FINITE AUTOMATA WITH MARKERS

by

Pei Hsia and Raymond T. Yeh

March 1973 TR-12

[N 'i

*
FINITE AUTOMATA WITH MARKERS

by
Pei Hsia and Raymond T. Yeh
Logican, Inc. Dept. of Computer Sciences
Los Angeles, Calif. The University of Texas at Austin

Austin, Texas 78759

This paper is supported in part by the National Science Foundation grant
GJ-31528 and by the Joint Services Electronics Program under Research Grant
F44620-71-C-0091. "This paper has been presented at the International
Symposium on Theory of Automata and Programming Language in France, 1972."

I. Introduction

This paper studies finite automata augmented with markers which the auto-
mata can move about on their input tapes. The concept of augmenting markers
to automata was first introduced by Blum and Hewitt [1] in two-dimensional
automata. Kreider, Ritchie and Springsteel [6,7,8,12] investigated recognition
of context-free languages by (one-dimensional) automata with markers. In this
paper, we investigate some fundamental properties of marker automata and study
their relationships to other types of automata and Zanguages.

The main result in this paper is the establishment of an infinite hier-
archy of languages recognizable by deterministic and deterministic, halting
marker automata. It also turns out that because of the equivalence of finite
marker automata and multi-head automata, the study of three-marker automata

becomes very interesting due to results of Hartman's [4] and Savitch [10].

II. General Properties of Marker Automata.

In this section we will prove the equivalence of labelled and unlabelled
marker automata and show that there is an infinite hierarchy in the class of
languages acceptable by deterministic marker automaton. Furthermore, it will
be whown here that every determiﬁistic k-marker automaton is equivalent to a
deterministic, halting (2k+3)-marker automaton.

Definition 1. Let N denote the set of natural numbers and K = {1,2,...k}.

A deterministic (non-deterministic) k-marker automaton A is a 7-tuple [S,I,K,$

So’sa’sr] where S and I are finite sets of states and input symbols, respectively.

Symbols so,sa,sr, are elements of S called the initial state, accepting state,

and rejecting state, respectively, and § is a function mapping S x {£ U K} to (finite

subsets of) S x {~1}U{OJUK} x {-1,0,1}. A is referred to as an w-marker automaton

if K is replaced by N.

Intuitively, the function of § is to change state, remove from or place a
marker on the input tape, and move the reading head. Note that if a number of
markers are stacked up on an input square, the reading head of the automaton «
will only read the marker on top of the stack. However, the automaton can
sense when more than one marker are stacked on a particular square. The input
alphabet I also contains a special symbol ¢ used as end marker of input tapes
to keep the reading head from falling off. The automaton stops whenever it
enters state s, or s_. If A is an «~-marker automaton, then the number of
markers to be stacked on a square can be arbitrarily large.

Definition 2. The language acceptable by a k-marker automaton A = [S,I,

M,G,so,s ,sr] consists of all tapes x over I-¢ such that starting with state

a

8, on the left most symbol of x, A eventually halts on state S,e

Definition 3. A deterministic (non-deterministic) unlabelled k-marker

automaton B is a 6-tuple [S,Z,A,sa,sa,sr], where S,Z,so,sa,sr are as defined
in definition 1, and XA is a function mapping S x {I U {*}} into finite subsets of)

s x {-1,0,1} x {-1,0,1}. B is called an unlabelled ~-marker automaton if it

has an infinite number of unlabelled markers.
We note that the symbol * in definition 3 indicates the presence of a
marker.

Definition 4. Two (marker) automata are said to be equivalent if they

accept the same language.

Theorem 1. Automata with unlabelled markers are equivalent to automata
with labelled markers.

Proof: Clearly an automaton with labelled markers can simulate an auto-
maton with the same number of unlabelled markers.

Consider now a labelled k-marker automaton A = [S,Z,K,G,so,sa,sr]. Con-
struct an unlabelled k-marker automaton B = [S',Z,A,sé,s;,s;] to simulate A
such that each state of B contains the following information about A: 1) Rela-
tive positions of markers of A on input tapes and in stacks; 2) Relative posi-
tions of markers of A and reading head of A; 3) states of A. More specifically,
let M1 denote the set of sequences of distincet elements of K of length less
than or equal to k, and M, = {al...ai—ﬁ—wl..yjIal...aiﬁyl...yj e‘??u Then we
define B as follows:

S' = {(s*,a)|s* ¢ {s,8,8|s ¢ S} and o € M,}.

s; = (so,--), and A is defined so that A((s,al,..ai—B-Yl...Yj),a) contains
Case 1. B=Aand acel

((t,al...ai——yl...Yj),0,0),if(t,0,0) e 8(s,a)

(@yayee0mm7)00074),0,1),1£(2,0,1) & 8(s,a)
(070 +20y==1; -+ +7),0,71),4£(£,0,-1) € 8(s,2)
((£,0, 02 g==PY; -+ 27,),1,0),1E(,p,0) € 6(s,2)
((E,ay--0=PY - -¥4),1,-1), £ (8,p,-1) & 8(s,2)
((,a1- 001, 7y),1,1),1£(E,p,1) € 8(s,2)

