19 - Mathematical
Aspects of Computer Science (J. T. Schwartz, ed.). American
Mathematical Society, Providence, R. I., 1967, pp. 19-32,

[GOL70] Jacob K. Goldhaber and Gertrude Ehrlich, Algebra, Macmillan
Company, 1970.

[HOR69] Ellis Horowitz, Algorithms for Symbolic Integration of
Rational Functions, Ph.D. Thesis, Computer Sciences Dept.,
University of Wisconsin, 1969.

[JOH66] S. C. Johnson, Tricks for Improving Kronecker's Method,
Bell Laboratories Report, 1966.

[KNU68] Donald E. Knuth, The Art of Computer Programming, Vol I:
Fundamental Algorithms, Addison-Wesley Publishing Co.,
Reading, Mass., 1968,

KNU69] Donald E. Knuth, The Art of Computer Programming, Vol. II.
Seminumerical Algorithms, Addison-Wesley Publishing Co.,
Reading, Mass., 1969.

(MUS71] D. R. Musser, Algorithms for Polynomial Factorization,
Computer Sciences Dept., Technical Report No. 134
(Ph.D. Thesis), September 1971.

[RAB60 1 Michael O. Rabin, Computable Algebra, General Theory and
Theory of Computable Fields, Transactions of the American
Mathematical Society 95 (1960), pp. 341-360.

[VDW49] B. L. Van der Waerden, Modern Algebra, Vol. 1, trans. by
Fred Blum, Frederick Ungar Publishing Co., New York, 1949,

[ZAS69] Hans Zassenhaus, On Hensel Factorization, I, Journal of
Number Theory 1, 291-311 (1969).

