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Abstract

Basic teaching philosophy and format of presentation of two
undergraduate courses in computer science are discussed. These two courses,
discrete structures and computational analysis, are meant to provide the
mathematical and "programmatical" foundations for undergraduate students in
computer science and computing engineering. Detailed sequencing of course

material and optional teaching plans are also presented here.
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I. Introduction

Since the publication of the Curriculum 68 report of the
ACM Committee [CUR 68], undergraduate computer science programs have
undergone substantial changes. Notably, many courses previously taught
at the graduate ievel hav; shifted down to the undergraduate level; new
areas have developed and consolidated but were not covered by the ACM
report. These facts make it necessary to revise and update the Curriculum 68
report. An important factor which could help the revision is the actual
experience gained through the development of many new undergraduate computer
science programs since the publication of Curriculum 68 report five years
ago. More specifically, most recommendations of the ACM report contain
just the subject areas to be taught. The actual teaching experiences of
these courses have formulated certain basic philosophies and formats of
presentation. It is helpful, in our opinion, to compare the merits of
these philosophies and formats of presentation.

In this paper, we shall discuss the basic philosophies and formats
of presentation of two undergraduate computer science courses —-— Introduction
to Discrete Structures, and Computational Analysis. The former coincides

with the B3 course of the curriculum 68 report; the latter is a new course

not covered by the ACM report.

II. Motivation for These Two Courses

The need for an undergraduate course in discrete structures
was clearly recognized by the ACM curriculum committee on computer science
[CUR 68]. However, we would like to point out that the required mathe-

matical training of most college curricula in computer science and computing



engineering 1s still largely confined to infinitesimal analysis and
calculus, and each upper-division course is supposed to develop its own
formal prerequisites. This policy clearly has two weaknesses: it is
inefficient, because duplications of efforts are inevitable and precious

time is subtracted from gpecific subjects, and it is ineffective, because
understandably the presentation of background material for each individual
course is kept to a minimum. Thus, the mathematical background of a
majority of students is less than desirable; a clear effect of this piecemeal
exposure to the pertinent mathematical material.

It is almost superfluous to point out that one of the prime
objectives of undergraduate computer science education is for the students
to learn to write "good" programs. This objective is becoming more important
as the complexity and size of software systems grow. The training for
programmers of the next generation should be that not only can they write
programs, but must write programs that people other than themselves can
understand. To be more specific, a programmer should be able to design
programs systematically, and should be able to demonstrate that a program
he writes is correct with respect to its intended goal. Furthermore, he
should have some ideas about the behavior of the program in terms of, say,
time and memory requirements. Presently, this background training of a
good programmer is only obtained, and usually not effectively, after a
student has gone through all the undergraduate programming courses. Thus,
we find motivation to develop an undergraduate course on computational

analysisl which provides students a working knowledge of some of the basic
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We would like to remark here that in proposing a course on
computational analysis, we take the stand that computer programming belongs
to the domain of science as well as art.



tools that can be used to systematically design computer programs and
to analyze the computation performed by a computer program in much the same
way as we abstract the basic mathematical background in the discrete structure

course.

¢

ITII. Discussioﬁ of the Course on Discrete Btructures
A. Philosophy and Format of Presentation.

In order for students to have a clear understanding of various
structures, the philosophy of our presentation is to proceed from general
to specific. By starting with the simplest structures, that is, sets, one
can add properties to reach more complicated structures. In this framework,
graphs are viewed as relations on a set; lattices as a class of partially
ordered sets, boolean algebras as a class of lattices, and so on. We
feel that this approach can best lead students to appreciate how new
properties add structure to formal systems.

The format of presentation is one in which we approach each new
concept by means of real world examples, highlighting in simple language
the important features of this concept in order to build up motivation so
that formal statements and definitions come much easier.