Case 2. B =P = B'Pn,a = %

AL
((tal...ai-B-Yl...Yj),0,0),if(t,0,0) € G(s,Pn)
((?,al...ais-—yl...yj),o,l),if(t,o,l) e 8(s,P_)
((?,al...ai--syl...yj),o,-l),if(c,o,-l) e 8(s,P)
((t,al...ai—-BP-yl,...yj),l,O),if(t,P,O) € 6(s,Pn)
(#0700, (BR)==v;, 00 7,), 1, 1), 16(E,P,1) & 8(s,P)
((Eyag e 0= (BR)Y - 007D, 1,m1), 4E(E,Py-1) € 8(s,P)
((t,al...ai—B'—Yl...Yj),-l,O),if(t,—l,o) € G(s,Pn)
((?,al...ais'--yl...yj),-l,l)if(t,-l,l) e 6(s,P)
(Fy0y00na=B"Y o 07y),=1,m1), 6 (Eym1,m1) & 8(s,R)

Case 3. for a ¢ I and s* ¢ {8,8,)}

k((s*,al...ui-—yl...Yj),a) = A((s,al...ai--yl...yj),a)

i
S
J—— *) = - - *
Case 5. A((s,al...ai yl...yj),))\((s,ql...ai Yy Yz...yj),)

Case 4. A((;,ul...a —-Yl...yj),*) = A((s,al...ai_l-ai—yl...yj),*)

Finally, B enters s, or s, whenever A does.

It is easily seen that the constructed automaton B does simulate A.

In the case A is an =-marker automaton whose markers are elements of N,
we construct an unlabelled o-marker automaton B to simulate A by assigning a
stack of P (unlabelled) markers to simulate a marker P in A. The comstruction

of B is simple but lengthy and hence is omitted here. |l

In the sequel, we will use freely the notion of marker automaton without
mentioning whether the markers are labelled or not. (It should be clear from
the context as to what types of markers are used.)

The following two theorems are known results [1] which are included here
for the sake of completeness.

Theorem 2. O-marker automata are equivalent to l-marker automata.

Theorem 3. Automata with k-markers which can'place at most one marker on
any square of input tape is as powerful as k-marker automata which can stack
markers on a single square.

We would 1like to remark here that it is still an open problem whether
nondeterministic marker automaton is more powerful than a deterministic auto-
maton having the same number of markers. The answer is affirmative in the
case of two-dimensténal marker automaton [1].

In the following, we will prove two important properties of deterministic
marker automata.

Definition 4. A language L is said to be n-marker acceptable if L = L(A)

for some n-marker automaton A. It is called an n-marker deterministic language

in case A is deterministic. It is called an n-marker deterministic, halting

language in case A also halts on all inputs.

In the following, a sequence of lemmas will be proved in order to estab-
1ish the main result of an infinite hierarchy in the family of deterministic,
halting languages.

Let L be an n-marker dterminiistic, halting language over I such that L
is not (n-i)-marker acceptable for any 1>0. Construct two languages L' and L"

as follows:

L' = {al#az#...#am|m>0, a € I*, # ¢ £, and number of ai's in L is exactly the
same as number of aj's not in L for 1<i, jjp.} @9
L" = {affx|a € I* and x is a fixed string not in L.} (2)
Lemma 1. If A is a deterministic, halting k-marker automaton such that
L(A) = L" then A can decide if a € I* is in L or not.
Proof: Indeed, o € L if an only if offx ¢ L"; where x is the fixed string

Lemma 2. Let A be an n-marker automaton. If L(A) = L', then there exists

given in (2).

a string B=u1#a2#...#am ¢ L' such that in the computation of A on B, there is
a computational step in which A places all n markers on oy for some l<i<m.
Proof: Suppose the statement of the lemma is false. Then, restricting
our inputs to L", we may assume that A = [S,Z,G,so,sa,sr] uses at most (n-1)
markers on the substring o. Since x is a fixed string, the total number of
ways of placing at most n markers on x with distinct states of A is finite.
Using this information of state-marker configurations, we can construct an
(n-1)-marker automaton B such that the states of B keep track of the state-
marker configurations of A on the substring x and uses only its n-1 markers to
simulate the movements of markers on the substring a. More specifically,

P times
B = [S',Z,y;§0#60...b,sa,sr], where

L. -
§' = {1;...4,81 ...1p|051

R R <n and length (11...ip) =n} U

3

{;#il...ip|0_<_ij_<_n and length (il..'ip) =n}l U {sa’sr}

— > <«
where s ¢ {s,s|seS} and P is the length of x.

