THE NUCLEUS COMPILER

by

Eileen Victoria Josue

May 1973 TR-14

' *
THE NUCLEUS COMPILER

by

Eileen Victoria Josue

* This paper is supported in part by the National Science
Foundation grant GJ-36424.

ABSTRACT

The Nucleus compiler is a two-pass compiler written
in PASCAL for the programming language Nucleus, Nucleus is
a language specifically designed for program verification
purposes, A summary of the definition of Nucleus ls presented
first, A description of Pass I of the compiler (recognizer
and reduced program generator) is presented next, Finally,
a description of Pass II of the compiler (code generation

and execution) is presented,

Chapter

~TABLE OF CONTENTS

Page

Io’INTRODUCTION..Q....-ooonoo.ooo 1

II, NUCIEUS IANGUAGE SUMMARY . o o ¢ ¢ ¢ o ¢ ¢ ¢ o o 6

MethodofDefinitiOn.............. 6
SyntaxandSemantiCS.............. 12

Nucleus Program Example
III. PASS I

.
.
.
I
.
.
.
.
.
.
.
Ty
0

RECOGNIZER AND REDUCED PROGRAM

EP‘EMTOR [] L 4 *] [] . L] LJ L] [] L] L] L] L 2 . L 4 ® [] L 4 23

Recognizer . . . c o o o e o s o o o o 23

~ Reduced Program Generator e e s o a s o o e o s 28
mbel Handling < * * L) - L] L] [] [] [] . [] L [] [] 35
Implementation ReSLriCtions . o o o o « o o o o B0
Reduced Program EXample . « .« o o o« o o o o o o U0
IV, PASS II: CODE GENERATIOK AND EXECUTION . . . by
m.ta Storage [] 1 - [] [] * L] []] e [] L] [] L] [] [] [] [] M
COdeGeneratiOn e e ® @ ¢ ® e ® ® ® o 6 © & o @ u?
CASE smtemen-ts L d [] [] L] [] L] [L] []] [] * L [] * L] 48
Procedure Entry and Exit . ¢ ¢ o ¢ ¢ ¢ ¢ o ¢ o 51
Read and Write Statements . . ¢ « ¢ o o o « o ¢ 52
ExpresSion E\'aluation e &8 @ ® o ® ® @ ® o © e 53
Implementation Parameters . « o« « « o « o » = o 56
mec‘ltj'ox‘ [] * [] L] [] [] [] [] L] * * [] L 3 L J L] . - L] . 58

V. SUMMARY

—~APPENDICES
BIBLIOGRAFHY

L] L L] ® L] L] L L - L L 4 L L] L] L) L L] . - [] » 60
L L] L * e L e ®» ®» % ¢ ¢ & ® *® @ L 4 [L - L 4 63
. L] [] L 4 * [4 L L L) [] L 4 L L J L] L 2 . ® L] L} L] [] 1 w

Table

N o FoWwown

LIST OF TABILES

Statements and corresponding

Operators . o+ « « ¢ o o

Error messages and recovery

Sentence trees ., . . .+ &
Restrictions ., +« « « «
Type transfer functions

Implementation parameters

vi

.

sentences

Page
15
20
26
33
b1
57
59

Figure

O O 3 O FoWwoon

I
= O

LIST OF FIGURES

Page
Nucleus reduced and virtual programs , 11
IF statement and sentences . . « + + o ¢ o » + o 17
Program example . . o o o o o o ¢ s o ¢ o o o« 21
Reduced program produded by Pass I . . « ¢« o« » o« 30
Point example v o« o o« o ¢ ¢ ¢ o o o o o o ¢ o« o 34
Forward referencing . . o ¢ ¢ o« o o o ¢ ¢ o o o 37
CASE example . . . « o o ¢ o ¢ o o s ¢ s o &« ¢ « 238
Reduced program example . . 4 ¢ o ¢ o 0 v o s o U2
Run-time memory allocation . . « o v o « v o &+ 45
Data storage for Fig. 8 . ¢« « o o o o+ ¢ o o o« o U6
Tree structure for I=(J*2)+K . o o o o o o « » o SH

vii

CHAPTER 1
INTRODUCTION

This thesis describes an implementation in PASCAL
(Wirth [12]) on the CDC 6600 of a compiler for the Nucleus
programming lansguage (Good and Ragland[é]), a language
specifically designed to produce computer programs that run
correct1y~at all timeé. Nucleus was designed with seven
specific goals in mind,

1. Each Nucleus program must be provable by the
inductive assertion method. Thus, the Nucleus language
includes a way of stating inductive assertions within
programs and contains only constructs on which the
inductive assertion method may be used,

2, Nucleus should be structured to facilitate the
construction of correct programs, Toward this end, Nucleus
has a high level ALGOL-like syntax and includes statements
that support the basic ideas of structured programming
(Dijkstra[t], wirth [11]).

3, In order to make Nucleus available on a wide
range of machines, Nucleus progrems must be easily compilable
into almost any machine language,

4, A proof of the correctness of a semi-automatic
inductive assertion verifier for Nucleus programs must be
possible, Such a verifier is negded to handle the verifi-
cation of non-trivial programs due to the volume of work

1

and detail required to verify such programs., Thus, the
verifier itself must be proved correct,

5, A proof of correctness of a Nucleus compiler
must be possible. Even if we use a correct verifier to
obtain a proof of cérrectness of some program, that program
will not run correctly if it is not compiled correctly.
Unfortunately, this still does not guarantee that the
program will always rﬁn correctly because the program has
to rely on the hardware and operating system of the machine
on which it is run. Nucleus, however, does not address
itself to operating system and hardware correctness,

6. All syntactic and semantic aspects of Nucleus
must be rigorously defined in order to attain the goals of
proving a verifier and a compiler,

7. Lastly, non-trivial programs, such as compilers
and verifiers for programming languages must be expressable
in Nucleus, Then, by writing compilers and verifiers for
other languages in Nucleus, a process of bootstrapping more
and more correct software in more and more languages could
be started,

The Nucleus coﬁpiler described here is one part of
a four-phase project to construct a completely verified
software system for Nucleus, The first phase of the project
is a verification condition compiler (VCC) for Nucleus

programs, Wang [9]. This ¥CC is written in SNOBOL IV and

was debugged by conventional techniques. The second phase is
another Nucleus VCC by Ragland [8]. This VCC is written in
Nucleus and is being proved correct with the aid of the Wang
VCC. 1In order to run Nucleus programs, and in partlicular
the Ragland VCC, a Mucleus compiler is needed, Thus, the
third phase of the project and the subject of this thesis is
a Nucleus compiler written in PASCAL, This compiler is not
ﬁroved, but has been ﬁebugged by conventional debugging
techniques., The fourth phase of the project, which has not
yet been initiated, is another Nucleus compiler that is
written in Nucleus and proved correct. The completion of
this project leaves us with both a correct VCC and a correct
compiler. Thus, we can prove and compile Nucleus programs
and be assured that they actually will run correctly barring
operating system or hardware failmre, With this VCC and
compiler, we can begin 2 process of bootstrapping more and
more proved processors for more and more languages, A more
complete discussion of developing correct software systems
in this manner can be found in Good [5}.

Syntactically, Nucleus is formally defined by
transition networks similar to those of Woods [131 and
gemantically by means of axioms as suggested by Burstall (2].
The transition networks define the recognizer for the
language. The semantics of Nucleus consists of a mapping
from Nucleus programs into sentences in the predicate

calculus and a set of axioms, The sentences in the predicate

calculus are called the reduced program. The axioms act as
an interpreter on the reduced program. In other words, it is
the reduced program that gets interpreted rather than the
Nucleus program itself, A summary of the Nucleus language

is given in Chapter‘II.

