L/

o

TX |AUSTIV|ES | TR

A VERIFIED PROGRAM VERIFIER

by

Larry Calvin Ragland

May 1973 TR-18

— v
/K 5’5 T3

This work was supported in part by a Nationmal Science Foundation
Traineeship and a National Science Foundatien Grant GJ-36424.

Technical Report No. 18
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

g

i

ABSTRACT

The dissertation describes the construction and verification
of a program which generates the inductive assertion method verification
conditions. The primary emphasis is on the verification of the program
as this represents the first time a verifier has been subjected to a
proof of correctness. The verifier is written in Nucleus and operates
on programs written in Nucleus.

Nucleus is a programming language designed so that all
programs in the language can be subjected to proofs by the inductive
assertion method. This verifier is to be the foundation of a sequence
of verification systems of increasing sophistication, where each system
is used to aid in the verification of the next. The ultimate goal is

a verified system which provides the user a full set of verification

services.

- _ TABLE OF CONTENTS

- CHAPTER Page

1. TINTRODUCTION AND RELATED WORK

.
.
-
.
°
L]
L]
»
.
.
®
L]
L]
-
[aad

I.1. TIntroduction . « & ¢ « o o o o 0 e e e e e s .o

I.2. Related Work . « « o o« o o o o o o o o o o & o o

T.3. Summary of Chapters . . . & « ¢ « o o o o & o o o« o ¢ 5

3 II. THE NUCLEUS LANGUAGE . . « « « o ¢ = o ¢ ¢ o o o o o o o = o 7
II.1. TIntroduction . . « « o o ¢ o o o & o o o 0 . e o o o 7

II.2. Design Goals . . « « o « ¢ o o o o o s s e e 00 e 7

11.3. Informal Description . . . « « « ¢ o o o o ¢ o 2 v 0 8

- II.4. Method of Formal Definition . « . ¢ ¢ « ¢ o o o = « 14
_‘ TT.4.1. SYDEAX .« « + o « o o o o v o s o o o oo . 14
IT1.46.2. Semantics . « + o « o o s o o o o e e s e - 21

III. THE INDUCTIVE ASSERTION METHOD FOR NUCLEUS .+ « o « o o « » « 27

IITI.1. Introduction . « « ¢ o ¢ o o o ¢ o o o 0 @ o o o 0 o 27

III.2. Definitions of Correctmess . . . « « « « = « =« = ° 29

3 II1.3. Definition of Path . « « « o o o o o o o o o o o o« 34
I11.4. Informal Description of a Verification Condition . . 37

III.5. Verification Condition Terms for Partial Correctness. 42

III.6. Verification Conditions for Partial Correctness . . . 55

III.7. Verification Conditions for Total Correctness . . ; . 73

1V. A NUCLEUS VERIFIER AND ITS PROOF . . « « o + o o = o o o o 76

IV.1l. Introductionm . . « + « &+ o o o o o o e e e e e e .. 16

IV.2. MethodOologY + « o o o o o o s o o o = ¢ e o o o o o0 77

IV.3. VERIFY . ¢ o « ¢ o o o o o o o o = o o
IV.4. PARSE . & =« o o o o s o o s e s 00000
IV.5. TRANSNET . .« « « o o » o o o o o & o« =
IV.6. VCGEN . &« ¢ o o o o o o o o o =
IV.7. Proof Profile . « o « o o ¢ o o = o ¢
1v.8. Validity of the Proof . « .« « o o o o o v v 00 © 00 93

V.CONCLUSION...........,...........c.. 95

W

APPENDIX A. TRANSITION NETWORK DEFINITION
APPENDIX B. REDUCED PROGRAM COMPONENTS . . . = « « « ¢« =« = 102
APPENDIX C. "THE NUCLEUS AXIOMS . + « « « « = o « + « = o =+« 104
APPENDIX D. VERIFIER LISTING . o « « o+ = o s oo o000 o 109

. BIBLIOGRAPHY,...‘.......,.‘..,....,'...152

CHAPTER I
INTRODUCTION AND RELATED WORK

I.1. Introduction

Several techniques have been developed for proving the
correctness of computer programs and automatic systems have been built
which implement these techniques. Thus, it is now possible to prove
the correctness of a sizeable class of computer programs. Unfortunately,
a correctness proof which is constructed with the aid of an automatic
verification systeﬁ does not guarantee that the program will always
run properly. First, in order for the proof to be valid,vthe verifica-
tion system must operate correctly. ‘However, even if the program is
absolutely correct, run—timeicorrectness is achieved only if the
intervening software functions properly. Therefore, the second
requirement for a properly running program is a complete set of correct
software.

This research is directed toward the first of these two
requirements, a correct program verifier. The goal of this research
is to construct and verify an inductive assertion method verification
condition generator. This initial verified verifier can then be used
in the verificétion of more sophisticated systems.

The construction and verification of a verification condition
generator requires rigorously defined input and implementation

languages, a sound theoretical development of the concept of verification

condition, and a solid strategy for the construction and proof of the
verifier. The verifier presented here is written in a programming
language called Nucleus (Chapter 11) aﬁd éperates on programs written
in Nucleus. The Nucleus programming language was designed for the

~ specific purpose of facilitating proofs of correctness for computer
programs. The Nucleus verification conditions (Chapter ITII) are
fully defined from the formal definition of the language and are
proved to imply correctness. The proof strategy (Chapter IV) employed <:>
in the verification of the verifier is a unique combination of the

inductive assertion method and equivalence proofs. The portion of the

proof which is based on the inductive assertion method employs an

unproved verification condition generator written in Snobol4 [14]. -

i

I.2. Related Work
The inductive assertion method is one of the more successful
of the current methods for proving the correctness of computer programs.

It consists of attaching predicates to certain key points in the

program and showing that the predicates are true each time execution
reaches the point to which the predicate is attached. Tﬁe basis for

the inductive assertion method was first presented by Floyd [4] with
essentially the same idea presented in a less formal péﬁgr by Naur [11]
“who used the term 'general snapshots; rather than "inductive assertions'.
The formulation used in this study is an extension of the approach
presented by Good [5]. A recent and thorough presentation of the

inductive assertion method is contained in Elspas, et. al. [3]1.

London [10] lists thirteen automatic verification systems of
. various types which have been implemented. Nine of these are classified as
being based on the theoretical foundation presented by Floyd [4], two
systems are based on the axiomatic system of Hoare [8], one is based on
a variation of Floyd's work formulated by Cooper [2], and one is
based on Scott's Logic for Computable Functions (LCF) [12]. All of
j% these systems operate on programs which are already written and restate
' the question of program correctness in terms of a set of verification
conditions.
The first two experimental program proving systems were
built by King {9] and Good [5]. These two systems have more than
. historical significance in that they introduce two basic appfoaches
e to verifier comstruction. King's system isvtotally automatic and
Good's system employs man-machine interaction.
King's program verifier automates the entire inductive
assertion method except for the choice of assertions. It operates on
Z} a subset of Algol which is restricted to integers, however, it does
handle one-dimensional afrays. The assertions are manually supplied
and take the form of extended boolean expressions. The verification
conditions are automatically constructed and an automatic theoren
prover which ﬁses specialized techniques for integers then attempts
to prove the verification conditions. This system has been successfully
used on a number of small, but non-trivial, programs. -

Good's system uses man-machine interaction to complete a

®

i

proof. His system also accepts programs from a subset of Algol. It
does not handle arrays or procedures, but does include declarations.
- The assertions are manually supplied and can be any text string.
Verification conditions are generated automatically, but the proofs
must be manually supplied and can be any text string. The system
performs a variety of services for the user in the forn of elaborate
record keeping. The system keeps track of which assertions need to be .
verified along which paths, allows proofs to be modified, retrieves
assertions or proofs, and gives the complete or partial proof at the end.

All of thé above systems mentioned operate on programs
which are alrea&y Written. Snowdon [13] has built an interactive
system called PEARL (Program Elaboration And Refinement Langu#ge))
which aids in the comstruction of correct programs. PEARL provides the
programmer the capability of constructing and proving the correctness
of a program at a very general level in terms of abstract operations
and data types, and then continually refining it until all operations

and data types are reduced to a set of primitives. The PEARL system

allows compilation, execution, and correctness proofs of programs
which are not completely specified, with the programmer supplying
assistance during execution of incompletely specified operatioms.
The sﬁstem to be described in this thesis does not attempt
to provide as many services for the user as the above systems. This
verifier is not intended to be a highly sophisticated system, but is

to be the first verified verifier in a sequence of systems, with each -

system prbved to be correct and each more sophisticated than the one
pefore. The ultimate goal is a correct verifier which provides the

user a full set of verification services.

1.3. Summary of Chapters

Chapter II introduces the Nucleus programming language.

‘Nucleus is designed for the specific purpose of facilitating proofs

about programs in the language and to facilitate verification of the
Nucleus compiler and verifier. The formal definition of Nucleus in
terms of transition networks and axioms forms the base on which the
formulation of the inductive assertion method for Nucleus programs
and the proof strategy for the verification of a Nucleus verifier
are built. |

Chapter 111 presents the ﬁheoretical foundation for the
verification of Nucleus programs by the inductive assertion method.
Partial and total correctness are defined and for each of these types
of correctness, a set of verification conditicns is defined. The set
of language features covered by these verification conditions includes
input and output operations. The sets of verification conditions are

shown to be sufficient to prove each of the two types of correctness

defined.

Chapter 1V describes the construction, resulting structure,

and verificatidn of a Nucleus program which generates the verificatibn

conditions for Nucleus programs. The proof of this verifier employs

a unique approach to program correctness which combines the inductive

assertion method and equivalence proofs. The resulting verifier
provides a starting point for a sequence of verified verifiers of
increasing sophistication.

Chapter V summarizes the results and findings of this
research and contains suggestions for future efforts related to the

further development of the verifier described in this paper.

CHAPTER II
THE NUCLEUS LANGUAGE

I1.1. Introduction

This chapter presents a brief introduction to the Nucleus
programming language and the method used tb define it formally. The
discussion of Nucleus is included to make the dissertation self-
contained and because of the close relationship between the formal
Nucleus definition'and the proof of the verifier. More detailed

descriptions of Nucleus and the method of definition are contained in

[71.

11.2. Design Goals

Nucleus is designed for the specific purpose of facilitating
proofs about computer programs. This objective is more clearly
defined by the following design goals of Nucleus.

1. Inductive assertion provability. It must be possible to

subject any Nucleus program to a proof of correctness using the
inductive assértion method. Thus, the language provides a mechanism
for stating the inductive assertions and is iimited to features for
which verification conditions can be constructed.)

9. Verifier correctness. It must be possible to construct

and prove the correctness of a verifier which generates verification
conditions for Nucleus programs. ‘In order for proofs constructed with

the aid of a verifier to be valid, the verifier must be known to

operate properly. A verified verifier assures that this condition is met.

3. Compiler correctness. It must be possible to construct

and prove the correctness of a compiler for Nucleus programs. Even
a correct program will not run properly unless it is compiled correctly.

4. Rigorous definition. Both the syntax and semantics of

Nucleus must be completely and rigorously defined. This requirement is
implicit in the previous goals. In order for the verifier, the compiler,

and other programs to be proved, the language must be completely specified.

I1.3. Informal Description
Nucleus is a simple language, however, it does.contain

features which make it non-trivial. It contains input and output
operations, parameterless procedures, one-dimensional arrays, a multi-
way branch, and a built-in mechanism for stating assertions directly
within programs.
Programs. The form of a Nucleus program is:

declarations

procedures

START identifier
The declarations define the global simple variables and arrays of the
program. All variables are global and must be declaredﬂto be of type
INTEGER, BOOLEAN, or CHARACTER. Arrays have only one subscript with a
lower bound of zero and an upper bound declared to be any non-negative
integer constant. There may be an& number of procedures.and the
identifier following START is the name of the procedure where execution

begins.

o

Procedures. The form of a procedure is

PROCEDURE identifier ;

body

EXIT ;
Procedures may be recursive but have neither parameters nor local
variables. Parameterless procedures gvoid the problem of parameter

passage and represents one of the major temporary concessions for the

W

sake of simplicity of inductive assertion proofs.
Bodies. A body is a sequence of statements and assertioms, each of
which is terminatéd by a semicolon. Assertions are made up of the
reserved word, ASSERT, followed by any text not containing a semi-
} colon. Statemenﬁs may be labelled by any number of label identifiers.
FEach label is followed by a colon and is local to the procedure in
which it appears. The Nucleus statements are described below.
Assignment. leffside := expression.

The leftside can be any variable or array reference and the
:} data type qf leftside must match the data type of expression.
Go to. GO TO identifier.

The identifier must be the label of a statement in the
procedure in which the go to appears. —

If. TIF booleén expression THEN body FI
IF boolean expression THEN body ELSE body FI

The if statement is of the usual form except for the inclusion
of "body" where a statement generally appears in other languages.

While. WHILE boolean expression DO body ELIHW.

10

The while statement is the usual loop control statement,
again with "body'" where a statement usually occurs.

Case. CASE integer expression OF alternatives ESAC
CASE integer expression OF alternatives ELSE body ESAC

‘The case statement is the Nucleus multi-way branch mechanism.
The alternatives are bodies which are preceded by numeric labels. When
a case statement is encountered during.execution, the integer expression
is evaluated. If this valﬁe matches a numeric label of a body in the
alternatives, then control passes to that body. If the value does
not match a numeric label, then control passes to the next statement
after the case for the first form and to the body following ELSE for
the second form of the case statement. From the end of an alternative,
control passes to the next statement after the case.
Read. READ array

The array of the read statement must be a type character
array. The read statement accesses the standard input file which is
composed of a sequence of records numbered l,Z,.... Each record is
either'an end-of-file (eof) record or consists of a sequence of n
Nucleus characters (n is the same for all records). The record size
n is one of the implementation parameters of Nucleus. Iﬁat is, a
specific value for n is not specified in the formal definition, but
rather it is left open to be specified by each particular implementation
of Nucleus. At the beginning of program execution, an input record

pointer is set to zero and execution of a read statement then proceeds

as follows.

11

1. The input record pointer is increased by one to a value
of, say, p-

2. 1If record p is an eof record, the character T is
placed in array[0] and the remainder of the array is
unchanged.

3. 1If record p is nmot an eof record, the character "F" is
placed in array[0] and character i1 of record p is placed
into array{i] for all i such that 1 < i < min (array
bound, record size). The remainder of the array, if any,
is left unchanged. '

Write. WRITE array

The write statement is closely related in behavior to the
rgad statement. Again the array must be a type character array. The
write statement accesses a standard output file similar in structure
to the input file, but with possibly a different record size. At the
beginning of program execution, an output record pointer is set to
zero, and execution of a write statement then proceeds as follows.

1. The output pointer is increased by one to a value of,
say, pP.

2. 1If array[0] contains the character "T"_ then record p
becomes an eof record.

3. 1If array[0] does not contain the character "T", then
character i of record p becomes the character in array[i]
for all i such that 1 £ i < min (array bound, record size).
The rest of the characters in the record, if any,
become blanks. -

Enter. ENTER identifier
This is a recursive call of the procedure named identifier.
Return. RETURN

The return statement causes a jump to the end of the procedure

in which it occurs.

12

Null. NOP
The null statement causes a jump to the next statement in
sequence.

Halt. HALT

The halt statement causes immediate termination of the
program execution.
Expressions.

Expressions are built from primaries in the usual way. The
operators that are available are given in Table II.1, and each

operator may be applied only to operands of the appropriate type. The

TABLE II.1

Nucleus Expression Operations

Operator Priority Operand Type
unary+,- 1 INTEGER
*_/,¥(modulo) 2 INTEGER
binary+,~- 3 INTEGER
<,5,>,2,=,¢ 4 see below
= 5 BOOLEAN
A 6 BOOLEAN
v 7 BOOLEAN

relational operations may be applied to operands of any type, provided
both operands are of the same type. If opefands of type boolean or
character are used, the transfer function to type integer is applied
automatically.

If an expression would evaluate to a value v such that the

implementation parameter inrange(v) = false, then the value of the

e

13

expression becomes undefined (Axioms 22-27). The expression also
becomes undefined upon divide or modulo by zero (Axioms 26, 27).
Primaries.

A primary may be a constant (a NUMBER, TRUE, FALSE, or
CHARACTERCONSTANT token), a simple variable, an array reference, an
expression enclosed in parentheses, or the application of one of the
type transfer functions,_INTEGER, BOOLEAN, or CHARACTER. 1In an array
reference, IDENTIFIER [expression], if the expression falls outside the
array bounds, the value of the array reference is undefined (Axiom 11).
The type transfer functions have as an argument an expression of any
type. The functions for transfers between all possible pairs of
© types are given in Appendix Cf

The following example of a Nucleus program illustrates the
program structure, the form of assertions, and several types of
statements. This program sums the absolute values of the first N
elements of array A and places this value in SUM. The main procedﬁre
is ADD which does the summation and calls procedure ABS to set element
I of array A to its absolute value. This example will be called the
ADD example when referenced in later sections.

INTEGER I,N,SUM;
INTEGER ARRAY A[100];

PROCEDURE ADD;

ASSERT 0 < N.0 < 1003

SUM:=0;

1:=0;

ASSERT X 2 1 ~ A[X]=A.O{X]; :

ASSERT SUM=TOTAL X=0 TO I-1 OF ABS(A.O[X1);
ASSERT N=N.O;

14

ASSERT 0 < I < N+1;
WHILE I < N DO
ENTER ABS;
SUM:=SUM+A{[1];
I:=141;
ELIHW;
ASSERT SUM=TOTAL X=0 TO N.0 OF ABS(A.0[X]);
EXIT;

PROCEDURE ABS;
ASSERT 0 < 1.0 < N.O;
IF A[I]1 < O :
THEN A[I]:=-A[1];
FI; .
ASSERT A[I.0]=ABS(A.0[I.0]);
ASSERT X#I1.0 -+ A[X]=A.0[X];
EXIT;

START ADD

IT1.4. Method of Formal Definition

The formal definition of Nucléus consists of two components,
syntax and semantics. The syntax of Nucleus is a set of rules that
determine whether or not any given character string is a Nucleus
program. For any string of characters which is a legal program, tﬁe
semantics of Nucleus specify the executions of that program. The
formal definition uses transition networks, Woods [15], to define

the syntax, and transition networks and axioms, Burstall [1l], to

define semantics. The choice of these mechanisms was strongly influenced

by the goals of proving the Nucleus verifier.

II.4.1. Syntax

The definition of the Nucleus syntax consists of two distinct

‘transition networks, a scanning network and a parsing network. The

15

g scanning network reads the input string of Nucleus characters and
groups these together to form the input string of Nucleus tokens for
- the parsing network.
The transition networks employed in the definition of
Nucleus are a modified form of the "augmented tramsition network

grammars" described by Woods [15] for dealing with natural languages.

These networks are based on finite state transition diagrams. The

W

language defined by the grammar is the set of strings accepted by the

network. This amounts to defining the language by defining its

recognizer and provides two significant advantages in proving the

recognizer component of the Nucleus verifier. First, the transition

networks define completely the Nucleus syntax, including such restrictions

Ry as no identifier may be declared more than once, and + may only be

applied to expressions of type integer. Second, since the transition
networks specify explicitly a recognition procedure, the correctness of
the recognizer component of the verifier can be stated in terms of an

3 ’ equivalence with the transition networks. This greatly simplifies the
proof of the recognizer.

The networks employed in the Nucleus definition are simpler
in operation than the ones described by Woods for two reasons. First,
we do not need all of the features that are necessary to cope with
natural languages. For example, these networks have no backtracking
‘mechanism. Second, the Nucleus networks are sufficiently simple so

- that their operation can be defined by a set of simple axioms. These

16

axioms are another important advantage in proving the recognizer
component of the verifier. The axlomatic description of the transition
networks appears in Appendix A. The remainder of this section gives an
informal description of the transition networks and their operation.

A transition network is a directed graph with labelled nodes
and arcs. The labelled nodes make uplthe set of states. One state is
designated as the initial state, and some set of states is specified
as the set of recognition states. The network also has associated with
it a return stack for saving arcs, an input string, an input pointer,
and a set of registers. The registers form the memory for the network.
They contain values that can be manipulated and tested during the
operation of the ﬁetwork. Each arc in the network is labelled with
either an input string character, nil, or the name of some state.

Each arc also has associated with it a test, a set of actions, and
a scan flag. The test is a condition defined on the registers, and the
actions are sequences of assignment operations on the registers.

The operation of the network begins at the initial state
with the input pointer pointing to the first character of the input
string and the return stack empty and proceeds as follows for any
state that is attained. First, the arcs leaving the state are examined
to find a traversable arc. To determine a traversable arc, all arcs
labelled with input string characters are considered first. If the
character labelling the arc maﬁches the character pointed to by the

input pointer and the test associated with the arc is satisfied, then

17

the arc is traversable. If there are no traversable arcs labelled with
input characters, arcs labelled with "nil" are considered next. An
arc labelled with "nil" is traversable if its test is satisfied. 1If
still no traversable arc is found, then state-labelled arcs are
considered. In the Nucleus networks there is at most one such arc
leaving any state., This arc 1s saved on the return stack and the next
state attained is the state used to label the arc. If the network
proceeds from that state to a recognition state, the arc on the top of
the return stack is reconsidered and is traversable 1if its test is
satisfied. If so,’it is removed from the stack. 1In order to be
certain that each state can have at most one traversable arc, the
following restrictions are imposed on the network.
Two arcs leaving a state may have the same label only
e if their associated tests can never be satisfied

simultaneously.

A state may have at most one state-labelled arc leaving
that state.

°
Once the traversable arc is determined, the actions associated

with that arc are performed. If the scan flag for the arc is set,

the input pointer is advanced to the next character on the input

string and the next state attained is the state entered by the travers-

able arc. If a state has no traversable arc and is ajfecognition

state, then the arc at the top of the return stack is reconsidered as

mentioned above. An empty stack determines acceptance in the language

of the part of the input string preceding the input pointer. 1If a

state has no traversable arc and is not a recogniticn state, then the

18

input string is rejected as a sentence in the language.
One additional restriction is placed on the network.

A recognition state may not have a state-labelled arc
leaving that state.

With this restriction, and the fact that every state has at most one
traversable arc, we can always make the proper transition or termination
decision from any state without any further scanning, either looking
ahead or backtracking.

As an example, consider the opening segment of the Nucleus
parsing network in Figure II.l. This segment establishes the form of
Nucleus programs. This example does not contain multiple arcs from a
state, but does illustrate most of the othér features of transition
networks. Arc labels "START" and "IDENTIFIER" are input characters
‘with respect to the parsing network, while "declarations" and
"procedures” are state names which appear in network segments not
shown. Any missing tests are assumed to be identically "true'" and any
missing actions are the identity assignment; State "program'" is the
designated initial state of the Nucleus parsing network and state 5 is
a recognition state.

Traversal of the parsing network begins at state "program"
wiﬁh the return stack empty. The only outgoing arc is-labelled "nil"
with no test aﬁd is thus traversable. The fifst action, which initializes
several of the network registers to the empty set, is now performed.
fhe scan flag is set to "NOSCAN" so the input pointer is not advanced,

and the network next attains state 1. The arc leaving state 1 is

™

19

< program ,

nil

DEFINED.SIMPLE.SET := {}
DEFINED.ARRAY.SET := {}
TYPE.FUNCTION := {}
DEFINED.PROCEDURE.SET := {}
REFERENCED.PROCEDURE.SET := {}
DEFINED.IDENTIFIER.SET := {}
NOSCAN

®

declarations
NOSCAN

Erocedures
REFERENCED.PROCEDURE.SET = DEFINED.PROCEDURE.SET
NOSCAN

START
SCAN

IDENTIFIER
TOKEN.STRING € DEFINED.PROCEDURE.SET
NOSCAN

FIGURE II.1. The Opening Segment of the Nucleus Parsing Network

20

labelled with a state name so this arc is placed on the return stack
and operation proceeds to the state labelled "declaratioms”. If a
recognition state is then reached, the arc from state 1 to state 2,
which is on top of the stack, will be traversable and state 2 is
attained. The input pointer will have been advanced to the character
beyond the declarations. In the same manner, the network looks for
the procedures by beginning operation ét the state labelled "procedures”.
1f the procedures are found, then the test on the arc leaving state 2
requires that all procedures referenced in a procedure call must be
defined procedures. The network now looks for input characters 'START"
Aand "IDENTIFIER". TOKEN.STRING is a register containing the actual
input character string constituting the IDENTIFIER, so the test requires
that the IDENTI?IER name some defined procedure. The input string then
is recognized when the network attains recognition state 5 with the
stack empty.

As described in [7] the definition of the Nucleus syntax
actually involves two separate networks, a scanner and a parser. These
cooperate in passing scanned tokens from the scanner to the parser.

The input string for the scanner is the actual string of characters

-

which constitutes the Nucleus program. Thus, characterf}abelled arcs
in the scanner are labelled with members of the basic Nucleus character
set and end-of-file, and the scan flag controls the actual advance of
the input string.

The operation of the scanner defines and leaves values in two

special registers, TOKEN and TOKEN.STRING. TOKEN specifies the type

“h,\,

21

of Nucleus token recognized, such as an identifier, and TOKEN.STRING
contains the actual string of characters making up that token, such

as the name of an identifier. These two registers are available to

the parser on a read-only basis. There is no inputistring as such for
the parser. Instead, the parser matches character-labelled arcs
against the TOKEN register rather than against the actual input string.
(Character-labelled arcs in the parser are labelled with tokens such

as "IDENTIFIER" and "IF" while arcs in the scanner are labelled with
the actual individual characters in the input string such as "X" and
"y'".) The scan network is initiated first to define initial values

for the TOKEN and TOKEN.STRING registers. Then the parser is initiated,
and thereafter tﬁe scan flag of the parser controls the initiation of
the scanning network. When the parser requests a scan, the scanner is
initiated to define the next values of the TOKEN and TOKEN.STRING. The
Nucleus tokens are defined so that the scanner always will recognize a

token at the head of any string of Nucleus characters.

11.4.2. Semantics

The semantics of Nucleus are defined by the axiomatic method
described by Burstall [1]. First, we define a transformation from
programs into sentences in the predicate calculus. Thié transformation

will be called the semantic mapping and the set of §redicate calculus

sentences produced will be called the reduced program. Then we define

a set of axioms such that the execution of any Nucleus program on any

input can be deduced from its reduced program and the axioms.

22

In the Nucleus definition, the tramsition network which
defines the syntax also defines the semantic mapping. The Nucleus
program is a character string, and each predicate calculus sentence in
the reduced program is also a character string. Thus, the transformation
is from one string into a set of strings. The Nucleus parsing network
defines the semantic mapping through the use of a special action called
SENTENCE. The action SENTENCE(x) defines the character string x to be
a sentence in the reduced program. Thus, the parsing network not only

defines the reduced program, but also gives a procedure for constructing

it. The predicates which are used in forming the reduced program are
listed and defined in Appendix B. The following example illustrates

‘the reduced program for the ADD example given earlier. The assertions
do not appear in the reduced program and are omitted from the example.

The left column contains the original Nucleus program and the right

column contains the resulting reduced program.

Nucleus Program Reduced Program

INTEGER I,N,SUM; ’ SIMPLE(I)
SIMPLE (N)
SIMPLE (SUM)

INTEGER ARRAY A[100]; ARRAY (A,100)

PROCEDURE ADD;

SUM:=0; ASSIGN(ADD:0,SUM,0)

1:=0; ‘ ASSIGN(ADD:1,1,0)

WHILE I < N DO IF(ADD:2,(I) £ (N),3,7)
ENTER ABS; ENTER(ADD:3,ABS)
SUM:=SUM+A[1]; ASSIGN(ADD:4,SUM, (SUM)+(A[I]))
T:=1+1; . ASSIGN(ADD:5,1,(I)+(1))

ELIHW; JUMPTO (ADD:6,2)

EXIT; EXIT(ADD:7)
: EXITPOINT (ADD)=7
PROCEDURE ABS; :

N N

23
IF A[1] < O IF(ABS:0, (A[I]1) < (0),1,2)
THEN A[I] := -A[I]; ASSIGN(ABS:1,A[1],-(A[TI]))
FI1;
EXIT; EXIT(ABS:2)
EXITPOINT (ABS)=2
START ADD INITIALPROCEDURE=ADD

The Nucleus axioms are based directly on the concept of

state vectors. A state vector, S, is a function from some name space

NS into some value space VS. Each member (n,v) of S is a cell, n being
the name of the cell and v its value. Thus, S(n) is the value in

state vector S of the cell whose name is n. The execution of a Nucleus

pfogram is defined as a sequence of state vectors SO’Sl’SZ"" . This

sequence can be regarded as a function E from the non-negative integers
into state-vectors (E[i]=Si). Thus, E[i](n) is the value of’the cell
whose name is n in the i~-th state vector of the program execution. The
axioms define the execution of a program by defining the function E and
are listed in Appendix C.

There are three classes of axioms in the Nucleus definition,
declaratives, evaluatives, and imperatives. The declarative axioms
define the name space of the state vectors in the execution of a program,
the evaluative axioms describe the evaluation of expressions on an
arbitrary state vector, E[i], and the imperatives define the execution
sequence by séecifying E[i+1] in terms of E[i] and by defining the
termination conditions.