L' = {al#az#...#am|m>0, ay € I*, # ¢ £, and number of ai's in L 1s exactly the
same as number of aj's not in L for 1<i, j<m.} ¢H)
L" = {offx|a € I* and x 1s a fixed string not in L.} (2)
Lemma 1. If A is a deterministic, halting k-marker automaton such that
L(A) = L" then A can decide if o € I* is in L or not.
Proof: 1Indeed, o € L if an only if offx € L"; where x is the fixed string

|

Lemma 2. Let A be an n-marker automaton. If L(A) = L', then there exists

given in (2).

a string B=a1#az#...#am e L' such that in the computation of A on 8, there is
a computational step in which A places all n markers on o, for some 1l<i<m.
Proof: Suppose the statement of the lemma is false. Then, restricting
our inputs to L", we may assume that A = [S,Z,G,so,sa,sr] uses at most (n-1)
markers on the substring a. Since x is a fixed string, the total number of
ways of placing at most n markers on X with distinct states of A is finite.
Using this information of state-marker configurations, we can construct an
(n-1)-marker automaton B such that the states of B keep track of the state-
marker configurations of A on the substring x and uses only its n-1 markers to
simulate the movements of markers on the substring a. More specifically,

P times
B = [S',Z,y;§°#60...b,sa,sr], where

LI oy
§' = {1;...i,8 4 ...iplOii

3 §+1 <n and length (il...ip) =n} VY

3

{E#il...ip|0§;j§p and length (1;...1) =0}V {s_,s }

— > <
where s ¢ {s,s]seS} and P is the length of x.

The transition function y of B is defined as follows:
_).
(11...(ij+d)ij+ltij+2...ip,d,l),if(t,d,l)ed(s,a)

Y(iy...1 81 1i,)=4d Tt

33401 +d)...ip,d,-l),if(t,d,—l)eG(s,a)

poeety gty

(il...(1j+d)€i .1 ,d,0),16(t,d,0)e8(s,a)

§+1
Y(Eil...ip,#) = (§#(il+d)...1P,d,—1),1f(c,d,—1)ea(s,#)

-

(t#il...ip,dl,dz),if(t,dl,dz)eé(s,a), and
Y(g#il...ip,a) = acl

>

(ti ip,d,l),if(t,d,l)eﬁ(s,#).

1°°"

Finally, B goes in s, Or 8, whenever it is going to enter a state s' in which

-+ ->
s Or s_ occurs.
a T

It is easily seen that L = L(Bn_l). This 1s a contradiction because L is not
(n-1) marker acceptable by assumption. Hence, the lemma is proved.ll
Lemma 3. Let A be a k-marker automaton such that L(A) = L'. If al#az#...

#a, € L', then A can decide whether a, ¢ L for each 1<i<2n.

2n
Proof: for K=1, the lemma holds by virtue of lemma 1. Assume lemma holds

for k>1. Since al#az#...#azn ¢ L' 1f and only if a"(l)#...#a"(z)#...#a“(zn) >

L' for any permutation 7 on (1,2,...,2n), we see that al#az#...#uzn e L implies
that aw(l)#"'#aw(Zn-Z) e L' and % (2n-1)%n(2n) e L for some permutation w.
Since the lemma holds on the substring an(l)#"'#aw(Zn-Z) by inductive hypo-
thesis, the lemma holds for the whole string using the base of induction.!!

Theorem 1. Let L be an n-marker (n > 1) deterministic, halting language,
then the language L' defined in (1) is a deterministic, halting (n+l)-marker
language but is not an n-marker language.

Proof: Let L = L(An) for some deterministic, halting n-marker automaton

An' We can construct a deterministic, halting (n+l)-marker automaton An+1
= \
such that L(An+l) L'. The function of An+1 on an input al#az#...#am is
described in the following:
(a) An+1 uses n markers to check if each a; € L, 1 <4i<m.
() An+1 uses the remaining marker to keep track of the number of ai's
that are in L by moving it along the separation symbol # from left to right.
(c) After An+1 has checked each @y,

marker used in (b) to determine whether number of ai in L is the same as that

it uses one marker together with the

of those not in L. Since it is easily seen that An+1 can be constructed from
A , we will omit the definition of A here.
n T ntl
It is easily seen that L(Ah+l) = L'. We now need to show that L' is not
n-marker acceptable,
Suppose now Bn is an n-marker automaton such that L(Bn) =1' . By lemma
4, we may assume that B processes each input string of the type B = al#az#...#am
by first processing each substring o according to their order of appearance.

i

Denote by D(a,) the number of A in L minus the number of ai‘s not in L for

3 g8
1 < j. It is clear that B ¢ L' if and only if D(am) = 0. Let ¥ = al#az#...#ak
be an element of L' such that Bn’ in processing y, must use all of its n-markers
in ai. (Such an y exists by lemma 3.) This means that in processing v, Bn
has only finite capacity in keeping track of D(ai). However, there is an infi-
nite number of elements in L' satisfying the property stated in lemma 2. Hence,
Bn cannot keep track of this number for all elements of L' and therefore cannot
accept L'.]|]

Corollary 1. There 1s an infinite hierarchy in the family of deterministic,

halting marker languages.