The Nucleus compiler is implemented as a two-pass
compiler. Pass I accepts a Nucleus program and produces
its reduced progran, énd Pass II generates code from the
reduced program, A two-pass compiler was written for two
main reasons. The first reason was to be able to check the
definition of Nucleus by inspecting the reduced program
produced by Pass I, The second reason was that the reduced
program produced by Pass I can be used as input tc a
verification condition compiler just as well as for a
machine code compiler. Thus, Pass I provides a basis for
future verification systems as well as for the compiler
described here.

Pass I, which is described in Chapter III, checks
the syntax of a Nucleus program, i.e., recognizes an input
string to be a Nucleus program, and transforms the program
into its reduced program, In other words, the transition
networks that define the syntax of Nucleus are implemented
in Pass I. Within these transition networks is also the
mechanism that defines the semantic mapping. Thus, this
mechanism, too, is implemented,-and the output of Pass I is
the reduced program specified by this semantic mapping.

Pass II uses the output of Pass I to generate
absolute object code for the Nucleus’program. Since all
syntactic errors have been detected by the end of Pass I,
object code can easily be generated from the reduced program,
This is because object code is only generated if a program
has no syntax errors, thus eliminating any translation or
load errors, The object code is generated onto a file and
passed to the PASCAL operating system to be loaded into
memory and executed., Thus, Pass II generates object code

compatible with the PASCAL operating system.

CHAPTER II
NUCLEUS LANGUAGE SUMMARY

Method of Definition

Before explaining the implementation of Nucleus,
an understanding of the language is necessary, Formally,
Nucleus is defined syntactically by means of transition
networks which are a modification of the "augmented transition
network grammars" described by WOOdS[lB] for dealing with
natural languages and semantically by means of axioms as
suggested by Burstall[z]. A complete description of the
method of definition appears in Good and Ragland[6]. Since
the networks are based on finite state transition diagrams,
the language defined by the networks is the set of strings
accepted by the network, Thus, the syntax of the language
is defined by specifying its recognizer in terms of
transition networks,

A transition network is actually a graph of
labelled states and arcs, Of the states, one is the initial
state, and a finite number of states are designated as
recognition states. Arcs may be labelled in one of three
ways: by an input string character, a state name, or NIL.
Also, each arc has a test, a set of actions, and a SCAN flag,

An arc is traversable in one of three ways:

1, Consider all character labelled arcs first,

If the input pointer points to a character matching the
character on the arc and the test is satisfied, the arc is
traversable,

2. If no traversable character labelled arc exists,
consider all NIL labelled arcs, If the test is satisfied,
the arc is traversable,

3. Otherwiée, consider the arc labelled with a
state name (only one such arc may exist leaving any state),
Stack this arc on the arc stack and proceed to the state
which labels the arc, If a recognition state is then
encountered, the arc at the top of the stack is reconsidered.
If its test is satisfied, pop the stack and traverse the
arc,

The Nucleus language recognizer consists of two
networkss a scanning network and a parsing network., The
following is an example of a portion of the parsing network,
This is the initial section of the parser and defines the
recognition of a program. “FIND character" specifies a
character or NIL labelled arc and means to look for the
specified character on the input string, "PHRASE statename”
specifies an arc that is labelled with a state neme, TEST
defines the tests, if any, that must be satisfied, and DO
defines the set of actions to be performed., The "SCAN-NOSCAN"

"statenum” flag defines whether or not to edvance the input

string pointer and designates which state to proceed to next.
A more detajled discussion of these transition networks can
be found in Good and Ragland [6].
PROGRAM s
FIND NIL
DO DEFINED,SIMPIE.SET .=5]
DEFINED,ARRAY.SET 1=[
TYPE.FUNCTION =[]
DEFINED.PROCEDURE,SET =[]
REFERENCED .PROCEDURE ,SET =[]
DEFINED,IDENTIFIER.SET =[]
NOSCAN 1

11 PHRASE DECILARATION.SEQUENCE
NOSCAN 2

21 PHRASE PROCEDURE,SEQUENCE
TEST REFERENCED,PROCEDURE.SET SUBSETOF
DEFINED.PROCEDURE,SET
NOSCAN 3

33 FIND START
SCAN &4

Ly FPIND IDENTIFIER
TEST TOKEN.STRING IN DEFINED,PROCEDURE.SET
DO SENTENCE(INITIALPROCEDURE=TOKEN.STRING)
NOSCAN 5 :

s{rRECOGNITION] +

The parser starts at the initial state FROGRAM,
performs the actions, and continues to state 1., At state 1,
the arc between state 1 and state 2 is stacked, and the
network proceeds to the state DECLARATION,.SEQUENCE (which is
in a part of the network that is not shown). Once a
~declaration sequence has been recognized, the arc from
state 1 to state 2 is popped and the network continues at
state 2, This procedure is followed through state 5, the

final recognition state,

The formal definition of the semantics of Nucleus
congists of a mapping from Nucleus programs into sentences
in the predicate calculus and a set of axioms, The predicate
calculus sentences are called the reduced program. This
semantic mapping is’ defined in the parser by the action
SENTENCE(X). For example, in the previous example, the
action at state 4 is a SENTENCE action. This causes the
sentence “INITIALPROdEDURE=procedure name"” to be entered
into the reduced program,

The reduced program can be viewed as defining a
program for a virtual machine which itself is defined by the
Nucleus axioms, The reduced program defines two distinct
parts of the virtual machine -~ the data memory and the
instruction memory. The data memory is defined by the
sentences generated during the recognition of the DECLARA-
TION.SEQUENCE part of a Nucleus program, The instruction
memory and the virtual instructions are defined by the
sentences generated during the recognition of the
PROCEDURE .SEQUENCE of a program, The set of virtual instruc-
tions comprise the virtual program to be interpreted by the
axioms. ‘

Within each procedure, virtual instructions are
~associated sequentially with virtual addresses starting at
address 0, Thus, many virtual instructions may be associated
with the same numeric address, ror example, the virtual

address of the first instruction of every procedure is O,

10

Thus, many "0" addresses may occur in the total virtual
program, To distinguish one "0" address from another, the
procedure name is made a part of the virtual address, Thus,
every virtual address has the form "procedurenamespoint,”
where "point® is the numeric part of the address, Fig. 1
shows a‘Nucleus program and its corresponding reduced and
virtual programs. Another example of a Nucleus program and
its reduced program dan be found at the end of this chapter,

INTEGER I,J:
BOOLEAN T3
PROCEDURE FIRST;
WHIIE I<10 DO
J=J+1;
I=1+1
ELIHW;
EXITg
PROCEDURE SECOND3
I:=03
J1=0;
ENTER FIRST:
EXITs
START SECOND

a) Nucleus program

SIMPIE(I)

SIMPLIE(J)

SIMPIE(T)
IF(FIRST10,I<10,1,4)
ASSIGN(FIRSTi1,J,J+1)
ASSIGN(FIRST:2,1,I+1)
JUMPTO(FIRST13,0)
EXIT(FIRSTsk)

ASSIGN(SECOND10,I,0)
ASSIGN(SECOND:1,J,0)
ENTER (SECOND$2,FIRST)
EXIT(SECOND13)

11

INITIALPROCEDURE=SECOND

b) Reduced program

I

J

T
FIRST:0 | IF(I<10,1,4)
FIRST11 | ASSIGN(J,J+1) |
FIRST12 | ASSIGN(I,I+1)
FIRST:3 | JUMPTO(O) '
FIRST:4 | EXIT
SECONDs0 | ASSTIGN(T,0)
SECOND:1 | ASSIGN(J,0)
SECONDs2 | ENTER(FIRST) |
SECOND:3 | EXIT

