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SECTION I

Introduction

A great deal of research on queueing network models has appeared in
the 1iterature[1,2,3,4 ]. In this paper we study a class of queueing networks
with arbitrary differentiable service distributions. This paper studies

three aspects of queueing systems:

D BQEEEEESEEiA Many systems are robust in the sense that they are somewhat
insensitive to service dis;ributions: their equilibrium behavior is a function
of the mean service time but is largely independent of higher order moments.

In this paper we study robustness in queueing systems in some detail. 1In
particular we develop sufficient conditions for a system to be perfectly

robust or distribution independent. Processor-sharing and last come first
served preemptive resume disciplines are used to illustrate the theorems

on distribution independence {43, The service distributions are not restricted

to having rational Laplace transforms.

i ?2) Poisson Departure ProceSses.i:&

Reich[5] and others showed that departures from a queue with Poisson

arrivals and independent exponential service formed a Polss on process 6. In
this paper sufficient conditions for a system to have Poisson departures
are presented; the Processor-Sharing and Last Come First Served Preemptive
Resume disciplines satisfy this condition. Muntz [d]has also obtained

gufficient conditions for Poisson departure processes.

i 3) Product Form gﬁ_Equilibrium,State Probabilitieﬁ:k

In some networks, the equilibrium state probability of the network is
the product of terms: where each term is concerned with the 'state' of
some particular queue in the network. Jackson[j} Gordon and Newell {8],
Baskett, Chandy, Muntz and Palacios-Gomez.Bﬂand others have studied networks

with the product form. In this paper we present sufficient conditions for
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the equilibrium state probability of a network to have the product form;
this result extends the class of networks known to have this property.
S:Ehe cémmon thread underlying these investigations is the property
of "local balance" [’2,4, 9]. We show that if a single service system with
Poisson arrivals is in local balance then (a) departures from the system
occur in a Poisson manner and (b) a network of such systems will have the
product form of solution. We also show that if a single service system
with Poisson arrivals is in detailed local balance then the system is depart-
ure independent. The concept of local balance is quite a powerful ome and
finds application in other areas. All the key results of this paper stem
'from local balance.

The work on networks reported in[&,7,8]u5es discrete-state continuous-
transition Markov processes. In this paper we use éontinuous-state analysis
obviating the restriction of service distributions to those which can be
represented as a sequence of exponential stages.

The structure of this paper is as follows. Section 2 leads into the
general approach by considering the First Come First Served (FCFS), Processor
Sharing (PS) and the lLast Come First Served Preemptive Resume (LCFSPR) disciplines.
A key feature is that the differmntial equation for the state probability
density as a function of time is continuous in the variables representing
remaining service times for the individual customers. Using this form allows
consideration of arbitrary differentiable service time distributions. The
concept of distribution-independence is introduced here and is shown to
apply to PS and LCFS. Although FCFS is not distribution independent, A tractable
form is derived for the exponential case.

The main results appear in Section 3, which describes a general class
of service disciplines and conmstructs the'general differential zquation

for the probability density given an arbitrary differentiable service time
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distribution and assuming Poisson arrivals. The differential equation is
then used to characterize several properties a discipline might have at
steady state, including local balance, detailed local balance, and immediate
service, and the beneficial effects of these properties are studied. Section
3 considers single service queues; section 4 applies these results to networks
of queues. This section extends and clarifies earlier work on local balance

in networks ' . The conclusions are presented in Section 5.
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SECTION I1I

Processor Sharing, Last Come First Served

Preemptive Resume and First Come First Served Disciplines

In this section we set up differential equations which describe the
behavior of a single server with customers arriving in a time-invariant
Poisson manner. We first analyze the PS, LCFSPR and FCFS disciplines,
with arbitrary differentiable service distributions. Equilibrium
solutions for the differential equation are developed for the PS and
LCFSPR case. We next develép differential equations for a class of
networks which includes PS, LCFSPR and FCFS. We characterize a
class of disciplines for which the equilibrium probabilities are
"distribution-independent"; for this class the equlilibrium probability
that there are n customers in the queue depends only on the mean value
of the service time and is otherwise independent of the service distri-
bution. Equilibrium probabilities for "distribution-independent" disci-
plines are presented. We show that PS and LCFSPR are distribution-
independent disciplines. We emphasize at this point that we only consider
differentiable distributions.

We shall use the notation fx( ) for the probability demsity function
of a random variable, x, i.e., fx(xo).,bxo is the probability that

¢xX<X 4-Ax0. Let u be the service time with probability density

) x .
function fu( ). Let X be the arrival rate.

A customer's service rate may be a function of the number of customers
in the queue. We assume that the service rate when there are N customers
in the queue is h(N) times the rate when there is only one customer in
the queue, where h(N) is any function which satisfies the conditioms

h(0) = 0, h(1) =1, and h(N)2 0 for N = 2, 3, 4, .... We refer to h()

as a rate function. We now discuss PS, LCPSPR and FCFS in detail.

PS is the limiting case of a no-overhead round robin fixed quantumn

discipline as the quartum tends to zero'? ,4,7'. let N be the number of
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customers in a queue. Every customer in the queue is processed in
parallel; each customer gets an equal'share' of the server {processor)

and is served at 1/N times the rate at which the single customer would

be served if he were the only customer in the queue. In other words,

for a PS queue every customer in the queue receives service in parallel
and the rate function for each customer is h(N) = 1/N, for N =1, 2, 3, ...