Definition 5. A bounded k-counting automaton (BCA-k) is a quintuple

B =[S, Z,so,f, F], where S and I are finite sets of states and input symbols,
respectively. I contains a special end marker ¢. F C S and s, € S are the
respective final state set and initial state of B, and f is a partial function
from & x S x {0,+}k into S x {1,0,-—1}k x {1,0,-1}.

Intuitively, we think of B as having k counters Cl""’ck’ each of which
can be tested for being zero or positive, and which can be increased or de-
creased by one as long as the respective counts of each Ci all stay within a
lower bound of zero and an upper bound equal to the length of the current input
tape. It was shown by Ritchie and Springsteel [8] that every k-marker auto-
maton is equivalent to a bounded k-counting automaton, and that every bounded
k-counting automaton is equivalent to a (k+1) -marker automaton.

Theorem 2. Every deterministic k-marker automaton is equivalent to a
deterministic, halting (2k+3) -marker automaton.

Proof: Let A be a given deterministic (but not necessarily halting)
k-marker automaton with m states. It is easily seen that A can have at most

k
E:: c¢® * n ° m distinct computational steps on any input tape of length n.

=0k n K+l
Since :Z: Cj < n and since any BCA-k with P states can count up to
Pnk+l onjzgy input tape of length n, it follows from the equivalence of bounded
counting automata and marker automata that we can construct a deterministic,
halting (2k+3) -marker automaton B with P(P > m) states to simulate A as follows:
1. B uses k-markers to mimic the k-markers of A;
2. B uses a special marker used to keep track of the reading head of Aj
3. B uses k+2 markers to simulate the behavior of bounded (k+l) -counting
automaton such that B halts whenever the simulated count reaches mnk+1 on

any input tape of length n. The formal definition of B, being quite simple but

lengthy, is omitted here.ll

Theorem 3. There is an infinite hierarchy in the family of deterministic

marker languages.

Proof: Let Lk (Lk) denote languages recognizable by deterministic

D “D,H
(as halting) k-marker automata. We have L; C L2k+3 < LZk*ﬁ'EE L2k+4.]l
= "D,H # "D,H D

Note that this hierarchy theorem is exactly the same as the Blum-Hewitt
result for the two-dimensional case [1]. However, the proof of our result

is constructive whereas Blum and Hewitt gave an existence proof.

10

III. Marker Automata and Other Types of Automata

We have mentioned in the previous section the result of Ritche and Spring-
steel [8] that the class of marker automata is the same as the class of bounded
counting automata. We will show in this section the relationship between marker
automata and multi-head automata, Turing machines, and linear bounded automata.

Definition 6. A two-way k-head automaton is a seven-tuple A = [S, I, ¢, f,

850 Sy Sr]’ where S and I are finite sets of states and input symbols, respec-

tively 8, 8,0 sr are initial, accepting, and rejecting states respectively.

f: S > K is called the head selecting function and 6: S x Kx I -~ S x K x {-1,0,1}

is the transition function defined as follows:

8§(s, i, a) =(s', j, d) if f£(s) = 1 and £(s8') = j.

Intultively, 8(s, 1, a) = (s', j, d) means that if the automaton is
currently in state s and reading the symbol a using its ith head where f(s) = i,
then it changes state to s' and moves its jth reading head according to d. Again,
we assume that input tapes of M are bounded by end markers and that A accepts or
rejects a tape depending on whether it enters S, Or 5.

Lemma 4. Every two-way k-head automaton is equivalent to a deterministic
k-marker automaton.

Proof: Let A= [S, L, §, £, 8,0 8,0 sr] be a given two-way k-head automaton.
It is seen intuitively that one can use a k-marker automaton B to simulate A by
using one marker to keep track of a reading head of A. However, B would have to
contain more states since to simulate the situation in which several heads of A
are positioned on one square, it is necessary for B to stack up the corresponding
markers. The construction of B is very similar to the construction of an unlabeled

marker automaton to simulate a labelled marker automaton described in the proof

of theorem 1. Hence, we will not give a formal definition of B here since it is

11

too lengthy to define the transition function Yy formally. Rather, we will

merely describe how B works.

First of all, let M1 denote the set of sequences of distinct elements of
K = {1,2,...,k} (of length less than or equal to k), and let M, = {al...ai -
B - Yl"'Yj € Ml} . The state set S of B contains 5, and 8. and elements of
the form (s, 1, @), s € (s, s, s I s e S}, 1 e {-1,0,1}, a € M,. Thus, each
state of B keeps the following items of information:

a. current state of A by s;

b. relative positions of reading head of A by a;

c. the next move of the newly designated reading head of A by i; and

d. whether the marker simulating the next designated reading head of A
is located to the left, right, or in the square being scanned. These are
denoted by the left arrow, right arrow, or no arrow on top of the state symbol
of 8.