Interpreter for
Virtual
Programs
(Axioms)

¢) Virtual program

Fig, 1,

Nucleus reduced and virtual programs

Syntax and Semantics

The basic character set of Nucleus consists of &k
elements. These characters are grouped into character
strings called "tokens," The scanning network reads the
basic characters on the input string and groups them into
tokens. These tokens are then used as the input string for
the parsing network and are the basic symbols used in
writing Nucleus programs. The character set consists ofs
{blank ABCDEFGHIJKLMNOPQRSTUVWXY?Z
0123456789 ([J)1*/l+=cs2>=¢"nV
Lz, 1.$#}. Blank, the letters, the digits, 1, T,
and $ are not tokens, but each member of the remainder of
the set is considered as a separate token, However, 3 is
a token provided it is nét immediately followed by = ; 1=
is a separate token,

Nucleus also has a set of reserved words, each of
which is considered a token., The reserved words are:

ARRAY, BOOLEAN, CASE, CHARACTER, DO, ELIHW,
ELSE, ENTER, ESAC, EXIT, FAISE, FI, GO, HALT, IF, INTEGER,
NOP, OF, PROCEDURE, READ, RETURN, START, THEN, TO, TRUE,
WHILE, and WRITE.

Other tokens are ASSERTION tokens, IDENTIFIER
' tokens, NUMBER tokens, and CHARACTERCONSTANT tokens,
ASSERTION tokens consist of "ASSERT textj;" where the text

congists of any sequence of characters except 3. The text

12

13

may contain a quoted semicolon, a semicolon immediately
preceded by 4. TIDENTIFIER tokens consist of a letter followed
by any number of letters or digits (no embedded blanks are
allowed), The reserved words and ASSERT do not constitute
IDENTIFIER tokens, however, NUMBER tokens consist of any
string of digits. CHARACTERCONSTANT tokens consist of Te,
where ¢ is any element of the basic character set,

A Nucleus program is of the form:

declarations procedures START identifier
The parsing network recognizes the declarations and procedures
that comprise a Nucleus program, While recognizing these
parts, the Nucleus program is mapped into its reduced
program,

The declarations define simple variables and array
variables, Each variable used in the program must be
declared uniquely in this section. In other words, no local
variables are allowed in Nucleus, A simple declaration
has the form:

type identifier, ... , identifier;
where the type is either INTEGER, BOOLEAN, or CHARACTER.
When a simple variable is declared, the sentehcé
“SIMPIE(identifier)" is produced in the reduced program,

An array declaration is of the form:
type ARRAY identifier [number] 2 ses s identifier[humbéi}s
where "number"” defines the upper'bound of the afray. The

lower bound is always assumed to be zero, Thus, only linear

14

arrays are allowed, As each array is declared, the reduced
program sentence "ARRAY(identifier,number)" is generated.

A Nucleus procedure has the form:

PROCEDURE identifier; body EXIT;

The identifier is the procedure name and must not have been
declared previously as a procedure or as a variable,
Procedures are recursive but allow no parameters,

The body of.a procedure consists of the statements
and assertions that define the procedure, A body itself
consists of any number of statements and/or assertions. A
body is delimited by any of the tokens EXIT, ESAC, FI, ELIHW,
or NUMBER. The delimiting tokens are not included in the
body.

Eleven statement types exist in Nucleus. Each
statement may have one or more identifier labels and wmust
be terminated by a semicclon, The statement types are:
assignment, GO TO, RETURN, null, IF, CASE, WHIIE, ENTER,
HALT, READ, and WRITE., As each statement type is recognized
by the parser, one or more sentences of the reduced program
are generated, The statement types and their corresponding
reduced program sentences can be found in Table 1,

The first argument of every sentence is the virtual
address of the instruction in the virtual program, Since the
reduced program sentences are generated immediately following
the recognition of a statement, the sentences may not be |

generated in the order in which they are associated with

15

(I9TFTIUSPT ‘sSSeappe Ten3JaTA)ILIUM
(I9TFFIUSPT ‘sSS3IPpPB TBNIATA)AVHY

(ss9appe® TeN3aTA)LIVH
(I9TITIUSPT *SSIPPB TBNIITA)YAINI

(ASTE BUTMOTTOF JUSUWRLE}B JO S83IPPB8
Ten3atA ‘T + S889IpPPE [BIIJITA
‘uotesaadxe ‘*sseappe TeniatA)JI

(14 JugmoTToJ
ju’wWel e} 8 JO sseIppe Teniata ‘Lpoq
JO pu® Jo ssegppe TenjJITA)OLIWAL

(I4 SUTMOTTOJ JUSWILBIE JO BSVAPPE
Ten3atA T 4+ 8saappe [EN3JITA
tuotsseadxd ‘sseappe Tenj3aTA)JIL

(1T + sseappe
TeN3ITA *S89IPPB TBNIITA)OLJWAL

(3uswalrels LIXH JO SSeIppE
TSN3ITA ‘8S8IPPE TENIITA)OLIWAL

(X9TFTIUSPT JO \SIIPPE
TeN}ITA *SEQIPPE TENIATA)OLIWAL

(uoysseadxe
‘9pT83JOT ‘ 889IPPE TBNIATA)NDISSY

P0U9F UGS

890UPUIs FuTpPuodeaIToO pue BIUIWILBLS

(a

(®

JOTFTIUSPT ALIUM
J9TITIUSPT AVEY

IIVH
J9TJTIUSDPT YAINT

I4 £poq ISTHE
Lpoq NFHI uogsseadxs JI

Id Apoq NFHI uotisseadxe JI

dON

NANLIY

J3TFTIUSPTE OL 0D

uotsseadxe=t 9pT831JOT

Wi04

‘T FIAVL

(a

(®

dLIYM
avay
JIVH
HALNY

41

TI™W

NINLIY

0L 0D

JUSWUI T 8BY

FUewWe; 835

16

(MHITA

FUTMOTTOJ 3UBWa} B8 JO &89IppPE

T8N3ITA ‘T 4+ TIIHM JO ssdappe

TenjatAa ‘uorssaadxe ‘juswsl ey s
FIIHM JO 889appe Tenjaia)dl

(3uswsl ey s

JIIHM JO 8sdappB TBn3JITA ‘Apoq
JO pus® Jo 889IpPB TEN3ITA)OLIWAL

OVSd FuTmorToF
1USWI3 VL8 JO SSIIPPE TBNJIJA
=(689app8 TBNJITA)INIOINIOLHESYD
(gs13 FuiMOTTOF
JUSWS3 8L S8 JO SS8PIPPEB TBNJJITA
‘uoTeseadxe ‘ss9appr TBNIITA)FSYD
198T9QRI98ED
=(889JIPPR® TeNn3ITA)LASTAIVIISYD

OVSd SuTmMoTToJ
JULWIR VY E JO BSIIpPPE TBNFIATA
=(£89Jdpp8 TeNn3}ITA)INIOINIOLISYD
(ovsg JuimoTroF
JUIUSLBLE JO BSIAPPB TBNJITA
‘uotssaadxd ‘gsaappe TBNIATA)ISYD
398T9QBIISBO
=(889Ippe TBNIATA)LISTIAVIASYD

I0UIjuUeg

(penujjuod)

(a

(%

MHITZ £poq 0Q uoyssexdxe® FIIHM

ovsd Apoq

dSTH e0uaInbas IATIBUINLTE

J0 uogsseadxe ISYD (q

OVSH d0UINDes IATIBUI]TS

‘T FIdVL

J0 uotsseadxs FSYD (e

WAO0 .