The states of a systém are defined such that the future behavior
of a system given its current state is independent of the past behavior
of the system. The state of. the PS system is completely specified by
N, the number of customers in the queue,and the remaining service time
for each customer. The state of the system at any given time may be
represented by S = (0) if the queue is empty, and S = (N, 'iTl, ces TN"S)
where N> 0 and T1> 0, .., TN>0 are the remaining service times for the
customers in the queue., Note that §T1, vy TNgis an unordered set.

We assume T, # Tj if i # j since the event TiﬂTj‘ has .measure zero.

Let Q(t, N,{Tl, ees TNE) . ATl, con BTy be the probability that
the system is in some state ( N3t,, .., tN\) at time t, where
Ti<ti§Ti +5Ti for i =1, .., N. Let Q(t, 0) be the probability
that the system is in state (0) at time t. Let Q(t, N§T1, ces TN}) be
the probability density of state (N;Tl, ces TI}) at time t.

The system can be in state (N,QTI, . TN’S) at time t + At if and
only if one of the following conditions holds (neglecting second order

terms):
/

(a) The system was in state (N§T; +h(0) . 8%, .., Ty ™ h(N) . 0td)
at time t and no customer enters the system in the interval [t, t + At] .
Each customer in the system gets h(N) . oAt units of processing time in
the interval it, t + a t;-‘. Hence if a customer has Ti + h(N) . &t units

of service time remaining at time t, he will have Ti units of service time
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remaining at t +{¢t.
(b) The system is in state(N + 1, {h(N + 1)- .Y, T+ h(N + 1) . 4at, ..,
TN + h(N + 1) .At\ﬁ) at time t, where 0 ¢Y «At, and no customers enter the
queue in the interval [t, t +a t] . The customer with a remaining service
time of h(N + 1) .Y will leave the queue at time t +7%7, leaving N customers
with remaining .service times.T,» Tz, ey T .

N

(c) The system is in state (N - 1, iTl + h(N - 1) . At, .., Tj-l +

BN - 1) . at, Tyyy + b - 1) .at, .., Iy +h®N - 1) . at}) at time t and
a single customer enters the queue in the interval {t, t +-At], and this
cgstomer has a service time of Tj units.
Neglecting second-order terms, we have
Q£ +8t, N,4T, -v» T8) = Q(e, NyT) + B L at, .oy Ty + h(D) AR (1= 41)

+Q(t, N+ 1,50+, T ) . RO+ 1) . Ac

1, sy

+ (N.0t) . fu(Tj) . Q(t, N - 1, {Tl, ces Ty g TJ_H, ves TNR) (1)

Expanding the first term on the right side of this equation in Taylor
series about the variables Ti, i=1, .., N, and neglecting second-order terms
we get:

| N
d Q(t, N,&Tl, ees TNE) = ¥ h(¥) .23 Q(,N, iTl, ces TNX)
dt j=1 2T,
hj
|

=N Qe N{T ), e, T

+h@N + 1) . Q(t, N+ 1,{@3 Tis ees TNE)
’ N
+ gD £ T, N-1,%T1,.:,Tj_1,rj+l,..,TN\)
For N = 0 we have
d Q(t, 0) = - N-Q(t, 0) + Q(t,1{0 | |
Tt M Qt, 0) + Q(t,103) (3)
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Recall that u is the service time. Let v be the time remaining
from a point of random entry into the random variable u. In other words
v is the remaining service time if customers are preempted at random times.
1t is well known that v and u are related by the equatioms

£ (£) =p. P(u) t) and £ (&) = - £ () @)

L-4
A dt
where P(uz t) is the probability that u is greater than or equal to t.

Note that

fv(O) =pm. P(up 0) = M (5)

We shall denote the equilibrium value of Q(t, N ’Y(Tl’ .oy TNB)

by Qeo , N,{Tl, .oy TN}). It is easy to verify that

Lemma 1

- = 1 . N
Qo , Ny§Ts s TR = L - (2)

G.H(N) M

and Q@o , 0) = 1/G, where G is a normalizing constant and H(N) is

defined recursively as

H(1) 1

HN - 1) . h(N)

H(N)

For the special case of PS we have h(N) = 1 and hence H(N) =1
N N!

Proof: Differentiating (4) we see

d £ (£) = - . £ (t)
dt Vv //‘ of

. fv(Tl)' ceo fv(TN) (6)



Consider the first term on the right-hand side of the differential

equation, By direct gubstitution of equation () we get

h(y) . ngj Qo ,N,{Tl,.,.,TN‘oay\fu(Tj)-Q(o-,uq‘;gl,...,Tj_l,Tjﬂ,...,Tb}g (8)

This term cancels with the last term in the differential equation.

Now consider the third term on the right-hand side of the differential
equation. Recollecting that fV(O) =/1(, and by direct substitution of

equation (6) we get:

h(N+1) -Q(=2,N + 1,50,T1,...,T1\}.2 =4 - Q(W,ngl,...,T}? (9)

This cancels with the second term. Hence equation (4) implies that:

. Q(e,N,T

ac . T

170 N) = 0 all states mS’?l""’TNE)

Similariy:

d
3t Q(~,0) =0

Lemma 2

Departures of customers from the PS queue forms a Polsson process.

Proof: Let R,(N,%‘l,...,'rl}} + At - ATI ATN be the probability that a
customer finishes service and departs from‘ the system in some interval

ft,t + At] at steady-state causing the system to transit to state

(N%l,...,'rb}; immediately after the departure. A customer can finish
service in the interval [t,t + 4t] causing the system to tramsit into
étate (N&l,...,T@ if and only if the system was in one of the states
(N 1GROUH D) T, T RO HD) AT RN + 1) - A%) where
0« 7 ¢4t. Hence by direct substitution

R(N%l,...,Tl% - Q(, N + 1,3.O+,T1,...,TN.%)-h(N + 1)

-A- Q(M,ﬁ%l,...,Tl}?- (10)

In otherwords, R(Rﬁa‘l,...,T}) is the third term in the differential
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equation. The product A Q(e, N;El,...,TQQ on the right hand side of

equation (10) implies that at equilibrium the probability of a customer

leaving the system in any interval [t,t + At] is independent of the state

of the system jmmediately after the departure. Therefore, departures innon-over-

lapping intervals are independent and the probability of a departure in

any interval of length At is A* At. Hence departures form a time-

invariant Poisson process with rate A.