To begin with, B images all of its markers, except the ith one, are placed
on the left-hand end marker ¢, where i = f(so). Thus, the initial state of B is

so' = (so, 0, 12 ... (1-1)(i+l) ... k--).

Now, if B is in &' = (s, {1, A eee @y = B =Yg .. yj) simulating A in

state s and the &6(s,a) = (t,d), where £(t) = P. Then B first decides whether

P occurs in al...ai

(t, i, a) or (?, i, @)) and search for the stack £ in which P occurs. After

or in Yl"'Yj’ shift to appropriate state ((?, i, a),

B has found the stack £, it removes each marker in £, reads the input symbol
on this square, and stacks £ (minus the marker P) back up again. B then moves
the marker P according to the direction d and changes state, which reflects
the new marker configuration. B is now ready to repeat the same process. ll

Although we do not know whether the converse of the previous lemma holds,

12

it is easy to see that every deterministic k-marker automaton A is equivalent
to a two-way (k+l) -head automaton B. This observation, along with lemma 4,
yields the following result.

Theorem 4. The class of languages acceptable by two-way multiple head
automata is the same as the class of languages acceptable by marker automata
with finite number of markers.

In the following, we will show the equivalence of Turing machines and
linear bounded automata to classes of ~-marker automata.

Theorem 5. Every Turing machine is equivalent to an =-marker automaton
and vice versa.

Proof: We will use the well-known fact that every Turing machine is equiva-
lent to a two-counter machine and show that any two-counter machine can be sim-
ulated by an ~-marker automaton. Recall that a two-counter machine is a Turing
machine restricted to its input tape, but with two infinite storage tapes. We
assume that input tapes of two-counter machines are bounded by end markers
¢ on the left and $ on the right. An ~-marker automaton can simulate the
actions of these two counters by stacking up markers on the two end markers
at each end of the input tape. More specificalty, let C = [S, I, &, 8,9 F] be
a two-counter machine with 6: S x I -+ ZS xDxDx D, where D = {-1,0,1} and the
first two D's indicate the movement of the reading heads on the storage tapes
and the last D denotes the movement of reading head on the input tape. We con-
struct an ~-marker autonmaton A = [S', I, ¥, [so, - =5 =1 5,0 sr] as follows.

A contains three classes of markers, one *, two sets containing an infinite
number of [] and #. The state set S' and transition function y are given in
the following:

s' = {sa, sr} U sxD'xD'"xD' whereD'=D {J { - 1}.

13

a. Y([S’_’-’_]’a) = 1

b.

C.

d.

Y([s,dl,dz,d3],a) =]

Y([S’-’-9-’d3],a) = 1

Y([s,-1dp,d51,) =

\

S, if (t,dl,dz,

t € F.

([t’d d d]’*"1): if (t’dlydzad

3)
and t ¢ F

1°72*73

e 6(s,a) a € L

([s,dl,dz,d3],0,—1), for a € I

([S,-,dz,d3],U,l), for a ¢ {d,c¢}
and d1 = 1
([S’—sdz’dB])‘lgl), if a = D, and dl

([s,—,dz,d3],0,l), if a ¢ {A,¢} and

d1 =0

¢ and d1 =

([s,-,dz,dB],O,l), for a € & U {*}

s! 1if a = -1
r

([s,—,—,d3],#,—l), for a ¢ {$,#} and

d2 =1

([39'9-9d3]9-1p—l); for a =
([s,-,—,d3],0,—l), for a ¢ {$,#} and

d2 =0

$ and d2 =

([S’_’"’d3],0,—1), for a ¢ T

s for a = -1
r

([S:'a‘,-],d3), for a = *

It is easily seen from the construction that A simulates C by carrying out

the following procedure:
ll
the input tape.

2.

stacked on ¢ to simulate the action of the first counter of C.

Drop a marker * to indicate the position of the reading head of C or
(This is done by a.)

Move left looking for the left boundary marker ¢ or markers of type

14

d3) € 6(s,a) for some

-1

and d2 =-1

(This is done by b.)

3. Move right to boundary to simulate the action of the second counter
of C. (This is done by c.)

4., Move left to locate the * marker and repeat the process. (This is
done by d.)

Conversely, suﬁpose that an «-marker automaton A is given. We can con-
struct a Turing machine T with a semi-infinite tape that simulates A as follows:

1. T divides its tape into chunks of identical length equal to the length
of its input.

2. A stack of k markers on the jth square of the input tape of A can be
simulated by T by writing a special symbol on the jth square of ith chunk for
1<1<k.

Since the quintuple description of T is very long, but relatively easy to
construct, we will omit it here. ll

Definition 7. An «-marker automaton A is called linear bounded if the

number of markers A is allowed to use is bounded by a linear fumnction of the
length of its input tape.

Theorem 6. Every linear-bounded automaton is equivalent to a linear-
bounded marker automaton and vice versa.