T

TITHM

dsyo

U3 83 S

17

virtual addresses, For example, IF, WHIILE, and CASE state-
ments do not generate their sentences in the correct order.
Fig. 2 is an example of an IF statement with its sentences
in the order they are generated and in the order they appear

in the virtual program,

PROCEDURE IFEX;

IF I<J THEN Is=I+1; FI ASSIGN(IFEX:s1,I,I+1)

EXITs : IF(IFEX10,I<J,1,2)

a) Procedure b) Actual order
sentences are
generated

IF(IFEX3:0,I¢<J,1,2)

ASSIGN(IFEX:1,I,I+1)

c¢) Virtual program order
Pig, 2, 1IF statement and sentences

A detailed discussion of all the statements will
not be given here, Only the CASE statement and the READ and
WRITE statements will be discussed here. The other state-
ment types are self-explanatory, A more detailed discussion
of the other statements can be found in Good and Ragland[B].

The CASE statement is used for multi-way branches
and has the forms stated in Table 1, The CASE/éxpression
must be of type INTEGER. The alternative sequence has the
form:

numericlabels body numericlabels body ...
where numericlabels is a numeric label sequence

numbers .., snumbers:

18

Each numeric label must be unique within an alternative
sequence, In CASE statement a) of Table 1, the expression
is evaluated first and control goes to the body labelled
with the value of the expression. If no such label exists,
control flows to the end of the CASE statement, i.e.,
executién continues at the point immediately following the
ESAC token., In CASE statement b) of Table 1, the same
procedure is followed except that if the expression value
does not match a label, execution continues at the point
jmmediately following the ELSE token. In both cases when
control reaches the end of a body in the alternative
sequence, control goes next to the statement following the
ESAC token, |

The form of the READ/WRITE statements can be found
in Table 1., The identifier must be an array of type
CHARACTER. The READ/WRITE statements access the standard
input and output files, respectively. The standard files
are actually a numbered sequence of records (1, 2, cee)y
each record being either an end-of-file (eof) record or not
an eof record, Non-eof records consist of n characters of
the basic character set, n being constant for all records.
However, the input and output file record sizes need not be
the same,

All arrays have a lower bound of zero, For the
character arrays referenced in READ/WRITE statements,
identifier [0] is used as an eof flag, If the character T

19 !

is in identifier (0], then the record is an eof record.
Otherwise, the character F is in identifier (0] . For READ
statements that access non-eof records, the character i of

the record is placed into identifier [i1] for all i such that
14ismin(upper bound of identifier, record size)., Any
remaining array elements are left unchanged, For WRITE state-
ments that access non-eof records, characters 1, ... , m of
the output file record become the characters in identifier(1},
identifier(2], ... , identifier[m], where m = min(upper bound
of identifier, record size). The record is blank-filled if

m is less than the record size., The record sizes for the

READ/WRITE statements are implementation parameters., The

implementation parameters will be discussed in Chapter IV.

From Table 1, it can be seen that many statement
types are built from expressions. Expressions are built
from primaries in the usual way. A primary is defined to be
a constant, a simple variable, or an array reference, The

operators available for expressions are given in Table 2.

Nucleus Program Example

This section gives an example of a Nucleus program

and its reduced program, The numbers in parentheses to the

left of the Nucleus program define the local points of each
procedure and are not part of the program, These points
correspond to the virtual instruction addresses of each 5

procedure,

Operator

unary +,-
*./,J (modulo)
bimry +""

(gl y=,#,2 4>

TABIE 2, Operators

Priority

1
2
3
L

AV}

20

Operand Type

INTEGER

INTEGER

INTEGER
Any type, provided
operands are of the
same type

BOOLEAN

BOOILEAN

BOOLEAN

P o g, S Sy N P P
OO NEWDHO

Nt St Nas Nt St it stV Nnsl o

INTEGER FIRST,LAST,MIDDIE,X,N;
BOOLEAN FOUND;
INTEGER ARRAY A[100] ;

PROCEDURE BINARYSEARCHj
$SEARCH ARRAY A FOR X$

FOUND1=FAISE;
FIRST1=03
LAST =Ny
WHIIE FIRST<LAST A ~FOUND DO
MIDDIE 1=(FIRST+LAST) /23
IF X<A[MIDDIE] THEN
TAST=MIDDIE-1}
EISE IF X=A[MIDDIE] THEN
FOUND s=TRUE }
EISE FIRST:=MIDDIE+1;
F1;
FI
ELIHW;
EXITs;
START BINARYSEARCH

a) Nucleus program

Fig. 3. Program example

21

Virtual
address

Data memory
(no addresses)

BINARYSEARCH:0
BINARYSEARCHs1

BINARYSEARCH12
BINARYSEARCH:

BINARYSEARCH:1

BINARYSEARCH:5
BINARYSEARCH16
BINARYSEARCH17
BINARYSEARCH:8
BINARYSEARCH19
BINARYSEARCH 110
BINARYSEARCH111l
BINARYSEARCH:12
BINARYSEARCH:13

b)

Pig. 3.

22

Virtual
instructions

SIMPIE (FIRST)

SIMPIE (TAST)

STMPIE (MIDDIE)

SIMPIE (X)

SIMPIE(N)

SIMPIE (FOUND)

ARRAY(A,100)
ASSTGN(BINARYSEARCH:0,FOUND,FAISE)
ASSIGN(BINARYSEARCH 1 ,FIRST,0)
ASSIGN(BINARYSEARCH:2 ,IAST,N)
IF(BINARYSEARCH13,PIRSTSLAST A “FOUND,4,1
ASSTIGN(BINARYSEARCH s ,MIDDIE , (FIRST+LAST)
IF(BINARYSEARCH15,X<A [MIDDIE] ,6,8)
ASSTGN(BINARYSEARCH 16, LAST ,MIDDIE-1)
JUMPTO(BINARYSEARCH17,12)
IF(BINARYSEARCH18,X=A{MIDDIE] ,9,11)
ASSIGN(BINARYSEARCH19,FOUND ,*RUE)

JUMPTO(BINARYSEARCH110,12)
ASSIGN(BINARYSEARCH:11,FIRS
JUMPTO(BINARYSEARCH112,3)
EXIT(BINARYSEARCH13)
EXITPOINT(BINARYSEARCH)=173
INTTIALPROCEDURE=BINARYSEARCH

3)
/2)

T ,MIDDLE+1)

Reduced program

(continued)

CHAPTER III
PASS Is RECOGNIZER AND REDUCED PROGRAM GENERATOR

The Nucleus compiler is a two-pass compiler written
in PASCAL. This chapter deals with the first pass, which
determines if a character string is a Nucleus program and
maps it into its reduced program, The second pass, which
generates object code.from the reduced program, will be

discussed in the following chapter.,

Recognizer

Pass I recognizes Nucleus programs by implementing
the transition networks described in Chapter II, Again
consider the first segment of the parsing network,

PROGRAM

FIND NIL

DO DEFINED.SIMPIE.SET=[]
DEFINED.ARRAY.SETs=L1]
TYPE .FUNCTION:s=L[]
DEFINED.PROCEDURE.,SETs=[]
REFERENCED ,PROCEDURE,SETs=(]
DEFINED.IDENTIFIER,.SETs=[]

NOSCAN 1

13+ PHRASE DECLARATION.SEQUENCE
NOSCAN 2

2y PHRASE PROCEDURE.SEQUENCE
TEST REFERENCED,PROCEDURE.SET SUBSETOF
DEFINED,PROCEDURE,SET
NOSCAN 3

3¢+ FIND START
SCAN &4

23

24

L: FIND IDENTIFIER
TEST TOKEN,STRING IN DEFINED.PROCEDURE.SET
DO SENTENCE (INITIALPROCEDURE = TOKEN.STRING)
NOSCAN 5

s [RECOGNITION] »

At state 1, according to the formal definition, the arc

from state 1 to state 2 would be stacked, and the network
would proceed to a state labelled BECLARATION,SEQUENCE.