In Nucleus, every state vector in every program has the same

value space. This value space consists of the union of a number of

y

24

disjoint sets: the set of integers, the set of boolean values, true
and false, the 64 basic characters of Nucleus, and the set of character
strings of the form I:D where I is an identifier and D is a digit
string. The value space also contains an undefined element, U, which
is distinguishable from every other element in the set. Since the
value space is the same for all programs; it is not defined by the

axioms.

Each Nucleus prégram has an associated name space which
serves as the name space for every state vector in the execution of
that program. The elements of this name space are character strings
defined by the declarative axioms. In addition to the undefined

element, U, the name space of every program contains the elements :LOC, ~

"tLVL, :RDHD, :WIHD, :RTINPT[0],..., :RINPT[maxstacksize]. The colons

are included in these names to avoid confusion with the declared
variables for the program. The names represent the location counter,
return stack level, read record pointer, write record pointer, and

return stack. The quantity "maxstacksize" is another of the Nucleus

implementation parameters.

Table I1.2 gives a sample execution sequence for the ADD
example that sums the absolute values of array A. The gqlumn on the
left lists the name space for the program execution, listing the special
names which are in every name space first and the declared names last.
Each column on the right is a state vector. The initial state vector

E[0] has a value of :LOC which corresponds to point. zero of the initial

-

25

A ¢ ¢ .))) ¢ ¢) ¢) [ooT]V
{ H i H { l H ¢ { l l ¢ [1lv
S < S S S S ¢- §= G- G- &= G- | olv
g S S S 0 0 0 0 0 0 0 i . Was -
0 0 0 0 0 0 0 0 0 0 0 0 N
1 T 1 0 0 0 0 0 0 0 ! { 1
¢) ¢) ¢) i) ¢ ¢ K i [ezTsyovIsxPu] LINIH:
A) 2 3 ¢ 2 A A 2) ¢ ¢ [Tlranzy:
»1QQV %:QQV #:0aV %:QaQV ¥:QQV yiaav v:aav viaavoo d i é H [olzanzy:
0 0 0 0 0 0 0 0 0 0 0 0 O @IM:
0 0 0 0 0 0 0o 0 0 0 0 0 | QH@Y
- - - 1 1= 0 0 0 - 1= I- 1I- : TATS
[0V g:QQV 9:QAV §:QQV :QaV giSEV T:SAV 0:SUV €:QAV Z:QaV T:ddV 0¢dav 00T:

[t1]z [o1l= [el3 (8l [cla [9la [sla [(#1z [elz [elz ([tlz [olz

a1duexy aav mnu 103 @ouenbag 103094 2381S a1dwusg

A

¢ 11 4748Vl

1} v
s s

; s

26

procedure (Axiom 17), :LVL = -1 (Axiom 18), :RDHD = 0 (Axiom 19), and
.WTHD = O (Axiom 20). For simplicity in this example it is assumed
that the values of N and A[0] are initially O and -5. Since the
statement ASSIGN(ADD:0,SUM,0) appears in the reduced program and since
E[0](:LOC)=ADD:0 then by Axiom 48 we get E[1](:LOC)= ADD:1, E[1](SUM)=0
and for all other names, x, E[{1](x)=E[0](x). Execution terminates

at state vector E[11] since.EXIT(ADD:7j is in the reduced program and

E[11] (:LOC)=ADD:7 (see Axiom 51).

.“’W

CHAPTER IIT
THE INDUCTIVE ASSERTION METHOD FOR NUCLEUS

111.1. Introduction
This chapter presents the theoretical basis for the verifica-
tion of Nucleus programs by the inductive assertion method. TFirst, we
} define what is meant by partial and total correctness of a Nucleus
program and then, for each of these types of correctness, we define a
set of verification conditions which are sufficient to prove correctness.
This presentation of correctness includes several unique
features.
‘ ‘ v 1. Input and output operations are incluﬁed in tﬁe set of
B language features for which verification conditions are defined. The
addition of input and output operations significantly expands the set
of possible programs to which the inductive asseftion method can be
applied.
j§ 2. The validity of the verification conditions is proved
from the formal axiomatic definition of Nucleus. The proof demonstrates
‘that the verification conditions defined are sufficient to prove
correctness qf Nucleus programs. . T
3. Two sets of verifications conditions are defined, one
set for partial correctness proofs and another éet for total correctness
proofs. The two types of correctness involve different treatments of

termination. This difference is reflected in the verification conditions.

28

Conditions which result in termination of execution are explicitly
treated in the verification conditions.

4. A mechanism for dealing with termination proofs is
built into the verification condition definitions. The variable :STEP
is treated as a counter for the number of steps in an execution and can
be referenced in assertioms.

5. A distinction is made between two kinds of termination.
Termination which results from execution of a halt or exit is termed
normal, and termination which results from an error condition such as
division by zero is termed abnormal.

6. The assertions and verification conditions provide for
explicit treatment of the set of system variables. Thus, the assertions
may reference such system variables as the location counter, :LOC, and
return point stack level, :LVL.

The inductive assertion method consists of attaching predicates
to certain key points in the program and showing that the predicates
are true each time execution reaches the point to which the predicate
is attached. Section III.Z describes how these predicates (asserticns)
are associated with program points and how the statement of correctness
is made via the initial assumption and desired result. Partial aqd total
correctness are defined in terms of the initial assumption, the desired
result, and normal termination. In Section III.3, the concept of a
path is developed and a correspondence between points along a path

and sequences of state vectors is formulated. Section II1.4 gives

29

an informal description of verification conditions including an
example of a verification condition. In Section III.5, a set of
verification condition terms for partial correctness is defined for
each reduced program statement. In Section I1I.6, these terms are
used to define verification conditions for use in partial correctness
proofs and the validity of these verification conditions is proved.
Section III.7 discusses a set of verification conditioms sufficient

to prove total correctness.

1I1.2. Definitions of Correctness

The correctness of Nucleus programs is defined in terms of a
relationship between initial and final values of the elements of the
state vector. Partial correctness, with réspect to a given initial
assumption and desired result, can be informally stated as, "1f the
initial state vector satisfies the initial assumption and if the
program te;minates normally, then the final state vector satisfies the

13

desired result." Total correctness is the condition, "If the initial

state vector satisfies the initial assumption, then the program terminates

“normally and the final state vector satisfies the desired result."”

We will now define a series of terms which leads up to the
formal definition of partial and total correctness.wwAs indicated in
Chapter II, the Nucleus axioms define a state vector sequence E[0],E[1],
E[2],... for any Nucleus program. We will use the term execution

procedure of E[i] to refer to PNAME(E{i](:LOC)) where the function

PNAME is defined in Axiom 45. 1f E[1]1(:L0OC)=P:Q then the execution

30

procedure of E[i] is procedure P.
The following two terms are used extensively throughout
the remaining definitions and theorems so a thorough understanding of

them is essential. The terms entry(i) and exit(i) denote functioms

from one state vector index to another. They are defined so that the
state vector Ef[entry(i)] is at the entry to the execution procedure of

E[i] and if the procedure reaches its exit point, Elexit(i)] is the

state vector at exit. For any given state vector sequence, we define

0 if E[i]J(:LVL) = -1

entry(i) = A
max {j|§ < 1 4 ENTER(E[j-11(:LOC),PNAME(E[1](:10C)))
A E[1]CGLVL)=E[3] (:LVL)} otherwise
min {j]§ 2 1 EXIT(E[§1(:LOC)) o E[1](:LVL)=E[3](:LVE)}
.o _ if the set is not empty
exit(i) =

H

-

undefined otherwise

In the definition of entry(i), the first line defines entry to the

initial procedure to be at state vector zero. The term "j < i" in the

second line requires that state vector Efentry(i)] occurs before E[i]

or is E[i] itself. The next term requires that E[entry(i)] is a state
vector immediately following a call of the current execution procedure
and the last term requires E[entry(i)] to be at the same level as E[i].
The "max" operator makes certain that Elentry(i)] is defined at the
most recent entry to the current execution procedure at this level.
"

Consider now the definition of exit(i). The term "j > i

indicates that E[exit({i)], if it exists, occurs after E[i] or is E[i] -

31

itself. The next two terms require the exit state vector to occur at
an exit from fhe current level. The "min" operator assures that this
is the next such exit. The exit state vector is not defined if the
execution procedure does not attain its exit point. In the ADD example,
entry(6) = 4, entry(&) = 4, exit(1l) = 11, and exit(6) = 6.

A state vector sequence in yhich all state vectors have the

same entry state vector will be termed in execution sequence for their

common execution procedure. For example, the sequence E[0],E[1],E[2],
E[3],E[7],E[8],E[9],E[lO],E[ll] from the ADD example is an execution
sequence for procedure ADD. The gaps in execution sequences correspond
to the execution sequences of called procedures. Since every state
vector has an :gi;‘state vector, then every state vector in a program
exécution appears in an execution sequence cf some procedure. This
property plays an essential role in the proof of the validity of the
verification conditions.

We distinguish between two typeé of termination of Nucleus
programs. When program execution terminates as a result of reaching
the exit point of the initial procedure with the return stack empty

(Axiom 51) or by executing a halt statement (Axiom 52), the termination

will be referred to as normal termination, and we define predicate NT (n)

to be true iff normal termination occurs at state vector E{nl. ALl

other termination is called abnormal termination. Abnormal termination

is caused by the occurrence of an undefined value in evaluating an

expression in any statement (Axioms 48-50,53). Undefined values result

K

32

from division or modulo by zero, array subscript out of bounds
(including return point stack overflow), or integer out of range.

The set of assertion variables for a Nucleus program is the

set of strings {x|SIMPLE(x) v ARRAY(x,b)} U {:STEP}. 1In the definitions
and theorems which follow, X will denote a vector whose components are
all the elements in the set of assertion variables. The symbol X.0

will refer to the same vector except with each variable name followed

by " 0". The notation E[i](X) refers to the vector of the values of

the elements of X at state vector i. If X = (X1,X2,...,Xj) then E[1](X) =

(E[i](Xl),E{i](XZ),...,E[i](Xj)) where if Xk is array name A with bound

b then E[1](Xk) = E[1]1(A) = E[1](A[OD]),E[1]1(A[1]),...,E[1](A[b]). The

value of E[i](X.0) is Elentry(i)]1(X). ’)
We will allow a predicate of the form B(X.0,X) to be associated ?-

with any state vector E[i]. The value of B(X.0,X) at E[i] is denoted

E[1](B(X.0,X)) and is defined by E[i](B(X.0,X)) = B(E[1i](X.0),E[i](X)) =

B(E[entry(i)](X),E[1]1(X)). For example, if B(X.0,X) is the predicate

NUM < NUM.O where NUM is an assertion variable, then the value of

B(X.0,X) at state vector E[i] is the value of the predicate E[i](NUM) <
Eflentry(i)] (NUM).

We may also associate predicates of the form B(X.0,X) with
points in the reduced program. A predicate associated with a reduced
program point is called an assertion and the point is said to be tagged.
If assertion B(X.0,X) is associated with point P:Q then "tag[P:Q](X.0,X)"

will denote B(X.0,X). All entry, exit, and halt points are assumed to

33

be tagged. 1If no assertion is explicitly specified, then the assertion
"TRUE" is assumed.

The mechanism for stating the initial assumption and desired
result of a program is now deseribed in terms of assertionms. The
program assertion at point zero of the initial procedure is taken to

be the initial assumption of the program and is denoted A{X.0,X). The

disjunction of the assertion at the exit point of the initial procedure
and the assertions at all halt statements in all procedures is taken

to be the desired result of the program and is denoted R(X.0,X). For

example, if the exit point of the initial procedure is tagged with
assertion B(X.0,X) and if there are j halt statements tagged with
assertions.Hl(X.O,X),...,Hj(X.O,X), thén R(X.0,X) is B(X.0,X) v H1({(X.0,X)
v ...v Hj(X.0,X). Note that if any of these assertions is satisfied,
then R(X.0,X) is satisfied.

Precise meaning is now given to the terms partial and total

correctness. A program is partially correct with respect to initial

assumption A(X.0,X) and desired result R(X.0,X) if for all executions

of the program, E[0](A(X.0,X)) & NT (n) + E[n](R(X.0,X)). As mentioned
earlier, partial correctness can be informally stated as, "If the
initial state vector satisfies the initial assumption‘aﬁd if the program
terminates normally, then the final state vector satisfies the desired
result."”

A program is totally correct with respect to initial assumption

A(X.0,X) and desired result R(X.0,X) if for all executions of the program,

34

E[0]1(A(X.0,X)) = In[NT(n) Ao E[n](R(X.0,X))].
Total correctness is the condition, "If the initial state vector
satisfies the initial assumption, then the program terminates normally

and the final state vector satisfies the desired result."

I11.3. Definition of Path
In this section we define the concept of a path from one

tagged point to the next. In later sections, the method of constructing

a verification condition for each path is described and it is shown
that the verification condition is sufficient to prove that whenever
tﬁe tagged point at the front of the path is reached with its assertion
satisfied and execution proceeds along the path, then the assertion at -
the end of the path is satisfied when its tagged point is reached.

The set of all strings of the form P:Q, where P names a defined

procedure and Q is a point in procedure P, is the set of control points

for the reduced program. Control points are the elements on which we

define the concept of a path. The set of all successors for a control

point P:Ql is defined in Table III.1. 1If the reduced program contains
the instruction on the left then the set of successors is given at the
fight,

Table III.1 introduces a notational conventid; which serves
as a grouping symbol for strings. Any string of characters which is
underlined is to be evaluated before being concatenated to the rest

of the string. Thus, P:Ql+l means concatenate "P:" and the value of

Ql+1.

@V

instruction successors

ASSIGN(P:Q1,N,V) {p:qQi+1}

CASE(P:Ql,EXP,L) ' {P:POINTLABELLEDWITH(W) |W €
CASELABELSET(P:Q1)} uU {P:L}

ENTER(P:Q1,C) {P:Qi+1}

EXIT(P:Ql) {1

HALT (P:Q1) {VY

IF(P:Ql,EXP,T,F) {P:T,P:F}

JUMPTO(P:Q1,N) {p:N}

READ(P:Q1,A) {p:Q1+1}

WRITE (P:Q1,A) {P:Q1+1}

TABLE IITI.1 Definition of Control Point Successors

Note the relatiocnship between successive points and successive
values of :LOC in the execution sequence of a procedure. IF E[i](:LOC) =
P:Ql then for all statements except an enter statement, E[i+l] is the
next state vector in the procedure execution sequence and E[i+1](:L0C)

is a successor of P:Ql (see Axioms 48-58). TFor the enter statement,

the top of the return point stack in state vector E[i+l] is P:Ql+1

(Axiom 50) which means that the value of :LOC upon exit from the called
procedure will be P:Ql+l (Axiom 51). The state vectbé following the
exit from the called procedure is the successor of E{i] in the

execution sequence and its value of :LOC is a successor of P:Ql.
Therefore, the successor relationship between contrql points corresponds

to the order in which they can occur as values of :LOC within a

36

procedure execution sequence.
Control point sequence P:Ql,...,P:Qr is a path iff P:Qi+l
is a successor of P:Qi for i = 1,...,r-1, P:Ql and P:Qr are both
tagged, and no other points in the sequence are tagged. A path will
sometimes be denoted (Ql,...,Qr) if the procedure is clear from context.
If a program execution terminates normally, then the state
vectors in a procedure execution sequence which ends with the execution
of an exit or halt can be divided into sequences of state vectors
whose :LOC values form paths. The last state vector in one sequence
will be the first state vector in the next sequence. Each such state
vector sequence is said to correspond to the path formed by its :LOC
values. The only execution sequences not included asbove are those whose
last state vector occurs at a call of a procedure which leads to
termination at a halt without returning. These procedure execution
sequences can be divided into sequences which correspond to paths and
one sequence which corresponds to the front of the path which was
interrupted by the procedure call. If we define the front portion of

a path through a procedure call to be a procedure entry path then any

procedure execution sequence can be divided into a series of sequences
which correspond to paths and possibly one more sequence which corresponds
to a proceduré entry path. The state vector sequence E[2],E[3],E[7],
E[8],E[9],E[10] corresponds to path (2,3,4,5,6,2) in procedure ADD of

the ADD example and the sequence E[2],E[3] corresponds to procedure

entry path (2,3) in the same example. Notice that there may be several

37

procedure entry paths in a single path and the same procedure entry
path may head several different paths.

A program is said to be properly tagged if all paths are

finite in length, that is if all loops conﬁain at least one tagged
point. This is clearly always possible since tagging all points
breaks all loops. Recall that all entry, exit, and halt points are
assumed to be tagged, and if no assertion is explicitly specified for
these points, then the assertion "TRUE" is assumed.

For an arbitrary properly tagged program, we have a potentially
infinite set of possible executions and we have a finite set of paths
and procedure ehtry paths. Since each éxecution can be broken down into
sequences which correspond to paths and procedure entry paths, we now
have a mechanism for reducing proofs about a potentially infinite set
of executions to proofs about a finite set of paths and procedure

entry paths.

I1I.4. Informal Description of a Verification Condition

The verification condition for each path is a conjecture
constructed in a way such that the verification condition is sufficient
.to prove that whenever the tagged point at the front of the path is
reached with its assertion satisfied and execution éfoceeds along the
path, then the assertion at the end of the path is satisfied when its
tagged point is reached. The verification condition also requires
that all procédures called along the path are entered with their

{nitial assertion satisfied. Thus, the verification condition is also

38

sufficient to prove that for any of its procedure entry paths, whenever
the tagged point at the front of the procedure entry path is reached
with its assertion satisfied and execution proceeds along the procedure
entry path, then the procedure called at the end of the procedure

entry path is entered with its initial assertion satisfied. Since any
executién can be broken down into paths and procedure entry paths,

then proof of the set of all verification conditions is sufficient to

prove that if the initiél assumption is satisfied at state vector

zero, then each assertion is satisfied each time its tagged point is

reached during execution. Thus, if the program terminates normally,

the assertion at the final state vector is satisfied and the program

is partially correct. ‘ -
The following verification condition example is presented -)

as a preview to clarify the later definitions. The example program

(which will be called the DIV example) contains a single procedure

which performs division by repeated subtraction. The initial value

of N is some non-negative integer and D is a positive integer. The

procedure places the integer-valued quotient of N and D in Q and the
remainder in R. 1In the assertions, variable names with a suffix of
".0" are references to initial values. The numbers in parentheses

at the left are not part of the program, but are provided to show

the correspondence betweén points in the Nucleus program and points in
the reduced program.

The tagged points in this program are 0,1, and 6 and the paths

P .
are (0,1),(1,2,3,4,1), and (1,5,6). The verification condition for : -

39

Nucleus Program Reduced Program
INTEGER N,D,Q,R; SIMPLE(N)
+ SIMPLE(D)
SIMPLE(Q)
SIMPLE(R)

PROCEDURE DIV;

ASSERT D.0 > 03

ASSERT N.0 > 03
©) Q:=0; ASSIGN(DIV:0,Q,0)

ASSERT N.0=Q*D.0+N;
ASSERT D=D.0;
N>0

?
PR
b

ASSERT
1) WHILEN > D DO IF(DIV:1, () > (D),2,5)
(2) N:=N-D; ASSIGN(DIV:2,N, (N)-(D))
) Q:=Q+1; ASSIGN(DIV:3,Q, (Q)+(1))
%) ELIHW; JUMPTO(DIV:4,1)
(5) R:=N; ASSIGN(DIV:5,R,N)

ASSERT N.0=Q*D.0+R;

ASSERT 0 < R < D.0O; -
6) EXIT; EXIT(DIV:6)

EXITPOINT (DIV)=6
START DIV ' INITIALPROCEDURE=DIV

path (1,2,3,4,1) is shown below. Again, the numbers at the left of
each column are not a part of the verification condition, but are
provided as references to the lines of the verification conditiom.
Terms written in a column are joined by conjunction and a solid

horizontal line denotes impliciation. Thus

o alw »

denotes A A B> C A D.

For any variable v, the string "V;OH denotes the value of v
at entry to the procedure; "v'" denotes the vélue at the front of the
path, and "v.i" denotes the value of v after i changes in value along

the path. The integer i will be called the value of the alteration

40

counter of variable v,

Lines 0.1 and 0.2 are the initial assertion of the procedure
in which the path occurs and lines 1.1-1.3 are the assertion at the
front of the path. The dashed line has no formal significance; It
serves as a separator between tﬁe lines which come from the assertions

just mentioned and the lines which reflect execution along the path.

0.1 p.0>0

0.2 N.O20°

1.1 N.0=Q%*D.0+N

1.2 D=D.0

1.3 N2 O
N>D
:L0C.1=DIV:2
:STEP.1=:STEP+1)
inrange (N-D) -,
N.1=N-D
:L0C.2=:10C.1 +1 - -
:STEP.2=:STEP.1 +1 *-
inrange (Q+1)
Q.1=0+1

:LOC.3=:10C.2 +1
:STEP.3=:STEP.2 +1
:L0OC.4=DIV:1
:STEP.4=:STEP.3 +1
.1'" N.0=Q.1*D.0+N.1
.2' D=D.0
3" N.1 >

bd d B B W WWWANNNN

0

The terms between the dashed and solid lines deséribe the path
execution. These terms are formally defined in Section III.5. The
number at the left indicates the reference number of the program
statement which generates the verification condition line ét the right.
- For example, consider instruction 1 which is the test for the while

statement. Under the assumption that path (1,2,3,4,1) is traversed,

41

@

we know that N > D is true and that the value of the location counter
:1OC after one alteration along the path is "pI1v:2". Also, the value
of execution step counter :STEP is incremented by one. Lines 1.1'-1.3°
are the assertion at the end of the path with current values properly
indicated.by the alteration counters. The proof of the verification
condition consists of proving terms below the solid line from the terms

above it.

A

The terms "inrange(N-D)" and "inrange(Q+1)" do not appear
to match the definitions in Section III.5. The first line of the
definition of the verification condition terms for assignment statements
(Definition 3.5.1la) states that the right-side expression is not undefined.
- (If the right-side expression is undefined, then the execution terminates
. abnormally. This contradicts the assumption of normal termination for

partial correctness proofs.) 1In the DIV example, the right-side

expression is defined if its value is in range. For a particular

Nucleus implementation, these verification condition terms can be more

precisely specified. For example, if the implementation dependent

)

predicate, inrange(x), is defined by specifying lower and upper bounds
for x, say inrange(x) = lower < X 5_ﬁpper, then the above verification
condition terms can be written as 'lower < N-D §‘upperf and "lower < Q+l <
upper"’'. W

The complete proof of partial correctness for procedure DIV
includes the proof of the sample verification condition and the proofs

. of the verification conditions for paths (0,1) and (1,5,6).

42

I11.5. Verification Condition Terms for Partial Correctness
The verification condition term definitions are accompanied
by the definition of a function alt(x,1). This function is called the

alteration function and counts the number of times each assertion

variable x has been altered in traversing the current path up to
point i. A variable other than a system variable may be altered only
by appearing on the left of an assignment statement or in a read statement.
The value of alt(N,3) for path (1,2,3,4,1) of the DIV example is the
number of times N has been altered when the third point along the
path is reached and is called the alteration counter of N at the third
path point. Whenever the value of N at this point is to be referenced,
it may be written "N.alt(N,3)" or since alt(N,3)=1 we may write "N.1".
For an array A, the value of alt(A,i) indicates the number of alteratioms
of array A up to point i where an array is considered to be altered
whenever any element is altered. The array reference A.alt(A,i)[5]
refers to the value of A[5] at the i-th point along the current path.

In the verification conditions, the symbol for a variable
at the beginning of the current procedure is written in the form "x.0"
and the symbol at the beginning of the current path is simply "x'". If
the beginning'of the current procedure and the current/path is the same,
the conflict is resolved by using "x.0". This is accounted for in the
definition of the alteration function at the beginning of a path. For
paths which begin at the entry point of a procedure, the alteration

function is defined as élt(X,l) = 0 and for other paths the definition

1 M .%%_ﬁj

.

£ 3
‘o

43

is alt(X,1) = 0 (zero-dot). The first behaves in normal fashion and
the zero-dot behaves numerically the same as zero, but when x.0 is used
in a verification condition, it appears as just X (without the ".8"
suffix).

The notation EXP.alt(X,i), where EXP is an expression,
denotes the expression resulting from the substitution of x.alt(x,i)
for each occurrence of any x € X that appears in EXP. The value of
E[i](EXP) is the value of EXP with E[1](x) substituted for each
occurrence of x in EXP.

We will define the verification conditions by defining a set
of verification hondiﬁion terms in definitioms 3.5.1 - 3.5.7. These
reflect the effect of the Nucleus statements on the state vector.

These terms are combined to form the partial correctness verification
conditions in Theorems 3.6.1-3.6.4.

Two sets of verification condition terms are defined for each
statement along a path, a cond set and a vcterm set. The cond terms
represent a condition which is sufficient to prove that execution
proceeds "properly" to the next path point. For partial correctness,
the only "improper" execution is entering a called procedure without
satisfying its initial assertion. Thus, the partial -correctness cond
set is identically "TRUE" for each statement except the enter statement.
The cond set for enter statements requires that the initial assertion
of the called procedure is satisfied. The cond sets for total

correctness include the above condition for enter statements and, in

44

addition, include any conditions which result in abnormal termination.
The verification conditions require proof of the terms in the cond set -
from the vcterms for preceding points along the path. The vcterm
set states the relationship between the state vectors which correspond
to successive path points.
The verification condition terms are written in a tabular

format. The lines in a.column are connected by logical conjunction.

The following definitions describe the partial correctness verification
condition terms cond(P:Qi,i) and vecterm(P:Qi,P:Qi+1,i) and the
alteration function alt(x,i) when P:Qi and P:Qi+l are points i and i+l

along a path. Recall that the underline convention indicates that .

the underlined portion is to be evaluated before being concatenated -

»

onto the string.

Definition 3.5.1a assign (with simple left side)
If ASSIGN(P:Qi,N,V) and SIMPLE(N) then cond(P:Qi,i) is

TRUE

and vcterm(P:Qi,P:Qi+l,i) is

V.alt (X,1)#U

N.alt(N,i+1)=V.alt(X,1)

:LOC.alt (:L0C,i+1)=:10C.alt (:L0C,1i) +1 B
:STEP.alt(:STEP,i+l)=:STEP.alt(:STEP,i) +1

and alt(y;i+l) =
if y € {N,:L0C, :STEP}

then alt(y,i)+1
else alt(y,i).

s

45

ASSIGN(P:Qi,N,V) indicates an assignment statement at
location P:Qi having a left side of N and a right side of V. The
cond term is "TRUE" because, with the assumption of normal termination
for partial correctness, an assignment statement always executes
"properly". When writing a verification condition, terms which are
identically "TRUE" do not appear.

The first line of vcterm, "y.alt(X,1)#U", states that the
right side expression, V, is Egg_undefined. This is a result of the
partial correctness assumption of normal termination. If normal
termination is assumed, then the right side cannot be undefined since
this would result in abnormal termination (Axiom 48). An expression

is undefined (1) if the subscript expression for any array reference

has a value outside the array bounds (Axiom 11), (2) if for any integerx
operation, the resulting value v does not satisfy inrange(v) (Axioms 22-27),
or (3) if division or modulo by zero is attempted (Axioms 26, 27). When
writing a verification conditionm, the term "V.alt(X,1)#U" appears in

the form of terms which indicate the absence of the three conditions

above which would result in an undefined value for V. For each array
reference in V of the form A[S] where A is an array and S is an integer
expression, a term of the form 0 < S.alt(X,i) < BOUND(A) appears in the
verification condition. For each integer operation in V of the form A op B
where A and B are integer expressions and op is an integer operation,

a term of the form inrange(A.alt(X,i) op B.alt(X,i)) appears in the

verification condition. Since the number of terms of this form is

46

extremely large, and since they are needed only in special kinds of
proofs, these terms are not included in the verification conditions
generated by the system described in Chapter IV. For each division i
or modulo operation in V of the form A/B or AVB where A and B are

integer expressions, a term of the form B.alt(X,i)#0 appears in the

verification condition.

The second line of vcterm, "™.alt(N,i+l) = V.alt(X,i)",
states that the value of N at the next point along the path is the value
of the right side expressicn at the current point. The remaining two
lines indicate that :LOC and :STEP are incremented by one. The
alteration function definition reflects the fact that the only variables
whose values chénge at the assignment statement are the left side -

variable N, :LOC, and :STEP. - -

«l

As an example, consider the assignment statement LEFT := LEFT/A[S];
at point P:Qi with alt (LEFT,i)=2, alt(A,i)=3, alt(S,1i)=4, alt(:L0C,i)=5,
alt (:STEP,i)=5, and BOUND(A)=10. Then the vcterm is

0 £8.4 £10

A.3[S.41#0

LEFT.3 LEFT.2/A.3[S.4]
:1.0C.6 :L0C.5 +1
:STEP.6 = :STEP.5 +1

[}

Definition 3,5.1b. assign (with array left side)

If ASSIGN(P:Qi,A[EXP],V) and ARRAY(A,B) then cond(P:Qi,1i) is
TRUE

and vcterm(P:Qi,P:Qitl,i) is

EXP.alt (X,1i)#U -
0 < EXP.alt(X,i) < BOUND(A)

47

V.alt(X,i)#U
A.alt(A,i+1)[$]=1IF $=EXP.alt(X,1)

THEN V.alt(X,1)

ELSE A.alt(A,i)[$]
:L0C.alt (:LOC,i+1)=:L0C.alt (:LOC,1i) +1
:STEP.alt(:STEP,i+l)=:STEP,alt(:STEP,i) +1

and alt(y,i+l) =
if y ¢ {A,:LOC, :STEP}

then alt(y,i)+1
else alt(y,i).