Distribution Independent Disciplines

€onsider a single server queue, with customers arriving in a time-
invariant Poisson process. The arrival rate is independent of the size
of the queue. Consider an external observer who can only observe the
number of customers in the queue and the departure of customers from
the queue. (This observer cannot differentiate between the individual
customers in the queue). Let the server use a service discipline 'd'.,

Consider the class C of all differentiable gervice distributions with a

given (fixed) mean, say 1/y . 1f the equilibrium behavior of the system
/l q

as observed by the external observer is independent of the service

distribution, provided the service distribution is a member of class c,

then the service discipline d is said to be a DISD (distribution independent

service discipline).
Lemma 3
PS is distribution independent.

Proof: We showed earlier that (eqn. 6):

_1. 1 AN
Q(M,N,SEI,...,TIR—G ) (/() fv(Tl),...,fv(TN)
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N

=1, Sﬁ ) . N! fv(Tl) oo fv(TN)

1
G

since h(n) = 1/n and hence H(N) = 1/ (N!)

Let the probability that there are N customers in the queue at time t

be Q(t, N), Then

Q@ , M) = 1 . (X)) (11)
G

and the number of customers in the queue is independent of the remaining

service times for all customers.

LCFSPR

The Last Come First Served Preemptive Resume discipline is a priority
preemptive resume discipline in which the priority of a customer is
the time at which he enters the queue. At most one customer receives
service at any instant of time and he 1is the customer with the highest
priority ( that is, the customer who a;rived last). A customer with a

higher priority preempts customers of lower priority. Service is resumed

from the point of preemption.

The customers who arrive for service at a LCFSPR serVér are
(effectively) placed in a stack. Only the topmost customer in a stack may

receive service. When a new customer arrives he is immediately pushed

-10.
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onto the top of the stack and when a customer depafts the next highest
customer in the stack begins to receive service.

The state of an LCFSPR server may be represented as either § = (0) if
the queue is empty or § = (N’Tl""’TN) where N 2 1 if the queue is not
empty. Ti is the remaiqing gservice time for the Fth customer where we
use the convention that the first customer is on top of the stack and
the Nth customer is at the bottom. Note that in LCFSPR the customers in
fhe queue are ordered whereas in PS the customers are unordered. Hence

in LCFSPR the state (N = 2, T1 =1, T, = 2) is different from the state

2

(N=2,T, =2, T, =1) since the ith customer receives service before

1 2
cheQ + fh. Let h(N) be the rate function, with h(0) = 0 and h(1) = 1.
When there are N customers in the queue, N‘> 0, the single customer being
gerved is served at a rate,ﬁ(N) times the rate at which he would be
served if he were the only customer in the queue.

Let Q(t,N,T

..,TN)-AT ,...,ATN be the probability that the system

1’ 1
is in any one of the states (N’tl""’tN) where Ti.f ti = Ti + ATi,
i=1,...,N, and let Q(t,0) be the probability that the system is in
state (0) at time t. The system can be in state (N’Tl""’TN)’ N> 0
at time t + 4t if and only if one of three con&itions hold:

(a) The system is in state (N,T1 + h(N)At,Tz,...,TN) at time t + At
and no customer enters the system in the interval [t,t + At]. The
customer on top of the stack gets h(N)-At units of service time in the
interval [t, t + 4t], and thus his remaining service time is reduced by
‘h(N)-At units. The other customers in the stack do not get service in

the interval [t, t + st] and hence their remaining service times are

unchanged.
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(b) The system is in state (N + 1, h(N + 1)T,T1,...,TN) at time t
where 0 ¢ T ¢ At, and no customer enters the system in the interval
t,t + 4t]. The customer on top of the stack will get h(N + 1) *Tunits
of service time in T units of real time and hence he will leave the
system in the interval [t,t + 4t].
(¢) The system is in s&ate (N-l,T2 + h(N-l)'At,T3,...,TN) at time t and
a new customer enters the system in the interval [t,t + At], and the
service time for this new customer is t1 units where T1 s t1 < T1 + ATl.
This new customer enters the top of the stack causing the state of the
system to change to (N’Tl""’TN)°

A similar set of conditions may be obtained for state (0). The

differential equation for LCFSPR 1is obtained in a manner analogous to

that for PS. We get, for N > 0

g_t_ Q(t,N,Tl,...,TN) = h(N) 3%_{ Q(t,N,Tl,...,TN) - AQUE,N,T 50 v e, Ty)
+ h(N + 1)Q(t,N + 1, O+, Tl,...,TN)
+/1-fu(T1) -Q(t,N-l,Tz,...,TN)
For N = 0 we have
-g—r: Q(t,0) = -4Q(t,0) +Q(t,1,04)

The equilibrium solutions are the same as for PS:

Lemma &
1,1 . AN,
Q(”’N,Tl,...’TN) = E * H(N) (/4) fV(T].)’...,fV(TN)
- =1
Q(=,0) S

where G is a normalization constant. All terms have the same meaning as

in PS.
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Proof: The gsolution can be verified in the same manner as for PS.
Lemma 3
The departures from the 1CFSPR queue form a Poisson process.
Proof: Same as for PS.
Lemma 6
LCFSPR is distribution independent. -
Proof: Recall that Q(t,N) is the probability that there are N

customers in the queue at’ time t. Then

Q) =g gy G N 0L

Hence the equilibrium probability that there are N customers in the queue
depends on the mean service time and is otherwise independent of the
service distribution. Since the departure process igs also independent

of the service distribution it follows that LCFSPR is distribution

independent.