Since the PASCAL sysfem uses a stack for procedure return
points, it is unnecessary to program explicitly the stacking
operation, Rather than performing a stack operation as such,
each state name that appears in a "PHRASE statename" statement
is implemented as a separate PASCAL procedure. Then the
procedure corresponding to the state name is called where
"PHRASE statename” occurs, Upon exit of the procedure,

which is equivalent to encountering a recognition state,
control automatically returns to the calling point. 1In each
case, this is equivalent to having stacked the arc, proceeding
to the state, encountering a recognition state, and popping
the arc stack,

| All sets, i.,e,, DEFINED,SIMPIE,SET, REFERENCED.,
PROCEDURE.SET. etc,, are implemented as linear arrays.

Because of this, appending an element to a set cannot continue
indefinitely as implied by the formal definition. The size
restrictions of the arrays will be discussed further on in

this chapter,

25

If a state has no traversable arc and is not.a
recognition state, the input string is immediately rejected
as a Nucleus program, However, when the parser detects an
error, it prints an error message and continues rarsing as
much of the program‘as possible, In many cases, the parser
acts as though no error occurred and continues from where it
found the error. This is the case for such errors asi
missing semicolon, undefined identifier, non-matching
expression types, and missing EXIT statements. However,
for some errors, this is not possible, In these cases, the
error routine scans to the end of the statement being parsed,
j.e., scans to the next semicolon, and continues. This is
the case for such errors as: missing identifier, missing =,
and a missing TO in a GO TO statement, Table 3 defines each

error detected by the parser and the type of recovery made,

In Tablg 3, SCAN means to scan to the next semicolon, NOSCAN

means to return to the point where the error was detected

and continue through the program.

Error

Number

o N < TS BN NV S Y T B o

T
-~ o

12
13
1
15
16
17
18
19
20
21
22

TABIE 3,

Error Message

Identifier expected

3} expected

L expected

Number expected

] expected

Statement expected
START expected

Label previously defined
Undefined identifier
Undefined array

Previously defined
identifier

Procedure expected
EXIT expected
Undefined label

OF expected

Type BOOLEAN expected
Types do not match
Unacceptable relation type
Type INTEGER expected
(expected

) expected

1= expected

Error messages and recovery

Recovery

SCAN

NOSCAN
NOSCAN
SCAN

NOSCAN
SCAN

NOSCAN
NOSCAN
NOSCAN
NOSCAN
NOSCAN

NOSCAN
NGSCAN
NOSCAN
SCAN

'NOSCAN

NOSCAN
NOSCAN
NOSCAN
NOSCAN
NGSCAN
SCAN

26

-

Error

Number

23
24
25
26
27
28
29
30
31
32
33
34
35

TABIE 3., (continued)

Error Message

TO expected

ELIHW expected
Character array expected
FI or EISE expected
THEN expected

DO expected

Error in declaration part
s expected

Unacéeptable primary
Undefined procedure

EISE or ESAC expected
Array too large

Procedure too long

27

Recovery

SCAN
NOSCAN
NGSCAN
NOSCAN
SCAN
SCAN
SCAN
NOSCAN
SCAN
NGSCAN
NOSCAN
NOSCAN

SCAN to next
procedure

Reduced Program Generator

As differences in the implementation of the
transition networks and their formal definition exist, so do
differences exist in the actual reduced program and the
formal reduced program, The first major difference has to
do with the declaration of simple and array variables,
Instead of generating SIMPIE(idname) or ARRAY(idname, bound)
for the program variables, the parser sets up a symbol table
and uses this table for object code generation., Having a
symbol table makes it easier to determine how much space to
allocate for variables during code generation.

The second major difference has to do with the
representation of the sentences in memory, Rather than
storing the actual character strings, the sentences are
stored as tree structures with the sentence type (ASSIGN,
IF, etc.) being the root of the tree. The tree structures
are discussed in more detail further on in this chapter,

Another major difference between the formal
definition of the reduced program and the actual reduced
program has to do with which sentence trees are actually
generated, The only sentence trees produced are those that
will generate object code, For example, X:1=1 generates
object code, so its sentence tree would be constructed,
However, some sentences do not generate code, such as one

of the sentences connected with a CASE statement, i.e.,

28

29

CASEJOINPOINT(procedurename icasepoint) = point,
This statement defines where the end of a CASE statement is
and neet not generate any object code.

As stated in Chapter II, the virtual addresses
associated with the ‘virtual instructions have the form
rprocedurename spoint,” However, in the reduced program
produced by Pass I, the instructions are addressed sequentially
starting at virtual address 0. Thus, the points associated
with each procedure are all relative to the starting address
of the procedure,

The reduced program actually produced by Pass I
consists of four parts: the symbol table, the constant
table, the procedure table, and the sentence tree table,

The symbol table, constant table, and procedure table define
the data memory for the virtual machine, The sentence tree
table defines the virtual program for the machine, The form
of the actual reduced program is found in Fig, 4.

30

: Symbol Table
Data part . .
(no addresses) . Constant Table
: Procedure Table
0
Instruction
part . . Sentence Tree Table
n

Fig. 4. Reduced program produced by Pass I

31

The symbol table contains all the simple identifier
names and array variable names, Each element of the symbol
table contains the first ten characters of the identifier
name, the length of the identifier, the type of the identifier,
the array length (-1 for simple variables), and a pointer to
the rest of the identifier if the identifier length is
greater than ten. For example, INTEGER ARRAY NUMBERARRAY [250]
would be entered intd the symbol table as:

Word 1 Word 2

kUMBERARRA 11[16]250 Y
a b ¢ d

where a = the identifier length, b = the type, ¢ = the array
bound, and d = the pointer to the rest ®f the identifier,
Since every identifier contains its type, the set TYPE.FUNCTION
of the formal definition need not be implemented separately,
The constant table contains all the constants used
in the Nucleus program and is self-explanatory. The
procedure table is somewhat similar to the symbol table,
However, part ¢ of the procedure identifier contains the
gtarting address of the procedure in the virtual program,
The sentence tree table contains the tree representa-
tions of the code-generating reduced program sentences,
Nine types of reduced program sentences generate code,
These are: ASSIGN, CASE, ENTER, EXIT, HALT, IF, JUMPTO,
READ, and WRITE, Therefore, only the sentences starting
with these nine words are contained in the sentence tree

table.