Proof: Let A =[S, Z, T, §, 8, F] be a given linear-bounded automaton
such that T contains n elements. We assign an integer 1 < i < n to each element
in I' using a one-to-one function f. Then a marker-automaton B can simulate A
by chopping or removing a stack of i markers to simulate the writing or erasing
of a symbol a € T by A, ﬁhere a corresponds to the integer i. It is easily seen
that, for a given input tape x, B needs to use at most nﬂ markers, when f is the
length of x, and hence is linear bounded. The construction of B is now given.

Let B = [S', I, v, 8,0 Su0 Sr]’ where

s' =5 U{s,, s .} U {[s,1,d] | ses U 8§, 1<1i<n,de{-1,0,1}}

and § = {s | s ¢ S}.
15

Now v is defined as follows:

,

(t,0,d), if (t,a,d) € 6(s,a) and a € I

Y(s,a) ([t,f(¢p),d1,0,0), if (t,p,d) € 6(s,2) and a e £, p e T

’

([s,1-1,d],%,0), if 1>1 and a € E U {*}

v(ls,1,d},a) = (s,0,d), if 1=0 and a ¢ I Y {*}
\
'Y(S,*) = ([-3_9190])—1,0)
Y([;,i,O]*) = ([E’i+190],—190)
y([_s-,i,O],a) = ([_3—9130]’090) a# *
v([s,1,0],a) = ([t,£(p),d1,0,0) if i=h(q) and &(s,q) = (t,p,d)

where q,p € T
It is clear that B defined above 1is equivalent to A.
Since the converse of the theorem can be proved by revising the arugments,

its proof is omitted here. H

16

IV. Marker Automata and Some Classes of Languages

In this section, we present three results: 1. the family of equal matrix
languages is acceptable by marker automata; 2. the family of derivation bounded
languages is acceptable by marker automata; 3. the set of primes is acceptable
by a deterministic 3-marker automaton.

Definition 8. A grammar G = (VN’VT’S’P) is said to be an equal matrix

grammar of dimensiggwk_(EMG k) 1if (1) VT is the terminal vocabulary. VN con-

sists of the initial symbol S and the rest nonterminal symbols in the form of
k-tuples (Al,Az,...,Ak) where if (Al,Az,...,Ak) and (Bl,BZ,...,Bk\ are two
k-tuples then {Al’AZ"°"Ak} N {Bl’BZ""’Bk} = @, (2) P consists of the fol-
lowing types of matrix rules: 1. A set of initial matrix rules of the form
[s *A] or [s ~ flAleAZ"'kak] where fl,fz,...,fk (possibly empty) are ele-

ments of V% where A denotes the empty word; 2. a set of nonterminal equal matrix

rules of the form

A1 > flA1 A1 > lel
Ay, > £)4, Ay > £yB,
. or : * (3)

. . . .

. . L]

Ay 7 By Ay ™ BBy
b

L -

% .
where fl’f2""’fk £ VT possibly empty but not all of fl’fZ""’fk are empty;
and 3. a set of terminal equal matrix rules of the form

A > f

. (4)

17

where fl’fz""’fk £ V% possibly empty but not all of fl’fz""’fk are empty.

To apply an equal matrix rule to a string x means to apply all the rules
of the equal matrix rule which form it, to x in the given order (i.e., row 1
first, row 2 next, etc., and at last row k). If all the productions cannot be
applied, then we say that the equal matrix rule is not applicable to x.

The following result is straingtforward and hence we will omit its proof
here.

Lemma 5. Every EMGk G is equivalent to a normal from EMGk G' = (V'

NI’
V;»S',P') such that 1. if §' > fA/fA ... f A €P', then f; € Vg J (A}, for

117272
1<i<k and 2. if a matrix rule of the form in (3) or (4) of definition 8 1is
in P', then fi(lf;fk) is in VT\J {A} but not all fi's are empty.

We are ready to prove that any equal matrix language is a marker language.
Since the formal.proof of this result involves a very lengthy, but intuitively
simple construction of markér automaton, we will only describe how the constructed
marker automaton behaves on an input tape. The reader should have no problem
constructing such an automaton from the descriptiomn.

Theorem 7. Every language generated by an equal matrix grammar of dimen-
sion k is acceptable by a (2k-1)-marker automaton.

Proof: Let L be generated by an equal matrix grammar, G = (VN,VT,S,P*) of
dimension k. Without loss of generality, we may assume that G is in normal
form as stated in lemma 5. We now describe the behavior of a (2k-1)-marker
automaton A which accepts L.

The state set of A consists of a number of "essential states' of the form

flAleAZ'"kak(fl#le#Z"'fk) if either S - flAl...kak, or

18

- R _
AL TR By > £34) |
. or - . or
-> -
LAk ann~ L_Bk kan_
Al > fl
An > fn is a production in P*., These essential states are

used to keep track of the derivations of G. A also has a number of "auxiliary
states" to move markers on input tapes. The . operation of A is now described
in the following:

1. A partitions the input tapes nondeterministically into k blocks with
k-1 pairs of markers. Each pair is stacked up on one square, as demonstrated
by the following diagram. The bottom marker of each pair is used as place

holder and hence will stay at that square during the entire process.