FCFS

The FCFS discipline is well known. The state of the system may be

represented as S5 = (0) if the queue is empty and S = (N’Tl""’TN) for

N > 0 where Ti is the remaining service time of the ith customer, 1 = 1,...

By convention the ith customer gets service before the(} +1)th, +t = 1,...,
N-1. A new customer enters the tail-end of the queue, i.e., becomes the
(F +I)th customer. Only the single customer at the head of the queue
receives service at any one time. We define Q(t,N,Tl,...,TN) and obtain

differential equations in the usual manner:
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& QUEN,T,ee0sTy) = BOD- & Q(t,N,T

12Ty T Ty) - AQE,N,T el )

100
+ h(N + 1) ‘Q(t,N + 1)0+)T1:"'3TN)
+A-fu(TN) -Q(t,N-l,Tl,...,TN_l)

Notice that the last term on the right-hand side is the only term that is

different for LCFSPR and FCFS.

It is well known that FCFS is not distribution independent. Morse (‘2]

and others have obtained equilibrium and transient solutions for the

special case where fu(t) = fv(t) all t, i.e. the service distribution

is exponential..In this special case the solution is-

N
Q(t, N, Tl, ces TN) =(J;§:>‘;) . fv(Tl) fv(TN)

where G = 1
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SECTION II1

General Single Service Systems

Generalized Service Disciplines.

We next derive differential equations which describe the behavior of

a class of systems including queues with FCFS, LCFSPR and PS disciplines.
In this section we discuss only Poisson arrival, single service systems;
networks of queues are discussed in the next section. We then define

the concept of "local balance' which is central to this paper, and show
that local balance implies that departures from the system occur in a
Poisson manner. We next study distribution independence and develop
sufficient conditions for a system to be distribution independent. We
begin this section with definitions of terms which are necessary to des-
cribe general systems.

Servers An arriving customer has a service time from & given service
distribution. However, there may be one or more service stations at

which customers are processed. These stations may have different service
rates. Consider a customer with a remaining service time of T units being
served at the ith station when there are N customers in the station. After
At units of real (or clock) time have elapsed this customer will have a
remaining service time of T - ri’ N ° A t units. DNote ri’ N 20 may vary
from station to station and may also depend on the number of customers in
the system. In some systems a customer may gewitch from station to station
until his service is complete. We will find it convenient to think of

an infinite ordered sequence of statioms 1, 2, 3,... with generic index i;
some of the service stations may have ri’ N " 0 for all N--in other words
some stations may be merely positioms in which customers await service.
Thus a single server FCFS system may be thought of as having an infinite
aumber of stations with only one sﬁation--station l--serving customers
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with TN = 1 for all N>0, and all ocher stations having fi’ N 0

for all N. Whenever a customer departs from the first station the waiting
customers move up one station. We will always assume that there can be

at most one customer per station.

For processor-sharing we can have an infinite number of stations with

fi N = 1/N for NOand 1 =1, 2, .., N.

’ +

States. Suppose there are N customers with remaining service times

Tl’ cey TN. Suppose the customer with remaining service time Tjis in
station Sj’ j=1, .., N. The state of the system may be represented

as the 2N-tuple (Tl’ 515 T2, Sy3 e TN’ sN). For brevity we shall let

s represent the mapping j- sj from the set of integers 1, .., N into the

stations; we may then abbreviate the state to S(Tl’ aes TN)Q We shall

sometimes use the short-form S for S(Tl’ cey TN).

/N
Pransition due to an Arrival. We shall use the notation (Tl’ ‘e Ti’ :.,TN)

for the set (Tl"‘Tfi’Ti+1”'TN)' In other words, the hat above Ti
jndicates that it is to be deleted from the set. Let A be the state

ces TN) and let S be s(Tl,-.., T.). Let P(A, Ti’ S)

i’ N

be the probability that the system transits from state A to S when a customer

A
A= a(Tl, eey T

with remaining service time Ti arrives. For instance in FCFS if s and a
are the mappings: j=j (i.e. the customer with remaining service time Tj
is in station j) and customers are only served in station 1, then

~
PA, T, S) =1 if and only if A = a(Tl, ces TN -1° TN) and T = TN.

Transition due to a Departure. Let Bi be the state b£T1’ ey TN, T)

with T = O+ and where the customer with T = 0 remaining service time 1is
in station i. Let S be defined as before. Let P(Bi’ S) be the probability

that the system will transit from state'Bi to S when the customer who is
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about to depart from the ith station finishes service. For instance, in
FCFS if B1 is the state in which the customer being served has O+ units
of service time remaining, and the customer in the ith station has a
remaining service time of Ti-l’ 1i=2, .., N+ 1, and S is the state in
which the customer in the ith station has a remaining service time

of T,» i=1, .., N then P(Bl, s) = 1.

The Difference Equation.

Let Q(t, s(Tys-5, TN)) be the density function for the system being
in state S = s(Tl,.., TN) at time t. Let us determine how the system could
be in state S at time t +4t in terms of the state at time t. The development
is very similar to that for PS and LCFSPR. discussed in Section 2.