32

However, not all the information called for is
stored in the sentence trees. As was noted in the previous
chapter, the argument "procedurenamespoint” defines the
virtual address for the virtual instruction. At the time
the sentence tree is built, the tree is stored in the
sentence tree table at the location corresponding to the
point the statement occurs in the procedure. In Fig. 2,
the sentence IF(IFEX:b.I(J.l,Z) is produced when the whole

IF statement has been parsed, However when the tree

IF
7\
< 1
7 N |
I J 2

is built, it is automatically stored in the correct position
in the table, i.e., it is stored at address O, Thus, the
argument "procedurenameipoint" need not be kept in the tree
jtself. The nine sentence types and their corresponding
sentences can be found in Table 4,

The points mentioned in Table 4 do not correspond
directly to the point numbers in the formal definition of
the reduced program, However, all of the points are relative
to the procedure starting address in the virtual program,
Thus, in the formal reduced program sentences, the argument
"POINT" actually gets stored as (procedure starting address) +
POINT, Pig., 5 gives an example_of this,

Sentence
Iype
ASSIGN

CASE

ENTER
EXIT

HALT
IF

JUMPTO
READ

WRITE

33

TABIE 4., Sentence trees

Iree

ASSIGN
S/
leftside right expression
CASE

case 2umppoint
expression if no matching label)

point where
CASE label set occurs

ENTER
procedurename
EXIT
HALT
IF

/7 2\
if ?umppoint
expression if TRUE)

2umppoint
if PAISE)

JUMPTO
point
READ
arrayname
WRITE
/

arrayname

Address

s+0

s+l

s+

s+3

34

PROCEDURE POINTEXAMPIE
IF I<10 THEN
Ti=I4+1;
FIi
Ns=N+(N*10)
EXIQ;

a) Program

ASSIGN
7

I +
7 N\
I 1

ASSIGN
7\
o+
7N\,
/N
N

N

N
10
EXIT

b) Virtual program segment
(procedure starting address = s)

—

Fig. 5. Point example

35

As can be seen in Fig. 5 b), the expressions are
also represented as trees, These expression trees are built
as expressions are being parsed. When the sentence tree is
generated, the expression tree is stored in the sentence
tree at the appropriate node, Note that all trees are
gtrict binary trees, making traversal of the trees simple

and fast.

Label Handling

The treatment of labels is somewhat bothersome
because forward referencing is allowed and the labels are
not declared. However, many of the usual forward referencing
problems do not exist in Nucleus mainly due to the fact that
GO TO statements cannot jump across procedure boundaries,

Labels are handled in the following manner. As
each procedure is parsed, two local tables are built up, &
declared label table and a referenced label table., An entry
is made into the declared label table whenever a label is
encountered (LABEL: statement). The entry contains the
lgbel name and its virtual address. An entry is made into
the referenced label table only if the label name in the
GO TO statement is not in the declared label table and is

not already in the referenced label table, In other words,
the only time a label is entered into the referenced label
table is when a label is being forward referenced for the

first time, After a procedure declaration has been parsed,

36

a check is made to see if every referenced label has been
declared.

A conventional back-chaining scheme is used to
handle forward references, When an undeclared label is
entered into the referenced label table, the virtual address
of the GO TO statement is entered as the virtual address
of the label. Then, every succeeding forward reference to
this same label chaiﬁs itself to the last reference to the
label., When the label is finally declared the chain is
followed back to the head of the chain, filling in the correct
label address at each link, Fig., 6 shows the chain for a
forward reference before label declaration and the corrected
addresses afterward, (Assume the starting address is s,)

CASE labels are the only other labels allowed in
Mucleus, These are handled in a different manner than
statement labels, When the alternative sequence of a CASE
statement is being parsed, a CASE label table is built for |
that CASE statement (CASE statements may be nested), each ,
entry having the CASE label number and its virtual machine 3
address. The table is sorted smallest to largest on label

numbers and placed at the point following the alternative

sequence. The virtual machine location counter is then
incremented by one plus the number of labels in the CASE
statement, and the next statement is parsed. Thus, the
instruction part of the virtual machine includes the sentence

tree table with embedded CASE label tables whefe necessary.

PROCEDURE FORWARD%

GO TO Fj
GO TO Fy
GO TO Fj
Fi X:=X;13
EXIT;
a) Program
Address
s+j
s+n
g+m
s+p

Address

s+

st

s+m

b) Before label declaration

Tree

JUMPTO
/
8+p

JUMPTO
/

8+p
JUMPTO
/

s+p

ASSIGN
VRN

X +
PR
X

¢) After label declaration

Fig., 6., Forward referencing

1

37

Tree

JUMPTO
NIL

JUMPTO
at+y

JUMPTO

s+n

skt |

38

The CASE label table is handled this way mainly for code
generation purposes and will be discussed more thoroughly in
the following chapter. Fig. 7 is an example of a CASE
statement and the senténces and tables generated by it.
(Assume the procedure starting address is s.)

PROCEDURE CASEX3
CASE N+(I*J) OF
0t Is=I+1;
1:2: Js=J+1,
ESACs
EXIT;

a) Program

Fig. 7. CASE example

Address

840

s+l

s+2

8+3

s+l

s+5
8+6
a+7

s+8

Contents

JUMPTO
e

0, s+l
1, s+2
2, 8+2
EXIT

'b) Virtual program segment

Fig., 7.

(continued)

39

Implementation Restrictions

In any programming language implementation,
restrictions have to be made in accordance with the machine
on which the language is being implemented, Execution
implementation parameters, such as integer range, will be
discussed in the next chapter, The restrictions discussed
here mainly deal with fixed table sizes, In the programming
language PASCAL, all tables must be of some fixed length,
i.e., no tables can grow dynamically. Therefore, all the
tables mentioned in this chapter must have bounds. Table 5

gives these bounds,

Reduced Program Example

Fig, 8 is the reduced program produced by Pass I
for the Nucleus program example in Fig, '3, Note the
differences in the formal reduced program and the actual
reduced program, Especially note that the virtual program

sentence trees are in the correct order,.

ko

TABIE 5,

Entity

Symbol table
Constant table
Procedure table

Sentence tree table

CASE label table

Declared label table
Referenced label table
Identifier length
Nesting depth

L1

Restrictions

Limit

500 identifiers

250 constants

50 procedures

250 sentences per
procedure (including
CASE label tables)

50 CASE labels per
CASE statement

250 labels per procedure
100 labels per procedure
60 characters

25 nested statements

FIRST
LAST
Symbol MIDDIE
Table X
N
A Data Part
(no addresses)
100
Constant o
Table 2
1

Procedures BINARYSEARCH

a) Data memory

Address Treeg
0 ASSIGN
~
FOUND FALSE
1 ASSIGN
N
FIRST 0
2 ASSEGN
0N
LAST N
3 IF\
~
N L
2N
£ - 13
 \ AN
FIRST LAST FOUND
4 | ASSIGN
RN
MIDDIE /
~
+ 2
N\
FIRST LAST

Fig. 8. Reduced program example

L2

43

Address Trees
5 IF
/7 N\
Z
V2 NN
X ? 8
MIDDIE
[ASSIGN
LAST -
VAN
MIDDLE 1
7 JUMPTO
Ve
12
8 IF
N
X'// A 11
MIDDLE
9 ASSIGN
/
FOUND TRUE
10 JUMPTO
v
12
11 ASSIGN
f// N\
FIRS +
/SO
MIDDIE 1
12 JUMPTO
/
3
13 ' EXIT

b) Instruction memory

Fig. 8. (continued)

CHAPTER IV
PASS II:+ CODE GENERATION AND EXECUTION

Pass II of the Nucleus compiler generates absolute
object code from the reduced program produced by Pass I,
Then the PASCAL operating system is used to load the program
into memory and execute it, In order to facilitate the use
of the PASCAL operatihg system, much of the structure of
Pass II is based on the code generation parts of the CDC 6600
PASCAL compiler. Thus, following the PASCAL system conventions,
beginning at absolute address 6001 (octal), memory is
allocated as shown in Fig, 9.

Data Storage

Variables are stored beginning at address 6001 as
shown in Fig, 9. Simple variables are allocated one word per
variable., Array variables are allocated linearly one array
élement per word, Thus, for the declaration INTEGER ARRAY[&9],
fifty words of memory would be allocated, with indexing of
the arrayiieginning at 0, The variables are allocated in the
order in which they are declared in the Nucleus program,

Constants are stored immediately following the
variable storage in memory, one constant per word. The
constant table itself is actually loaded into memory at the
specified address. Fig, 10 shows the storage allocation of
the data memory for the example program shown in Fig, 8.