ASSIGN(P:Qi,A[EXP],V) indicates an assignment statement at
point P:Qi with a left side of the form A[EXP] and a right side expressiov

of V. The first and third terms of vcterm state that EXP and V are

not undefined. These terms are handled as described for Definition 3.5.1:.

The second term states that the array subséript is within the array
bounds. These three terms are a result of the assumption of normal
termination for partial correctness. The fourth term indicates that
element EXP.alt(X,i) of array A is assigned the value V.alt(X,i) and
the remaining elements are unchanged. For the assignment statement
A[S]:=E; at point P:Qi with alt(A,i)=2, alt(s,i)=3, and alt(E,i)=4,
the fourth term appears in a verification coﬂdition as "A.3[$]=IF
$=S.3 THEN E.4 ELSE A.2[$]". The last two terms of the vcterm and the

alteration function definition are as described in Definition 3.5.1a.

Definition 3.5.2a. case (case expression matches a label)
If CASE(P:Qi,EXP,L) and Qi+1=POINTLABELLEDWITH(P:Qi:EXP.alt(X,i))
then cond(P:Qi,i) is

TRUE -

48

and veterm (P:Qi,P:Qi+l,1) is

EXP.alt (X,1)#U

:10C.alt (:LOC,i+1)=P:Qi+l

<FXP.alt(X,i) € CASELABELSET(P:Qi)

:STEP.alt (:STEP,i+l)= :STEP.alt (:STEP,i) +1
and alt(y,i+l) =

Cif y ¢ {:L0C, :STEP}
then alt(y,i)+1
else alt(y,i).

CASE(P:Qi,EXP,L) indicates a case statement at location P:Qi
with case expression EXP. The value L indicates the point to which
control passes if the value of EXP does not match a case label. The
assumption that QijlfPOINTLABELLEDWITH(P:Qi:EXP.alt(X,i)) is an assumption
about the path for which the verification condition terms are to be
defined. The first term of vcterm states that the case expression is
not undefined and again this results from the assumption of normal
termination. The second term indicates that the location counter
becomes the point whose label is matched by the case expression value.
The third term indicates that the case expression value is in the
set of labels for point P:Qi. This is a result of the assumption that
execution follows the current path from P:Qi to P:Qit+l. If the case
expression is Y+Z, the set of labels for poiﬁt P:Qi+l is {5,10},
alt(Y,i)=2 and alt(Z,i)=3, then this term appears in a verification
condition as "Y.2 + Z.3 € {5,10}".‘ The last term of vcterm aad the

alteration function are as discussed earlier.

Definition 3.5.2b case (case expression does not match a label)

-
S

49

- 1f CASE(P:Qi,EXP,L) and Qitl=L then cond(P:Qi,1) is

TRUE
and veterm(P:Qi,P:Qitl,1i) is

EXP.alt (X,1)#U

:LOC.alt(:LOC,i+l)=P:Qijl

tEXP.alt(X,1) ¢ CASELABELSET (P:Qi)
:STEP.alt(:STEP,i+1)=:STEP.alt(:STEP,i) +1

and alt(y,i+l) =

if y ¢ {:1L0C, :STEP}
: then alt(y,i)+1
else alt(y,i).

The assumption that Qi+l=L is again an assumption about the

path. The third line of the vcterm is the result of the assumption

that execution follows the path from P:Qi to P:Qi+l and that Qi+1=L.

Definition 3.5.3. enter
1f ENTER(P:Qi,C) then cond{(P:Qi,i) is

[:LVL.alt(:LVL,i) < maxstacksize
A:LVL.alt(:LVL,i')=:LVL.alt(:LVL,i) +1
A:RTNPT.alt(:RTNPT,i')[$]=
1F $=:LVL,alt(:LVL,i) +1
THEN :10C.alt(:1.0C,1) +1

. ELSE :RTNPT.alt(:RTNPT,i)[$]
»:LOC.alt(LOC,i')=C:0
a:STEP.alt(:STEP,i')=:STEP.a1t(:STEP,i) +1
+tag[C:0](X.alt(X,i'),X.alt(X,i‘))]

and veterm(P:Qi,P:Qi+l,1i) is

sLVL.alt (:LVL,1i) < maxstacksize
:LVL.alt(:LVL,i')=:LVL.alt(:LVL,i) +1
sRTNPT.alt (:RTNPT,1i')[$]=
IF $=:LVL.alt(:LVL,i) +1
THEN :LOC.alt(:LOC,1i) +1
ELSE :RTNPT.alt(:RTNPT,i)[$]

:L0C.alt (:LOC,1')=C:0

50

:STEP.alt(:STEP,i')=:STEP.alt (:STEP,i) +1

tag[C:EXITPOINT (C)](X,alt(X,1"),X.alt(X,1")) .
:LVL.alt (:LVL,i") 2 O
:LOC.alt(:LOC,i+l)=:RTNPT.alt(:RTNPT,i"){:LVL.alt(:LVL,i")] -

:LVL.alt (:LVL,i+1)=:LVL.alt (:LVL,i") -1
:STEP.alt(:STEP,1+1)=:STEP.alt(:STEP,i") +1

and alt(y,i')=
" if y e {:LVL,:RTNPT, :LOC, : STEP}
then alt(y,i)+1
else alt(y,i)

and alt(y,i")=

if y € alterableset(C)
then alt(y,i')+1
else alt(y,i'")
and alt(y,i+l)=
if y e {:L0C, :LVL, :STEP} -
then alt(y,i")+1 ' -.
else alt(y,i").
ENTER(P:Qi,C) indicates a call of procedure C at location
P:Qi. The values i' and i" in the cond and vcterm refer to points

which fall between P:Qi and P:Qi+l during execution.A The notation

y.alt(y,i') refers to the value of y after entry to the called procedure

and y.alt(y,i") refers to the value of y at the exit point of the
called procedure.

The cond term’for an enter statement is a ;ingle term with an
implication. ‘The lines preceding the implication reflect the entry to
the called procedure and the line following the implication is the
initial assertion of the called procedure. Thus, the proof of the cond

term as required in a verification condition will require proof that

51

entry to a called procedurekimplies the initial assertion of the

called érocedure. The first line of the cond term is a result of the
normal termination assumption for partial correctness and states that
the return stack level before entry is less than the maximum return
stack size. The second line indicates that the return stack level is
incremented by one at entry and the next line indicates that the location
following the location of the procedure call is placed at the top of

the return satck and that all other elements are unchanged. This line
appears in a verification condition in the same form as the similar line
in an assignment statement with an array reference on the left side.

The last two lines indicate that the location at entry is C:0 and that
:STEP is incremented by one.

The first five lines of the vcterm again reflect the entry
to the called procedure and are identical to the lines preceding the
implication of the cond term. The next line is the final assertion
of the called procedure which makes the'result of procedure execution
available to the verification condition. The remaining lines reflect
the exit from the procedure (Axiom 51). The value of "steps(C,1)" is
the number of steps in the execution of procedure C which is called at
state vector i. 4;,

Iﬁ the definition of the alteration function for the enter

statement, reference is made to a set called "alterableset{C)". The

alterable set for a procedure is the set of variables which potentially

can be altered by a call of the procedure. These include variables
H

o . .)
altered within the procedure itself and all alterable sets of procedures

52

called by it. The definition of the alteration function in Definitions
3.5.1 - 3.5.7 reflects the fact that the only statements which can

alter program variables are assignment and read statements.

Definition 3.5.4a if (expression is true)
1f IF(P:Qi,EXP,T,F) and Qi+1=T then cond(P:Qi,i) is
TRUE
and vcterm(P:Qi,P:Qi+l,i) is
EXP.alt(X,1i)#U
EXP.alt (X,1)
:L0C.alt (:L0C,i+1)=P:T
:STEP.alt(:STEP,i+1)=:STEP.alt(:STEP,i) +1
and alt(y,i+l) =
if y e {:LOC,:STEP}

then alt(y,i)+1
else alt(y,i).

IF(P:Qi,EXP,T,F) indicates an if statement at location P:Qi
with if expression EXP. Points T and F indicate the points to which

control passes if the expression evaluates true and false respectively.

The assumption, Qi+l=T, is an assumption about the path.

Definition 3.5.4b 1if (expressiom is false)

1f IF(P:Qi,EXP,T,F) and Qi+l=F then cond(P:Qi,i) is -~
TRUE |

and vcterm(P:Qi,P:Qi+l,i) is
EXP.alt (X,i)#U
~EXP.alt (X,1)

:L0C.alt (:10C,i+1)=P:F :
:STEP.alt(:STEP,i+1)=:STEP.alt(:STEP,i) +1

o

53

and alt(y,i+l) =

if y ¢ {:L0C, :STEP}
then alt(y,i)+1
else alt(y,1).

Definition 3.5.5 jumpto

1f JUMPTO(P:Qi,N) then cond(P:Qi,i) is
TRUE

and vcterm(P:Qi,P:Qi+l,i) ié

+L0C.alt (:LOC,i+1)=P:N
<STEP.alt (:STEP,i+1)=:STEP.alt (:STEP,1) +1

and alt(y,i+l) =

i1f y e {:10C, :STEP}
then alt(y,i)+1
else alt(y,1).

JUMPTO(P:Qi,N) indicates a jump to point N at location P:Qi.

Definition 3.5.6 read

1f READ(P:Qi,A) then cond(P:Qi,i) is
TRUE

and veterm(P:Qi,P:Qi+l,1i) is

—:REOF (:RDHD,alt (:RDHD,1) +1)~>
[A.alt (A,i+1) [0]="F"
#(1 < $ < min(readsize,BOUND(A))~
' A.alt(A,i+1)[$]=:RDFL(:RDHD.alt(:RDHD,i) +1,9))
a(readsize+l < $ < BOUND(A)+ ’
A.alt (A,i+1)[$]=A.alt(a,1)[$D]
¢REOF (:RDHD.alt (:RDHD,i) +1)~
[A.alt(A,i+1) [0]="T"
»(1 £ $ < BOUND(A)~>
A.alt(A,i+1)[$]1=A.alt(A,1)[$D)]
<RDHD.alt (:RDHD,i+1)=:RDHD.alt (:RDHD,i) +1
:LOC.alt (:L0C,i+1)=:L0C.alt(:LOC,i) +1
:STEP.alt (:STEP,i+1)=:STEP.alt(:STEP,i) +1

54

and alt(y,it+l) =
if y € {A,:RDHD,:LOC, :STEP} _
then alt(y,i)+1 : -
else alt(y,i).
READ(P:Qi,A) indicates a read statement at location P:Qi
with read array A. The first term of vcterm states that if the next

read record is not an end-of-file then "F'" is placed in element zero

of the read array and the read record is placed in consecutive elements

until either the read record or the array is exhausted. The second
term indicates that if the next read record is an end-of-file then "T"
is placed in element zero of the read array and the rest of the array
is unchanged. The last three terms reflect incrementation of :RDHD, :10C,
and :STEP. ' | -.
As an example, consider read statement READ A; at location .
P:Qi with BOUND(A) = 90, readsize = 80, alt(A,i) = 2, and alt(:RDHD,i) = 3.
Then the first two terms appear in a verification condition as
-:REOF(:RDHD.3 +1)~
[A.3[0]="F"
Aa(l £ $ <80 > A.3[$]=:RDFL(:RDHD.3 +1,8))
A(8l < § < 90 » A.3[$]=A.2[$D)]
¢REOF (:RDHD.3 +1)-

[A.3[0]="T"
Al < $ <90 > A.3[$] = A.2[$D)]

If readsize+l > BOUND(A), then the last line of the first

term does not appear in the verification condition.

Definition 3.5.7 write
If WRITE(P:Qi,A) then cond(P:Qi,i) is

TRUE

N 1&

55

" and vcterm(P:Qi,P:Qi+1,1) is

A.alt(a,1)[0]#"T">
[~:WEOF(:WTHD.alt (:WIHD,1i) +1)
A{l £ $ < min(writesize,BOUND(A))~>
+WIFL(:WTHD.alt (:WTHD,1i) +1,$)=A.alt(A,i)[$])
A(BOUND(AY+]1 < $§ < writesize>
tWTFL (:WTHD.alt (:WTHD,1i) +1,$)=" "]
A.alt(a,i)[0]="T">
, :WEOF (:WTHD.alt (:WTHD,1i) +1)

¢WTHD.alt (:WTHD,i+1)=:WTHD.alt (:WTHD,i) +1

:1.0C.alt (:10C,i+1)=:L0C.alt(:LOC,i) +1

:STEP.alt (:STEP,i+1)=:STEP.alt (:STEP,i) +1
and alt(y,i+l)=

if y € {:WTHD,:LOC, :STEP}

then slt(y,i)+1
else alt(y,i).

WRITE(P:Qi,A) indicates a write statement at location P:Qi
with write array A. The write statement is the inverse of the read
statement. The first term of vcterm states that if element zero of the
write array does not contain "T" then the write end-of-file predicate
:WEOF is defined to be false at the next write record and the characters
of the write array are assigned to consecutive write record locations
until either the write record or the write array 1s exhausted. The
rest of the write record is assigned blanks. The second term indicates
that if element zero of the write array does contain "T" then the write

end-of-file predicate :WEOF is defined to be true at the next write

record.

II1.6. Verification Conditions for Partial Correctness

The next theorem shows how.the above definitions are used

56

in proving certain relationships between state vectors. These relation-
ships will be used to prove that the verification conditions defined in
Theorems 3.6.1 - 3.6.4 are sufficient to establish partial correctness.

In the theorems which follow, reference 1is made to a
function calls(i,j). Arguments i and j must be state vector indices
such that i < j and E[i](:LVL)=E[j]1(:LVL). The value of calls(i,j) is
the set of state vector indices of procedure entry points between i and
j and at the next level. That is,

calls(i,i) ='{cli<c<j A c=entry(c)a E[i] :LVL)+1=E[c] (:LVL)}.
The format employed in the theorems is interpreted as follows. Terms
written in a column are connected by lbgical conjunction and a solid
horizontal line denotes an implication sign. The dashed horizontal
lines have no formal significance and are included merely for readability.
Any line preceded by "<PRV>" must be proved from the lines appearing
above it.

The next theorem contains two conditions. The first is
labelled VC since from it will emerge the verification condition
definition, and the second is labelled SV since it states a relationship
among state vectors. The theorem asserts that VC -+ 5V.

Condition VC i§ stated in terms of points along the current
path and the aiteration function. It is satisfied if the initial
assertion of the current procedure and a property B on the first i
path points imply the cond term at point i and if all of these together

with the vcterm at point i imply property D on the first i+l path points.

57

Condition SV is stated in terms of the state vectors which
correspond to the path points. The assumptions of SV are
(1) normal termination,
(2) the initial assertion of the current procedure is
satisfied at entry,
(3) property B is true for the state vectors corresponding
to the first 1 path points, and
(4) for any procedure called at path point i, the initial
assertion at entry implies the final assertion at exit.
Condition SV is satisfied when these assumptions imply property D on
the state vectors for the first i+l patﬁ points and for any procedure

called at point i, the initial assertion is true at entry.

More briefly stated, the theorem states that if the verification

condition terms lead from property B over the first i path points to
property D over the first i+l path points then property B over the
state vectors corresponding to the first'i path points implies property
D over the state vectors corresponding to the first i+l path points.
The term alt(x,i') is the alteration counter for x at entry

to the procedure called at point i along the path and E[qi'] is the

corresponding state vector (qi'=l4+qi). If point i does not call a

procedure, these values do not exit. The term alt(x,i") and state
vector E[qi"] are the alteration counter and state vector at the exit
point of the procedure called at point i. Again, these values may

not exist.

58

Theorem 3.6.1
Consider path P:Ql,...,P:Qr with corresponding state vector sequence

Elq1],...,Elqr]. For 1 <1 =5 r-1, if

VvC:
1 tag[P:0] (X.0,X.0)
2 B(X.0,X. alt(X 1),X.alt (X,1"),X.alt (X, l"),...,X alt(X,i))

3 <PRV> cond(P:Qi,i)
4 veterm(P:Qi,P:Qi+l,1i)

D(X.0,X.alt(X,1),X.alt(X,1"),X.alt(X,1"),...,X.alt (X,i+l))

then

Sv:

1 NT (n)

2 n 2 qr

3 tag[P:0] (Elentry(ql)]1(X),E[entry(ql)] (X))

4 B (E[entry(ql)]1(X),E[q1](X);E[ql']1(X),E[q1"](X),...,E[qi] (X))

5 c € calls(qi,qi+l) » tag[E[c](:LOC) 1 (E[c](X),E[c] (X)) ~
tag[Elexit{(c)](:LOC) 1 (E[c] (X),Eflexit(c)](X))

6 D(E[entry(ql) 1(X),E[q1](X),E[ql'1(X),E[q1"]1(X),... ,E[qi+1] (X))

7 ¢ € calls(qi,qit+l) > tag[E[<](:LOC)I(E[c](X),E[c](X))

The lines are numbered to simplify references to them during

the proof. VC3 will denote line 3 of VC.

Proof of Theorem 3.6.1:

We want to prove VC + SV. Condition VC consists of two
implications, VC1 aVC2 + VC3 and VC1 A VC2 A VC3 AVC4 > VC5. The
first implication results from the "<PRV>" at the cond term and the
second results from the solid line. Condition VC is stated in terms
of arbitrary values such as X.0 and X.alt(X,k) for which specific
values may be substituted. We now substitute values for symbols °

according to the pairing in Table III.2.

59

| Symbol Value
X.0 Elentry(q1)](X)
X.alt(X,k) Elqk](X)
X.alt (X, k") Elqk'](X)
X.alt(X,k") E[qk"](X)

Table II11.2. Pairing of Verification Condition Symbols and
Values at State Vectors.

Condition VC is now in the following form.

vC:

1 tag[P:0] (E[entry(ql)]1(X),E[entry(ql) 1 (X))
2 B(E[entry(q1)](X),E[q1]1(X),E[ql']1(X),E[q1"](X),...,E[qi] (X))

3 <PRV> cond(P:Qi,i)
4 veterm(P:Qi,P:Qi+l,1i)

5 D(E[entry (g1)](X),E[q11(X),E[ql']1(X),E[q1"]1(X),...,E[qi+1] (X))

where cond and vcterm denote cond and veterm with the substitutions

defined above. Note tﬁat with the substitutions, VC1 = SV3, VC2 = §V4,
and VC5 = SV6. |

We now claim that if we can show (1) SV1 aSV2 ASV5aVC3 > VC4
and (2) VC3 a VC4 »> SV7 then we have shown VC -+ SV. This claim is
supported below. o

Since SV3 = VCl and SV4 = VC2 then (1) becomes (1')
SV1 A SV2a SV3 A SV4A SV5 A VC3 > VC1 AVC2 AVC3 AVC4. Since SV3aSV4 = VCla
vC2 and VCl A VC2 + VC3 then (1') becomes (1") SV1ia SYZA SV3 A SV4 ASV5 >
VC1 » VC2 A VC3 A VC4.

Since VC5 = SV6 then (2) becomes (2') VC3 aAVC4 A VC5 = SV6 A SV7
which implies that (2") VCl a VC2 AVC3 a VC4 aVC5 » SV6 4 SV7. Conditions

(1) and (2) imply conditions (1") and (2") which are clearly sufficient

to prove VC > SV.

60

The remainder of the proof will show that, for each Nucleus
reduced program statement, the verification condition terms cond and
veterm are defined in a way such that (1) SV1, SV2 aSV5 AVC3'* VC&4
and (2) VC3 AVC4 > SV7. For all except the enter statement, these
conditions can be reduced even further. For these statements, calls(qi,
qi+l) is empty and the cond term is‘"TRUE", therefore SV5, SV7, and
VC3 are satisfied. Condition (2) then is also satisfied and condition

(1) is reduced to SV1 4, SV2 »> VC4.

Case la. ASSIGN(P:Qi,N,V) and SIMPLE(N).
We must show SV1 aASV2 -+ VC4, that is, we must show NT(n)a n 2 qr >
vcterm(PﬁQi,P:Qi+l,i). The veterm with substitution of values for

symbols as specified in Table III1.2 is

E[qi](V)#U

E[qi+1] (N)=E[q1] (V)
E[qi+1](:LOC)=E[qi](:LOC) +1
E[qi+1](:STEP)=E[qi] (:STEP) +1

B N

The conjunction NT(n) o n 2 qr indicates that normal termination occurs
and occurs no sooner than the end of the current path. This assumption
of normal termination and Axiom 48 will be shown to imply the above
relationship between state vectors qi and qit+l. The first line of
"Axiom 48 and normal termination imply NAME(N,qi)#UA E[qi](V)#U. This
implies 1ine.one of vcterm. The remainder of Axiom 48 parallels the
second and third 1ines of vcterm. The last line of vcterm reflects

the incrementation of :STEP which is an assertion variable for counting

the steps in the execution.

61

}
. Case 1b. ASSIGN(P?Qi,A[EXP],V) and ARRAY(A,B).
The vcterm with substitution is
1 E[qi] (EXP)#U
2 0 < E[qi](EXP) < BOUND(A)
3 E[qi](V)#U
4 E[q1+1](AI$])— IF $=E[qi](EXP)
THEN E[qil (V)
ELSE E[qi](A[$])
5 E[qi+1](:LOC)=E[qi](:LOC) +1
6 E[qi+1] (:STEP)=E[qi] (:STEP) +1
:} From Axiom 48 and the normal termination assumption, we get NAME(A[EXP],qi)#U a

E[qi](V)#U. ARRAY(A,B) and Axiom 11 imply that NAME(A[EXP],qi)#U only
if E[qi](EXP)#U and 0 < E[qi](EXP) < BOUND(A). These are the first two

~lines of the vcterm. The remaining lines are handled as in case 1la.

--) Case 2a. CASE(P:Qi,EXP,L) and Qi+l=POINTLABELLEDWITH(P:Qi:E[qi](EXP))
The vcterm with substitution is

E[qi] (EXP)#U

E[qi+1](:L0OC)=P: Qi+l

E[q1](EXP) € CASELABELSET(P:Qi)
E[qi+1](:STEP)=E[qi] (:STEP) +1

SwN-

Normal termination and line one of Axiom 49 imply E{qi](EXP)#U which

P,

is the first line of the vcterm. The assumption that execution proceeds
along the path from P:Qi to P:Qi+l and that Qi+1=POINTLABELLEDWITH(P:Qi:
E[qi](EXP)) yields the second line of vcterm, and this assumption |
together with Axiom 49 implies the third line of vcgé;m. The :STEP

line results from the definition of :STEP.

Case 2b. CASE(P:Qi,EXP,L) and Qi+l=L

The vecterm with substitution is

62

E[qi](EXP)#U
E[qi+1](:LOC)=P:Qi+l

E[qi] (EXP) ¢ CASELABELSET(P:Qi)
E[qi+1](:STEP)=E[qi] (:STEP) +1

W N

The argument presented for case 2a holds except the assumption that

Qi+l=L implies a change in the third vcterm line.

Case 3. ENTER(P:Qi,C)

For the enter statement,‘we'must prove SV1a SV2 A SV5 AVC3 » VC4 and
VC3 AVCL > SV7. The first of these requires proof that normal
termination, the implication of the final assertion at exit from the
assumption of the initial assertion at entry for the procedure called
at P:Qi, and the initial assertion of the called procedure, implies
veterm(P:Qi,P:Qi+l,i) with substitution as defined earlier.‘ The cond
term with substitution is

1 [E[qi](:LVL) < maxstacksize

2 AE[qi'](:LVL)=E[qi](:LVL) +1

3 AE[qi'](:RTNPT[$])= IF $=E[qi] (:LVL) +1
THEN E[qi](:LOC) +1
ELSE E[qi](:RTNPT[$})

4 #E[qi"](:LOC)=C:0

5 AE[qi'](:STEP)=E[qi)(:STEP) +1

6 ~tag[C:0]1(E[qi']1(X),E[qi'](X))]

and the vcterm with substitution is

1 E[qi]l(:LVL) < maxstacksize
2 E[qi'](:LVL)=E[qi] (:LVL) +1 -
3 E[qi'](:RINPT[$])= IF $=E[qi](:LVL) +1
THEN E[qi](:L0OC) +1
ELSE E[qi](:RTNPT[$])
Elqi'](:L0C)=C:0 :
E[qi'](:STEP)=E[qi] (:STEP) +1
tag[C:EXITPOINT (C)](E[qi'1(X),E[qi"]1(X))
E[qi"](:LVL) 2 0O
E[qi+1](:L0C)=E[qi"] (:RTNPT[E[qi"1(:LVL)])
E[qi+1] (:LVL)=E[qi"](:LVL) -1
0 E[qi+l](:STEP)=E[qi”](:STEP) +1

DO 00~ OB

63

The first line of Axiom 50 together with the assumption of normal
termination implies NAME(":RTNPT[:LVL+1]",i)#U and by Axioms 9 and 11
this implies E[qi](:LVL) < maxstacksize which is line one of cond and
veterm. The next three lines of cond and vcterm result from the last
three lines of Axiom 50. We have now satisfied the terms before the
implication of cond and are free to use the result. VC3 and SV5 imply
line six of vcterm. The normal termination assumption and the first
line of Axiom 51 imply E[qi'] 2 O which is line seven of vcterm. The
remainder of Axiom 51 implies lines eight and nine.

The seéond proof required is VC3 4 VC4 > SV7. The set calls(qi,
qi+l) has one element which is qi'. Since E[qi’'](:LOC)=C:0 then SV7
becomes ¢ El{qi'} > tag[C:0](E[qi'](X), E[qi'](X)) which is implied

by VC3 A VCa.

Case 4a. IF(P:Qi,EXP,T,F) and Qi+l=T

The vcterm with substitution is

E[qi] (EXP)#U

E[qi] (EXP)
E[qi+1](:L0C)=P:Qi+l
E[qi+l](:STEP)=E[qi}(:STEP) +1

E VA S

‘Normal termination and line one of Axiom 53 imply line one of vcterm.

The remainder of Axiom 53 with the assumption that Qi+1=T implies line

two of vcterm. Line three comes from the assumption.

Case 4b. IF(P:Qi,EXP,T,F) and Qit+l=F

The vcterm with substitution is

E[qi] (EXP)#U

-E[qi] (EXP)
E[qi+1](:LOC)=P:Qi+1

E[qi+1] (:STEP)=E[qi] (:STEP) +1

BN

Same argument as for case 4a.

Case 5. JUMPTO(P:Qi,N)
The wvcterm with substitution is

1 E[qi+1]1(:LOC)=P:N.
2 E[qi*1](:STEP)=E[qi](:STEP) +1

Line one is a direct result of Axiom 54.

Case 6. READ(P:Qi,A)
The vcterm with substitution is

1 -=:REOF(E[qi](:RDHD) +1)-
[Elqi+1](A[OD)="F"
A(l £ $§ < min(readsize,BOUND(A))~+
E[qi+1]1(A[$])=:RDFL(E[qi](:RDHD) +1,9%)
a(readsize+l < $ < BOUND(A)~
: E[qi+1](A[$1)=E[qil(AI$D]
2 :REOF(E[qi] (:RDHD) +1)~
[E[qit+1](AJO])=""T"
A(1 2 $ < BOUND(A)>
E[qi+1](A[$D)=E[qi](A[$])]
3 E[qi+1](:RDHD)=E[qi](:RDHD) +1
4 E[qitl](:LOC)=E[qi](:L0C) +1
5 E[qit1](:STEP)=E[qi](:STEP) +1

If -:REOF(E[qi](:RDHD)+1), then by Axiom 56 we get the vcterm.

:REOF(E[qi] (:RDHD)+1) then Axiom 55 yields the vcterm.

Case 7. WRITE(P:0Qi,A)
The vcterm with substitution is

1 E[qi] (A[0])#"T"'> v
[~:WEOF (E[qi] (:WTHD)+1)
A(l < $ < min(writesize,BOUND(A))~>
:WIFL(E[qi] (:WTHD)+1,$)=E[qi](A[$])
A(BOUND{(A)+1 < § < writesize»>
:WIFL(E[qi] (:WTHD)+1,5)=" "]

Iif

64

-

N

C

e

65

2 E[qi](A[O])="T">
‘ sWEOF(E[qi] (:WTHD)+1)

3 E[lqi+1] (:WTHD)=E[qi] (:WTHD)+1
4 E[qi+1]1(:L0C)=E[qi] (:LOC)+1
5 E[qi+1](:STEP)=E[qi](:STEP)+1
IF E[qi] (AJ0])#"T" then Axiom 58 implies the vcterm. If E[qi](A[O])="T"
then Axiom 57 implies the vcterm. This completes the proof of Theorem
3.6.1.

The next two theorems define the verification conditions for
partial correctness. They state the property of the state vector
sequence which is implied by the verification condition. This result

will be used in proving the.validity of the inductive assertion method

as defined for Nucleus programs.

Theorem 3.6.2.
Consider path P:Ql,...,P:Qr with P:QIl#INITIALPROCEDURE:0 and with
corresponding state vector sequence E[ql],...,E[qr].