B. Contents of the Course.

Topics which we feel should be included in this course can be divided
into three major subject areas, namely: algebraic structures, combinatorics,
and basic computation theory. Before discussing any of the subject areas,
we shall familiarize the students with the terminology and techniques of
mathematical discourse. Although we are aware of the fact that one cannot

formally teach logical deduction, we find definite merit in presenting



and discussing the meaning of various terms and phrases, such as axiom,
lemma, theorem, proof by contradiction, inductive definitions, etc.
(I). Algebraic Structures

1. Sets and Binary Relations

a) Theory: We introduce sets and their main properties.
Sfructure is added to sets via the concept of binary relations,
whose properties are analyzed in detail. Binary relations are
then specialized to functions and relations on a set: the
latter lead to the important classes of compatibility and
equivalence relations. We emphasize here that no mention
should be made at this point of set algebra (a difference
of philosophy from Curriculum 68 recommendations) although
set union and intersection are defined here for useful
didactic purposes. We contend that the full appreciation of
the structural richness of set algebra can be reached only
at a much later stage,

b) Applications: Finite state machines; document and information
retrieval, Russell's paradox; complexity of representation of
binary relations and functions.

2. _Graphs

a) Theory: The graphical representations of binary relations
are studied with the objective of investigating their topological
properties. Directed and undirected graphs are discussed,
and concepts relating to connectedness--such as paths, chains,

- cut-sets and articulation points—-are studied. Graphs are

then specialized to trees, and further specializationms, such



as rooted trees and oriented rooted trees, are studied for
their great usefulness as models. Path problems concerning
eulerian and hamiltonian circuits and planarity and map
coloration are also discussed.

b) Applications: State diagrams of finite state machines;
scheduling by PERT-CPU; linear netowrk analysis; representation
of data structures in computers; dominating and independent
sets; decomposition of graphs into planar components.

3. Semigroups and Groups

a) Theory: Binary operations are at first defined, and by means
of the concepts of associativity and inverses the students
are led to appreciate the structural enrichment in passing
from semigroups to groups. Rings and their substructures are
also mentioned briefly. The important notions of isomorphism
and homomorphism are analyzed, in this order for clear
pedagogical reasons. Finally, the various concepts are
synthesized in a coherent and compact view through the unifying
notion of universal algebra.

b) Applications: The associated monoid of a finite state
machine; permutations, communications and error—-correcting
codes; infix, prefix, and postfix notatioms for expressions;
the algebra of words, phrase-structure grammars.

4. Lattices

a) Theory: The concept of partial ordering is refreshed at

the start and its properties are brought to evidence. This

leads to the study of posets; from here the notion of lattice



emerges naturally. The general structure of lattices is
investigated and special attention 1is given to distributivity.
Subsequently, the representation of lattices in terms of
join-irreducible elements is presented in a very simple way.
Finally, an important class of lattices, that is, partition
lattices, are considered in connection with their relevance
to the structural description of finite state machines.

b) Applicatiomns: Structural theory of finite state machines.

5. Boolean Algebra

a) Theory: Set algebra is first discussed, and ﬁhe power set of
a set is viewed as a special case of a finite distributive
lattice. The intuitive notion of complement in power sets
is made abstract in the context of boolean algebras. It is
then shown that boolean algebras are isomorphic to power sets
(Stone theorem), and the general representation problem is
tackled. Subsequently, the structural and the manipulative
aspects of an algebraic system are clearly separated, and
the calculus of boolean algebras is introduced as the
application of a set of identities on free boolean algebras.
The study of boolean functions precedes the discussion of
important boolean algebras, such as propositional calculus
switching algebras.
b) Applications: Design of switching and sequential networks,
algebra of logic.
Prerequisite organization of material in this section is illustrated
by means of a directed graph given in Figure 1. Each box in the diagram
represents a major concept and the arcs describe how a concept is a pre-

requisite of some other concepts.
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(I1). Combinatorics

1. Number Systems

a) Theory: Basic properties of integers are investigated.
Prime numbers, congruences and residue numbers system
are studied in more detail.

b) Applications: Computer arithmetics.

2. Counting Techniques

a) Theory: Elements of combinatorics are presented that
should enable the reader to solve simple counting problems.
Permutations, combinations, distributions, the principle of
inclusion and exclusion, and enumeration by recursion are
presented along with many simple, interesting applications.
A simple introduction to Polya's theory is also included.

b) Applications: Bounds for error-correcting codes; complexity
of travelling salesman problem, analysis of algorithms
(Euclidean algorithm, sorting and searching algorithms).