There are three possibilities:

is i + . + .
(1) The system is in state s(T1 s (1),N Bty wey Ty TSy, N at)
at time t and no customer arrives in the interval ft, € +4 t] . A customer
ini + . i i

with remaining service time Ti rs(i), N4 t is at station s, and hence
after At units of real time have elapsed his remaining gservice time will

be reduced by rs(i), N 2 t fori=1, .., N

A
(2) The system is in state A=2a(T,, eoy T,9 05 T ) and a new customer
y 1 A N

with a service time of Ti arrives and the system then transits into state S.

(3) The system is in state bi(Tl’ ves TN’ T) where the customer with
remaining service time T is in station i, and 0 T# TN+l .4 t; within
3

an interval of at the customer with remaining service time T will finish

service and the system may transit into state S(Tl’ ces TN).
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The difference equation is:

Q(t + at, S(Tl’ ces TN))

=Qt, s(T, +r Tg+r AL -TALat)

> S)

s(l), N "2 Es e s (N),N

P
+ Q{t, a(’I.‘l-., T .oy TN})(X.AC) . £ (T,)) . PA, T
u i

i’ i

( sey T .
+ Q(t, bi(Il’ » Ty 0)) (ri, N+L * 4 t) . P(Bi’ S)
E ding Q T, +r ;
xpanding % (t, s(.1 rs(l), Nzat, Y rs(”)’ N . .at)) using a

Taylor's series expansion we have the following differential equation:

dgt. Q(t, S) = Vl(t, S) + Vz(t, s) + v3(t, S) + v, (t, S) Vs
N
v (t, 8) = 151%?2“’ $) . T ). N
V,(t, 8) = -A. Qt, 8)
L o
Vu(t, 8) = 7 A. fu(Ti) . Q(t, A) . PG4, T,, 5)

This summation is taken over all states such that P(A, Ti’ SY # 0

pu—

v

v, (t, §) = ?I LBi Q(t, B) . P(B;, 8) . ry gy

The summation is taken over all states B, such that P(Bi’ S) # 0 1i.e.
the system can transit from Bi to S due to the departure of a customer

from the ith station.

The first term Vl(t, S) is the leave-depart term which is concerned

with the net rate at which the system leaves S because customers get ser-

viced. The second term V2(t, S) is the leave-arrive term which is concerned
with the system leaving S due to the arrival of a customer. The first

two terms are negative in sign,

The third term V3(t, S) is the enter-arrive term; it is concerned with
the net rate at which the system enters S because customers arrive for

service. The fourth and last term is the enter-depart term which is concerned

-~

with the system entering S because a customer departs. To summarize, we have

-18-~
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d% Q(t, S) = leave-depart term + leave-arrive term + enter-arrive term
+ enter -depart term

The relationship between these four terms is crucial in analyzing

distribution-independent and Poisson departure processes.

A system is said to be in equilibrium if Q(t, S) = 0 for all states

d
dt

S. We shall use the notation Qe , S) for the equilibrium value of Q(, S),

i.e. Qo , S) = .limit  Q(t, 8)
oo

and of course d Qo , S) = 0 for all S.
dt

Departure- Independence. A system is gaid to be departure independent if

at equilibrium

leave-artive term + enter-depart term = 0

. PP =
i.e. ~A. Qe, S) + % B, Q(e, B) . P(B;s S). Ti,N+1 0

We shall show that if a system is departure independent then departures

from the system form a Poisson process.

Local Balance. A single service system is said to be in local balance if at equilibriu

the ra;e at which it enters a state S due to the arrival of a customer is equal

to the rate at which it leaves S due to a customer getting serviced.

{-€. leave-depart term + enter-arrive term = 0
i.e. . 2 QCe, 8) . s(), N
‘ 1=1 2T ’
i
N
+ £ 3% A.E(T) .Q(e0,A) .P@A,T,8 =0
=1 A u i i

Theorem 1: A single service system is in local balance if and only if it is

departure-independent,

Proof; At equilibrium we have

(leave-arrive term + enter-depart term)+(leave-depart term + enter-arrive term)

Clearly, at equilibrium: '
-19 .



leave-arrive term + enter-depart term = 0

if and only if
leave-depart term + enter-arrive term = 0

Theorem 2: 1If a single service system is .depatture independent then
departures from the system occur in a Poiss’on manner; i.e. the probability
that a departure occurs in any incremental interval of time st is rat
independent of earlier departures.

Proof: See Appendix A.

Immediate Service. A system is an immediate service system if every arriving

customer who enters the system begins to receive service immediately. It is
evident that PS and LCFSPR are immediate service systems whereas FCFS is not.

Detailed Local Balance. A system is said to be in detailed local balance 1if

D Q(",8) . r +A. £ (T,) . 7 Q(-3,A) . P(A, T .5) = 0 for all states S
3T, ’ s(1),8 7 Tud A ’ Pt and all 1,

The rate at which the system enters a state S due to the arrival of a customer

hY

in 8 glven station s(i) is equal to the rate at which the system leaves S

14)

due to the customer in s (1) getting_sary%gg. Local balance is concerned with entries

detai local balance is concerned with

a4 departuxes into & quéue;
entries and departures from the individual stations which constitute the queue.

Lemma:7 If a system is in detailed local balance then it is an immediate
service system.
Proof: See Appendix B.
Lemma:8 If a system is in detailed local balance then it is in local balance.
Proof: Follows by summing eqn () over 1 going from 1 to N,
Theorem 3: Consider a single-service system described by differential
eqn. (12). Let the probability density function for the gservice time be
S(T)==f1ejﬂ1 for T;;O, i.e., exponential, ‘Let the system satisfy the following
two.conditions when the service time probability density function is g(T):
(1) the system satisfies detailed locai balance and
(2) the equilibrium solution is of the form:

(0, 5) =2 . B(T) ... g(T) (15)
where Pe.is-avfunction of the set of .stations which are occupied but is

independent of the remaining service times of customers in these stations.
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Then the system is distribution-independent.
Proof: See Appendix C.