Ly

ks

Address
6001
: Variable storage
. (simple or array)
m words
6001+m
: Constant table
. n words
6001+m+n
: Procedure jump table
. 50 words
6001 +m+n+50
: Instruction code
. p words
6001+m+n+p+50
. System stack
fieldlength

Pig. 9. Run-time memory allocation

Symbol
Table

Constant
Table

Procedures

BINARYSEARCH

a) Data memory

Address

6001
6002
6003
6004
6005
6006
6007

6154
6155
6156
6157
6160

Fig. 10,

100

0

2

1

, jump instruction
b) Data storage

Variable name

FIRST
LAST
MIDDIE
X

N
FOUND
A

101 words
for ARRAY A

BINARYSEARCH

Data storage for Fig., 8

k6

Code Generation

Pass II of the compller generates code for the
virtual instructions produced by Pass I by starting at virtual
address 0 and continuing through the virtual instruction
memory until the last virtual address has been encountered.
As discussed in Chapter III, each sentence is stored as a
tree structure, with the type of the sentence being the root
of the tree, To generate code for each sentence, the sentence
type must be determined (see Table 4), When the sentence
type has been determined, the appropriate code generation
routine is called,

Before code is generated for a virtual instruction,
the instruction counter (IC), i.e.,, the starting address of
the virtual instruction object code is tagged on to the root
of the sentence tree, Thus, when a reference to a virtual
address is encountered in the virtual program, the compiler
can immediately determine the absolute address of the object
code generated for the referenced virtual instruction. Thus,
no problems will occur in a backward reference to a virtual
address. For forward references to virtual instructions, a
conventional back-chaining scheme is used to inasert the
absolute address needed,

The code generation routines use a system stack for
" holding the return point addresses for procedure calls and

for holding any temporary values needed while evaluating

47

L8

expressions, The bottom of the stack is located at the
absolute address immedlately following the end of the
absolute program code, Thus, the stack limit depends on how
much memory 1is left after the program is loaded, A stack
pointer is maintaineéd in register B6, The maintenance of
the stack will be discussed in more detall in the section
on expression evaluation and the section on procedure exit
code and procedure enfry code,

The code generation routines for HALT, JUMPTO,
ASSIGN, and IF statements are fairly straight forward and

are not discussed further,

CASE Statements

The CASE statement is the most difficult statement
to evaluate in Nucleus, As stated in Chapter III, the tree

structure of a CASE statement is as follows:

CASE

/
expression zumppoint

no matching label)
virtual address of the
CASE label set
First, code is generated for the evaluation of the CASE
expression. Then a jump instruction to a system binary
search routine is generated., Before generating ghe jump
instruction, however, code is generated to pass as parameters

to the search routine the absolute address of the CASE label

49

table, its length, and the absolute address of the fail
point if no matching label exists, A binary search on the
CASE labels is possible since the table was sorted smallest
to largest before being placed in the virtual program,
However, the absolute addresses of the CASE label table and
the fail point are not known at this point, Thus, the address
of the instructions that store the parameters is saved, and
code is generated fof all the sentences of the alternative
sequence, The last virtual instruction for each body of the
alternative sequence is a jump to the end of the CASE state-
ment, Since the absolute address of the CASE statement end
has not yet been determined, a back-chaining scheme is used
to handle the jump statements. When the CASE label #able is
encountered, i.e,, the end of the alternative sequence is
found, the address of the table is placed in the parameter
instruction generated at the end of the CASE expression code,
Since the fail point for every CASE statement is always the
statement following the alternative sequence (the statement
following the EISE, if one exists, or the statement following
the ESAC, if no EISE exists), the absolute address of the
fail point can readily be determined at this time. The

absolute address of the fail pa#int is the absolute address i
of the CASE label table plus the length of the table. This
address can then be placed in the parameter instruction

generated at the end of the CASE expression code,

50

The object code for the CASE label table is then
generated. Each entry of the CASE label table is set up as
a jump instruction to the absolute address of the corresponding
alternative sequence body, Since the code for all the
statements of the alternative sequence has been generated by
this time, the jump instructions are easily generated, The
jump instruction is placed in the top half of the word (upper
30 bits) and its corfesponding label is placed in the lower
half of the word, Thus, a restriction is imposed that each
numeric label must not exceed 230-1.

After the CASE label table jump instructions have
all been generated, code is generated for the statements for
the EISE part of the CASE statement, if it has one, Then
the address of the end of the CASE statement is placed in
the jump instruction at the end of each body of the alterna-
tive sequence (the CASE label chain is followed back to the
head).

Thus, the object qode generated for a CASE
statement evaluates the statement according to the following
algorithm,

1. Evaluate the CASE expression, leaving its
value on the system stack,

2, Jump to the binary search routine, passing
the appropriate parameters,

3. Perform the search for the matching label.

-

51

b, If the search fails, jump to the absolute
address of the fail point given as one of the parameters to
the search routine,

5. 1If the search succeeds, execute the jump

instruction in the ‘top half of the word containing the label,

Procedure Entry and Exit

As seen in.Fig. 9, the procedure table is stored
as a jump table, This means that each entry of the procedure
table is actually a jump to the procedure entry point, The
jump table is built when the absolute address of each
procedure is determined, When a procedure is called, a Jump
is made to the location in the jump table corresponding to
the procedure name, The jump instruction found in the jump
table is then executed, The procedure jump table is
implemented in this manner so that the Nucleus program code
will be compatible with the PASCAL operating system,

A procedure is called by an ENTER statement,

Thus, when an ENTER statement is encountered in the virtual
program, code must be generated to save the return address
on the stack and to jump to the procedure being called,
Code is generated that does the followings

1. Push the return address on the top of the stack,

2, Jump to the jump table location corresponding
to the procedure being called. The Jump instruction in the
jump table is then executed, '

52

Thus, when a procedure is entered, the correct return
address will be stored on the top of the stack,

When the compiler encounters an EXIT statement in
the virtual program, code must be generated for a Jump back
to the procedure from which the procedure being exjited was
called.h When executed, the code generated here would
correspond to the following algorithm, Recall that register
B6 points to the tcp‘of the system stack,

1, If the system stack is empty, execution halts.

2, Otherwise, pop the return address off the stack,
i.e., set B6 to B6-1,

3. Jump to the return address,

Since an EXIT statement marks the end of a procedure, the
next virtual instruction is either the first instruction of
the next procedure or the end of the virtual program., The
EXIT code generation routine checks whether or not the end
of the virtual program has been encountered, If not, the
absolute address of the next instruction is stored as the
absolute address of the next procedure in the procedure

Jump table,

Read and Write Statements

The Nucleus input routine reads characters from
the standard input unit (the card reader) and stores the
characters into the array specified by the READ statement.