3., Discrete Probability

a) Theory: Basic concepts of discrete probability, conditional
probability, simple and compound experiments, and drawing
with and without replacement are presented.

b) Applications: System Modelling.

Again, sequencing of the course material in this section is given

as a directed graph in Figure 2.



EQUIVALENCE

RELATION
COBINATION,
CONGRUENCE PERMUTATION AND
RELATION DISTRIBUTION
RESIDUE EI\IU}VBI\E(RATION GENERATING PRINCIPLES
NUMBER OF INCLUSION
il ECLRSION FUNCTIONS
DISCRETE ,
ROBABILITY POLYA'S
PIE THEORY
CONDITIONAL
PROBABILITY
T
EXPERIMENTS

FIGURE 2.

Structures Course.

GROUP

|

Core Material of the Combinatorics portion of Discrete



10

(I11). Computation Theory

a) Theory: We begin with an informal discussion of the concept
of algorithm, and through the notion of effective procedure
we arrive at Turing machines. Turing machines are discussed
in some detail and their halting problem is used as an eye-
opener into the far-reaching field of algorithmic insolvability.

b) Applications: Finite state recognizers; formal grammars; post
canonical systems.

Sequencing of material contained in this section is given by the

directed graph in Figure 3.
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C. Alternative Teaching Plans
Teaching plans and prerequisite organization of this course

are illustrated by means of a directed graph. Figures 4 and 5 present
the prerequisite organization of the course. Each box in the graph represents
a major concept and the arcs describe how a concept is a prerequisite of some
other concepts. In Figure 4, we indicate what we feel should be the essential
core of a course in discrete structures: sets, relations, graphs, lattices,
boolean algebras, semigroups, groups and basic counting techniques. Depending
upon available time and the preference of the instructor, this basic material
should be supplemented by additional topics mentioned in the previous section.
In Figure 5, we illustrate three of these optional supplementary programs,
such as algebraic structures, topics in boolean algebras, combinatorics,

and algorithms.
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F1Gure 5.
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D. Bibliography
Currently there are three text books available for this course.

Birkhoff, G., and R. Bartee, Modern Applied Algebra, McGraw-Hill

Book Company, 1970.

This book covers most of the topics mentioned in C and has some
very extensive applic;tions. However, while this book is definitely
a good reference book, the level of the book exceeds the majority

of undergraduate students in computer science and engineering.

Berztiss, A. T., Data Structures: Theory and Practice, Academic Press,

1971.

This book is rich in applications. However, the presentation is
too compact for average undergraduate students. Again, it is good as
a reference book but not suitable as an undergraduate text for computer

science or engineering students.

Preparata, F. P., and R. T. Yeh, Introduction to Discrete Structure,

to be published by Addison-Wesley, May, 1973.

This book covers all the topics of the B3 course in the Curriculum 68
report. The basic philosophy and sequencing of materials covered coincide

with that discussed in III. A above.
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IV. Discussion of Course on Computational Analysis

The main prupose of an undergraduate course in computational
analysis is to introduce the student to some basic tools that can be
used to analyze the behavior of computational processes, be they specified
by actual computer programs, Turing machines, or abstract mathematical
operations such as are often encountered in numeric¢al methods. The intent
of this course is not to be exhaustive, but instead to present a few
broadly applicable methods that can be used to analyze some of the more
basic properties of computations and ultimately lead to the design of better
quality programs. This particular course is designed with primary focus on
just two types of properties, correctness and computing times. Granted,
there are certainly other interesting types of properties, but the question
of "Does the computation do what it is supposed to?" and "How long does it
take?" clearly are of fundamental importance. By having available some
basic tools for answering these questions about the programs he designs, the
student should be able to produce programs of a high degree of reliability
and also be able to choose rationally the more efficient of programs that
perform the same computation. By collecting these tools in a course at as
low a level as possible, the student will be able to use them in programming
projects in later courses and thus gain valuable experience in the production
of high quality programs.