If the verification condition

tag[P:0](X.0,X.0)
tag[P:Q1](X.0,X.alt(X,1))

<PRV> cond(P:Ql,1)
veterm(P:Q1,P:Q2,1)
<PRV> cond(P:Qr-1,r-1)
veterm(P:Qr-1,P:Qr,r-1) -

tag[P:Qr](X.0,X.alt(X,r))

is satisfied then

NT (n)

n > qr

tag[P:0](Elentry(ql)] (X),Elentry(ql)] (X))
tag[P;Ql](Elentry(q1)1(X),E[ql]1 (X))

66

c € calls(ql,qr) a tag[Elc] (:LOC) J(E[c](X),E[c] (X)) ~»
tag[Elexit(¢)](:LOC) 1(E[c] (X),Elexit(c)]1(X))

tag[P:Qr] (Elentry(ql)1(X),E[qr} (X))
¢ € calls(ql,qr) + taglE[c](:L0OC)](E[c]1(X),E[c](X))

This theorem defines the verification condition for any path
which starts at some point other than INITIALPROCEDURE:0. The theorem
states that if the verification condition is satisfied, then whenever
the corresponding path is tfaversed during execution, if the initial
assertion of the current procedure is satisfied at entry and the
assertion at the beginning of the path is satisfied and if for all
called procedures along the path the initial assertion at entry
implies the final assertion at exit, then when the end of the path is
reach;d, the assertion at the end of thé path is satisfied and the
{nitial assertion of each procedure called along the path is true at its
éntry.

Proof of Theorem 3.6.2:
For every 1 £ i £ r, we define
INTi(X.O,X.alt(X,l),X.alt(X,l'),X.alt(X,l"),...,X.alt(X,i)) to be

tag[P:Ql] (X.0,X.alt (X,1))
veterm(P:Q1,P:Q2,1)

veterm(P:Qi-1,P:Qi,i-1) -

Because the verification condition is satisfied, it follows from the
definition of INTi that for 1 <1 £ r-1,

tag[P:0](X.0,X.0) .
INTi (X.0,X.alt(X,1),X.alt(X,1"),X.alt(X,1"),... ,X.alt(X,1))

o

¥

<PRV> cond(P:Qi,1)
veterm(P:Qi,P:Qi+l,1i)

INTi+l(X.0,X.alt(X,l),X.altCX,l’),X.alt(X,l"),...,X.alt(X,i+l))

Then by Theorem 3.6.1 we get for 15241211,

NT (n)

n 2 qr

tag[P:0]1(Elentry(ql)](X),E[entry(ql)]1 (X))

INTi(EIentrY(ql)](X),EIqll(X),E[ql’](x),E{ql"}(X),---,E[qi](X))

¢ € calls(qi,qitl) A tag[E[c](:LOC)](E{c](X),E[c](x))+
tag[E[eXit(c)](:LOC)](E[c](X),E[eXit(c)](X))

INTgi;(E[entry(ql)](X),E[ql](X),E[ql‘](X),EIql"](X),‘--,
E[qi+l1] (X))

¢ € calls(qi,qi+l) -~ tag[E[c](:LOC)](E{c](X),E[c](X))‘

The combination of this set of r-1 state vector implications yields

A: NT(n)
n > qr
tag[P:0] (E[entry(ql)1(X),E[entry(ql) 1 (X))
tag[P:Q11(E[entry(ql)]1(X),E[q1] (X))
ce calls(ql,qr) a tag[E{c}(:LOC)](E{c](X),E[c}(X)) >
tag[E[exit (c)](:L0C)1(E[c](X),E[exit (c) (X))

INTr(E[entry(ql)](X),E[ql](X),E[ql'](X),E[ql"](X),---,E[qr](X))
¢ £ calls(ql,qr) »> tag[E[c](:L0C) 1 (E[c](X),E[c](X))

which has been labelled A for later reference. The verification
condition and the definition of INTr yield

tag[P:0]1(X.0,X.0)
INTr(X.O,X.alt(X,l),X.alt(X,l'),X.alt(X,l"),...,X.alt(X,r))

tag[P:Qr](X.0,X.alt(X,1))

which is expressed in terms of arbitrary values. Substituting specific
values in the same manner as in the proof of Theorem 3.6.1 we get

tag[P:0](E[entry(ql)](X),E[entry(ql)] (X))
INTr(E[entry(ql)](X),E[ql](X>,E[ql'](X),E[ql"](X),---,E{qr](X))

taglP:Qr] (E[entry(ql)](X),Elqr]1(X))

By applying this result to A above we get

08

NT (n) .

n 2 qr -

tag[P:0] (Elentry(q1) 1 (X) ,E[entry (q1) 1 (X))

tag[P:Q1l](Elentry(ql) J(X),E[q1](X))

¢ € calls(ql,qr) » tag[E[c](:LOC)J(E[c](X),E[c] (X)) ~
tag[EJexit (c¢)J(:LOC)J(E[c]1(X) ,E[exit(c) 1(X))

tag[P:Qr] (E[entry(ql)]1(X),Elqr] (X))
c € calls(ql,qr) + tag[E[c](:LOC)](E[c](X),E[c](X))

which completes the proof of Theorem 3.6.2.

Theorem 3.6.3 defines the verification condition for a path

which begins at INITIALPROCEDURE:0. It is the same as Theorem 3.6.2

except that four lines are added at the front to indicate the initial

values of :LVL, :RDHD, :WIHD, and :STEP.

Theorem 3.6.3

Consider path P:Ql,...,P:Qr with P:Ql=INITIALPROCEDURE:0 and with i
corresponding state vector sequence %{ql],...,E[qr]. -

I1f the verification condition

tag[P:0](X.0,X.0)
:LVL.O=-1
+RDHD.0=0
:WTHD.O0=0
¢STEP.0=0

<PRV> cond(P:Q1,1)
veterm(P:Q1,P:Q2,1)

<PRV> cond(P:Qr-1,r-1)
veterm(P:Qr-1,P:Qr,r-1) o

tag[P:Qr](X.0,X.alt(X,r))

is satisfied, then

NT (n)

n z qr

tag[P:0] (Elentry(ql)] (X),Elentry(ql)] (X))

¢ € calls(ql,qr) » tag[E[c](:LOC)J(E[c](X),Elexit(c)] (X)) ~
tag[E[exit(c)]1(:LOC)] (E[c](X) ,E[exit(c)] (X)) W

@

Fa
W

69

tagIP:Qr}(E[entry(ql)](X),E{qr](X))
c e calls(ql,qr) » taglE[c](:LOC)](E[c](X),E[c](X))

Proof of Theorem 3.6.3:

The four extra lines reflect the initial values defined in
Axioms 18-20 and the definition of :STEP. Since P:0 is P:Ql then
tag[P:Ql] which appears in Theorem 3.6.2 can be treated as true and
the proof of Theorem 3.6.2 then appiies to Theorem 3.6.3 also.

The followiné three lemmas give properties needed for the

proof of Theorem 3.6.4.

Lemma 1
Consider the finite execution sequence E[e],...,E[x] of procedure P.
Assume that the partial correctness verification condition for each

path in P is satisfied and that there are no procedure calls in

sequence Elel,...,E[x]. Then tag[P:0](E[e](X),E[e](X)) ~ tag[P:EXITPOINT (P)]
(Ele]1(X),E[x]1(X)).
Proof:

The sequence E[e],...,E[x] can be broken down into subsequences
which correspond to paths of procedure P. Since all verification
conditions are true, then by Theorems 3.6.2 and 3.6.3, if the initial
assertion and the assertion atrthe front of the path- are true; then
the assertion at the end of the path is true. Chaining these
implications together we get tag[P:O](E[e](X),E[e](X)) + tag[PEXITPOINT (P)]

(E[e](X),E[x](X)).

70

Lemma 2

Assume the same conditions as Lemma 1 except that the sequence E[el,...,E[x]

does contain procedure calls and E[x] corresponds to a halt or exit of
procedure P. Then tag[P:O](E[e](X),E[e](X)) + tag[P:EXITPOINT(P)]
(E[e] (X),Ex]1(X)).

Proof:

Again the sequence E[e],...,E[x] can be broken down into
subsequences which correspond to paths of procedure P. This time,
however, there are 'gaps" in some subsequences. These "gaps"
correspond to procedure execution sequences for the called procedures.
In order to apply Theorems 3.6.2 and 3.6.3, we need to know for each
procedure call, that if the initial aséertion is true at entry, then
the final assertion is true at exit. If the execution of the called
procedure contains no procedure calls, then we can apply Lemma 1 to
get the desired condition. 1f not, we repeat this argument on the
execution sequence of the called procedure. Since Elel,...,E[x] is
finite, the number of procedure calls must be finite and a procedure
execution with no procedure calls will ultimately be found. For this
procedure execution, the initial assertion at entry impiies the final
assertion at exit by Lemma 1. This result together with Theorems 3.6.2
and 3.6.3 and the chaining argument of Lemma 1 is used to fill the
innermost gap. Repeating this process gntil all gaps are filled,

yields tag[P:0] (E[e](X),E[e] (X)) ~ tag[P:EXITPOINT(P)](E[e](X),E[x}(x)).

71

Lemma 3

Assume the same conditions as for Lemmas 1 and 2 except that the
procedure execution sequence Ele],...,E[x] does not reach a halt or exit
of P. State vector E[x] thus corresponds to a procedure call which
leads to termination at a halt. Then tag[P:0](E[e] (X),E[e] (X)) ~
tag[EIx+1](:LOC)](EIx+l](X),E[x+l](X)).

Proof:

The sequence Ele],...,E[x] can be broken down into sub-
sequences which correspond to paths of procedure P; however, there
will be a sequence E[w]l,...,E[x] left over. This sequence corresponds
to the front of the path (not necessarily unique) which was being
executed when the procedure call was made. Sequence E[w],...,E[x]
corresponds to a procedure entry path. Since all verification
conditions are true, the verification condition for the path (or
paths) headed by this procedure entry path is true. By Theorems
3.6.2 and 3.6.3, the initial assertion of all called procedures are true
at entry. Then by chaining the implications for all complete paths,
as in Lemmas 1 and 2, together with the implication for the procedure
entry path, we get tag[P:O](E[e](X),E[e](X)) > tag[E[x+1](:L0C)]
(E[x+1](X),E[x+11(X)). This completes the proof of the three lemmas.

' The next theorem asserts the validity of the/inductive

assertion method as defined above for Nucleus.

Theorem 3.6.4

Consider Nucleus program NP with initial assumption A(X.0,X) and

desired result R(X.0,X). If NP is properly tagged and the partial
correctness verification condition for each path is satisfied, then
E[0](A(X.0,X)) A NT(n) > E[n](R(X.0,X)), that is, NP is partially
correct with respect to initial assumption A(X.0,X) and R(X.0,X).
Proof of Theorem 3.6.4:

Given E[01(A(X.0,X)) A NT(n) and that all partial correctness
verification conditions are satisfied, we are to prove E[n] (R(X.0,X)).
Since the program terminates normally at state vector n, we have a
finite state vector sequence E[0],...,E[n] representing the program
execution. This state vector sequence may be broken down into
subsequences corresponding to executions of procedures. A procedure
execution may be any of three different‘types. These are (1) a
procedure execution which calls no other’procedures, (2) a procedure
execution which cont;ins procedure calls and which reaches its own
halt or exit, and (3) a procedure execution which contains procedure
calls and which does not reach its own halt or exit (a called procedure
leads to execution of a halt).

1f the execution of the starting procedure contains no
procedure calls, then by Lemma 1, E[0](A(X.0,X)) A N?(n) + E[n](R(X.0,X)).
If the execution of the starting procedure does contain procedure
calls, but still reaches a halt or exit of the starting procedure, then,
by Lemma 2, E[0](A (X.0,X)) A NI(n) ~ E[n](R(X.0,X)). If the execution
of the starting procedure contains procedure calls and never feaches a

halt or exit of the starting procedure, then, by Lemma 3, the last

73

procedure called from the starting procedure is entered with its

initial assertion satisfied. For this procedure, we reapply the above
argument. Since the execution sequence E[0],...,E[n] is finite, we

must eventually reach the procedure which executes the halt and its

initial assertion is satisfied at entry. By Lemmas 1 and 2, we get

E[n] (R(X.0,X)) at the exit or halt of this procedure. Thus, E[0](A(X.0,X)) A

NT(n) > E[n](R(X.0,X)). This concludes the proof.

3.7. Verification Conditions for Total Correctness
In this section we discuss the verification conditions
necessary to prove total correctness. The proofs of total correctness
differ from thoée for partial correctness in two ways. First, the
. verification condition terms must be modified, and second, each
assertion must place a finite upper bound on :STEP. |
Any condition which causes abnormal termination can be
assumed absent when normal termination ;s assumed; however, if normal
termination is to be demonstrated, then these conditions must be proved
{:} absent. Thus many terms which are included in the vcterm for partial
correctness must‘be moved to the cond term for total correctness. The
new coﬁd terms will be listed with the understanding that these terms
are all removed from the vcterm and that the remainder of the vcterm
and the alteration counter function are unchanged. Assume P:Qi is

the i-th point along a path.

Definition 3.6.1la assign

., - If ASSIGN(P:Qi,N,V) and SIMPLE(N) then cond(PﬁQi,i) is

V.alt (X,1)#U

pefinition 3.7.1b

1f ASSIGN(P:Qi,A[EXP],V) and ARRAY(A,B) then cond (P

EXP.alt(X,1)#U
0 < EXP.alt(X,i) =< < BOUND(A)
V. alt(X 1)#U
Definition 3.7.2a,b case

1f CASE(P:Qi,E,L) then cond(P:Qi,1) is

E.alt(X,1)#U

Definition 3.7.3 enter
If ENTER(P:Qi,C) then cond(P:Qi,i) is
:LVL.alt (:LVL,i) < maxstacksize

[:LVL.alt (:LVL,i) < maxstacksize
A:LVL.alt (:LVL,1i')=:1LVL. alt (:LVL,1i)+1

A:RINPT.alt (:RTNPT,i "y[:LVL.alt (:LVL,i)+1]=:

A:LOC.alt (:1L0C,i')=C:0

A:STEP.alt (:STEP,i ')y=:STEP.alt (:STEP,i)+1

*tag[c 01(X. alt(X i'),X.alt(X,i'))]

Definition 3.7.4a,b if
1f IF(P:Qi,E,T,F) then cond(P:Qi,1i) is

E.alt(X,i)#U

Definition 3.7.5 jumpto
1f JUMPTO(P:Qi,N) then cond(P:Qi,1) is

TRUE

:Qi,1i) is

74

:10C.alt (:LOC,i)+1

75

Definition 3.7.6 read
1f READ(P:Qi,A) then cond(P:Qi,i) is

TRUE

Definition 3.7.7 write
If WRITE(P:Qi,A) then cond(P:Qi,i) is

TRUE

This modification of the verification condition terms makes
certain that abnormal termination is proved not to occur. The
requirement of a.finite upper bound on :STEP at each assertion insures
that for each f;gged point P:Qi, there is an upper bound on qi where
E[qi] corresponds to P:Qi. The maximum of all such qi's, éay max qi,
indicates that E[max qi] is the latest state vector which can correspond
to a tagged poinf. The tagged points are chosen in a way such that
only a finite number of execution steps may occur before another
tagged point is achieved. Thus, there can be only a finite number of
state vectors following E[max qi]; and, in fact, since normal termination

must occur at a tagged point, E[max qi] is the upper bound on any

- execution.

The verification conditions modified as described above are

sufficient to prove total correctness.

o/

CHAPTER 1V
A NUCLEUS VERIFIER AND ITS PROOF

IV.1l. Introduction

This chapter describes the correctness proof of a Nucleus
program which generates the Nucleus verification conditions defined in
Chapter III. The listing of the program with assertions is in Appendix D.

The motivation for this proof is simple. In order for
proofs of correctness by the inductive assertion method to be feasible
for a large class of programs, it must be possible to generate the
verification conditions automatically, and if the proof based on these
verification conditions is to be valid, the verification conditions
must be correctly generated. This Nucleus program then is proposed as
the base system in a sequence of verified verifiers of increasing
sophistication leading eventually to a verified system with a full set
of verification services.

The proof of this verifier employs a unique combination of

proof techniques. The basic technique is the inductive assertion method

based on inductive assertions and verification conditions; however, a

set of procedures which performs the traversal of transition networks

is proved correct by proving equivalence of the procedures and the
transition network definition. The equivalence proof made it unnecessary
to construct inductive assertions to describe the intermediate stages

of transition network traversal.

76

77

Section IV.2 outlines the approach used to construct and prove
the program and describes the overall structure of the resultirg s&stem,
The structure and proof of the top-level procedure of the system,

VERIFY are described in Section IV.3. Sections IV.4-IV.6 discuss

the recognition component, which is headed by procedure PARSE, the
transition network traversal component headed by TRANSNET, and the
verification condition generation component headed by procedure VCGEN.
A statistical summary of the proof is presented in Section V.7 to
jndicate the general magnitude of the project, and Section Iv.8 is a
subjective evaluation of the validity of thevproof with comments about

the probability of the existence of verifier errors and the implications

of their existence.

IV.2. Methodology

The program construction and proof were performed in parallel
following basically a top-down structured programming approach whereby
the top-level procedures were written and proved before proceeding on
to the next level. Each procedure is kept simple by breaking complex
computations into small parts to be handled by separate procedures. The
code itself is highly structured and contains no GO TO statements. The
combination of these apprcaches results in procedures which tend
toward simple structures, and this simple structure introduces a
corresponding simplicity to the proof.

The program operation is straightforward and follows the
general pattern {1lustrated in Figure IV.1. The input is a program

with assertions. If the program is identified as legal, the verification

S’

78

program
with
assertions

illegal

[RECOGNIZER

legal 3 @

VERIFICATION

CONDITION. untagged
- GENERATOR loop
verification

conditions

Figure IV.1. Verifier Structure

condition generation begins; otherwise,’an error message is printed

and execution of the system terminates. Verification condition generatioﬁ
proceeds through the procedures in the order that they appear in the

input file. If an untagged loop is encountered, a message is printed

and execution halts; otherwise, execution.continues through generation

of all verification conditions.

The top-level procedure is VERIFY, which establishes the
overall program structure. The structure and proof of VERIFY are
discussed in Section IV.3. The recognition component is headed by
procedure PARSE and the verification condition generaﬁibn component
is headed by procedure VCGEN. The structure and the proof of these

procedures are discussed in Sections IV.4 and IV.6. The proof of the

recognition component includes equivalence proofs between the implementation

and the definition, together with inductive assertion proofs. The

79

proof of the verification condition generation component is based
entirely on the inductive assertion method.

The inductive assertion method verification conditions for
the proof were generated by a modified version of a Snobol program [14].
This Snobol program is not verified which means that the verification
conditions must be hand checked before proof. No simplification of the
verification conditions ;s performed by the Snobol program, thus placing
full responsibility for each detail of the proof process on the user.

The Snobol verification condition generator of [14] was
modified by adding a feature which makes top-down proofs practical by
allowing generation of verification conditions for procedures that call
other procedures not yet completely specified. The system treats
PENDING as an additional resérved word which can be used.as a program
statement. The PENDING statement is defined as a statement which
changes all program variables to some unknown value in the value space.
It is used to represent a section of code which is not yet written,
hence the term "pending". The Snobol verifier does not generate
verification conditions for any procedure containing a PENDING statement,
but the initial and final assertions of these procedures are used to
generate verification conditions for procedures which call the ones
containing PENDING. Thus the verification conditions can be generated
for top-level procedures before the lower-level procedures are written.
The assumption is that the lower-level procedures eventually will be

completéd; and when they are, they will be proved correct with respect

80

to their initial and final assertions.

IV.3. VERIFY

Procedure VERIFY is the top-level procedure of the system and
therefore establishes the system structure. The procedure with
assertions is listed below. The numbers in parentheses at the left are
not a part of the procedure. They correspond to the control points of
the reduced program and are included for reference purposes.

PROCEDURE VERIFY;

(0.1) ASSERT READFILE (:RDHD)=INPUTSTRING;
(1)} ENTER SETUP;
1) ENTER PARSE;
(2) ENTER VCGEN;
(3.1) ASSERT INPUTSTRING IS A LEGAL NUCLEUS PROGRAM;
(3.2) ASSERT WRITEFILE(:WTHD)=LISTING AND VERIFICATION

CONDITIONS FOR INPUTSTRING;
&) EXIT;

Procedure SETUP initializes several variables such as stack
pointers and is proved using the inductive assertion method. Procedure
PARSE is the recognition component and is discussed in Section IV.4.
Procedure VCGEN is the verification condition generator and is
discussed in Section IV.6.

Partial correctness for VERIFY is stated in terms of an
initial assumption and desired result. VERIFY is partially correct if
it can be shown that for any execution which terminates normally, the

desired result is satisfied. The initial assumption is, "The Nucleus

transition network and all system constants are prestored in their

designated locations and the readfile contains the input string." The

81 {3
initial assumption is stated in terms of the initial assertion of
VERIFY and the two predicates NETWORKS(FIRSTARC, RECOGNITIONSTATE, SYMBOL,
TEST, ACTION, FLAG, NEXTSTATE, PARSESTART, SCANSTART) and CONSTANTS (PRESET,
RESERVEDWORDSET, RESWORDPTS, RESCODE, LOOP, DASHES, DOTS, ASRITRUE,
BLANKLINE, PATHIS, LINE1l, LINE2, LINE3, LINE4, COLONWORDSET, COLONPTS,
" LVLLINE). Thesebtwo predicates are assumed at each tagged point in

addition to any additional stated assertions at that point. Since none

of the arguments are altered anywhere in the program, the predicates

need not be proved along a path. The arguments of NETWORKS are the

lécations in which‘the Nucleus transition network is prestored and

the arguments of‘CONSTANTS are the locations where predefined constants

are stored. » "‘:

The desired result is, "The input string contains no syntax

or untagged loop errors and its listing and verification conditions

are contained on the output file or the input string contains a

)

syntax or untagged loop error." The first part of the desired result

is stated in terms of the final assertion of VERIFY. Each halt

statement in the program is tagged with an assertion which declares
that a syntax or untagged loop error has occurred.

Three other assumptions were made in order to simplify the
proof. It is‘assumed for purposes of the proof that all array subscripts
are within the declared bounds, the return point stack does not overflow,
and there is no integer overflow. Nucleus provides run-time checks on

each of these conditions so no such error will occur without some

\.J

[

e

82

notification. The terms dealing with these conditions are not
included in the verification conditions generated by the Snobol system
for this proof. Therefore, there is a slight difference between the
verification conditions used to prove the Nucleus system and the
verification conditions generated by the Nucleus system.

The verification condition for the only path in procedure

YERIFY is listed below..

0.A :LVL.0= -1

0.B :RDHD.O= O

0.C sWTHD.O= O

0.D :STEP.O= 0

0.1 READFILE (:RDHD.0)=INPUTSTRING
0 <PRV>TRUE

CURRENTPROC.1= -1
STATEMENTPT.1= -1
ASRTLOCPT.1= -1
ASRTLOC1.1]0]= O

0 < $$ = 1999 ~ ASRTLOC.1[$$1= -1

EXPLISTPT.1= -1

EXPSTRING.1[0]= O

EXPSTRING.1[1]= -1

CASELABELSETPT.1= -1

CASELABELFRONT.1[0]= O
<PRV>READFILE(:RDHD.0)=INPUTSTRING
<PRV>CURRENTPROC.1= -1
<PRV>STATEMENTPT.1= -1
<PRV>ASRTLOCPT.1= -1
<PRV>ASRTLOC1.1[0]= O
<PRV>0 < $$ < 1999 - ASRTLOC.1[$$]1= -1

<PRV>EXPLISTPT.1= -1 e

<PRV>EXPSTRING.1[0]= O

<PRV>EXPSTRING.1[1]= -1

<PRV>CASELABELSETPT.1= -1

<PRV>CASELABELFRONT.1[0]= O

<PRV>DEFINEDCASELABELSETTOP.1= -1
PROGRAM(ALTSET.l,ASRTLOC.Z,ASRTLOCl.Z,ASRTS.l,
BOUNDFUNCTION.l,CASELABELFRONT.Z,CASELABELS.l,
CASELABELSET.l,CHARLIST.1,DEFINEDIDENTIFIERSET.l
DEFINEDIDENTIFIERSETPT.l,DEFINEDPROCEDURESET.l,

o
0
0
0
0
0
0
0
0
0
0 DEFINEDCASELABELSETTOP.1= -1
1
1
1
1
1
1
1
1
1
1
1
1

83

DEFINEDPROCEDURESETPT.l,DESCLOC.I,EXPLIST.l,)
INITIALPROCEDURE.l,PROC.l,PRDCCALLS.l,STATEMENT.l) .

1 WRITEFILE(:WTHD.1)=LISTING

1 LINEPT.1=0 a LINE.1[0]=tF -

2 <PRV>PROGRAM(ALTSET.1,ASRTLOC.2 ,ASRTLOC1.2,ASRTS.1,)
BOUNDFUNCTION.I,CASELABELFRONT.Z,CASELABELS.l,
CASELABELSET.l,CHARLIST.l,DEFINEDIDENTIFIERSET.1,
DEFINEDIDENTIFIERSETPT.l,DEFINEDPROCEDURESET.l,
DEFINEDPROCEDURESETPT.l,DESCLOC.l,EXPLIST.l,
INITIALPRDCEDURE.1,PROC.l,PROCCALLS.l,STATEMENT.l)

2 <PRV>LINEPT.1=0 A LINE.1]0]=tF .

2 PRDGRAM(ALTSET.2,ASRTLOC.3,ASRTLOCl.3,ASRTS.2,
BOUNDFUNCTION.2,CASELABELFRONT.3,CASELABELS.2,
CASELABELSET.2,CHARLIST.Z,DEFINEDIDENTIFIERSET.Z,
DEFINEDIDENTIFIERSETPT.Z,DEFINEDPROCEDURESET.Z,
DEFINEDPROCEDURESETPT.2,DESCLOC.2,EXPLIST.2,
INITIALPROCEDURE.Z,PROC.Z,PROCCALLS.2,STATEMENT.2)

2. WRITEFILE(:WTHD.2)=WRITEFILE(:WTHD.1) AND
VERIFICATION CONDITIONS FOR INPUTSTRING

.1 INPUTSTRING IS A LEGAL NUCLEUS PROGRAM
2 WRITEFILE(:WTHD.2)=LISTING AND VERIFICATION
CONDITIONS FOR INPUTSTRING -

ww
.

The numbers at the left refer to the statements from which the T
terms result. Tae <PRV> lines correspond to the initial assertions of
the called procedures. Immediately below the initial assertions are

the final assertions of the same procedures. The first four lines of

the verification condition 0.A, 0.B, 0.C, and 0.D appear only on this
path since it starts at point zero of the initial procedure. They
indicate the initial values of the return stack 1eve1; the read and
write record pointers, and verifier variable :STEP whicg counts state
vectors. Line 0.1 is the initial assertion of VERIFY and lines 3.1

and 3.2 are the final assertion of VERIFY. PROGRAM is a predicate which
asserts thaf INPUTSTRING is a legal Nucleus progfam and that the

reduced program is represented by the values listed as its arguments.

a ‘w

LJ

5

34

The bodies of procedures PARSE and VCGEN used in the generation of this
verification condition were represented by PENDING statements. Thus
the alteration counter for each variable is increased at the procedure

call for each of these two procedures.

Iv.4. PARSE

The recognition component which is headed by procedure PARSE,
performs the syntax check of the input string to identify it as a legal
or illegal Nucleus program, and maps the legal program strings into
reduced program form. This component also produces a program listing
with control points inserted to aid‘the user in associating corresponding
parts of the program and the verification conditions.

Procedure PARSE is listed below with the assertions used in
its proof. Statements 0-12 initialize the traversal of the Nucleus
parsing network, and then the while loop repeatedly calls TRANSNET,
which traverses from one state to the next in the transition network
each time it is called. ATPARSESTATE in assertion 13.1 is an assertion
predicate which is true whenever the transition network is at a parse
state. STATE is the current network state (either the scanning or
parsing) and PARSESTATE is the current parsing network state. Each of
these is set to the initial parsing network state PARSESTART (statements
0,1). The first card is read into array CARD (2) and the output
line is set to empty (3,4). If the first card is not an end-of-file

(5) then it is placed in the listing by procedure LIST (6).