The Nucleus output routine writes characters from the

53

specified array on to the standard output unit (the line
printer). Whenever a READ or a WRITE instruction is
encountered in the virtual program, object code is generated
to save the location of the array variable appearing in the
READ or WRITE statement and its size, The parameter that

is sent to the input/output (I/0) routine is the minimum

of the array size and file record size, Then an instruction
to jump to the system'I/b routine is generated, The system
I/0 routines are a modification of the standard I/0 routines
the PASCAL operating system uses for its standard I/0
functions GET(INPUT) and PUT(OUTPUT)., See Wirth[12] and
Burger[l] for a discussion of the PASCAL standard I/0

functions,

Expression Evaluation

ASSIGN, IF, and CASE statements all must evaluate
expressions before the actual assignment or test can be made.
Thus, the code generation routines for these three statements
call the expression code generation routine,

Since expressions in the reduced program are set

up as tree structures, object code is generated as an

expression tree is traversed; An endorder traversal is made
on the expression tree (traverse the left subtree, traverse
the right subtree, visit the root of the tree). When
generating code for the evaluation of expressions, storage

is needed for temporary values, These temporary values are

e

stored on the system stack, All expression operators are
either unary or binary. Each operator assumes that the
values of its arguments are either the top one or two
elements of the stack (depending on the type of the operator).
Binary operators pop the top two values off the stack,
compute the value, and push the computed value back onto
the stack. (Popping the system stack is equivalent to
gsetting B6 to Bb6-1 while pushing the stack is equivalent to
setting B6 to B6+1,)

In order to understand expression evaluation,
consider the following example tree structure of an

expression,

Fig., 11, Tree structure for I-(J*2)+K

The tree traversal is handled by calling the
expression code generation routine recursively until a
terminal node is encountered. Then the value of the terminal
node is pushed on the system stack, Code generation for
.Fig. 11 would occur in the following way:

Arcs 1 and 2 would be followed to the terminal
node containing I. Code to retrieve the valué of I and push

it on the stack would be generated, Arcs 3 and 4 would be

55

followed to the terminal node containing J. Code to retrieve
the value of J and push it on the stack would be generated.
Arc 5 would then be followed to the terminal node containing
the value 2, Code to push this value on the stack would
then be generated, Now, since both the left subtree and the
right subtree of the multiplication operator have been
traversed, code is generated to pop the top two elements off
the stack, perform thé multiplication on these two elements,
and push the value back onto the stack., Then code would be
generated for the subtraction operation in the same manner.
Then arc 6 would be followed to the terminal node containing
K. Object code to push the value of K on the stack would be
generated, Finally, code would be generated that would
evaluate the addition operation.

Clearly, an expression tree is structured such
that the terminal nodes correspond to primaries, Most of
the non-terminal nodes correspond to the operators in Table 2,
However, a mon-terminal node may alsoc be either an array
name or the name of one of the six type-transfer functions
available in Nucleus. If an array name is a non-terminal
node, its left subtree is the expression that computes the
index of the array element being referenced, When an array
element is referenced, code is generated to check to be sure
that the index value is within the array bounds, If a non-
terminal node contains a type-transfer function, its left

gsubtree is the expression whose type is to be changed.

56

The six type-~transfer functions can be found in
Table 6, They may be directly called by the user program or
called by the compiler during automatic type transfers. An
automatic type transfer occurs only on the arguments of the
relational operators., The relational operators automatically
change all of its arguments to type INTEGER., (The Nucleus
syntax requires that both arguments must be of the same type,)
The type-transfer fuﬁctions are implemented as Nucleus run-
time system functions and work as shown in Table 6, The
values of the functions INTOFCHAR(X) and CHAROFINT(X)
correspond to the order of the Nucleus basic character set.

When a call to a type-transfer function occurs
while evaluating an expression, code is generated that passes
the value to be type-changed and the return point to the
appropriate type~transfer function.

Implementation Parameters

As mentioned previously, the Nucleus language is
defined in terms of several implementation parameters,
These parameters define the integer size, the I/0 record
sizes and the stack size, They are all dependent on the
machine on which Nucleus is implemented, Thus, the parameters
must correspond to the word size and I/0 record sizes of the
CDC 6600, MAXSTACKSIZE defines the size of the system stack.
Since the system stack is locateg immediately after the user

TABIE 6, Type transfer functions

INTOFBOOL(X) = 0 if X = FAISE
=1 if X = TRUE

INTOFCHAR(X) = 0 if X = blank
=1 ifX=A
=63 if X = #

BOOLOFINT(X) FAISE if X mod 2 = 0

TRUE if X mod 2 = 1
BOOLOFCHAR(X) = BOOLOFINT(INTOFCHAR(X))

= blank if X mod 64 =
= A if X mod 64 =

CHAROFINT(X) 0
1

= # if X mod 64 = 63
CHAROFBOOL(X) = CHAROFINT(INTOFBOOL(X))

57

e

58

program in memory, the stack size is dependent on the field
length (FL) requested by the user program and the actual field
length of the user program (PL), Table 7 gives the values

of these implementation parameters.
Execution

All Nucleus programs are executed by the PASCAL
operating system, Thus, the code generated by the procedures
described previously is kept on a file to be loaded into
memory and executed, Before execution occurs, however, the
last absolute address used, the first absolute address of
the object code, the address of the procedure jump table,
and the address at which to start execution must be stored
in the appropriate locations in order to be picked up by the
PASCAL operating system, and the program is loaded and executed,

59

TABIE 7.. Implementation parameters

Parameter

INRANGE(X)
(integer range)

READSIZE
(input record size)

WRITESIZE
(output record size)

MAXSTACKSIZE

Value
-2%841 x g%84
80 characters
136 characters

F1-PL

CHAPTER V
SUMMARY

The Nucleus compiler is implemented as a two-pass
compiler, The first pass, discussed in Chapter III, accepts
a Nucleus program and produces 1ts reduced program as output,
The second pass, discussed in Chapter IV, generates absolute
object code from the reduced program, A complete listing
of the Nucleus compiler can be found in Appendix A. Appendix B
contains the control cards and compiler options available to
Nucleus users for this implementation. More options may be
desired in the future, If so, a description of the option
flag and its use can be found within the compiler listing of
Appendix A,

The implementation of the Nucleus compiler in two
passes clearly points out the idea of a virtual machine, as
discussed in Chapter II, The reduced program produced by
Pass I can be thought of as a set of virtual instructions
written in a virtual instruction language - the virtual
instruction language being defined by the hine sentence
t&pes that can be constructed by Pass I, The reduced program
is then used as an "input language” to the second pass of

the compiler, Pass II then interprets the sentences and
'generates the appropriate object code, Not only can the
reduced program be used as iﬁput to Pass II of this compiler,

but it can be used as input to a verification condition

60

61

compiler such as the VCC by Ragland[SJ or as input to other
Nucleus verification systems,

The Nucleus implementation not only reflects the
virtual machine idea but also follows the definition of
Nucleus describéd in Chapter II as closely as possible,

Only those constructs that are restricted by the machine,
such as the identifier tables and expression stacks, are not
implemented as exflicitly stated in the formal definition of
Nucleus, The implementation restrictions imposed on each
pass are stated at the end of the chapters which discuss
Pass I and Pass II,

Modifications to the compiler may be desirable at

some future date, particularly in the code generation routines,

If more efficient code is desired, the first place to start
would be in the code generation routines for the evaluation
of expressions, Since the major statement types, such as
ASSIGN, IF, WHILE, and CASE rely heavily on thé expression
code generation routines, more efficient code could then be
generated for the over-all program,

Another desirable modification may be to allow
the input/output (1/0) files to be files other than just the
CDC 6600 standard I/0 files, The system I/0 routines would
then have to be adjusted accordingly to accept input and
output from these other files,

It is now possible.to run Nucleus programs on the

CDC 6600, More importantly, the four-phase project discussed

62

in Chapter I is one step closer to completion with the
completion of this compiler. The next step now is to write
& Nucleus compiler in Nucleus, prove it correct using the
verification condition compiler by Ragland[B]. and compile
it on this compiler. Then, a correct VCC and a correct
compiler would be available from which to begin a process of
bootstrapping more and more proved processors for more and

more languages,