A. Suggested Place in the Curriculum.

This course is designed on the basis of two prerequisites,

Curriculum 68 courses B2, Computers and Programming, and B3, Introduction

to Discrete Structures. B2 provides the necessary level of knowledge of
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what a computation is, and also the exposure to machine language in B2

leads to a natural abstraction to the idea of a state vector. This
familiarity of machine language also helps students to understand the
inherent difficulties of analyzing program performance in terms of computing
time required. This gives motivation to analyze programs, independent

of particular maéhines, i; terms of maximum required computing time.

Course B3 provides the necessary mathematical tools and maturity for
understanding mathematical induction and constructing the proofs that are
required in analyzing computations.

The intent of this course is to provide a "programmatical
foundation for computer science undergraduates in much the same way that
the discrete structures course provides a mathematical foundation. This
not only relieves the more advanced courses from the responsibility of
teaching these foundations but also gives the student the opportunity
to gain familiarity with many varied applications of these fundamental
concepts. Thus in our view, the relation of the course to Curriculum 68

should be as shown in Figure 6.
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FIGURE O, Relationship between the Proposed Course on Computational
Analysis and Courses in the Curriculum 68 Report.
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B. Contents of the Course.

The core of the course centers around three major areas; a
computational model that will serve as a uniform vehicle for presenting
the analysis methods, the inductive assertion method for proving computational
correctness, and various algebraic and combinatoric methods for analyzing
computing times. Before discussing these areas, we cannot overemphasize
our belief that the student should have had extensive exposure to, and
practice with, the ideas of structured programming and top down design of
programs in courses Bl and B2. The top down design of structured programs
not only has the advantages of inducing within the student a disciplined
method of thinking through problems, and of resulting in significantly
more reliable, understandable and easily modifiable programs, but also
the structuring produces significant simplifying effects on the types
of analysis to be considered in this course. Therefore, if these topics
have not been included in Bl and B2, we believe that it is extremely
important that they be presented in the computational analysis course so
that the student know how to construct programs that are susceptible to
analysis.

1. Computational Model

The necessity of presenting a computational model is due to the
simple fact that before one can analyze the behavior of a computation, we
must have a precise way of defining that computation, and we believe an
appropriate choice of a model is crucial. The model should be as realistic
as possible, yet be simple enough to be susceptable to mathematical
analysis. The model proposed is that of a flowchart which specifies

operations on a state vector. The use of flowcharts seems natural
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as they should already be familiar to the students and they facilitate
analysis of many properties of computations.

In this model a computation is said to terminate (with a given
input) if the number of steps (visits to flowchart boxes) is finite and a
computational method which terminates for all inputs is called an algorithm.
The model does not require that the operations which appear in the flowchart
boxes be from a pre-specified set of basic operations. This leaves open
the question of effectiveness of the operations and proofs of effectiveness
need not necessarily be considered in the course; rather the operations
which are chosen in particular algorithms should be a) simple enough that
their effectiveness should be intuitively obvious, or else b) operations
specified by other algorithms.

The states of the computation could also be represented in many
ways, but the simple idea of vectors of values seems most appropriate here.
Again, the student is already familiar with various concrete forms of this
idea; e.g. pencil and paper records of execution from hand simulations, or
the idea of memory divided into cells.

After an informal discussion of the model, a mathematically
rigorous formal definition can be given, using the concepts of set theory,
functions and directed graphs which the student brings with him from the
discrete structure course. It is then possible to discuss various properties
of computations both intuitively and rigorously in terms of this model.

2. Computational Correctness

The inductive assertion method of proving program correctness

is easily presented in terms of the flowchart and state vector model. The
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statement of program correctness is phrased in terms of relations on the
initial and final state vectors, and the inductive assertions themselves
are simply properties of state vectors attained at intermediate points

in the flowchart. The presentation can begin by introducing the idea

of using a verification condition to prove relations between state vectors
at the beginning and end of a particular path through the flowchart. From
there one can move on to the complete analysis of loop-free programs by
considering all possible paths through the flowchart. The consideration of
programs with single loops provides a clear picture of the implicit mathe-
matical induction on which the entire inductive assertion method is based.
After the student understands the applications of the method to programs
with arbitrary looping structures, one can then show how the method can be
extended to include proofs of termination by constructing functions that map
the state vectors into well ordered sets.

Being familiar with methods for proving correctness and termination
of particular computations, it is natural to move on to consider properties
of program schemata. With just a basic introduction to the idea of what a
schemata is, useful termination and equivalence properties can be derived
and presented.