85

PROCEDURE PARSE;

(0.1) ASSERT READFILE(:RDHD)=INPUTSTRING;
0.2) ~ ASSERT CURRENTPROC= -1;

(0.3) ASSERT STATEMENTPT= -1;

(0.4) ASSERT ASRTLOCPT= ~-1;

(0.5) ASSERT ASRTLOC1[C]= O;

(0.6) ASSERT 0 < $$ < 1999 - ASRTLOC[$$]= -1;
0.7) ASSERT EXPLISTPT= -1;

0.8) ASSERT EXPSTRING[O]= O;

0.9) ASSERT EXPSTRING[1]= -1;

(0.10) ASSERT CASELABELSETPT= -1;
(0.11) ASSERT CASELABELFRONT[O]= O;
(0.12) ASSERT DEFINEDCASELABELSETTOP= -1;

{0) STATE :=PARSESTART;

) PARSESTATE :=PARSESTART;

2) READ CARD;

3) LINEPT:=0;

4) LINE[O] :=4F;

) IF CARDIOI#4T

6) THEN ENTER LIST;
FI;

(7 COL:=1;

(8) RECOGNITION:=FALSE;

€D ASRTSCANFLAG:=FALSE;

(10) ENTER SCAN;

an CARINSTRING :=TOKEN;

(12) RTNSTACKTOP:=~1;

(13.1) ASSERT ATPARSESTATE;

(13.2) ASSERT -ASRTSCANFLAG;

(13.3) ASSERT LINEPT=0 a LINE[O]=%F;

(13.4) ASSERT WRITEFILE(:WTHD)=LISTING OF INPUTSTRING
THROUGH :RDHD;

(13) WHILE -RECOGNITION DO
14) ENTER TRANSNET;
(15) ELIHW; 4

(16.1) ASSERT PROGRAM(ALTSET,ASRTLOC,ASRILOCl,ASRTS,

: BOUNDFUNCTION,CASELABELFRONT,CASELABELS,CASELABELSET,
CHARLIST,DEFINEDIDENTIFIERSET,DEFINEDIDENTIFIERSETPT,
DEFINEDPROCEDURESET,DEFINEDPROCEDURESETPT,DESCLOC,
EXPLIST,INITIALPROCEDURE,PROC,PROCCALLS,STATEMENT);

(16.2) ASSERT WRITEFILE(:WTHD)=LISTING;

(16.3) ASSERT LINEPT=0 ALINE[Q]=4F;

(16) EXIT; .

COL points to the current input character and is initially set to one

(7). RECOGNITION becomes TRUE when transition nétwork traversal achieves

O

‘l'wi

Py

86

recognition and ASRTSCANFLAG is TRUE when a scan is being performed

on the characters in an assertion during verification condition
generation. Each of these is initially set to FALSE (8,9). The scan
of the first token is performed (10) and CARINSTRING is set to the code
integer for this token (11). The return stack 1s set to its empty
condition (12) and the transition network traversal loop is entered.

If a syntax error is discovered, a halt statement 1is executed in TRANSNET,
thus PARSE need test only for recognition of the input string and

does not need to be concerned with error checks.

The proof of procedure PARSE is an inductive assertion
method proof. Even thgugh the proof of TRANSNET does not employ the
jnductive assertion method, it is assigned initial and final assertions
which are used in tﬁe proof of PARSE. These assertions are shown in
the next section, which describes TRANSNET and its proof. This is the
point at which the equivalence proofs are joined to the inductive

assertion proof.

IV.5. TRANSNET

Procedure TRANSNET is the heart of the recognition component
and is listed below wifh its initial, final, and halt assertions.
Procedure TRANSNET can be seen to be of the same structure as the
axiomatization of transition network traversal contained in Appendix A.
A description of the program variables and network representation codes
provides the remaining detail needed to verify that TRANSNET and its
four utility procedures ALPHABETMATCH, ﬁILMATCH, STACKTEST, and TRAVERSE

are equivalent to their definitions.

(0.1)

0.2)
0.3)
(0.4)

0)
1)
(2)
(3)
(5)
(6)
(7)
C))
(10)
(11)
(12)
(14)
@15)
(16)
an
(18)
19)
(21)
(22)
(24.1)
(24.2)

(24)
(25)
(27.1)
(27.2)

27

(28.1)
(28.2)

(28.3)
(28.4)
(28.5)

(28)

87

PROCEDURE TRANSNET; .
ASSERT [~ASRTSCANFLAG a ATSCANSTATE ATSAVEDPARSESTATE] .
v[ﬂASRTSCANFLAG:‘ATPARSESTATE]v [ASRTSCANFLAG A ATASRTSCANSTATE] ;
ASSERT -~RECOGNITION;

ASSERT LINEPT=0a LINE[O]=tF;

ASSERT WRITEFILE(:WTHD)=LISTING OF INPUTSTRING

THROUGH: RDHD ;

ENTER ALPHABETMATCH;

IF ALPHARETMATCHFLAG

THEN ENTER. TRAVERSE;

ELSE ENTER NILMATCH;

IF NILMATCHFLAG

THEN ENTER TRAVERSE;

ELSE IF ARC < FIRSTARC[STATE+1] A SYMBOL[ARC] < O

THEN RTNSTACKTOP :=RINSTACKTOP+1;

RTNSTACK[RTNSTACKTOP] :=ARC;

STATE :=-SYMBOLIARC];

ELSE IF RECOGNITIONSTATE[ARC]

THEN ENTER STACKTEST;

IF STACKTESTFLAG

THEN ARC:=RTNSTACK[RTNSTACKTOP];

RTNSTACKTOP :=RTNSTACKIOP-1; .
ENTER TRAVERSE; " T
ELSE IF RTNSTACKTIOP < O

THEN RECOGNITION:=TRUE; N
ELSE WRITE NONRECOGNITIONj)
ASSERT INPUTSTRING NOT RECOGNIZED BY TRANSITION NETWORK;
ASSERT WRITEFILE(:WTHD)=WRITEFILE(:WTHD.O) AND
NONRECOGNITION MESSAGE;

HALT;

FI:

F1;

ELSE WRITE NONRECOGNITION;

ASSERT INPUTSTRING NOT RECOGNIZED BY TRANSITION NETWORK;
ASSERT WRITEFILE(:WTHD)=WRITEFILE(:WTHD.O) AND
NONRECOGNITION MESSAGE;

HALT;

FI;

FI; e

FI;

F1;

ASSERT ASRTSCANFLAG.0 - ATASRTSCANSTATE;

ASSERT -ASRTSCANFLAG.O a ATSCANSTATE.O - ATSCANSTATE a
ATSAVEDPARSESTATE;

ASSERT -ASRTSCANFLAG.O A ATPARSESTATE.O -~ ATPARSESTATE;
ASSERT LINEPT=0 A LINE[O]=4F;

ASSERT WRITEFILE(:WTHD)=LISTING OF INPUTSTRING

THROUGH :RDHD; - .

EXIT; . £

88

To examine in more detail the relatiomship between a procedure and its
definition, consider procedure STACKTEST which is shown below. The
portion of the definition (Appendix A) which corresponds to procedure
STACKTEST is "RTNSTACK.i#{ } A test(car(RTNSTACK.i))(REGVAL.i)" which
appears as a test condition in the definition of the transition network
traversal.

PROCEDURE STACKTEST;

IF RTNSTACKTOP = O

THEN S:=ARC;

ARC :=RTNSTACK[RTNSTACKTOP] ;
ENTER TESTS;

ARC:=S;
IF TESTFLAG
THEN STACKTESTFLAG:=TRUE;
RETURN; ‘

Fi;
FI1;
STACKTESTFLAG:=FALSE;
EXIT;

Integer variable RTNSTACKTOP points to the top of the
transition network return stack and a value of -1 1is used to indicate
an empty stack. Therefore, the first test in STACKTEST is satisfied
only if the return stack is not empty. Integer variable S is a
temporary used to save the value of ARC since procedure TESTS may
alter ARC. Integer variable ARC is the current transition network arc
(these arcs are represented as integers). RINSTACK ié/an integer

array and RINSTACK[O],...,RINSTACK[RTNSTACKTOP] is the stack of arcs

_ making up the current transition network return stack. Procedure TESTS

evaluates the test associated with ARC and sets boolean variable

TESTFLAG to the result. We can now see that if the return stack is not

89

empty, then the test on the arc at the top of the return stack lIs
evaluated and the result is stored in TESTFLAG. The second test checks
this result and if the test is true, boolean variable STACKTESTFLAG

is set to "TRUE". If the test is not true or if the first test
determines that the return stack is empty, then STACKTESTFLAG is set

to "FALSE". Thus it can be seen that procedure STACKTEST is equivalent

to the corresponding test-in the definition.

Each action and test of the Nucleus definition network is
implemented as a separate procedure. Each of these procedures is, as
nearly as possible, a direct encoding of its definition counterpart.
The action proéedﬁre correctness proofs afe equivalence proofs much
like those for the TRANSNET procedures and the proofs for the test s
procedures employ the inductive assertion method.

The recognition component also contains several other small
utility procedures which support the procedures discussed above. The

inductive assertion method is used in their correctness proofs.

IV.6. VCGEN

The verification condition generation component headed by
procedure VCGEN, is activated when PARSE notes that TRANSNET has
achieved recognition of the input string. This idenéifies the string
as a legal Nucleus program, and since the transition network handles
the generation of the reduced program, the reduced program ncow exists
for VCGEN. Verification condition generation proceeds as long as no

untagged loops are found. An untagged loop causes an error message

30

to be printed and execution terminates.
Procedure VCGEN is 1isted below with assertions.

PROCEDURE VCGEN;

0.1) ASSERT LINEPT=0a LINE[0]=1F;

(0) P:=0;

1.1 ASSERT 0 £ P ﬁ.DEFINEDPROCEDURESETPT+1;

(1.2) ASSERT WRITEFILE(:WTHD)=WRITEFILE(:WTHD.O) AND

VERIFICATION CONDITIONS FOR ALL PROCEDURES IN
DEFINED.PROCEDURE.SET FROM 0 THROUGH P-1;

1.3 ASSERT LINEPT=0 ALINE[O]=1F;

(¢D) WHILE P S.DEFINEDPRDCEDURESETPT DO

2) CURRENTPROC:=03

3.1 ASSERT 0 =P < DEFINEDPROCEDURESETPT;
(3.2) ASSERT WRITEFILE(:WTHD)=WRITEFILE(:WTHD.O)

AND VERIFICATION CONDITIONS FOR ALL PROCEDURES
IN DEFINED.PROCEDURE.SET FROM 0 THROUGH P-1;

(3.3) ASSERT LINEPT=O.ALINE[0]=+F;

(3) WHILE DEFINEDPROCEDURESET P#PROC[7*CURRENTPROC] DO
%) : CURRENTPROC:=CURRENTPRDC+1;

(5) -ELIHW;

(6) BIAS:=PRDCI7*CURRENTPROC+1];

¢)) ENTER PROCVCGEN;

(8) P:=P+1;

9) ELIHW;

(10.1) ASSERT WRITEFILE(:WTHD)=WRITEFILE(:WTHD.O) AND

VERIFICATION CONDITIONS FOR INPUTSTRING;
(10) EXIT;
Note that the assertion containing the predicate PROGRAM which was
jncluded in the initial assertion of VCGEN for the’proof of VERIFY has
now been omitted. This assertion is assumed to be included at all
tagged points in the verification condition generation procedures. Since
none of its arguments are altered in these proceduréé, it need not be
included except when needed in the proof of a verification condition.

The defined procedures of the reduced program are indexed by
pointers in DEFINEDPROCEDURESET[O],...,DEFINEDPROCEDURESET{DEFINEDPROCEDURE

SETPT]. Thus, in the outer loop of VCGEN, P takes on the values

91

of these indices. For each index P, the inner loop looks up the
pointers to the description of P in array PROC and then calls procedure
PROCVCGEN which generates all of the verification conditions for the
procedure indexed by P. The inner while loop of VCGEN thus control
the generation of the verification conditions for the procedure indexed
by P.

The character array LINE is used in building up strings of
characters to be printed. Integer variable LINEPT is a pointer to
the last character stored. The definition of a write statement states
tﬁat element zero of the output array is not printed, bﬁt is used to
indicate whether or not an end-of-file is to be written, where a "T"
in element zero indicates write end-of~file. Therefore, the assertion
LINEPT=0 A LINE[0]=4F, where '"4+" is the Nucleus quote symbol, indicates
that the LINE is in its empty state énd is ready to accept the
characters of an output line.

The correctness proofs for the procedures in this component
of the Nucleus system are inductive assertion method prcofs. Again
the verification conditions used in the proof were generated by the

Snobol program described earlier.

IV.7. Proof Profile

The intent of this section is to portray the general magnitude
of the program and proof. The entire system is composed of 203
procedures. Nearly all of these are less than one page long including

assertions. The inductive assertion method was used in the proof of

o

(L

92

100 of these procedures, leaving 103 equivalence proofs. The 103
equivalence proofs are broken down further into 98 action procedures,
which were proved equivalent to the Nucleus network actions, and 5
transition network traversal procedures, which were proved equivalent
to the transition network axiomatization of Appendix A.

Table IV.l summarizes a subjective categorization of the
difficulty of proof for 'the terms in ten sample verification conditions

from the inductive assertion method proofs of the 100 procedures

Category " 'Number Per Cent

i{mmediate proofs 32 40

simple proofs 25 31
 more difficult proofs 23 29

TOTAL 80 100

Table IV.1. Difficulty of Proof of Terms from Ten Verification
Conditions.

mentioned above. The category v rmediate" includes simple tautologies

and any term which is jdentical to some term which can be used in its

" proof. The category "simple" includes proofs which involve one or two

simple steps such as substitution. All other termé are categorized as
"nore difficult" even though many of these proofs are still quite
straightforward.

1f we assume that the 100 procedures whose proofs employed

the inductive assertiomn method average five verification conditions

93

and that the verification conditions average eight terms to be proved
(see Table IV.1l) then we have 4000 terms to be proved assuming no
reproofs due to modifications of the program or proof. According to
Table IV.1l, we can expect that approximately 70 per cent of these, or
2800, will be immediate or simple proofs and that approximately 30
per cent, or 1200, will be more difficult. Thus there are 1200 proofs
which require some effort and 4000 proofs which must %e recorded and <:>
saved.
These numbers all assume no modifications in the program or
pfoof. Reproofs iﬁtroduced by modifications increase these numbers

significantly.

IV.8.k Validity of the Proof

Although there are no known errors in the Nucleus verifier
or its proof, there undoubtedly are errors in each. This section
describes two likely causes of such errors and discusses methods of
finding and eliminating them.

One source of errors is the lack of terminology and proofs
of properties needed to support assertions about Nucleus reduced
pfograms and their executions. Even though Nucleus has been rigorously
defined, this definition has not yet been used to deveioé a full set
of terms for the components of programs and executions. The terminology
necessary for this research was developed in earlier sections
(execution procedure of a state vector, entry state vector, exit state

vector, execution sequence, path, correspondence between paths and

94

execution sequences, etc.), however, many of the properties of programs
and executions were assumed without proof. For example, it is assumed
that the level of the return stack after exit from a procedure is the
same és the level before entry. Even though these properties seem
clear, they are a potential source of errors sinca the use of intuition
is quite tempting and leads to increasingly liberal assumptions.

The Nucleus definition provides a firm theoretical base on
which techniques for proving properties of the reduced programs and
their executions can be built. Using these techniques, the properties
of Nucleus which are assumed, can be proved (or disproved), thus
eliminating this potential error source.

The magnitude of the proof, as described in the previous
section, is a second indication and probable cause of errors. The only
automatic assistance used was the Snobol program which generated
verification conditions and the output from it required a hand check.

Two approaches to this problem would be repeated careful
checks of the proof by other people, and checks of the proof by
various mechanical systems. The second of these seems most likely and
most appealing. Even though the results of an unverified mechanical
aid can not be accepted as proof, it is generally easier to check

results by hand than to generate them by hand.

CHAPTER V
CONCLUSION

The development of a verified program ve;ifier for Nucleus
programs is organized into three steps. Each step is composed of a
formulation and a set of proofs that the formulation satisfiés certain
requirements. Steprggg_is the formal definition of the Nucleus
syntax and semantics. The proofs required at this step are a proof
of consistency for the Nucleus definition, and proofs of properties of
Nucleus programs as needed for the proofs in steps two and three.
These include sﬁch properties as: Ea;h control point has exactly
one reduced program instruction.

At step two of the verifier development, we define correctness'
of execution for Nucleus programs and formulate the inductive assertion
method for proving correctness. This formulation defines a set of
verification conditions. The set of proofs for step two show that
the inductive assertion method as formulated is valid by showing that
the verification conditions are sufficient to prove correctness.

Step three is the implementation of a generator for the
verification conditions defined in step two. This verifier is written
in Nucleus and operates on programs written in Nucleus. The proof at
step three is required to show that the verifier correctly generates
the Nucleus verification conditioms.

The current state of the development of these three steps is

detailed in the preceding chapters. Chapter II reviews the Nucleus

.

95

96 '

o i

programming language and the methods used in its formal definition.
This definition, in terms of transition networks and axioms, provides
the basis for the formulation of the inductive assertion method for
Nucleus programs and for the proof strategy used in verifying the
Nucleus verifier. The consistency of the Nucleus definition and the
properties of Nucleus used in this work, though carefully considered,
were assumed without proof. A consistency proof for the Nucleus {t>
definition, and the formulation and application of a technique for ;
proving properties about Nucleus are projects recommended as worthy of
further attention; For example, it should be possible to associate
assertions with states in transition networks and apply the inductive
assertion method to prove properties of Nucleus reduced progfams. The
formulation of such a technique would provide added appeal to the -
method used to define Nucleus.

Chapter III presents the theoretical basis for the verification
of Nucleus programs by the inductive assertion method. Termination of

Nucleus programs is separated into two types, normal and abnormal.

From two different treatments of normal termination, partial and total
correctness, a set of verification conditions is defined. These
verification conditions introduce input and output operations to the
inductive assértion method. The sets of verification conditions are
shown to be sufficient to prove partial and total correctness. Thus,
stage two of the development of a verified verifier is complete.

Chapter IV describes the construction and correctness proof

97

- of the verified program verifier. The correctness proof employs a
unique approach to program verification which combines the inductive
assertion method with equivalence proofs. This initial verified
verifier provides a starting point for a sequence of verified verifiers
of incréasing sophistication, while the proof technique provides
a model for proofs of similar programs such as a Nucleus compiler.

These projects are also recommended as worthy of further attention.

The verifier together with its correctness proof represent the completion
of stage three.
Among the factors contributing to the achievement of this
verifier, undoﬁbtedly the most important is the formal definition of
.— . Nucleus in terms of transition networks and axioms. Other contributing
o factors are the Snobol verification condition generator, the top-down
structured approach to the construction of the program, and the free-
form assertions which provided the flexibility needed to describe the
intermediate stages of development. These together with the unique
(:3 proof strategy using the inductive assertion method in combination with
equivalence proofs made the proof possiblé. In return, this research
offers the verifier itself as the base system in a sequence of verified
verifiers of increasing sophistication, the proof strategy which can be
employed in similar proofs such as for a Nucleus compiler, and a
proof of a moderate-sized program as a contribution to the general

pool of program correctness experience.

APPENDIX A
- TRANSITION NETWORK DEFINITION

TRANSITION NETWORK = (STATES, ALPHABET, REGISTERS, TESTS, ACTIONS, ARCS,
RECOGNITIONSTATES, STARTSTATE)

where:

(1) STATES is a set

(2) ALPHABET is a set .such that ALPHABET N STATES = { }

(3) REGISTERS is a set of register name/register range pairs.
(N1,R1),(N2,R2) in REGISTERS a (N1,R1)#(N2,R2) - N1#N2
REGISTER NAMES = {N such that (N,R) in REGISTERS}

S REGISTER PANGES = {R such that (N,R) in REGISTERS}
. . RANGE : REGISTER NAMES + REGISTER RANGES such that
RANGE(N) = R iff (N,R) in REGISTERS
REGISTER VALUES = {V such that V is a set of pairs
(N1,V1) in V - [Nl in REGISTER NAMES a V1 in RANGE(N1)
:3 : V2#V1 » (N1,V2) not in V]}
(4) TESTS € {P such that P : REGISTER VALUES > {TRUE,FALSE}}
(5) ACTIONS € {DO such that DO : REGISTER VALUES -+ REGISTER VALUES}
-(6) ARCS & STATES X SYMBOLS X TESTS X ACTIONS X SCANFLAG X STATES
where SYMBOLS = ALPHABET U STATES U {NIL} |
NIL not in ALPHABET U STATES
SCANFLAG = {SCAN, NOSCAN}
let arel = (Q1,81,P1,D1,F1,Q2), arc2 = (Q1,S2,P2,D2,F2,Q3),

w. arcl # arc2, arcl in ARCS,. arc2 in ARCS.

98

99

then (2) S1 # S2v¥ ~(P1(x)a P2 ©9))
(b) S1 in STATES - S2 not in STATES s Ql not in
RECOGNITIONSTATES
(7) RECOGNITIONSTATES < STATES

(8) STARTSTATE IN STATES

100

INPUTSTRING = A0,Al,A2,...,An where each Ai in ALPHABET

DECLARATIVES

NAMESPACE = {STATE, REGVAL, INSTRING, RTNSTACK }

EVALUATIVES
:} STATE.O = STARTSTATE

REGVAL.O in REGISTER VALUES

INSTRING.0 = INPUTSTRING
RINSTACK.0 = { }

- stateof (x) = car(x) first element
.) symbol(x) = cadr(x) second element
- test(x) = caddr(x) third element
action(x) = cadddr(x) fourth element
flag(x) = caddddr(x) fifth element
pextstate(x) = cadddddr(x) sixth element

-’

101

(T+T)uU0TITU30091~-UOU IETD

(T+T)uoT3fudodai-uou asTd
 (1+T)T0FITUI0091 UIYI
[{}= F'MOVISNI¥] 3T ®s8T®
(L[[71Z ¢ ((F"MOVISNI¥)ied)o3e3isixau ‘ILVIS]V
< (FIVASTYE) ((T°MOVISNIY)aed)uorioe ‘IVADFY]V
‘F*ONIYISNI 98T°®
(T*ONTUISNI)IP® uay3 NVOS=((T AOVISNI¥)1ed)3eTd FT ‘ONIYISNI]V
¢ (F°MOVISNIN)IPd “MOVISNIN]V=[T+F]Z uay3l
[((F*TvASTE) ((T MOVISNIY¥) 180)3803)V ({}#T MOVISNIY) 3T Uoul
[SZIVISNOILINOODTY NI T dLViS] 3T °sT®
[[[Tl “(ouv)Toquds ‘EIVISIV
¢ (T*MOVISNIN‘0¥V) suod “MOVISNIM]V=[T+T]d uayl
[(SaLvIS UF (DUV)Toquis)Y(F IALVIS=(DUV)3F0238IS)¢SIUV UT DAVE]IT °8T°
([l [Fl3 ‘(0¥v)oreasixau‘mIvISV
“ (F'IVADEY) (0¥Y) u0TIOR TVADHM]V
‘[*ONTYISNI ©5T® (T ONTWISNI)IPO Uyl NyOS=(D¥V)SeT3 3T ‘ONINISNIIV=[T+T]3 uay3
[((F*TVADTY) (DUV) 3893) ¥ (TIN=(D¥V) Toquhs) V(T ALVLS=(D4V) 309383IS)€ SOYV UT DYVE]IT 9ST°
(L[[¥]z*(0o¥v)@Ieasixau “UIVIS]V
(¥ IVAOTY) (D¥V) uoTIve “IVAOMA]V
‘T*ONTHYISNI °5T° (T'ONIUISNI)IPO uayl NvOS=(D¥V)3eT1F JT ‘ONIMISNI]V=[T+F]d uweul

[((F*IVAOEY) (DUV) 3593) V((T *ONIYLSNI) 182=(D¥V) T0qu&s) ¥ (" IVIS=(0UV) J09IBIS)ESDUV UT DAVE]IT
SHAILVIEdAT

. APPENDIX B

REDUCED PROGRAM COMPONENTS

ALL ARGUMENTS TO THE FUNCTIONS CESCRIAED ZELOW AVE CHARACTER
STRINGS. ALSO A=ENEVE? THE ARGUVWENT L 1S USEDs 1T 1S OF Thi FORM
p:q whErE P IS A STRING THAT IS THE NAVE OF SOE PROCEDURE AND
0 IS & STRING OF LIGITS. '

ei:? _ ARRAY(A+B} 15 PRODUCED FOR EACH ARRAY DEFINED IN THE
DECLARATIONS., A IS TwE ARKAY NAMES AND B IS THE
SUBSCRIPT UPKER =0U™Ne

ASSIGN{LeNev) IS PRODUCED WHEN POINT G IN PROCEDURE P HAS
AN ASSIGNSENT STATEMENT wlTH LEFT SIDE N aND
RIGHT SINE Ve

CASE(LsAsP) IS PAODUCED wrkh POINT Q IH PROCEDURE P Mas ETTHER
& CASE STATEMENT uf & CASE-ELSF STATEMENT. X 1s
TeE INTEGER VALULED CASE EAPRESSION. aAND P 1S TnE
POINT FOLLOWING THE ESaC.

CASEJOINPOINTIL)Y = J 15 PRODULCED IF POINT 0 IH PROCEDURE P HAS

.' - A CASE STATEMENT. J 15 THE POINT FOLLOWING ThE ESAC.
. CASELABELSET(L] = 5 15 PRODUCED IF POInT 0 In PROCEODURE P HAS
- A CASE STATEwEMT. S IS TmE SEV OF NuUMERIC CASE LARELS

- THAT AWE DEFINED FOR THAT CASE STATENENT.

ENTER(LsN) IS PRODUCEC 1IF PCINT O IN PROCEDURE P HAS aN ENTER
STATEMENT wlTH A PHOCEDURE NAMED Ne

EXIT(L)Y 1S PROOJUCED IF POINT Q IS THE EXIT OF PROCEDURE P

EXITPOINT(PY = @ IS PROCUCED IF POLNT Q 1S THE EX1T OF
PROCED IRE P.

KALTIL) 18 PRODUICED wHEN PUINT G 1N PROCEDURE P HAS A FHALT.
{::} IF(LoXeToF} 15 PEODUCED WHEN FOIMT G It PRGCEDURE P KasS a TwO
WAY cRANCH, X 1S Tnf EXPRESSION IC BE EVALUATEYD

ang IF X IS Thut CONTROL GRES TO FCINT Te OTHESWISE

10 POINT F. 1FS AYE PROCULCED FOR A NUWHE® OF STATEMENTS

IF=THEN: IF(LeXsToF) WHERE T IS Trg POINT AT THE THEN
24N F 1% TwE POLST AFTER THE Fl.

IF=TrREN=ELTET IF (LsXsTsF) «HEZt T 1S ThE POINT AT THE
THEN AND F IS5 THE 2AINT FOLLOUWING THE ELSE.

wHILE? IF{LeXoTeF) wrEFE T IS5 IHE POINT FOLLOWING
THE DO AND F 1S ThE »OINT FOLLUWING ELIHW,.

INITIALPROCECURE = P IS5 PRODUCED FOR ThE PROCEDURE P WHERE
EXECUTION OF THE PROGRA™ 15 T0 cE6INH.

JUMPTO(LeR) 1S PRODUCED WHEN POINT U In PROCEULRE P HAS A JUMP
10 PCINT &, JUMPS AFE PRCUUCED FUR A NUMBER OF
STATEMENTS,

’ 102

103

CASE AND CASE~ELSE: JUMPTO(LCASEJOINPOINTI(P:ICY))
FOR EVERY POINT U TrRAT 1S AT ThE END OF
A BODY IN TmE ALTERNATIVE SEAUENCE OF THE
CASE STATEMENT AT POINT C IN PROCEDURE P,

GO=-T0! JUMPTOILPOINTLABELLEOWITH(FPIT)) wWHERE 1
1S T=E IDENTIFIER APHEARING IN TWE GO-TO.

IF=THEN-ELSE: JUMPTO(LE) WrERE Q 1S TmE POINT
SEFO”E THE ELSEe AND E IS TrHE POINT
FOLLOWING The Fl.

NULL: JUMPTO(L «PLUSTQ))

RETURNT JUMPTO(L«EXITPOINT(P)) .

wHILE: JUMPTU(L +4) WHESE Q IS THE FOINT =EFORE THE
ELlrae A0 w 1S THE POINT AT THE wriLE.

POINTLABELLECWITRIS) = O
6 SENTENCE OF Tem1S FORM 1S PRODUCEC FOR EVERY IDENTIFIER
THAT APPEARS AS THE LAREL OF A STATEMENT. IN Tr1S CaASE
$ HAS THE FO&M P:] wrefxt P IS TRE NimE OF TrmE FROCEDURE
CONTAINING TrE LABEL AND 1 IS TmE LanEL ITSELF. A SENTENCE
OF TrlS FORM ALSQ IS PROCUCED FOUWR EVERY NUMSER TrAT
APPEARS AS A CASE LAREL. IN THIS CASE $§ raS TrnE FORM
PICIN w“ERE P IS5 TrE N2'€ OF TwE PHNCECUPE CONTAINING
THE LABELe € 1S THE POINT IN ThE PHFOCEDUNE THAT HAS ThHE
CASE STATEMENT IN wnICH THE LAREL 1S DEFINEDs AND N IS
THE LABEL ITSELF. IM ROThm CASES Q IS Tmg POINT THAT HaS *
THE LASELLED STATEMENT. - -

READ L -A) 1S PHROUUJCED WHEMN POINT O IN PPOCEDULRE P HaS A READ
STATEMENT wilTH APWAY A, ’ -

SIMPLE (D) 1S PRODUCED FOUR EVERY IDENTIFIER I THAT APREARS IN
QECLARATION OF SIMPLE VARIABLES,

WRITE(LsA) IS PROCUCED wHEM POIMT Q IN PROCEDURE P HaS A WRITE
STATEMENT wITH ARKRAY A,

>

APPENDIX C

THE NUCLEUS AXIOMS

CCE PGS COER NP0 C IS LIRS IEECOIRIREDIIRNECEORERROtRIPCESICOIOEEQPSIOIRSPICLERBATAGSIOETS

- -
° NUCLEUS AX10MS | .
° FILE 1330¢2X10MS .
° S71/12 .-
000.6.llt‘......00..0..'..0..!.‘.IIQ'..QQ.‘0‘.0'0‘..0'.0'..".."‘...
PRI~ITITIVE FUNCTIONS . ° °

eo=e® CENOTE THE USUAL MATHEMATICAL OPERATIONS OF INTEGER ADDITION
SUsTWACTIONs AND MULTIPLICATION,

/ DEMOTES TQUNCATED INTEGER UDIVISIONe THE INTEGER PART AFTER
PERFORMING REAL DIVISION.