This theorem provides a simple gsufficient condition for distribution
independence. Assume that the service time for a system 1is exponentially
distributed (or assume any other convenient distribution). If the system
with the assumed service distribution satisfies the two conditions then
the system is distributién independent. It is easy to verify that LCFSPR
and PS satisfy the two conditions when the service time is an exponential
random variable.

We now present a somewhat unusual distribution-independent system
to show that distribution independent systems apart from PS and LCFSPR
exist and to demonstrate how the above theorem may be used. Consider
a two server system where the server in position 1 serves with'q1N= 19 N>O
and the server in position 2 withrz’N==ﬁQ, All other positions are
merely places‘at which customers await service. If a customer enters the
system when both positions 1 and 2 are occupied, he enters position i
with probability P; and preempts the customer being served in that position,
i=1, 2f‘ If a customer enters the system when both positions 1 and 2
are empty, he enters either position with probability 1/2. 1If one
of the positions is empty and the other busy, the entering customer begins
to receive service at the empty position. Whenever one of positioms 1
and 2 become free one of the preempted customers is selected at random
for resumption of service at that position; 1f there are no preempted
customers the vacated position remains empty. It is easy to verify
‘that this is an immediate service system and that the two distribution
independence conditions are satisfied when the service distribution is

exponential. It is also straightforward to extend this to the case

where there are n servers with rates );,“ N
: ¢ /n
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SECTION 1V

NETWORKS OF QUEUES

A queueing network consists of queues, thelr servers and paths
connecting the various queues together. A queueing network may be defined
in terms of a directed graph with a set of vertices and edges; each vertex
represents a single servise sub-system (queue and server combination), while
an edge represents a path a customer may take as he finishes service at omne
system and enters another. Fig.1 is an example of a queueing mnetwork.

We restrict attention to single service subsystems which when fed by a
Poisson source can be described by differential equation (12.

Let a network contain M subsystems labeled 1, 2, .., M. Let p
1]

be the 'branching probability" that a customer who finishes service at

the ith system joins the jth subsystem, 1, j = 1, .., M; we assume

that the probability of a customer branching to the jth subsystem 1s
independent of the state of the network.

In an open network customers may enter the network from an external

source labeled 0 (zero) and may leave the network and go to an external
sink which is given the same label 0. The source generates customers in

a Poisson manner with rate \ . Let Poi be the probability that a customer
generated by the source directly joins the ith subsystem, i =1, .., M.
Let p i0 be the probability that a customer who finishes serv1ce at the ith

subsystem leaves the system. We may assume py, = = 0. Then 5‘ le =
j=0
for 1i=0, 1, .., M.
In a closed network customers do not enter or leave the network. A

constant number (N) of customers cycle through the network endlessly. A

closed network does not have a source or a sink. For a closed network

gﬁ‘ﬁ: =1 for i =1, .., M. An example of a closed network is shown

in Fig. 2.
-22-




We will only discuss open networks here. The extension to closed
networks is strailghtforward. The set of states of an open network is
the Cartesian product of the states of the M subsystems which constitute
the network. In this section we set up differential equations which
describe the behavior of 2 network. We show that if each of the M
subsystems which constitute the network is in local balance when fed
with a Poisson source, then the equilibrium state density functioms for

the network have the product form gl .

The Differential Equatiom

We shall use the gemeric indices k and € to refer to the subsystems
of the network and we shall use a subscript to refer to a particular
subsystem in the network. When there are two subscripts the first will
refer to a subsystem in the network and the second to a particular
customer or service station within the subsystem.

The state of the network is (Sl, ey SM) where Sk is the state of
the kth subsystem. We shall use the same notation and terminology for
the kth subsystem as for the single service systems discussed in the

(

e . . - T
earlier section. Thus Sk s Ty1

the customers in subsystem k to the service stations of subsystem k:

ces Tk’?,where 8. is a mapping from
K

thus a customer with remaining service time Tkj will be in station Sk(j)
of the kth subsystem and after At units of real time his remaining service

time will be reduced to T - T . ot where N, is the number
kj k, sk(j), Nk o k

of customers in the kth subsystem. For brevity we shall write L s (1)
oo

instead of .1, . The relation between states Bk L and
. N ]

b Sk(.j) H Nk

Bi’ and that between Ak and A are obvious. Let fk u( ) be:the service
?

density function in the kth subsystem. For compactness in expression

we shall use the following notation: ‘let Y= (Sl, .es SM) be a state

of the network and let 1ﬁ(Xk, Y%’ ..) refer to the state of the network

=23~




obtained by replacing the kth state S by X, and the (th state S by Y, .,
in /. Hence
va,)

W) = s eos S ps B Sppr o0 Sy

Sps evs S At Siare oo Sy

) = LN 4 s . e ; * e
W(Bki,%&) (Sl’ ] Sk-l’ Bki’ k.+l’ ] Sf _1’ AZ ’ Sf'*‘l’ ’ SM)
The differential equation is derived in a manner identical to that
of the previous section. The notation of this section is analogous
to that of the previous section.

QULV) = F VW) V0 YD T V(6,9 )
dt

o

where

v (t,¥) = 2 d Qt,¢) . r
k1  dT,, k, sk(j),Nk

v,(6,¥) = - A. QE, )

Q(t,HV(Béia Ak)) . re’ 1N +1

M
< 5 < 5
Vs Y = & 2“;1 15 .