3. Computing Time Analysis

The major emphasis under the topic of computing time and memory
analysis of algorithms should be on analysis of particular algorithms rather
than analysis of classes of algorithms, since the former type of analysis
better fits the interests and needs of undergraduate students. Furthermore,
more attention can be given to computing time than to memory requirements,

since in many important applications allocation of memory is static and hence
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the analysis is quite simple. Of course, the tradeoffs between efficient
use of memory and computing time should be emphasized in at least some of
the example algorithms considered.

Computing time analysis is probably best introduced via example
algorithms which are susceptable to "exact analysis.'" By this is meant that
the computing time can bé expressed as a simple function of the input to
the algorithm. Various algorithms to compute X might be used for these
examples. By expressing the algorithms with flowcharts, it is easy to
introduce the basic idea of counting operation executions by attaching
"counting functions" to each arc of the flowchart. These functions give
the number of traversals of the arc as a function of the input and can be
related and reduced in number using "Kirchoff's law" (of conservation of
flow) [KNU68].

In cases in which each operation takes a fixed amount of time
(as when the operations are machine language instructions), determination of
the counting functions essentially determines the total computing time
function, as could be illustrated with machine language versions of the
example algorithms. By assuming fixed but unspecified operation times,
machine-independent expressions of computing time functions could then be
obtained (in terms of the fixed times as parameters). To simplify these
expressions, traditional order notation could be introduced. However a
superior alternative is provided by the concept of dominance, as defined
by Collins [COL 71]. It is easy at this point to develop a simple algebra
of dominance relations which greatly facilitates the simplification and
comparison of computing time functioms.

If some of the steps of an algorithm contain operations which

require a varying amount of time (dependent on the current state vector),
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then the analysis is more complex, since counting arc traversals no longer
suffices. Good illustrations of this point might be obtained by considering
algorithms for %« —— when the time for multiplication is fixed, the
computing time is codominate with the number of multiplications, so that
algorithms requiring only log2n multiplications are much faster than
simpler algorithﬁs requiring n multiplications, but the opposite may be
true when the time for multiplication depends on the size of the operands,
as when x 1is a polynomial [HEI72].

More complex algorithms could be introduced at this point in order
to motivate the need for additional mathematical tools. Consideration of
sorting and searching algorithms, for example, would motivate a study of
basic counting principles, permutations, combinations and other combinational
concepts. This study should actually be partly a review of material introduced
in the discrete structures course. [KNU68,§1.2] gives a good discussion of
the main combinatorial tools needed for computational analysis (but mostly
without prior motivation by example algorithms). Additional material and
exercises could be drawn from an introductory combinatorial mathematics
text such as [LIU72]. The topics of generating functiomns, recurrence relations,
and the principle of inclusion and exclusion should be included.

These tools, along with dominance relation algebra, suffice for

analysis of the maximum computing time of many algorithms. Consideration

of average computing time requires additional concepts from probability

theory and additional practice with application of recurrence relations and
generating functions to analysis of probabilities. The basic material is

covered in [KNU68,81.2].
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Prerequisite organization of this course is given as a directed

graph in Figure 7.

Each box in the graph represents a major concept and

the arcs describe how a concept is a prerequisite of some other concepts.
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VI. Concluding Remarks

In the previous sections, we have outlined basic philosophies,
contents and formats of presentation of two undergraduate level courses
which we believe are fundamental to any computer science and computing
engineering program. Fot the discrete structures course, basically we

agree with the contents of the B3 course recommended in Curriculum 68

report. However, because of our belief that a student can best learn to
appreciate structures by building them up, from simple structures to more

complex ones we differ slightly from the Curriculum 68 recommendations in our

sequencing of the material to be presented. For example, in our presentation,
graphs, considered as binary relations on a set, would come right after sets
since it is only slightly richer in structure than sets. The course on

computational analysis is a new course not covered by the Curriculum 68

report. This course, as pointed out at the beginning of this paper, is
intended to provide a "programmatical" foundation of computer science
undergraduates the same way discrete structure course provides a mathematical

foundation for computer science undergraduate students.
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