MOD IS DEFINED AS A MOD B = A « H ® (A / HB) «HERE /
DENOTES INTEGER DIVISION AS DEFINED ABOVE.

Ce€e2e> VDENCTE THE USUAL MATHTREMATICAL ORDERING RELATIONS ON THE
INTEGE®S. :

~sAovee DENOTE THE LOGICAL OPERATIONS OF ~NOTe ANDe ORs ANC IMPLIES.
THE ASSUMED PRECEDENCE 1S = FlInSTseser » LAST.

BOOLOFCHAR(X) = HOOLOFINT(INTGFCHAR(X})

BOOLOFINT(X) = FALSE IF ABS(X) ™00 2 = 0
= TRUE IF A8s(R) v0D 2 = 1
CHARACTERCONSTANTTOXEN(X)
= TRUE IF TrE CraRACTER ST®ING X W0U: D BE WECOGUIZED aS &
CHARACTE (CONSTANT BY TrHE SCANNING NETWOWK
= FALSE OTrE~w]SE,

CHARACTELOVALUE(X) 1S APPLIED TO CHARACTER.CO'STANT TO-EN AND
RETURNS TrE SECONC CraRACTER OF TraT TONEN STRING.

CHAROFBOOL(R) = CHGPOFINT(XNTUFEOOL(X))

CHAROF INT (X) +(BLANK)s IF ABS(X) MOD 64 =
48+ IF ASS(X) MON 64 = 1}

=
k-3
-
L]
®
= ¢(Sma~P)e IF ABS(X) “0OD &4 = 63

THE ORDER USED ABOVE 1S TrE SAME AS ThE OxUER OF APPEARANCE
IN THE ©6ASIC NUCLEUS CHARACTER SET o o o

{(RLANK) A B CODEF G6GH T UJKLMNOPQRSTUY WX
YZ201234568789 (1 1)+® /3¢ e«csc2>»=z¢t
= A Vv e I g3 3 % (SHARP)

104,

105

DIGITS(X) = THE STIRING OF DECIMAL DIGITS wWITH NO EXCESS
LEADING ZERQOS THAT REPRESENTS THE INTECGER X.

FALSETOKENIX)
= . TRUE IF THE STRING OF CHARACTERS X woULD RE RECOGNIZED
BY THE SCANNING NETWOPK AS A FALSE.TOXENS.
= FALSE OTHERWISE,

IDENTIFIEVTOREN(X) :
= TmUE IF TrE STRING OF CHARACTERS X A0ULD BE RECOGNIZED
BY THE SCANNING NETWORK AS 4N IDENTIFIEw.TOKEN.
= FALSE OTHERwISE,

IN DENOTES THE SET HMEMdJERSHIP OPERATOR USUALLY DENOTED 8Y

EPSILON,
INTEGERVALUE(X) = THE INTEGER VALUE CF TwE DECIMaAL DIGIT
STRIMN Xe
INTOFBOOLiX) = 0 IF X = FAaLSE
1 IF X = TwUE,
INTOFCHARIX) = 0 IF X = *{BLANK)*
= 1 IF 'Kk = 44+
€ -
L - -
N -

63 IF X = #(SHARP)*
THE ORDER AoQVE CORPESPQLDS 1T THE ORDER OF APPEARANCE IN . .
THE BASIC NUCLEUS CHARACTER SET. -

NUMBERTOKEN (L)
= TRUE IF TrE€ STRING X wOULD RE RECOGNIZEC BY ThE SCANNING
NETWORX AS A NUMHBEKTOKENS.
FALSE OTHERWwISE,

L]

PLUSI(X? = DIGITSCINTEGESVALUE(X) 1)

TRUETOKEN(X) ’
= TRUE IF TrE STRING X wOULD BE RECOGNIZED BY THE SCANNING
NETwOPK AS A TRUEJTOKEN.
= FALSE OTreRwlSE,

T MPLEMENTA AILION PARAMETERS . °

INPANGE {X) = TRUE IF TwRE INTEGE® X IS IN THE SET OF INTEGERS
WEPRESENTABLE ON THE MACHINE SUPPORTING A
GIVEN IMPLEMENTATION OF NUCLEUSe
z FALSE OTHERWISE, -

MAXSTACKSIZE IS & INTEGER DEFINING THE MAXIMUM SIZE OF THE
RETURMN POINT STACK USED IN CALLING PROCEDURES.

READSIZE IS THE FIXED NUMZER OF POSITIOMS IN AMY [tPUT RECORD.

WRITESIZE IS TrHE FIXED NUMBER OF POSITIONS IN ANY OUTPUT RECORD.

DECLARATIVES 3 . .

w N

o ® N o oun &

INNAMESPACE (U)

SIMPLE (X) » INNAMESPACE(X)

SIMPLE (+:L0OC*)

SIMPLE (+:LVL?)

SIMPLE(+:RTRO®)

SIMPLE(+:aTrDe}

ARRAY {Aen) » 20LND(A)=8

0<ISINTEGERVALVE (BOUNDEAY) » INNAMESPACE(A +(+ DIGITSII) +1e)

ARRAY{*:RTNPT+«DIGITS(MAXSTACKSIZE))

EVALUAT I VES - . .

10
i1

12

13
14
15
1¢
17
18
19
20
21
22

23

24

25

TIDENTIFERTOREN(X) » NOHEL {Xeldz=X

NAME(A ¢{* S 2)4s1) = IF CSS.ISINTEGERVALUE(HOUND(2))
TrEN (A *{* DIGITS(S.I) +1}2) ELSE U

NUMBERTOKEN(X) » XKoel=1F INRANGE(INTEGERVALUE (X))
THEN INTEGERVLLUE (X) ELSE U

TPUETOKEN(X) © X I=TRUE

FALSETOKEN(X) » X, I=FALSE
CHARACTERCONSTANTTOREN(X) » x.l:CFAPACTERyALUE(x)
INNAMESPACE (X)) » X I=1F X=U THEN U ELSE ELI}(X)
+:L0C*+.0 = INITIALPI0OCEDURE +:0¢

PILVL*.A = =)

+IR0KRDT.0 = O

*iWIRDL,0 = 0
(2e® X) o]l = X,l
(2=t X),] = IF XeI=U THEL U -

ELSE IF INRANGE(=X.]) THEN «XoI ELSE U

(X *¢¢ Y)ol = IF Kelsl v Yoz TREM U
ELSE 1IF INRANGE(Xel+YoI) THEN X,1eY,] ELSE U

(X ¢=+ Y)o1 = IF Xol=y v Y.I=U THEN U
ELSE IF INRANGE (Xel-Yel) THEN Xel-Y.] ELSE U

(X 2¢2 Y} ,] = JF Kolz=y v Yg!=U‘YH€N V]

106

107

ELSE IF INRANGE(X.I®#Y.I) THEN Xx.1®Y,]l ELSE U

26 (x */+ Y)ol = IF Xol=U v YoIZU v Vo120 THEN
ELSE IF INRANGE(X4I/T.1) THEN Xe1/Yel ELSE U

27 (X tet ¥)o1 = IF Xol=U v Yol=U v Y.I=0 THEN U
ELSE IF INRANGE(X.] ™MOD Y.I)
THEMN Ra] MOD Y.l ELSE U
28 (X *<* Y)ol = IF Xol=U v Vol=U THEN U ELSE X.1<Y.1
29 (X *5* Yol = IF XelzU v Yol=U THEN U ELSE X,1<¢Y.]

30 (X 2=+ Y).l = IF Xa.I2U v Y I=U THEN U E1LSE X I=Y.1

31 (x *#2+ Y)Yl = IF XoI=U v Y.IzU THEN U E'.SE X,12Y.1
32 (X *t2¢ Y).l = IF XeI=U v Y.I=U THEN U ELSE X.12Y.1
33 (X 3¢ Y).I = IF Xol=zu v Y.15U THEN U E15E X.1>Y.1
34 (2=* X).1 = IF X120 THEN U ELSE =X.}

A5 (X *Ar V). = IF Xol=U v Y. IsU THE'. U ELSE X,IaY.1

36 (X *ve Y).l = IF X.1=U v Y,1=U THEN U ELSE X IvY.l B
37 (+INTOFBQOL{® X 4)+),1 = IF X.1=U THEN U ELSE INTOFBOOL{X.1)
38 (+INTOFCHAR(® X #)%),1 = IF X I=U THEN U ELSE INTOFCHAR(X.I} w0
39 (+HOOLOFINT(* X #)+) .1 = IF X.I=U THEN U ELSE ROOLOFINTIX.I)

40 (+BOCLOFCRARL® X *1#).1 = IF x.I=U THEN U ELSE BOOLOFCHAR(X.I)

4] (*CHAPOFINT(® X *1%).1 = IF X.I=U THEN U ELSE CHAROFINT(X.I)

%2 (+CHEI0FB00LL* X *)#).1 = IF X.I=U THEN U ELSE CHAFOFBOOL (X.I)

©3 (A *(% S 2321 = NAMELA #(* S t)*sl).]

L (2(F X 1)%) .1 = Xl

S PNA“E(A i+ Y) = X

o6 LOCPLUSIIX #223¢ Y) = X 2i¢ PLUSIIT)

XN9EQA"V{§ . . . i

&7 AINVeSIIX) = IF N=Xx THEN V ELSE S(X)

B ASSION{2:L0C*IeNev) »
[HA4E (NeI)=U v VvV, IzU » TERMINATIOMN(I)]
A {a(NAME (L e])=U v V.]IZU) »
EfIol} = A{*:L0OC?+LOCPLUSI(+:L0C e}
AfNev.IeE(I11)18

&9 CASE (+SLOC*.1sXoP) =

50

51

s2
S3

S

55

56

57

S8

108

.

[X.12U » TERMINATION(I))
A (X 12U »
) EClel] = AL+:LOCT+PNAME(2ILOCT]) #22
- (IF DIGITS(X.1} 1IN CASELASELSET(#:L0C*.1)
THEN POINTLARELLEDWITH(*:LOC*,1 *3¢ DIGITS(X.1)?
ELSE PIeEL]111)

ENTER(2:L0Ce.1eN) »
ENAME (#RTINPT{:LVLel1)2s1)=U » TERMINATION(I)]
A CINAME (2 sRINPTLILVL 101120 o
ELI¢1) = AL2IL0OC*eN +:0%e
AINAME (+3RTANPTI:LVL*112+1)sLOCPLUSLI(22L0C21)0
Af22L VLol VLelral0El11))]])

EXIT(e:L0Ce. 1) »

{r2Lvie.1<0 » TERMINATION(]))
A frLvie,.120 »
B{I*1) = A(+:L0Cr.1+2RINPTILVL]I%e10

Afrsbvirerilvi-1t.1.E(1))1)
HALT(*:L0C2.1) » TERMINATION(])

IF(*LO0CreleXePeD) o .
[a.12U » TERYINATION(I)
A (X 2y »
ElI¢)) = A[*:LOC*sPNAYE(+ILOCH, 1) +22
IF X I=TRUE TMEN P ELSE OsELI11)])

JUMPTO(2:LOC*.1.P) »
Ellel) = ALTILCC*»PNAMEI®ILOCT. 1) *:¢ PJE{L}]

HEAD(*2LOC* . I+sA) A SRECFU(+:RDHD?,1)¢1) »
EtlelltXx) = IF x=A 2(01% THWHE 2T+
ELSE If x=+:PDHD®* THEN (+:R0HD?.1) ¢l
ELSE IF X=+:L0C+ THEN LOCPLUS1(*:LOC*.1}
ELSE E(1)(X)

READ(#:L0C* . I4A) A «:REOF((?:RDHD*.1)e¢l) »
E{lelJC(X) = IF x=& 2{0)* THENM *F*
ELSE IF 1SJSMIN(INTEGEPVALUE (BOUND(A)) +READSIZE)
A Xz t(* DIGITS(J) *1+
THEN SROFL({*IRDHD 1)+l e}
ELSE IF Xze:wDHD* THEN (2:RDHDeJ3el
ELSE IF x=e3L0C»
THEN LOCPLUS] (24:L0C*)
ELSE Ef13(X)

WRITE(+2L0C*.19A) A (A 2[01*) I=2T2 »
[ECIel] = A{*:2L0C*+LOCPLUSI(#3L0C*,1)»
AltswTHD? (22 WTHU*a1)#10EL11))])
A [SWEOF ((*:wTHU2 J221))

WRITE(*2L0C2.Tek) A (A 21012),122T7%
[ECI+41) = AL*ILNCTeLOCPLUSI(2:LOC* M)
AfrTwInDes (2inTHUT 121 EL11)1])

A {«tWwEOF ({22 wTHDe 1141))

A LISOSMINIINTEGERVALUE (HOUND(A)) o wRITESIZEY o
SwIFLG(2IWwTHUS T ¢1edt=(A 2(+ DIGITS(Y) 2)0).1)

A [INTEGERVLAUE(HOUND(A))« 1 SJUSWRITESIZE »
SWIFLU{r wTHUT W I) ¢lod) = 2]

APPENDIX D

VERIFIER LISTING

INTEGER

ANDTYPETOP+SPOINTS 1o TOP OF AND.TYPE STACK. -1 FOR EMPTY $

ARC ¢ SCURRENT TRANSITION NETWORK ARC DURING SCAN AND PARSE $

ASRTRACK+SPOINTS TO LAST CHARACTER 1IN ASSERTION BODY IN ARRAY CHARLIST $

ASRTFRONT+SPCINTS TO FIRST CRARACTER IN ASSERTION BODY IN ARRAY CHARLIST S

ASRTLOCPTWSPCINTS 7O LAST ENTRY IN ARRAY ASRTLOCY. =1 FOR EMPTY §

ASKTSCANPOINTERSPOINTS 70O NEXT CHARACTER IN ASSERTION. USED OURING SCAN OF
ASSERTICN §

AT<SUSED IN SEVERAL SEARCH PROCEDURES. RETURNS POINTER TO LOCATION OF OBJECTY 1IF
FOunD §

Bs STEMPORARYS

BACKLAHEL «SPCINTS TO LAST LABEL OF A CASE LABEL LI1SY IN ARRAY CASELABELS $

BEFORETORKENSS SAVES PREVIOUS TOKEN DURING SCAN OF ASSERTIONS. SET 10 0 AT
SEGINNING OF ASSERTION S

BIAS,sBIAS=PROC(7OCURRENTPRoc~ll WHICH POINTS TO THE CURRENT CONTROL POINT 0 IN
ARRAY DESCLOC $

BlNAﬁYADDTYPETOP:SPO!NTS 10 TOP OF BINARY,.ADD.TYPE STACK. «1 FOR EMPTY $

CAQINSTRING.SNEXT IMPUT SYMROL DURING TRANSITION NETWORK TRAVERSAL §

CASEEXP?ESSICNTOF'ﬁPOXNTS 10 TOP OF CASE.ExXPRESSION STACK. =1 FOR EMPTY s

CASﬁLABELSETPT-sPOINTS YO LAST ENTRY IN CASELABELSET. =1 FOR EMPTY 3

555590;NTTODos?OINYS 10 TOP OF CASE.POINT 5TaCx, =1 FOR EMPTY $

CnARLISTPT'$90!NtS 70 LAST ENTRY IN ARRAY CHARLIST., =1 FOR EMPTY §

COL+SPOINTS TO A COLUMN OF ARRAY CARC. CARDICOL] 1S NEXT SCAN INPUT SYMBOL $

CURRENTPROC,SPOINTS TO A PROCEDURE DESCRIFTION IN ARRAY PROC S

CURRFRONT+$PCINTS 70 AN ELEMENT OF ARRAY PATHFRONTS. PATWFRONTSICURRFRONTY 1S
CONTROL POINT FROM wHICH DATHS ARE CURRENTLY BEINC GENERATED 3

DEF INEDARRAYSETPT ¢ 3POINTS TO LAST ENTRY OF DEF IMED.ARRAY,SET. =1 FOR EMPTY $

DEFINEDCASELABELSEITOP.SPOINYS T0 T0P OF DEFINED.CASE.LABEL.SET sTacx, =1 FOR
EupTY $

DEFINEDIDENYIFIEFSETPY.sPOINTS 710 LAST ENTRY OF DEFINED . IDENTIFIER,SET. -1 FCR
EMPTY

DEF INEDLABELSETPTSPOINTS YO LAST ENTRY OF DEFINED.LAREL.SET. =~} FOR EMPTY S

DEFlNEDPROCEBURESETP?-sPOINTS TO LAST ENTRY OF DEFINED.PROCEDURE.SETo -1 FOR
EMPTY §

DEF!NEOS!HPLESEYFTcSPO!NTS T0 LAST ENTRY OF OEF INED.SIMPLE.SET. =1 FOR EMPTY S

EXPHACK s SPOINTS 70 END OF AS EXPRESSION DESCRIPTION IN ARRAY ExPL1ST. USED BY
PROCEDJURE EXPCHECKER $

EXPFRONT«SPOINTS TO FRONT OF 4N EXPRESSION DESCRIPTION IN ARRAY EXPLIST. USED BY
PROCEDURE EXPCHECKER $

EXPL!STPTsSPOINTS 10 LaST ENTRY IN £xPLIST. =1 FOR EMPTY S

ExPYYPETOP.sPOINTS 10 10P OF EXP,TYPE STACK. -1 FOR EMPTY §

FoeSTEMPORARY §

FINDIDI-FINDXDZ;?PGINT 10 FRONT AND BACK OF AN {DENTIFIER STRING IN ARRAY
CHARLIST. USED AS INPUT ARGUMENTS BY PROCEDURE FIMDID $

FINDLABELI-FINDLLBELZo&PO!NT TO FRONT AND RACK OF LAREL STRING IN AKRAY CHARLIST
USEC AS INPUT ARGUMENTS BY PROCEDURE FINDLAREL §

FRONTLABEL +SPOINTS TO FIRST LABEL OF A LIST IM ARRAY CASELABELS. USED AS INPUT
ARGUMENT BY PROCEDURE PRINTCASELARELS $:

GeHe 1+ STEMPQRARIES §

1D+$POINTS TO AN IDENTIFIER IN ARRAY- DEF INEDIDENTIFIERSET $

IDENTSTRI0IOENTSTRZvIOENYSTR30iDENTSTRh'SINPUT ARGUMENTS FOR PROCECURE ICENTSTR
POINT TC FRONT AND BACK OF STRING 1 AND FRONT AND BACK OF STRING 2 IN
ARRAY CrARLIST $

IFELSEPOINTTOP+SPOINTS 10O YOP OF IF.ELSE.POINT STACK. =1 FOR EMPTY $

IFEXPRESSIONTOP,SPOINTS TO TOP OF IFLEXPRESSION STACK. -1 FOR EMPTIY §

160

110

{FPOINTTOP,SPOINTS TO TOP OF IF.POINT STACK. =1 FOR EMPTY $

INITIALPROCECURE +$POINTS TO THE IDENTIFIER IN ODEFINEDLIDENTIFIERLSET WHICH
NAMES THE STARTING PROCEDURE §

INTVAL «$CONTAINS AN INTEGER VALUE §

JeK L ¢+ STEMPORARIESS

LABELTABLEPT+SPOINTS TQ LAST ENTRY IN ARRAY LABELTABLE. -1 FOR EMPTY §

LEFTARRAYNAME « SNETWORK REGISTER=--POINTS TO THE IDENTIFIER IN DEFINED.IDENTIFIER.
SET WHICH NAMES THE ARRAY REFERENCED ON THE LEFT OF AN ASSIGNMENT §

LEFTBRACK +SUSED A4S INPUT ARGUMENT BY PROCEDURE BALANCE. CONTAINS CODE OF LEFT
BRACKET § .

LEFTTYPE+ SNETWORK REGISTER== =1 FOR INTEGERs =2 FOR BOOLEAN, =3 FOR CHARACTER §

LINEBACK L INEFRONT SINPUT ARGUMENTS TO FROCEDURE BUILDLINE. POINT TO FRONT AND
BACK OF A ChARACTER STRING IN ARRAY CrarRLIST §

LINEPT#SPOINTS TO LAST ENTRY IN ARRAY LINE §

MULTIPLYTYPETOPWSPOINTS TO TOP OF MULTIPLY.TYPE STACK. -1 FOR EMPTY

NeSTEMPORARYS

NEWCASELASEL + SNETWORRX REGISTER=-~INTECER VALUE CF MOST RECENT CASE (ABEL $

NEXTCHARACTER » SNETwORK REGISTER-=-SAVES THE CURRENT INPUT SYMBOL $

NOTTYPLTOR 3POINTS TO TOP OF NOT.TYPE STaCxke. =1 FOR EMPTY §

NSTEP.BCOUNTS NUMBER OF PATH STEPS §

P+STEMPORARYS

PARSESTACKTOP+SPCINTS TO TOP OF PARSESTACK. =1 FOR EMPTY §

PARSESTART,SSTATE NUMBER FOR INITIATION OF PARSE NETWORK $

PATHFRONTSPT»$POINTS T0 LAST ENTRY IN ARRAY PATHFRONTS. ~1 FOR EMPTY §

PATHPT+SPUINTS TO LAST ENTRY IN ARRAY PATH, =1 FOR EMPTY 3

POINT ¢ SNE TWORK REGISTER--CUPRENT CONTROL POINT §

PRIMARYTYPETCPs$F0INTS 70 TOP OF PRIMARY,.TYPE STACK, =1 FOR EMPTY $° -

PROCCALLED+5 POINTS TO DESCRIPTION OF CALLED PROCEDURE IN ARRAY PROC--USED IN -
PROCEDURE GENENTERTER™ §

PROCEDURENAME o SNETWCHR REGISTER=-=-POINTS TO IDENTIFIER IN DEFINED.IDENTIFIERLSEY -
wHICH NaMES CURRENT PROCEDURE $ -

PROCNUMsSPOINTS TG A PROCEDURE DESCRIPTION IN PROCI{7*PROCNUM) THROUGH) -
PROC{ 7*PROCNU~Y+6) S

Re$TEMPORARYS

REFERENCEDLABELSETPTSSPOINTS TO LAST ENTRY 1IN REFERENCED.LABEL.SET. ~1 FOR
EMPTY 3

REFERENCEDPROCEDURESETPT.$POINTS TO LAST ENTRY 1IN REFERENCED .PROCECURE LSET
~] FOR EMPTY §

RELATIONTYPETOP+SPOINTS TO TOP OF RELATION.TYPE STACK, =1 FOR EMPTY §

RIGHRTBRACK +3USED AS INPUT ARGUMENT BY PROCEDURE BALANCE. CONTAINS CODE FOR
RIGHT BRACKET $

RINSTACKTOP,SPOINTS TQ TOP OF RTINSTACK. =1 FOR EMPTY S

SeSTEMPOKARYS

SCANSTART«$STATE NUMBER FOR INITIATION OF SCAN NETWOR< $

STATE + $CUXRENT STATE DURING TRANSITION NETwORK TRAVERSAL $

STATEMENTFT.SPOINTS TO LaST ENTRY IN ARRAY STATEMENT. -1 FOR EMPTY §

SUBBACK s SUBFRONT ¢S INPUT ARGUMENTS FOR PROCEDURE PRINTSUBEXP, FRONT AND BACK OF
EXFRESSION IN ARRAY EXPLIST S ;

TeSTEMPORARYS

TOKEN+ SNETWORK REGISTER--INTEGER CCDE OF TOKEN $

TYPE « SNETwORK REGISTER-= =1 FOR INTEGER. =2 FOR ROOLEANs =3 FOR CHARACTER S
UNARYTYPETORSFOINTS TO TOP OF UNARY,TYPE STACK, «=1 FOR EMPTY §$

VeWe S TEMPORARIESS

wHILEEXPPESSIONTOP«SPOINTS TO TOP OF WHILE.EXPRESSION STACK. =1 FOR EMPTY §
WHILEPGINTTOPISPOINTS TO TOP OF WHILE.POINT STACK. ~1 FOK EMPTY 3

BOOLEAN .

ALPHARETMATCHFLAGSRETURNS RESULT OF PROCEDURE ALPHABETMATCH IN. TRANSITION
NETWORK TRAVERSAL $ B

ANOTHERBPANCH s SRETURNS RESULT OF PROCEDURE ISANOTHERBRANCH-~TRUE IF MORE
GRANCHES FROM PATH{PATHPT]) $

ASRYFLAGeS =0 IF NOT IN AN ENTER STATEMENTe =1 IF IN INITIAL ASSERTION OF CALLED
PROCEDURE OF ENTER STATEMENT» =2 IF IN FINAL ASSERTION OF CALLED
PROCEDURE OF ENTER STATEMENT $

ASRTSCANFLAG+STRUE IF SCANNING AN ASSERTION. USED BY SCANNER TO KNOW WHERE 1O
GET INPUT SYMROLS §

DONE « SUSED BY PROCEQURE LISTCALLEDPRCCS TO INDICATE WHEN ALL PROCEDURES
REACHABLE FROM CALLED PROCEDURE HAVE BEEN LISTED 3

FOUND+SRETURNS RESULT FOR SEVERAL SEARCH PROCECURES 3

JOENTSTRFLAGSRETUKNS RESULT OF PROCEOURE IDENTSTR. TRUE IF SPECIFIED STRINGS
ARE IDENTICAL $.