. P(%i, Sc) . pﬁk . fk,u(Tkj) . P(Aks Tkj’ Sk)

+ %k 5N Pg ¢ B uTey) - UE VA PG, T S

v, (e,¥) = }’Ei 'ZBj Q(t’\‘}’(Bki))"’k;,wlp(gki’ 5 * Pro
ki

Vkl(t’\y) is the net rate at which the system transits from state {/ because

customers get processed at subsystem k. Hence ;Zjvkl(t;w ) is the net
k

rate at which the network transits from state Y because customers get

processed at some subsystem: it is the leave-depart term.

w2l -




Vz(t,‘W) is the rate at which the network transits from state V because

a customer arrives for service. it is the leave-arrive term.

Vk3(t,u/) has two terms. The first is concerned with the rate at
which the network tramsits from state V%Bfi, Ak) to Y because the
customer in the ith station of subsystem [‘finishes service causing
the state of the [th subsystem to change from B{i to?; ; the customer
who finishes service in subsystem [»enterssnbsystem k with a service time
requirement of Tkj’ causing the state of the kth subsystem to change from
Ak to Sk. This term is summed over all i, Bfi’ Ak,’11‘<j etc. and
represents the rate at which the network enters 1/ because a customer
finishes service at some subsystem and then arrives for service at the
kth subsystem.

The second term is concerned with the rate at which the network
transits from state 4¢(Ak) to state Y because a customer enters the
network from outside &nd directly enters the kth subsystem with a
service time of Tk' causing the state of the kth subsystem to change

J

from Ak to Sk‘ This term is summed over all Ak and Tkj' It is the

rate at which the network enters state 1) because a customer enters the

system from outside and directly enters subsystem k. 1k Vk3(t,*y)

is the net rate at which the system enters '/ because a customer arrives

for service at some subsystem of the network: it may be thought of

as the enter-arrive term,

V4(t,ﬁg) is concerned with the rate at which the network transits
from state uKBki) to state | because the customer im the ith station of
subsy;tem k finishes service and then leaves the network; the departure
of this customer causes the state of the kth subsystem to change from

to S . This term is summed over all k and B It is the enter-

Byi K ki
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depart term becanse it is the net rate at which the network enters state f,
due to the departure of a customer from the network. Once again we have
d Q(t,'} ) = leave-depart term + leave-arrive term + enter-arrive term

dt |
+ enter-depart term.

Definitions. A network is said to be in local balance if at equilibrium

v (oo, ) +V

1. k' (~,.) =0 for all states \y and all k.
3

3, k
Pocal balance ctates that the rate at which the network enters | due
to a customer arriving at queue k is equal to the rate at which it leaves
Y due to a customer departing k.
Associated with each subsystem k is a number Yier and associated with the
Poisson source is a number Yo where the set Yor Y12 +» Iy satisfies
the equations

Yo = - ye . ggk for k =01, .., M and Yo = 1
Theorem 4: 1If each of the M subsystems which constitute a network are in
local balance when fed with a Poisson source then
(a) the network is in local balance and
(b) the equilibrium probability demnsity function for the states of the
network have the product form

' M
Q ((\/;_' 'Y Sl, L] SM) = 7‘( qk(sk)
k=1 PR

In particular: qk(sk) is the equilibrium probability density function for
the kth subsystem when fed witha-Poisson source with rate N Yy

Proof: See Appendlix D.
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SECTION V
Conclusions

We have used local balance and continuous state analysis to study
robustness, Poisson departure processes and the product form of equili-
brium state probability of networks. We have studied systems with arbit-
rary differentiable service distributions; this class includes the class
of distributions with rational Laplace transforms. A simple sufficient
condition to determine whether a system is distribution independent was
presented. It is easy to verify that processor - sharing, last-come
first served preemptive resume and infinite parallel servers and some other
disciplines satisfy tﬁis condition. It was shown that asystem which is
in local balance when fed with a Poisson source has Poisson departures

and that a network of such systems has the product form.
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APPENDIX A

Theorem 2: If a single service system is departufe independent then
departures from the system occur in a Poisson manner.
25292: Let R(S) .4t . JTl ...f\TN be the probability that, at equilibrium,
é departure will take place in an interval of length ~t and that the state
of the system immediately at the end of the interval is in the incremental
hypercube around S. The only way a departure can take place leaving the
system in state S is if the system is in some state Bi (with N + 1 customers)
at the beginning of the interval and if the departure of a customer causes
the system to transit to state S. 1In other words R(S) ./ t is the third term
in the difference equation and R(S) = V4(oo, S).
~- ‘Departure independence implies that
S Lsllt ;‘;;;;Vafoog S)‘=”=iV3(o§;;S)' and ﬁenée:

UL LTl L Tl »R(S)‘:){,‘Q(OO, S)

Hence the probability that there is a departure in an interval 2t and
that the state of the system at the end of the interval is S is:

R(S) . at . °T1 eee BT = (nat) . Qleo, S) . 0T, ..aTN

Hence at equilibrium, the probability of a departure in an interval at is
independent of the state of the system at the end of the interval. Therefore,
at equilibrium, the probability of a departure in any interval at is Aat
indepéndent of earlier departures. This implies that departures form a

Poisson process.
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APPENDIX B

Lemma: If a system is in detailed local balance then it is an immediate
service system.
Proof: We shall prove this lemma by contradiction. We show that the
assumption of a system in detailed local balance which 1is not an immediate
service system results in a contradiction. It a system is not an immediate
service system then there exists some state S such that the system can enter
S due to a customer enteri&g some station s(i), but the customer in s(i)
does not receive service. Hence the system cannot leave 5 because the
customer in s (i) receives seryice. But a system is in detailed local
balance only if the rate at which it enters a state S due to the arrival
of a customer in station s (i) is equal to the rate at which it leaves S
because the customer in s(i) gets serviced. Hence a system which is not
an immediate service system cannot be in detailed local balance.