* * * *

* * * —— *

2. A places one marker on the left boundary end marker to the immediate

left of the leftmost input symbol.

* * * *

* * * ——— * *

4’
3. A uses one marker in each block check if a matrix rule is applied pro-

perly.

a) If [S ~» flAleAZ"'kak] is an initial matrix rule, then one marker
from the i-th block check if f is in the block for all 1 < i < k. Since G 1s in
normal form, this can be accomplished by moving the top marker of each stack one
square to right and seelng if the symbol on the square where the marker moves is

indeed fi for fi # A

19

b) If A > glnl'}
Ay 7 8By

B35

is a matrix rule in P*, then A uses one marker from i-th block to check if 8y is

the next terminal string in the block, for all 1 < 1 < k. This is illustrated
in the following diagram. Note that markers with one arrow pointing to them are

place holders. A does not move these markers during the entire computation.

¥ +
* * * — * * J

£ 08 & 8 fe %
If in (a) or (b) any of the terminal string fi is not found in the i-th block,

then the entire matrix rule does not apply at that particular step. A matrix

rule applies at a certain step only if all the fi’ 1 <1<k, are found in all
the k blocks and k markers (the left marker from each block) are moved to the

end of the fi’ 1 <1<k, in each block. If a matrix rule does not apply in a
certain step, then the input is rejected in this round of attempt. (This does
not mean the input is not acceptable by the marker automaton since the marker

automaton since theimarker automaton is nondeterministic.)

4. TIf all the k blocks are checked and the input is an element of L, then

the final configuration of the markers on the tape should look like the following:

* Tk %

* * * — *i

It is clear from the previous description of A that A accepts X if and only if
X e L. ll

Definition 9. A phrase-structure grammar G = (VN, VT’ S, P) is said to

be in restricted normal form if the productions containing terminals in P are

20

of the form: u - v, where u ¢ VN’ v E VT U VTVN U VNVT'

Definition 10. A grammar G is sald to be k-bounded if for each derivation

VR W, 2w in G, there are at most k elements of V_ occurring in each

1 2 N
LA (1 <1 <n). G is called derivation bounded if it is k-bounded for some k.

The following result is a simple consequence of the previous two defini-
tions, and hence its proof will be omitted here.

Lemma 6. If G is a k-bounded grammar (k > 1), then there is a k-bounded
grammar G' in restricted normal form equivalent to G.

We are now ready to show that languages generated by derivation bounded
grammars form a subclass of the family of marker languages. Again, only an
informal sketch of the proof will be given for the following result for the
same reason as in Theorem 7.

Theorem 8. Let L be a language generated by a k-bounded grammar. Then
L éan be accepted by a 2k-marker automaton.

Proof: By lemma 6, we may assume that the k-bounded grammar G = (VN’VT’
S,P) is in restricted normal form. The 2k-marker automaton A has a number of

"egsential states"

2k .
{o |ae U { Vg { * }}* , and at most k *'s and k elements of

=1 VN can occur in a}

to keep track of the derivations of G, and a number of "auxiliary states" to
move markers on input tape. The operation of the automaton is described in the
following.

1. A begins in State S. If § ~» BlBZ...Bn is a production in P, then A

goes into state BlBZ"'Bn while (nondeterministically) using (n-1) pairs of

markers to partition its input tape into n blocks.

21

2. If A is in state a and B, is the i-th element of VN from left in o and

i
if

a) B, ~C,C,...C, is a production rule in P and B 1is the result of

i 172 3
substituting Cl...Cj for Bi in a, then A goes into state B while placing (j-1)
pairs of markers between the (21—-1)th and Zith markers originally on the tape.
(This can be done since G is k-bounded.)
b) Bi._;aBj is a rule in P, and either
i. Bi is not immediately preceded by ax, and B is the result of

substituting *Bj for Bi in a, or

ii. Bi is immediately preceded by the * symbol, and B is the result

of substituting Bj for Bi in a,
then A goes into state B while moving the (21—1)th marker one square
to the right to check off an "a". It rejects the tape if "a" is not
found. (Note that the last step for checking off a block success-
fully is when the (21--1)th and Zith markers are placed adjacently
such that Zith marker is on a square with input symbol a).
3. If Bi -+ Bja is a production rule in P, then A goes through similar
operations as described in 2(b).
4. 1If A is in state o such that there is a substring AiAi+1“'Ai+p in «
and Ai"'Ai+p -+ BlBZ"'Bj is a productioﬁ rule in G, then A goes into state 8,
where B8 is the result of substituting Bl”’BJ for Ai"'Ai+p in a, and removes p
pairs of markers after the (21-1)th marker on the tape and f£ill in with (j-1)
pairs of markers between the (21—1)th marker and the Zith marker (nondeterminis-
tically).