INRANGE+SSET BY PROCEDURE EVALINTOK. TRUE IF NUMBER IS IN RANGE (0 SNUMBER<999999)
Y

NILMATCHFLAGs SRETURNS RESULT OF PROCEDURE NILMATCH IN TRANSITION NETWORK
TRAVERSAL

RECOGNITIUNSBECOMES TRUE WHEN TRANSITION NETWORY RECOGNIZES A STRING §

STACKTESTFLAGsSRETURNS RESULT OF PROCEDURE STACKTEST IN TRANSITION NETWORK
TRAVERSAL §

TESTFLAGISRETURNS RESULT OF NETWORK TESTS §

CHARACTER
CHARISCONTAINS A NUCLEUS CHARACTER $

INTEGER ARRAY

ACTIONL161).SACTIONS OF TRANSITION NETWORK, ACTIONIX] CONTAINS ACTION NUMBER FOR
ARC X S

ALTNUMI{ 265). SALTERATION COUNTERS, ALTNUMIX] 1S ALYERATION COUNTER FOR IDENTIFIER
NUMBER X IN DEFINED,IDENTIFIER.SET ¢

ALTSET{10001+SCONTAINS ALTERATION SETS FOR PROCEDURES. STORES POINTERS TO
ICENTIFIERS IN DEFINEDLIDENTIFIER,SET §

ANDTYPELD J o SNETWCRX REGISTER==AND.TYPE STACK =1 FOR INTEGERs =2 FOR BOOLEANe =3
FOR CHARKACTER §

ARRAYNAME [1)+ SNETWORK REGISTER=-POINTS TO FRONT ANO BACK OF ARRAYJ.NAME IN ARRAY
CHARLIST 3

ASRTLOCL 19991 ¢SASSERTION POINTERS. ~1 INDICATES NO ASSERTIONs OTHERWISE POINTS
TO ARRAY ASRTLOC)! $

ASRTLOCI{ 4991+ SASSERTION POINTERS. PCINTS TO FRONT OF FIRST ASSERTION AT POINT,
POINTS TO ARRAY ASRTS. ALWAYS 1 EXTRA ENTRY T0 PROVIDE END OF LAST
LIST 8

ASRTS[3999 1+ SASRTSIASRTLOCIIX]1 19,4000 ASRTSTASRTLOCI{X 1]~1] IS A LIST CF
FRONT-BACK PAIRS WHICH POINT TO ASSERTION BODY STRINGS IN ARRAY
CHARLIST 3

BINARYADDTYPEIS 1 s SNETHORK REGISTER-=RINARY,ADDTYPE STACK =1 FOR INTEGERSs
=2 FOR BOOLEANs =3 FOR CHARACTER $

BOUNDFUNCTIONT 266 1« SEOUNDFUNCTIONT X 1=BOUND OF IDENTIFIER X OF DEFINED.IDENTIFIER
«SET FOR ARRAY VARIABLES 38

BRANCHI 49) s SERANCHI X I =BRANCH LAST TAKEN FROM POINT PATHI{X). =0 IF NOT A BRANCH
STATEMENT AT PATH{X] 3

CASEEXPRESSIONI ST« SNETWORK REGISTER-~CASEEXPRESSION(2#*X]) AND ’ :
CASEEXPRESSION{2*Xe1) POINT TO FRONT AND 8ACK OF CASE EXPRESSION IN
ARRAY EXPLIST §)

CASELABELFRONTISO001«3POINTERS 10 FRONTS OF LABEL LISTS IN ARRAY CASELABELS.
ALWAYS 1 EXTRA ENTRY TO PROVIDE END OF LAST LIST §

CASELABELPOINTS{4% J+3CASELABELPOINTSIX] CONTAINS CONTROL POINT OF CASE LABEL IN
DEFINEDCASELABELSETI(X]) ¢

CASELABELSIS&9 Yy FELEMENTS ARE CASE LABELS==CASELABELSICASELABELFRONT{X1)veeas
CASELABELSICASELABELFRONTSIX+13-11 IS A CASEt LABEL LIST FOR & POINT 3

CASELABELSET{4991+3CASELABELSET{X] IS CONTROL POINT FOR LIST POINTED YO BRY
CASELABELFRONTIX) %

CASELABELSTACK{4)9 SCASELABELSTACK(X) POINTS TO LAST ENTRY OF LEVEL X OF
DEF INED.CASE<LABEL.SET STACK 5

111

CASEPOINT(4]+SNETWORK REGISTER=--CASE.PCINT STACK $

COLONALTNUM{ 107+ $ALTERATION COUNTERS FOR COLON=IDENTIFIERS{ILOCs tLVL e 3RDKDIETCIS

COLONPTS{111+3COLONPTSIX] POINTS TO FRONT OF IDENTIFIER STRING IN ARRAY
COLONWORDSET FOR COLON~IDENTIFIER NUMrER X 1

DEF INEDARRAYSET{ 41+ SNETWORK REGISTER=-IDENTIFIER NUMRERS FOR ELEMENTS OF
DEFINED . IDENTIFIERLSET WwHICH ARE IN DEFINEDLARRAY.SET $

DEF INEDCASELABELSET{ 4% T+ SNETWORK REGISTER-~DEF INEDCASELABELSETIX) IS LABEL AT
CONTROL POINT CASELABELPOINTSIX] $

DEFINEDIDENTIFIERSET{«93]+ SNETWORK REGISTER--DEFINEDIDENTIFIERSETI2%X] AND
DEFINEQIDENTIFIERSET(29ex+1) POINT 1O FRONT AND BACK OF IDENTIFIER
NUMBER X IN ARRAY CHARLIST $

DEF INEDLABELSETI 49]« 3NETWORK REGISTER=--DEF INEDLABELSET{2¢X]) AND
DEFINEDLABELSETI2*Xx+1) POINT TO FRONT AND BACK OF LABEL NUMBER X IN
ARRAY CwAPLIST $

DEF INEDPROCEQURESETI199 1y SNETWORK REGISTER~~CONTAINS IDENTIFIER NUMBERS oF
NAMES OF DEFINED PROCEDURES IN DEFINECJIDENTIFIERL.SET $

DEF INEDSIMPLESETI259) « SNETWORK REGISTER-~CONTAINS IDENTIFIER NUMBERS OF NAMES
OF DEFINED SIMPLE VARIABLES %

DESCLOCI19991+8 IF POINTeBIAS=X THEN DESCLOCIX) POINTS TO DESCRIPTION OF POINT
IN ARRAY STATEMENT $

EXPLIST{49999 1, SEXPLISTI2*X] AND EXPLIST{2ex+1] CONTAIN A TOXEN-VALUE PAIR.
EeGe {IDENTIFIER,ID NUMBER) OR {NUMSERWVALUE) §

EXPSTRINGI11+8REPLACES ALL EXPRESSION STACKkS. POINTS TO FRONT AND BACK OF
EXPRESSION IN EXPLIST §

EXPTYPEI9)+SNETwCRK REGISTER--EXPL,TYPE STACK =1 FOR INTEGERs =2 FOR BOOLEAN, =3
FOR CHARACTER $

FIRSTARCI103)+34RCS FOR TRANSITION NETWORK STATES, FIRSTARC(X] THROUGH
FIRSTARC{X+1)~] ARE ARCS FROM STATE X 3

IDENTIFIERNAMEL | 1+SNETWORK REGISTER--FRONT AND BACK OF IDENTIFIER STRING IN
ARRAY CrARLIST $

IFELSEPOINTIO 1+ SNETWORK REGISTER-=1F ,ELSE.POINT STACK §

IFEXPRESSIONI 19) +3hETWORK REGISTER--IFEXPRESSION[2*X] AND IFEXFRESSION[2%X+1]
ARE FRONT ANU BACR OF EXPRESSION IN EXPLIST aND REPRESENT IF EXPRESSION
AT LEVEL X %

IFPOINTI9 1« SNETWORX REGISTER--IF POINT STACK $

LABELTABLEI T4 1L ABELTABLEL3I®X] AND LABELTABLE{3%X+1]1 ARE FRONT AND BACY [s1
LABEL STRING IN CHARLIST. LABELTAALE(3#Xe21 IS CONTROL POINT FOR LABEL
OR LINK TO LABEL REFERENCES IF NOT YET DEFINED. =1 1S LAST-LINK $

LEFTSIDEI 31 $NETwORK HEGISTER==LEFTSIDE(O0)=] FOR SIMPLE, =2 FOR ARRAY REFERENCE.
LEFTSIDEL11=ICENTIFIER NUMBER, LEFTSIDE(Z) AND LEFTSIDE(3) POINT TO
FRONT AND BACK OF SUBSCRIPY EXPRESSION IN EXPLIST FOR ARRAY REFERENCESS

MULTIPLYTYPE([)+ SNETWORK REGISTER=-=MULTIPLY.TYPE STACK =1 FOR INTEGER, =2 FOR
BOOLEANs =3 FCR CHARACTER $)

NEXTSTATE{1611+$%EXT STATES FOR TRANSITION NETWORK ARCS. NEXTSTATE{X] IS NEXT
STATE FOR ARC X 8

NOTTYPE(9)+SAETWORK REGISTER=-=NOT.TYPE STACK =1 FOR INTEGERs =2 FOR BOOLEANS
23 FOR CHARACTER S

PARSESTACK(99)+STEMPORARY STCRAGE FOR THE PARSE RETURN POINT STACK wHILE SCAN
NETWORK IS TRAVERSED $

PATH{ 4T) 5PATHIX] 1S THE X-TH CONTROL POINT ALONG THE CURRENT FATH $

PATHFRONTSI 191+ 3CONTAINS CONTROL POINTS FROM WwHICH PATHS MAY WEGIN $

PRIMARYTYPEIS)+ SNETWORK REGISTER--PRIMARY.TYPE STACK =1 FOR INTEGERs =2 FOR
BOOLEANs =3 FOR CHARACTER $

PROCI13991+$PROCIT®X)00eedsPROCITEX+6]) CONTAIN POINTERS TO THE DESCRIPTION OF
PROCEDURE NUMRER X
PROCIT®X) =IDENTIFIER NUMBER OF PROCEDURE NAME
PROCI7%X+11=PCINTER TO ARRAY CESCLOC FOP CONTROL POINT O
PROCIT*X+21=POINTER "TO ARRAY DESCLOC FOR EXITY CONTROL POINT
PROCIT*Xx+3)=POINTER TO FRONT OF CaLLED PROCEDUFES IN ARRAY PROCCALLS
PROCI7*Xx+4)=POINTER TO BACK OF CALLEC PROCEDURES IN ARRAY PROCCALLS
PROCIT7*X+5)1=POINTER TO FRONT OF AL TERATION LIST IN ARRAY ALTSET
PROCI7%X+»61=POINTER TO BACK OF ALTERATION LIST IN ARRAY ALTSEY S

112

]

PROCCALLSIT799)¢SCONTAINS CALLED PROCEDURES, PROCCALLSI2%X] AND PROCCALLS{2%X+1]
POINT TO FRONT AND BACK OF A PROCEDURE NAME N ARRAY CHARLIST §
REFERENCEDLABELSET{ 4G) ENETWORK REGISTER=~REFERENCEOLARELSET(2eX] BND
REFERENCEDLAGELSETE2%X+1) POINT TO FRONT AND BACK OF A LABEL IN
ARRAY CRARLIST %
REFERENCEDPROCEDURESET[399) + SNETWORK REGISTER--REFERENCEDPROCEDURESETI22X] AND
REFERENCEDPROCEDURESET{2X+1]) POINT TO FRONT AND BACK OF A PROCEDURE
NAME IN ARRAY CHARLIST $
RELATIONTYPE(93¢ INETWORK REGISTER-~-RELATION.TYPE STACK =1 FOR INTEGERS
=2 FOR BOOLEANs =3 FOR CHARACTER $
RESCODE{261.$RESCOCEIX) IS INTEGER CODE FOR RESERVED WORD NUMBER X $
RESWORDPTSI27 1+ SRESWORDPTS{X) POINTS TO BEGINNING OF RESERVED WORD NUMBER X IN
ARRAY RESERVEDWORDSET $
RINSTACKI991+SRETURN POINT STACK FOR TRANSITION NETWORK s
STATEMENTI 9999 1+ $STORES DESCRIPTIONS OF STATEMENTS. THE DESCRIPTION LENGTH
VARIES ACCORDING TO THE STATEMENT TYPE
ASSIGNMENT (7 ELEMENTS)
1 64 (CODE FOR :=)
2-5 SEE LEFTSINE
6~7 POINT TO FRONT AND BACK OF RIGHT SIDE IN ARRAY EXPLIST
CASE (7 ELEMENTS)
1 72 (CODE FOR CASE)
2,3 POINT TO FRONT AND BACK OF CASE EXPRESSION IN ARRAY EXPLISY
& CASEJOINPOINT(JOIN POINT LINK UNTIL JOIN POINT DEFINED)
46 FROMT AND BACKR OF CASE LABELS IN ARRAY CASELABELSETY
7 CONTROL POINT FOR CASE EXPRESSION 2 ANY CASE LABEL
ENTER {3 ELEMENTS) '
1 78 (CODE FOR ENTER)
2+3 POINT 1O FRONT AND BACK OF STRING IN CHARL1IST wHICH NAMES CALLED
PROCEDURE
EXIT{1 ELEMENT)
1 80 (CODE FOR EXIT)
HALT(IELEMENT)
1 84 (COOE FOR HALT)
IF(S ELEMENTS)
i 85 (CODE FOR 1F)
243 FRONT ANO BACKX OF IF EXPRESSION IN EXPLIST
b NEXT CONTROL POINT FOR EXPRESSION = TRUE
S NEXT CONTROL POINT FOR EXPRESSION = FALSE
JUMP {2 ELEMENTS)
1 95 (CCDE FOR TO)
2 NEXT CONTROL POINT
READ(2 ELEMENTS)
1 91 (CODE FOR READ)
2 IDENTIFIER NUMBER OF READ ARRAY
WRITE (2 ELEMENTS)
1 98 (CODE FOR WRITE)
2 IDENTIFIER NUMBER OF WRITE ARRAY s
SYMROLL1611,SARC SYMBOLS FOR TRANSITION NETWORK, SYMBOLI{X] IS CHARACTER ON ARC
NUMRER X %
TESTL161)+STESTS FOR TRANSITION NETWORK., TESTI{X) CONTAINS VEST NUMBER FOR
) ARC NUMBER X §
TOKENSTRING{ 11+ SNETWORK REGISTER=-=POINTS TO FRONT AND BACK OF TOKEN.STRING IN
ARRAY CHARLIST $
TYPEFUNCTIONI 2491 ¢ $NETWORK REGISTER~=TYPEFUNCTIONI{X] IS TYPE OF JIDENTIFIER
NUMBER X. =1 FOR INTEGERs =2 FOR BOOLEAN. =3 FOR CHARACTER $
UNARYADDTYPE[91 s SHETWORK REGISTER=-=UNARY.ADU.TYPE STACK =] FOR INTEGERS
=2 FOR BOOLEANs =3 FOR CHARACTLR $
WHILEEXPRESSIONI 91+ SNETWORK REGISTER=-=wHILEEXPRESSION{2*X] AND
WHILEEXPRESSIONIZ22Xel) POINT TO FRONT AND BACLK OF EXPRESSION IN EXPLIST
AT LEVEL X 3 .
WHILEPOINTI 4)i SNETWORK REGISTER==WHILE.POINT STACK §

113

114

BOOLEAN ARRAY

ALTFLAGI2491+5ALTFLAGIX] IS TRUE If IDENTIFIER NUMBER X CAN BE ALTERED 8Y A CALL
OF PROCEDURE PROCCALLED $

COLONALTFLAGUI0)+3COLONALTFLAGIX) IS TRUE IF COLON=IDENTIFIER NUMBER X CAN BE
ALTERED BY A CALL OF PROCEDURE PROCCALLED $

FLAGL161Y+s3SCAN FLAGS FOR TRANSITION NETWORK. FLAGIX] IS TRUE IF ARC X HAS A
SCAN 3

PROCFLAGL195J+SPROCFLAGIX]) 1S TRUE IF PROCEDURE NUMBER X CAN BE REACHED BY A
CALL OF PROCEDURE PROCCALLED $

PROCFLAGII19914$PROCFLAGIIX] IS TRUE IF PROCEDURE NUMBER X HAS ALREADY BEEN
PROCESSED BY PROCEDURE LISTCALLEDPROCS $

RECOGNITIONSTATE{107)3SRECOGNITICN STATES FOR TRANSITION NETWORK,
RECOGNITIONSTATE{X)1=TRUE IF STATE X IS A RECOGNITION STATE $

CHARACTER ARRAY

ASRTTRUE{ %)+ SCONSTANT ARRAY CONTAINING STRING TRUE §

BLANKUINE{Q)»SCONSTANT ARRAY CONTAINING F IN ELEMENT 0 TO PRINT A BLANK LINE $

CAFDIACI+3CONTAINS CARD IMAGE DURING SCAN AND PARSE §

CHARLISTIS9999)+ SCHARACTER STRING STORAGE=~IDENTIFIERSs LABELSs ASSERTIONSETCS

COLONHOHDSET(383oSCOLOhiORDSET(COLONPTS(X)]0.'o9COLONNORDSET(COLONPTS(X’X)’l) Is
CHARACTER STRING FOR COLON-IDENTIFIER NUMBER X $

DASHESI 101 +SCONSTANT STRING OF 10 DASHES §

OOTS[10)e3CONSTANT STRING OF 10 DOTS 8 :

LINEL120]+8aRRAY IN WHICH PRINT LINES ARE ASSEMBLED $

CINELTIO)SLINE2LI0SLINESLI0I4LINEGILOT¢S & CONSTANT ARRAYS COMTAINING FIRST 4
LINES OF VERIFICATICN CONDITIONS FROM POINT 0 OF INITIAL PROCEDURE $

LOOP{« 1eSCONSTANT ARRAY CCNTAINING LOCP TO PRINT WHEN UNTAGGED LOOP IS FOUND $

LVLLINELT3)o3CONSTANT 2QRAY CONTAINING $LVL.12:LVL+1 s
NONRECOGMITICNL 14 1+SCONSTANT ARRAY CONTAINING NONRECOGNITICON S
PATHISI71+SCONSTANT ARRAY CONTAINING PATH IS %

PRESETI{2431+3COMSTANT ARRAY CONTAINING SEVERAL STRINGS USED IN SUILDING
VERIFICATION CONDITIONS $

RESERVEDWORDSET(113)4SRESERVEDWORDSETIRESWORDPTSIX))oqans
RESERVEDWORDSETIRESWORDPTSIXe1)=1) IS CHARACTER STRING FOR RESERVED
HORD NUMBER X §

PROCEDURE ACTIONS 3 .

ASSERT (-~ASRTSCANFLAG A ATSCANSTATE a ATSAVEDPARSESTATE) v { ~ASRTSCANFLAG » ATPA
RSESTATE] v [ASKTSCANFLAG A ATASRTSCANSTATE]} 3

CASE ACTION[ARC) OF

0: NOP 3

¢ ENTER ACTION!
ENTER ACTIOQNZ
ENTER ACTION3
ENTER ACTIONG
ENTER ACTIONS
ENTER ACTIONS
ENTER ACTIONT?
ENTER ACTIONS
ENTER ACTIONS 3
ENTER ACTIONI1O
ENTER ACTIONIL
ENTER ACTIONIZ
ENTER aACTIONIZ
ENTER ACTION1G
ENTER ACTIONIS
ENTER ACTIONIG
ENTER ACTION17

Bt et ot Dot ot ot Bt o D (D g N LY B LN e
o0 o se o8 o8
@0 w4 o we an ae -

N PN T LN O o 2¢ 65 o2 55 50 28 80 »

. 20 es

VO W A 08 o b we wa

e se e

N NN NN e
NP N OO
.

e s be ee

ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTE®R
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER

aACTION18
ACTION1S
ACTIONZO
ACTIONZ]
ACTIONZ2
ACTIONZ3
ACTIONZ4
ACTIONZ2S
ACTICN26
ACTION2T
ACTIONZS
ACTION29
aCTICN3D
ACTION3]
ACTION32
ACTION33
ACTICON3G
ACTION3S
ACTION36
ACTION37
ACTION3S8
ACTION3S
ACTION4Q
4CTIONSL
ACTIONG2
ACTICNGD
ACTIONGa
ACTIONGS
ACTIONGE
ACTIONG?
ACT10N48
ACTIONGS
ACTIONSO
ACTIONS1
ACTIONS2
ACTIONS]
ACTIONSS
ACTIONSS
ACTIONSS
ACTIONST
ACTICNSS
ACTIONS9
ACTIONGD
ACTIONG]
ACTIONG2
ACTIONG]
ACTIONGG
ACTIONGS
ACTIONGG
ACTIONGT
ACTIONGS
ACT JONGS
ACTIONTO
ACTIONT]
ACTIONT2
ACTIONT3
ACTION74
ACTIONTS
ACTIONTS
ACTIONT?
ACTIONTS
ACTIONT9

A B B 6 68 4o W SR G0 9 ©F S0 S5 G0 b 40 VS W6 40 b G0 WS D6 G0 BE G4 S5 G0 B4 40 S8 T WA SE G0 WD WA @8 B0 GE TP B B G0 BD A6 Se S8 Bt R WS S A3 S5 SR W B TH S 4N 90w

115

116

80: ENTER ACTIONBO 3
81: ENTER ACTIONEL 3
82: ENTER ACTIONB2 1
83: ENTER ACTIONB3 13
84: ENTER ACTIONSS 8
85: ENTER ACTIONBS 3
g6: ENTER ACTIONBG
87: ENTER ACTIONBT
88: ENTER ACTICNBS 3
89: ENTER ACTIONS9 3
90: ENTER ACTICNSO 8
91: ENTER ACTIONOL 3
92: ENTER 4CTIONSZ 1
93: ENTER ACTIONG3 3
943 ENTER ACTIONGSG 8
953 ENTER ACYICONSS 3
96: ENTER ACTIONGG 3
QT: ENTER ACTIONST 3
98: ENTER ACTION98 %
ESAC 3

EXIT 3

PROCEDURE ALPHABETMATCH 1
ARC := FIRSTARCISTATE} 13
WHILE ARC < FIRSTARCISTATE+1] A SYMBOL{ARC)} > 0 DO
IF STMBOL{ARC) = CaRINSTRING .

THEN ENTER TESTS 3 - .
IF TESTFLAG
THEN ALPHABETMATCHFLAG 3= TRUE 3
RETURN - -
. FI ¢ -
FI 3 "
ARC t= ARC + 1 ¢
ELTIHwW ¢
ALPHABETMATCHFLAG ¢= FALSE §
EXIT ¢

PROCEDURE ASRTSCAN
ASRYSCANFLAG:=TRUE 3§
STATE:=SCANSTART
RINSTACKTOR:==]
CARINSTRING:=INTEGER(CHARLISTIASRTSCANPOINTER]) S
RECOGNITION := FALSE 3
ASSERT ASKTSCANFLAG!
ASSERYT ATASKRTSCANSTATER
WHILE ~RECOGNITICN DO
ENTER TRANSNET ¢
ELINw 8
ASSERT INSTRING=REMOVETOKEN(INSTRING.O)$
ASSERT TOKEN=NEXTTOKEN(INSTRING.O} S
ASSERT TOKENSTRING=NEXTTOKENSTRING(INSTRING.0)#
EXIT %

PROCEDURE BALANCES

ASSERT SUBFRONT POINTS TO THE FIRST ELEMENT TO THE RIGHT OF A LEFTBRACK OF AN EX
PRESSION IN EXPLISTS ’
Ni=ls

ASSERT N213

ASSERT N IS THE AUMBER OF EXCESS LEFTHRACKS OVER RIGHTBRACKS ENCOUNTERED IN E£XPL
1ST BETWEEN SUBFKONT.0 AND SUBBACKY

ASSERT N HAS NEVER BEEN LESS THAN 1 BETWEEN SUBFRONT.O AND SUBBACK?

ASSERT SUBFRONT=SUBFRONT,.O8

117

WHILE N1 v EXPLIST(Z’(SUBBACK‘))]tRlGHTBRACK 00
SUBRACK :=SUBBACK*13
iF EXPLISTI2*SUBBACK }=LEFTBRACK
THEN Ni=Ns13

Fl3
IF EXPLISTI2*SUBBACKI=RIGHTBRACK
THEN N3=N-11

Fi3
ELIHWS
ASSERT SUBFRONT.O AND SUBBACK POINT TO FRONT AND BACK OF AN EXPRESSION IN EXPLIS
T wrICH IS BALANCED wlTh RESPECT TO LEFTBRACK.0 AND RIGHTBRACK.O$
EXIT & . ’

PROCEDURE HBUILDFROMPRESET?
ASSERT LINE(OI=LINE.O(O]}
ASSERT LINEFRONT.GSLINEFRONTSLlNEBACKoOOI3
ASSERT WRITEFILE(:wTHD) U LIhEl1]o..oLINE{L}NEPT):ﬁRITEFXLE(:HTHD.O} U LINELOL1)
veet LINELOILINEPTLO) U PQESET.OILINEFRONT.D10..oPQESET.O(LINEFPONT-l]I
WHILE LINEFRONTSLINEBACKX DO
IF LINEPT=120
THEN wRITE LINER
LINEPTE=03
Fls
LINEPT:=LINEPT 13
LINELLINEPT 1=PRESETILINEFRONT IS
LINEFRONT :=LINEFRONT 1}
ELIHWE
ASSERT LINE{O)=LINE.O(O)}
ASSERT WRITEFILE(:wTHD) U LINE(I!0..-LINE(L!NEPT):HRITEF!LE(:HTHD¢0) U LINE.O()]
0ot LINELOILINERPTL0) U PQESET.OILINEFRONT.O)'.-qPRESET.O(LlNEBACK-O!t
EXIT ¢ :

PROCEDURE SUILDLINE 3
ASSERT 0SLINEFRONTSLINEBACK+1SCHARLISTPT11
ASSERT wPITEFILEL:wTHD) U LI&E&O)--.vLINEIL!NEPTl;CHAQL!ST(LINEFPONY)'..qCHARLXS
TlLINEBACK)=-UITEFILE(:HTHD.O) 8] LlNE-O(O)oo.OLINE.OlLlNEPT.0]0CHAQLIST.O‘LXNEFR
ONTo0120atCHARLIST CILINEBACK.O)S
wHILE LINEFRONTSLINEBACK DO
IF LINEPT=120
THEN WRITE LINE 3
LINEPT := 0 3
Fl ¢
LINEPT:=LINEPT+1 3
LlNE(LINEPVJ:=CHAGLIST(LINEFRONT) 3
LINEFRONT =L INEFRONT] ¥
ELIHW 3
ASSERT WRITEFILEL:wTHDY U LlNE!Olo..vLINE(LINﬁPTl:HR!TEFlLE(:wTHn.O) U LINE.OLO)
9-.vLINE.D(LXNEPT.O1oCHARLXST.OlLXNEFRONT.Olo---CHARLIST.O[LINEBACK.O! L
ASSERT LINE{O}=LINE.OLO]S .
EXIT 3

PROCEDURE EVALINTOK 3

ASSERY OSTOKENSTRING(OIS{OKENSTRINGIIlSCHARLISTPYt -
ASSERT TOKENSTRXNG(01£$SSTOKENSTQXNG(l) o +0<CHARLIST(S31594
1:=TOKENSTRINGLO]S

INTVAL =03

;SgEPT INTVAL=INTEGERVALUE(CHARLXST.OKTOKENSTRING-O(0))v...oCHARLIST.O[I-l))5999
991%

ASSERY TOKENSTRXNG-O(G)SXSTOKENSYRING.DIIIOIl

ASSERT CHARLIST=CHARLIST.O4

ASSERT TOKENSTRING=TORENSTRING.O0

WHILE ISTOKENSIRINGI11 0O

118

Ve=INTEGER(CHARLIST(I1) =273
IF INTVAL> (§99999-V)/10
THEN INRANGE := FALSE 3
INTVAL:=959999 1§
RETURN 3
F1 3
INTVAL :=10® INTVAL V3
Is=1+1 3
ELIHW 3
INRANGE $=TRUE 3
ASSERT INRANGE » INTVAL=INTEGERVALUE (CHARL IST.0({ TOKENSTRING. 000119 .00ss CHARLIST.O
{TOKENSTRING.01113159999393
ASSERT -~INRANGE » INTEGEARVALUE (CHARLISTLO{ TOKENSTRING,0101)eseasCHARLIST.OLTOKEN "
STRING.0(1111>995999 A INTVAL=995999% {:j?
EXIT ¢

PROCEDURE EXPCHECKERS

ASSERT EXPBACK=EXPBACK,.O

ASSERT EXPFRONTCCEXPFRONTSEXPBACK?

ASSERT EXPLIST CCNTAINS AN EXPRESSION BETWEEN EXPFRONT .0 AND EXPRACK,OF

ASSERY WRPITEFILE(IWTHO)=WRITEFILE(:WTHD.0) U VERIFICATION CONDITION ULINES FOR EA
CH ARRAY SUBSCRIPT wHOSE (PRECEDES EXPFRONT AND FQOR EACH DIVISOR wHOSE /7 OR & P
RECEDES EXPFRONT IN THE EXPRESSION IN EXPLIST.0 BETWEEN EXPFRONT.0 AND EXPBACK.D

3
ASSERTY LINEPT=0 A LINE{O)}=+F3
WHILE EXPFRONT<EXPBACK 0O
CASE EXPLISTIZ*EXPFRONT] OF :)
sis 413 ENTER INSERTPRVHE T e
CrARI=*01
ENTER INSERTCHARY .
CrARI=*<y -
ENTER INSERTCHAR? -
SUBFRONT:=EXPFRONT 1 ¢
SUBBACK:=SUBFRONT?
LEFTBRACK:=41t SIS
RIGHTBRACK =42t $1S
ENTER BALANCE?R
ENTER PRINTSUKREXPS
CrHARI=+<
ENTER INSERTCHARS
IhTVALzzaOUNDFUNCT1ON(EXPL!ST(2'(EXPFRONV—))Ol))!
ENTER INTPRINTS
ENTER PRINTLINES
$7 ¢+$ 483592 ENTER INSERTPRVS
SUBFRONT :=EXPFRONT +21
SUBBACK:=SUBFRONT ¢
LEFTBRACK =431 $(S
RIGHTBRACK =44} $)%
ENTER BALANCE?®
ENTER PRINTSUBEXPS
ChAR:=+23
ENTER INSERTCHARE
CHAR:=#01 i -
ENTER INSERTCHARS '
ENTER PRINTLINES

E£SACS

EXPFRONT:=EXPFRONT+11
ELIHWE
ASSERT LINEPT=0 A LINE[OI=4F3 .
ASSERT WRITEFILE(:wTHO)=WRITEFILE{:WTHD.0) U VERTFICATION CONDITION LINES FOR €
ACH ARRAY SUBSCRIPT OR DIVISOR IN THE EXPRESSION IN EXPLIST.0 BETWEEN EXPFRONT.O
AND EXPBACK.O0$

EXIT ¢

PROCEDURE FINDIDS
ASSERT O0<$S<DEFINEDIDENTIFIERSETPT » OSDEFINEOIDENTIFIERSET(2%$SISDEFINEDIDENTIF
JERSETI2®3%5+1 J<CHARLISTPTH
ASSERT O<FINDIOISCHARLISTPY A O0<FINDID2<CHARLISTPTS
ASSERT DEFINEDIDENTIFIERSETPT2-18
IDENTSTRII=FINDIDLS
IDENTSTR2:=FINDID2S
AT:=03
ASSERT 0SSS<OEFINEDICENTIFIERSETPY » OSDEFINEDIDENTIFIERSET{2®$$)<DEFINEDIDENTIF
IERSET{2%3%+ 1 1<CHARLISTPT
ASSERT 0€3$52T~] » CHARLIST.O(DEFINEDIDENTIFIERSET{Z2%$8]1 e, e CHARLIST,OIDEFINED
JOENTIFIERSETI2235e1 J12CHARLISTLO(FINDIDLa03saees CHARLISTO(FINDID2.01]8
ASSERY IDENTSTRI=FINDIDY,.O
ASSERT JDENTSTR2=FINDIDZ2.03
ASSERT OCAT<DEFINEDIDENTIFIERSETRPT 1
ASSERT DEFINEDIDENTIFIERSET=CEFINEDICENTIFIERSETLO8
ASSERT DEFINEUIDENTIFIERSETPT=DEFINECIDENTIFIERSETPTLO
ASSERT CHARLIST=CHARLIST,.O3
WHILE ATSDEFINEDIOENTIFIERSETPT DO
IDENTSTR3:=0EF INEQDICENTIFIERSET(2%AT)
IDENTST43:=CEF INEDIDENTIFIERSET(2%AT 118
ENTER JOENTSTRG |
IF IDENTSTIRFLAG
THEN FOUND2I=TRUES
RETURNS
Fls
. AT:=AT+11%
ELIHNE
FOUND:=FALSE?
ASSERT FOUND » QSAT<OEFINEDICENTIFIERSETPT.0 A CHARLIST.O(CEFINEDICENTIFIERSET.O
(29°AT)1 veesCrARLIST.OLDEFINEDIDENTIFIERSET.0(2%AT+11)=CHARLISTLO0EFINDIDL.0)vessC
HARL IST.0(FINDID2,.013
ASSERT ~FOUND A 0SSS<DEFINEDIDENTIFIERSETPT.0 » CHARL IST.O[DEFINEDIDENTIFIERSET.
0029381 e s CHARL IST L O(DEFINEDIDENTIFIERSET<0(2955011 12CHARLISTLOIFINDIDleOlvenr
CHARL ISTLO(FINDIC2.018
EXIT3