More formally, a system which is not an immediate service must have
some case where a customer with service time Ti arrives causing the system

to enter S and where this arriving customer enters gtation s(1) but does
not begin service immediately. Hence
re), N - °

Since the system can transit into S due to the arriving customer we have

Aoo£@) . EA:Q(co, A) . P&, T, 5)> 0

This implies that eqn.(14) cannot be satisfied.
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APPENDIX C

Theorem 3: Consider a single service system described by differential
equation (12). Let the probability demsity function for the service time
-1t
be g(T) =ue! for T Z 0, i.e., exponential. Let the system satisfy the
/

following two conditions when the service time probability density function

B

is g(N):
(1) The system satisfies detailed local balance and
(2) The equilibrium solution is of the form

Qo §) = B« B(Ty) -en 8(TY (15)

where Ps is a function of the set of stationms which are occupied but is
independent of the remaining service times of customers in these statiomns.
Then the system is distribution independent.

Proof: We have d g(T) = -n g (T)
dt /

Substituting (15) in (14) and simplifying we have

-/u,. N +>\‘ZAPa . P, T, 8) =0 (16)

Similarly, substituting (15) in (13) and recalling that

(a) Bi = bi(Tl, ces TN’ 0)

and (b) g(0) =
we have

- W P 422 P .EB(B, S)r, 0 , an
i B, - /

b i, N+1

i
i

Thus if the service time is an exponential random variable and if the
two conditions of the theorem are satisfied eqns (16) and (17) follow.
Note that eqns (16) and (17) are invariant to service distribution.

Now suppose the service time is an arﬁitrary random variable with a

differential distribution. Let the service time have density fu(T) and
-30-
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let the remaining service time from a point of random entry have density
fv(T). We shall show that in this case, edns (16) and (17) imply that

the equilibrium state probabilities are of the form:

= = I
Q(p, S) = PS . fv(Tl) coacs fv(TN) = Ps . { fv(Ti)

.";
i

Multiplying eqn (16) by f (r,) .
u't J#1

fv(Tj)
we have

(-/&' fu(Ti)) - ?V(Tj) * Ps * Ts@), N

j#L

+ N. £,T) :z;Pa ;11 £,) . PA,T,S) = 0

"

Recall that A a(Tl, "”%i’ ey TN) and hence

p . T E£(,)  Recall also d . £ () = -pf ()

Q(9, A)
v 3 at j

Hence eqn (14) is satisfied which in turn implies that for any differentiable

distribution we have

1eave-depart term + enter-arrive term = 0
Muitiplying eqn (17) by TI fv(Ti) and recalling that fV(O) =}Land that
N
Q(eo,B) = B, . I £.(T) . £.(0)
t i i=1 -
we see that equation (13) is satisfied by any differentiable distribution

Hence we have

leave-arrive term + enter-depart term = 0

Hence d Q(oo, S) = leave-depart term + leave-arrive term + enter-arrive term

dt
+ enter-depart term = 0
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APPENDIX D

Theorem 4: If each of the M subsystems which constitute a network are in
local balance when fed with a Poisson source then
(a) the network is in local balance and

(b) the equilibrium probability demsity function for the states of the

network have the product form
M

Qeh, Syp =es S0 = kll q, (5
In particular: qk(Sk) is the equilibrium probability density function
for the kth subsystem when fed with a Poisson source with rate .. Yy
Proof: ILet qk(Sk) be the equilibrium state probability demsity functiom
for the kth subsystem when fed with a Poisson'source with rate ;.. Yy
Then if the kth subsystem is in local balance when fed with a Poisson
source, it is also distribution independent and the following equations
hold:

distribution independence

i B k
ki
local balance
Bk} S + ¥ £ (T
" 3=177k ] J K
=0 (19)

A - PG, T S

Substituting eqn (18) in VA("O,V’) of the network eqns and assuming
M

Qe ) = T qk(Sk) we have
k=1

-32-




§

K \\‘-’ = <) .
k=1
= N. QG y)
M
since E: Yi + Pro " Yo =1
k=1

Hence vz(w,’{) +v4(oo,\1’) = 0

By the same argument

S % Qeo,W B, A)) -
. 3 00, W (Bygs Ad) - Ty i, N+ 1

(i ‘
= N.y, Q0,7 A

{

Substituting in the eqn for V, 3(00, ) we get
*

P8 S‘-) .

(it

Y 3(0s¥) = Zj, 2 N £ W@ P - Qe B L PAGT 4 8
k

M
Recollect y, = \ Yy . P and =1
PIRART Y

M
A ¥
[~ = t*

Hence ngfo »¥) = 43 ) )\yk £ u(Tk j) . Qoo , ¥ (Ak))' P(Ak’ Tkj’ SK)

‘K“ ’ ’
k
Assuming Qe ,\ ) Tq (5,)
u i =
| (¢ ¢
! = S o
T aw) = a6 2 }1 MoV B o, PGB - PAETG 8

Using eqn(19_) we get
J = - T{ (:; ‘ .
Vi, 305 1,6 -2 = GG - T s (), N

=Zd__ Q(CO,‘{) 0 rk’ S(j), Nk
j 2 kj k
Hence Vk, 1(00,'4:) + Vk,B(O(" Jp) =0

Hence the product form of solution satisfied the network local balance

equations, and hence satisfies equilibrium conditions.
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