5. Finally, A accepts the input whenever it is in a state belonging to

{*}i, 1<1ic<k.

22

It should be clear from the above description that A accepts an input X
if and only if X € L(G). ||

It is easily seen that the language L, = {an*akn | k, n > 1} is a 2-marker

1
acceptable language. The language L2 = {an | n = p(i#l), i,p > 1} is 3-marker
acceptable by using one marker to act as * in Ll. Following this kind of
reasoning, we see that one can use three markers to check if the length of a
string of a's is a multiple of any number. This gives rise to the following
result.

Theorem 9. The set of primes (in unary representation) is acceptable by
a deterministic, halting 3-marker automaton.

The previous theorem, along with two interesting open problems, give
motivation to study the 3-marker automaton in detail. Tt was conjectured by
Harmanis and Shank [3] that linear bounded automaton is the weakest automaton
which can recognize the set of primes. Since a 3-marker automaton recognizing
the set of primes is bounded in time by a linear function of the length of its
tape, it seems desirable to study the relationship between marker automata
and classes of Turing machine defined by complexity measures. In particular,
since we have shown by theorem 6 that Linear bounded automata is equivalent to
linear bounded infinite marker automata, it would be desirable to obtain the
precise bound of 3-marker automaton. Furthermore, we see that 3-marker auto-
maton is much simpler than a llinear bounded automaton in general.

Although we are not able to prove that the set of primes cannot be accepted
by any 2-marker automaton, it is easy to see that the automaton will have to
check whether the input number is divisible by any number other than 1 and itself.
Intuitively, this task cannot be done by any 2-marker automaton. Based on these

intuitive reasons, we conjecture that 3-marker automaton is the weakest automaton

23

which can recognize the set of primes. Another good reason for studying 3-marker
automaton is based on a result of Hartmanis [4] who showed that the open problem
of equivalence of deterministic and nondeterministic linear bounded automata

would be solved if languages accepted by a 3-head nondeterministic automaton can

be accepted by a k-head deterministic automaton.

24

V. Concluding Remarks

In the previous sections, we have discussed some general properties of
marker automata as well as their relationships to other types of automata
and languages. Closure properties and decision problems were not discussed
because they have been investigated elsewhere.

A most interesting result in our investigation is the hierarchy theorem
of deterministic and deterministic, halting marker languages. Since it is
easily shown that even 2-marker automata can recognize context-sensitive
languages, this theorem gives a new classification of languages. Similar
result has been obtained by Hartmanis [4] in dealing with multi-head automata.
It remains an open problem as whether this result holds in the case of non-
deterministic marker languages. It was shown by Hartmanis [4] and Savitch [10]
that the relationship between deterministic and non-deterministic marker auto-
mata is directly related to the open problem as to whether deterministic and
non-deterministic linear-bounded automata are equivalent. Indeed, the results
of Hartmanis and Savitch, and Hartmanis and Shank {3] give motivation to study
the characterization of 3-marker automata as mentioned at the end of the.pre-

vious section.

25

VI.

10.

11.

12.

Bibliography
Blum, M., and C. Hewitt. "Automata on a 2-dimensional tape," IEEE Con-

ference Record of 1967 Eighth Annual Symposium on Switching and Automata

Theory, 155-160.
Hartmanis, J. and H. Shank. "Two memory bounds for the recognition

of primes by automata," Mathematical Systems Theory, Vol. 3 (1989),

125-129.

. "On the recognition of primes by auto-

mata," Journal of the ACM, Vol. 15 (1968), 382-389.

Hartmanis, J. "On Non-Determinacy in Simple Computing Devices," AcTa .
Information (1972).

Hsia, P. and R.T. Yeh. '"Marker Automata," Proc. International Symposium

on Theory of Automata and Programming Languages (1972).

Kreider, D. L., and R. W. Ritchie. "A basis theorem for a class of two-

way automata," ‘Zeitshr, Fur Math. Logik und Grundlagen der Math, Bd. 12

(1966), 243-255.

Fur Mathematishe Logik und Grundlagenforschung, (1966), 49-58.

Ritchie, R. W., and F. N. Springsteel. ''Language Recognition by Marking

Automata," Information and Control 20 (1972), 313-330.

Rosenberg, A. L. Nonwriting Extensions of Finite Automata, Doctoral Thesis

(1965), Harvard University, Cambridge, Mass.

Savitch, W. J. "Non-deterministic Finite Automata Revisited," Proc. Sixth

Hawaii International Conference on System Sciences (1973), 249-251.

Siromoney, R. '"On equal matrix languages," Informatica and Control,

Vol. 14 (1969), 135-151.

Springsteel, F. N. Context-Free Languages and Marking Automata, Doctoral

Thesis (1967), University of Washington, Seattle, Washington.

26

. "A universal two-way automaton," Archiv