PROCEDURE FINDLABEL 3
ASSERY OSFINCLABELI<FINDLABEL2SCHARLISTPTS
ASSERT LABELTABLEPT>-13y
ASSERT OSSS<LABELTABLEPY » O<LABELTABLE[3*$S)+LABELTABLE(3I®S$S+11<CHARLISTPTS
IDENTSTR1 := FINCLABELL %
IDENTSTR2 := FINCLABEL2 3
AT:=03
ASSERT 0<335<AT=)1 © CHARLIST.O0(LABELTABLE.OLI3%SS))s.0esCHARLIST.O{LABELTABLE.O3®
$3¢1)112CHARLIST O(FINDLAREL] 400 s aeesCHARLISTLOIFINDLAHELZW.O0Y
ASSERT OCSATSLABELTABLEPT.O0+11
ASSERT IDENTSTRI=FINDLABEL1.0 8
ASSERT JDENTSTRZ2=FINDLABELZ2.0 §
ASSERT LASELTABLE=LASBELTABLE,.O} -
ASSERT LABELTABLEPT=LABELTABLEPT O - -
ASSERT FINDLABEL1=FINDLABELY.O#
ASSERT FINDLABELZ=FINDLARELZ2.01
ASSERY CHARLIST=CHARLIST.O 8
WHILE AT<LARELTABLERPT DO

TIDENTSTRI:=LABELTABLE(3%AT]S

IDENTSTR4:=LABELTABLE{3®AT+1)3

ENTER IDENTSIR 3

IF IDEMTSTRFLAG

THEN FOUND t= TRUE ¢

119

RETURN 3

FI1 8
ATS=AT+11
ELIKWW §
FOUND := FALSE 3
ASSERT FOUND » OSATSLABELTAPLEPTY.0 A CHARLIST.O{LABELTABLE,0(3%AT))s...9CHARLIS
T O(LABELTABLE ,O{32ATe111=CHARLISTLO(FINDLABEL] c0)vaaas CHARLISTLOLFINDLABEL2.01)3
ASSERT =~FOUND A 0SSS<LABELTABLEPT.0 » CHARLIST.OILABELTABLE,.0(3235]))s...2CHARLIS
TeOILABELTABLE 0[328%+]1112CHARLIST OIFINDLABELLIsO0)veeet CHARLISTLOIFINDLABELZ2.01S
EXIT 3 : ;
PROCEDURE FINDRESWORD 3 ‘
ASSERT OSTOKENSTRINGICISTOKENSTRINGI 1 JSCHARLISTPT 13
ASSERT CONSTANTS (PRESET yRESERVEDWORDSET +RESWORCPTSYRESCODE ot OOP+DASHES+DOTSIASRY
TRUE oBLANKLINE sPATHISsLINEL o LINE2sLINEI+LINES+COLONWORDSE T2 COLONPTSoLVLLINED) 3
AT:=0 3
ASSERT 0<S$5<AT=]1 » RESERVEDWCROSET.OIRESWOROPTS.0188) 19444 RESERVECWORDSET.OLRES
WORDPTS0($5+1)=112CHARLIST4 Ol TOKENSTRINGe0(0))vaeas CHARLISTLOITONENSTRING.O0L11]
H
ASSERT 0<AT<273
ASSERT CONSTANTS (PRESET.RESERVEDWORDSET+RESWORCPTS+RESCODE L OOP sDASHESsDOTS4ASRY
TRUE s BLANKLINE wPATHISsLINEY s LINE2 WL INE3 oL INE4sCOLONWORDSEToCOLONPTSSLVLLINE) 3
ASSERT TOKENSTRING=TOKENSTRING.O 1§
ASSERT CHARLIST=CHARLIST.C 3
WHILE AT £ 26 DO
1F RESaSRDﬂYSIAYOI!-RES!ORDPTS(AT}-l=TOKENSTRINGll)-YOKENSTPING(O)
THEN Jizd 3
ASSERT 0<$53<AT=1 » RESERVEDWORDSET.OIRESWORDPTS,0(3%11s.449sRESERVEDWORDSETLOIRES
WORDPTS.0{ 5801 3=112CRARLIST Ol TOKENSTRING0{0)1s0eas CHARLIST.OITOKENSTRING.0O(1}])
3
ASSERT RESERVEDWORDSET,0{RESWORDPTSe0[AT) Ve eestRESERVEDWORDSET.OIRESWORDPTSLOUAT
3o =1 31=CHARLIST Ol TOKENSTRING.O0{01)seeas CHARLIST.OITOKENSTRING.O(O)oU~113
ASSERT RESWORDPTS.0{ATe} J=RESWCROPTSLOLATI~1=TOKENSTRING.OI1I-TCKENSTRING.0(0)3
ASSERTY OSJ<STORKENSTRING,O[1)=~TOKENSTRINGL.O(0)+13
ASSERT 0<AT<263
ASSERT CONSTANTS(PRESET «RESERVEOWORDSET +RESWOROPTS+RESCODE 9L QOP 9yDASHES+DOTS»ASRY
TRUE o BLANALINE sPATHISCLINEL o LINE2+LINE3«LINE@+COLONWORDSEToCOLONPTSLVLLINE) S
ASSERT TOKENSTRING=TOKENSTRING.O 1§ '
ASSERT CHARLIST=CHARLIST,.D 3
WHILE JS<TOKENSTRINGI1)=TOKENSTRINGIO) A
CHARLISTITOKENSTRING(O)+J])=
RESERVEDWOROSETIRESWOROPTS{AT Iy DO
izJe) &
ELInw
IF J>TOKENSTRING(11-TOKENSTRINGIO]
THEN FOUND:=TRUE 1
RETURN 3 ,
Fl k
F1 3 :
ATZ=AT+] 3
ELIMW 3 . v
FOUND:=FALSE -
ASSERT FOUND » RESERVEDWORDSET.O{RESWORDPTS.0tATI)s4essRESERVEDWORDSET.O(RESWORD
PTSe0{AT+11=1)=CHARLIST Ol TOKENSTRING 0l 01)reensCHARLISTLOITOKENSTRING.O(1)] A~ O
CATS263
ASSERT =FOUHND A 0<$%%26 » RESERVEOWORDSET.O0(RESWORDOPTS.01$S)+,..+RESERVEDWORDSEY
wOIRESWORDPTS 0($5+11=112CHARLIST«O{ TOKENSTRING.O0{0 v 0ee?CHARLISTLOITOKENSTRING
2001133
EXIT &

PROCEDURE FINISHPATH §
ASSERT ISPATHFRONT(PATHPATHPT+BRANCHeCURRENTPROC)

120

121

ASSERT LINEPT=0 A LINE([O)=4+F}

ASSERT PATHIOJe.,+PATHIPATHPT] CONTAINS NO UNTAGGED LOOPS3

ASSERT ALTLIST(ALTNUMACOLONALTNUMSPATHIPATHPT)

ASSERT NSTEP=STEFS SINCE i1STEP PRINTS

IF STATEMENT(DESCLOCIPATHIPATHPT 1+B1AS) 1=85 S1FS

v STATEMENTIDESCLOCIPATHIPATHPT 1+81AS)1=72 $CASES
THEN BRANCHIPATHPT)i=11
ELSE BRANCHIPATHPT):=014

FIs

ENTER GENNEXTPATHPT

ENTER LOOPCHECK 3

ENTER GENTERM 3

PATHPT = PATHPT « 1 3

IF STATEMENTIPATHIPATHPT1+BIAS)=80 SEXITS
v STATEMENT(PATHIPATHPT1+81AS1=84 SHALTS
v ASRTLOCIPATH{PATHPT14B1A5)20 SHAVE ASSERTIONS

THEN ENTER wRITESTEPLINELS
WRITE CASHESY
ENTER wRITEASRTSS
WRITE BLANKLINES
ENTER PRINTPATHS
ELSE ENTER FINISHPATHI
Fl 3
ASSERT THE CURRENTPROC SPATHS IN PATH.PATHPT.AND BRANCH 1S THE IMMEDIATE SUCCESS
OR OF THE CURRENTPROC PATHFRONT IN PATH.O0e PATHPT,0¢ AND BRANCH,O0%
ASSERT WRITEFILE(:wTHD)I=wRITEFILE(:WIHD.0) U VERIFICATION CONDITION TERMS FOR FA
THIPATHPT .0)seasPATH{PATHPT I3
ASSERT LINERPT=0 ~ LINE[OD])=*F3
EXIT 3

PROCEDURE FROMPCINTYCGEN ¢

ASSERT LINEPT=Q A LINE[Q1z*FS

ENTER RESETALT

NSTEP:=03

PATHIO]:=CURRFRONT S

PATHPT 3= 0 3

ENTER FIMNISHPATH §

EMNTER GENSUCCESSCRS 3

ASSERT wRITEFILE(:WTHDI=WRITEFILE(IWTHD.0) U VERIFICATION CONDITIONS IN PROCEDUR
£ CURRENTPROC FRCM POINT CURRFRONTS
ASSERT LINEPT=0 A LINE(D)=+F}

EXIT 3

PROCEDURE GENASSIGNTERM 3
ASSERT ALTLISTU(ALINUMCCOLONALTNUM PATHPATHPT)
ASSERPT STMT=CESCLOCIPATH(PATHPTJ+B1AS)S
ASSERT STATEMENTISTHT }=64i
ASSERT LINEPT=0 A LINE[OI=*F3
ASSERT NSTEP=STEFS SINCE :STEP PRINTS
IF STATEMENT{STMT¢1)=2 $SARRAYREF ON LEFTS
THEN ENTER INSERTPRVS .
CHAR:=+0% -
ENTER INSERTCHARS
CHAR:=+<3
ENTER IMSERTCHARS
SUBFRONT:=STATEMENTISTMT+3)8
SUBBACK :=STATEMENT{STMT+&]t
ENTER PRINTSUBEXPI
CHARI=+<}
ENTER IHNSERTCHARS
INTVAL :=BOUNDFUNCTION{STATEMENTISTMT+2]13
ENTER INTPRINTI

122

ENTER PRINTLINES
EXPFRONT :=STATEMENTISTMT+238
EXPBACK:I=STATEMENT{STMT+4]3
ENTER EXPCHECKERS
Fls
EXPFRONTS=STATEMENTI{STMT+S)1
EXPRACKI=STATEMENT{STMT+6)3
ENTER EXPCHECKERS
ID:=STATEMENTISTMT«213
ENTER PRINTIDS
CHARI=+,.8
ENTER [MNSERTCHARS
INTVALISALTNUMIID)13
ENTER INTPRINTS
IF STATEMENTISTMTe}1=2
THEN CHAR:=*(3
ENTER INSERTCHARY
SUBFRONT:=STATEMENTISTMT+3)3)
SUBBACK:=STATEMENT[STMT a4l
ENTER PRINTSUREXPI
CHARzIzZ2)3
ENTER INSERTCHAR}

FIs

CHAR:=+=3

ENTER INSERTCHARS : -
SUBFRONT:=STATEMENT{STMT+5 14 -
SUBBACK I=STATEMENT{STMTe6]

ENTER PRINTSUBE AP

ENTER PRINTUINES -
ALTNUMISTATEMENTISTMT 211 i = AL TNUMISTATEMENTISTMT 421013 s
COLONALTMUMIL) i=COLONALTINUMEL ol $:L0CS

NSTEP:I=NSTERs1}

ASSERT WRITEFILE (:wTRD)=wRITEFILE (:WTHD.0) U VERIFICATION CONDITION TERM FOR STA

TEMENT AT PATH{PATHPT It

ASSERT ALTLIST(ALTNUM+COLONALTNUMIPATHPATHPT 1)

ASSERT LINEPT=0 A LINE[O0)=+F3

ASSERT NSTEP=STEPS SINCE :STEP PRINTS

EXIT 3

PROCEDURE GENCASETERMS
ASSERT LINEPT=0 A LINE[Q)=+F3
ASSERT ALTLIST(ALTNUMCOLONALTNUMSPATHPATHPT) §
ASSERY STMT=CESCLOCIPATH(PATHPT1+81AS)s
ASSERT STATEMENTISIMT}I=z72%
ASSERT NSTEP=STEFPS SINCE :STEP PRINTS
EXPFRONT :sSTATEMENT[STMT Y)
EXPBACKI=STATEMENTISTHMT«2)3
ENTER EXPCHECKERS
SUBFRONT:=STATEMENTISTMT 113
SURBACKRI=STATEMENT[STMTe2)
ENTER PRINTSUREXP!
IF STATEHENT(STHI*S]—STATEMENT(STMTO#)‘IZBRANCH(PATHPT! .
' THEN CHAR:=z+=z}
ENTER INSERTCHARS
CHAR:=+{}
ENTER INSERTCHARS)
FRONTLABEL s =CASELABELFRONT{CASELABELSETISTATEMENTISTMT o4 e
BRANCH{PATHPT }=111%
BACKLABEL :=CASELALELFRONT[CASELABELSET(STATEMENT{STMT 04)¢
BRANCHIPATHPT)))-11
ENTER PRINTCASELABELSS
CrHARzI=4+)3

ENTER INSERTCHARY
ELSE CHER:=*¥#1
ENTER INSERTCHARS
CHARZI=+ (3
ENTER INSERTCHARY
FRONTLABEL:=CASELABELFPONT(CASELABELSET(STATEMENT(STMTohl)18
BACKLAB&L:=CASELAEELFQONTlCASELABELSET(STATEHENT(STHTOS!OX1]-13
ENTER PRINTCASELARELSSH
CHAR:I=*) 3
ENTER INSERTCHARY

Fls

ENTER PRINTLINESD .

COLONALTNUM[X)::COLONAL1NUHIII‘11

NSTEP:=NSTEP* 1S

ASSERY wPlYEFILE(:quD):HRITEFILE(IHTHD.Di U VERIFICATION CONDITION TERM FOR STA
TEVMENT AT PATH{PATHPT I

ASSERT ALTLIST(ALTNUH-COLONALTNUHyPAYH'PATHPTol)‘

ASSERY LINEPT=0 A LINE[OI=S*F S

ASSERT NSTEP=STEPS SINCE :iSTEP PRINTS

EXIT 3

PROCEDURE GENENTERTERM 1
ASSERT LINERPT=0 A LINE[O)=*FE
ASSERT ALTLxsr(ALYNuu.COLONALTNUM.PAIH.PATHPT)l
ASSERT STMT:CESCLOC{PAIH[PAY—PT1~BIA5):
ASSERT STATEMENTISTHT }=781¢
ASSERT NSTEP=STERS SINCE ISTEP PRINTI
WRITE LVLUINES
ENTER wRITERTNPTLINES
ENTER WRITESTEPLINELS
FINDIDI:=STATEMENT(STMT1 13
F1~DXDZ:=51ATEHEN1lSTMYozlt
ENTER FINDIDS
PROCCALLED:=CY
ASSERT LINEPT=0 A LINE(D)=F3
ASSERT ALTLISTiALINUM'COLONALT~UM.PAYH.PATRPT)s
ASSERY AT IS IDENTIFIER NUMBER OF cALLED PROCECURE?
ASSERT i?ITEFlLE(:uTﬁD)=uR!TEFILE(=~IH0.0) U LVLLINE U RTNPTLINE U STEPLINELS
ASSERYT NSTEP=013
wHILE PROCI7*PROCCALLED]2AY 00
PROCCALLED:=PROCCALLED13
ELIHWSE
COLONALTNUM{ 11:=COLONALTNUML 11e¢13 $:L0CS
COLONALTNUM{ 21:=COLONALTNUML 2)e13 $s:LVLS
COLONALTNUM{ §1:=CCLONALTNUML Sie11 $:RINPTS
COLONALTNUHI10]2=COLONALTNUH(10)01! $:STEPS
IF ASRTLOC(PQOC(7“PQOCCLLLEDOl])>0
THEN G:=ASRTLOC1[dSRTLOC(PROC(7’FROCCALLED'I)!]!

ASRYFLAG:=11
ASSERT LINEPT=0 A LINE[Q1=eF3 :
ASSERT ALTERATION COUNTERS IN ALTNUM AND COLONALTNUM HAVE BEEN ACCUMULATED THROU
GH ENTRY OF CALLED PROCEDUREI
ASSERT ASHTFLAG=1 ~ IN INITIAL ASSERTION OF ENTER STATEMENTS
ASSERT PROCEDURE NUMHER PROCCALLED 1S THE CALLED PROCEDURES
ASSERT POINT 0 OF PROCCALLED 1S TAGGED wiTH ASSERTIONSI
ASSEPT’ASTTLOCIIASRTLOC(PPOC(7‘PROCCALL£0011}lSGSASR?LOCl(ASRVLOC(PPOCI7’PROCCAL
LED*11J+11%
ASSERT HPITEFILE(:wTHD):HR!TEFILE(:HTHD.O) U LVLLINE U RTNPTLINE U STEPLINEYL U S
UBSCRIPTED POINT 0 ASSERTIONS THROUGH ASSERTION G~-1%
ASSERT NSTEP=03

WHILE G<A$RTL0C1(ASRTLOC(PPOC(?'PROCCALLEDO]l)OIl [2]4]

ASRTFRONT :=ASRTS(2%G)4 .

123

125

ASRISCANPOINTER:=ASRTFRONT?
ASRTBACK:=ASRTS(2%G+111
ENTER INSERTPRVI
ENTER WRITENEXTASRTS
GixGeld
ELIHWS
Fl1 8
ENTER UPDATEALTNUMI
1F ASRTLOCIPROCI{7*PROCCALLED+21320
THEN G:=ASRTLOCIIASRTLCC(PROCL7%PROCCALLED2)1)13
ASRTIFLAG:=21
ASSERT LINEPT=0 A LINE[Q)=*F3
ASSERT ALTERATION COUNTERS-IN ALTNUM AND COLONALTNUM HAVE BEEN ACCUMULATED THROU
GM EXECUTION OF CALLED PROCECURE:
ASSERT ASRTFLAG=2 A~ IN FINAL ASSERTION OF ENTER STATEMENTS
ASSERT PROCEDURE NUMBER PROCALLED IS THE CALLED PROCEDURES
ASSERT EXIT POINT OF PROCCALLED 1S TAGGED wlTr ASSERTIONSH
ASSERT ASHTLOCI{ASRTLOCIPROCI 7T*PROCCALLED*211)1SGSASRTLOCIIASRTLOCIPROCI 74PROCCAL
LED+2))e1 13 \
ASSERT WRITEFILE(:WTHD)=wRITEFILE(:MTHD,0) U LVLLINE U RTNPTLINE U STEPLINE] U S
UBSCRIPTED POINT 0 ASSERTIONS U SUBSCRIPTED EXIT POINT ASSERTIONS THROUGH ASSERTY
10N G=11
ASSERT NSTEP=01
WHILE G<ASRTLOCILASRILOCIPROCI7*PROCCALLED+211e1] DO
ASRTIFRONT :=ASRTS(2#%G)3
ASRTSCANPOINTER:I=ASRTIFRONTS .
ASRTIBACK:=ASRTS{24Ge11s .
ENTER WRITENERTASRTI T
GixGel
ELIMwE i
FIs o
ENTER wRITESTEPLINEZ2S
COLONALTNUML 11:=COLONALTNUM[1lels
COLONALTNUML 21:=COLONALTNUML 2]+l
COLONALTNUM] S1:=COLONALTNUMT Slels
COLONALTNUM{ 101 :=COLONALTNUM{10]+13
ASSERT WRITEFILE(swTHD)=wRITEFILE(IWIHD.0) U VERIFICATION CONDITION TERM FOR STA
TEMENT AT PATHIPATHPT 1
ASSERT ALTLIST(ALTNUMsCOLONALTNUMPATHsPATHPT 1) S
ASSERT LINEPT=0 ~ LINE(O)=2F3
ASSERT NSTEP=03
EXIT ¢

PROCEDUKRE GENIFTERMI
ASSERT LINEPT=0 A LINE[QI=+F}
ASSERT ALTLIST{ALTNUM«COLOMALTNUM PATHIPATHPT) S
ASSERT STMT=zDESCLOCIPATHIPATHPTI+BIAS]S
ASSEXT STATEMENT{STMT 1=zR53%
ASSERT NSTEP=STEFRS SINCE :STEP PRINTH
EXFPFPONT:=STATEMENTISTMTS1]
EXFPBACKI=STATEMENTISTMT«2]3 3
ENTER EXPCHECKERS
IF BRANCH{PATHPT)=2 o
THEN CHAR:=?=1
ENTER INSERTCHARS
CHAR:=+ (3}
ENTER INSERTCHARS

Fis
SUBFRONT:=STATEMENTISTMT«1133
SUARBACKI=STATEMENT{STMT«2])8
ENTER PRINTSUBEAPS

IF BRANCHIPATHPT)I=Z

125

THEN CHAR:I=*}3
ENTER INSERTCHARS

FIt
ENTER PRINTLINES
COLONAL!NUM(11:=COLONALTNUM(ll~lx
NSTEP:=NSTEPR+13 .
ASSERT hPXYEFlLE(=uTHD)zuRlTEFXLE(:wTHD.O) U VERIFICATION CONDITION TERM FOR STA
JEMENT AT PATHIPATRPTII
ASSERT ALTLIST(ALTNUH'COLONALYNUM'PATHcPATHPT°l)3
ASSERY LINEPT=0 A LINE[QY=+F 3
ASSERT NSTEP=STEPS SINCE :STEP PRINTS
EXIT 3 :

PROCEDURE GENNEXTPATHPT
ASSERY PATH{PATHPT] 1S NOT HALT OR EXIT3
CASE STATE“ENT(OESCLOC(PATH(PATHPT]‘BIAS)l oF

382191378264 iiRXTE.QEAD-ENTER'ASSIGNS
PATHIPATHPT+1 1:=PATHIPATHPT]#13
953 S JUMPS
PATH(PﬂTHpT°ll:’STATEMENT(DESCLOC(PA?H(PATHPT]¢B!A5101)‘
85: $2+%

IF BRANCHIPATHPT)=1
IHEN PATH[PATPPT~!)::STATE“ENT(CESCLOC(PATNIPA?HPT]OB!AS)OB!!
ELSE PATH(PATHPTOIl==STATEHENT{CESCLOC[PATHIPATH?Tl'BlﬂS]'“l!

Fi1 ¢
- 7e: $CASES
- iF BRANCH(PATHPT)<STATEﬁENY(DESCLOC(PATH(PAYHPT)0BXAS]°5’
‘ -STATEMENY(CESCLOCIPM’H(PATHPT J+BIAS ieb a2

THEN PATn(PA:rDY»}1:=CASELA8£LSEr(stavzntnrzDESCLOC!PATH(PAIHPT)o
. BIAS)*6) eBRANCHIPATAPT 1113
. ELSE PATH(PAXHPral):=STAT£MENT(GESCLOC(PATH(PATHPYJ.BXAS)oblt
FY ¢
ESAC
ASSERT PATH{PATHPT+1] IS NEXTPOINT FOR PATH.0{0)seesPATH.O(PATHPTLO0]Y
ASSERT 0SSSSPATHPT.0 » PATHISS 1=PATH,0(8818
EXIT 3

PROCEDURE GENREADTERMS
ASSERT LINEPT=0 A LINELO)=+F3
ASSERT ALTLIST(ALTNUH'COLONALTNUNo?ATHcPATHPT)3
ASSERT STH!:CESCLOC!PAYH[PATHPI)onAsls
ASSERT STATEMENTISTMT IzQ]3
ASSERT NSTEP=STEPS SINCE :STEP PRINTS
J10:=STATEMENTISTMT«1 13
s =BOUNDFUNCTIONT IO
ENTER WRITEREADLINELS
ENTER whITEREADLINEZ2?
ENTER WRITEREADLINE3®
COLONALTNUMI] 1=COLONALTNUM{1]+112
COLONALTNUH(3):=COLONAL7NUH(31018 .
NSTEP:I=NSTEP+13
ALTNUMIID) s=aL TNUMUTDT e -
ASSERT -P;TEFILE(:thD):aRlTEFILE(:HYHD.O) U VERTFICATION CONDITION TERM FOR STA
TEMENT AT PATHIPATHPT IS
ASSERT ALTLIST(ALTNUH'COLONALYNUM.pATH.PATuPT0l)8
ASSERT LINERPT=0 A LINELQ)I=*F3
ASSERT NSTEP=STEPS SINCE ISTEP PRINTY
EXIT 3

PROCEDURE GENSUCCESSORS 3
ASSERT LINEMT=0 A LINELQI=2F3
ASSERT IMMEDIATE SUCCESSOR OF $PATHS THROUGH PATHPATHPTBRANCH 15 THE IMMEDIATE

126

SUCCESSOR OF THE SPATHS THROUGH PATH.O0WPATHPT.0+BRANCH.OS
ASSERT PATH{O)sa.oPATHIPATHPT) CONTAINS NO UNTAGGED LOOPSH
WHILE PATHPI>0 DO
PATHPT = PATHPT-] 1
ENTERP ISANQOTHERBRANCH 3
IF ANOTRERBRANCH
THEN ENTER REGEN 1t
ENTER FINISHPATH 3
ENTER GENSUCCESSORS 3
RETURNS
F1 3]
ELIMwW 3 .
ASSERY WRITEFILE(IWTHD) = WRITEFILE(INTHD.0) U VERIFICATION CONDITIONS IN CURREN
TPROC FROM PATHIO] FOLLOWING SPATHS PATH,0sPATHPT0+BRANCH.0}
ASSERT LINERPT=0 A LINE(OI=*F3
EXIT 3

PROCEDURE GENTERM 3
ASSERT LINEPT=0 A LINE(O)=F3 !
ASSERT ALTLIST(ALTNUMCOLONALTNUMSPATHIPATHPT) I
ASSERT NSTEP=STEPS SINCE :STEP PRINTI ;
IF PATHPT=Q)
THEN WRITE BLANKUINE ¢
WRITE BLANKLINE 3
10:=PROCI T*CURRENTPROC]S
ENTER PRINTIDS
ENTER PRINTLINER
WRITE BLANKLINES .
IF CURRENTPROC=INITIALPROCEDURE A CURRFRONT=0 : -
THEN WRITE LINEL 3 1
WRITE LINE2 § ' i
WRITE LINE] 3 .
WRITE LINEG 3 |
Fi 3 i
ENTER wRITEASRTSS
WRITE DOTS 3
FI 3
STMT:=DESCLOCIPATH{PATHPT)+BIAS]S
ASSERT LINEPT=0 A LINE[OI=2F3
ASSERT ALTLIST(ALTANUMCOLONALTNUMGPATHPATHPT) S
ASSERT NSTEP=STEPS SINCE :STEP PRINTS
ASSERT PATHPTL0=0 » WRITEFILE(:WTHD)=WRITEFILE(:WTHD.0} U VERIFICATION CONDITION
THROUGH DOTSH
ASSERT PATHPT 020 r WTHDO=:WTH0.08 .
ASSERT STMT=zCESCLOCI{PATH{PATHPT1e8IAS)S i
CASE STATEMENT(SINT] CF {
642 ENTER GENASSIGNTERY 3
952 COLONALTANUMI11:=COLONALTNUM{1]+1t S$:LOCS
NSTEP:=NSTEP 1 :
78: ENTER GENENTERTERM 3 - |
912 ENTER GENKEADTEPM 3 ;
983 ENTER GENWRITETERM 3 e
85: ENTER GENIFTERM T
72: ENTER GENCASETERM 3
ESAC 8
ASSERT WRITEFILE(:wWTHD)=WwRITEFILE(:WTHD.0) U VERIFICATION CONDITION TERM FOR STA
TEMENT AT PATH({PATHPT)3) i
ASSERT ALTLIST(ALTNUM2COLONALTNUMWPATHIPATHPT+1) 8 |
I

'

ASSERT LINEPT=0 A LINE[GI=tF3
ASSERT NSTEP=STEPS SINCE :STEP PRINTI
EXIT &

o

PROCEDURE GENWRITETERMY

ASSERT LINEPT=0 A LINE{QI=*F}

ASSERT ALTLIST(ALTNUMSCOLONALTNUMSPATH PATHPT) S
ASSERT STMT=DESCLOCIPATH{PATHPT 1+B1AS]S

ASSERT STATEMENT{STMTI=981

ASSERT NSTEP=STEPS SINCE :ISTEP PRINTS
10:=STATEMENTISTMT+1)3

B:=HOUNDFUNCTIONLID)S

ENTER WwRITEWRITELINELSY

ENTER WRITEWRITELINEZS

ENTER wRITEWRITELINESZ
COLONALTNUM{1):=COLONALTNUM{]1])+13

COLOMALTNUM{ 4 1:=COLONALTNUM{G)1

NSTEP:=NSTEP] Y

ASSERT WRITEFILE(:wIHD)=wRITEFILE(:WTHD.O) U VERIFICATION CONDITION TERM FOR STA
TEMENT AT PATH{PATHPT I

ASSERT ALTLIST(ALTNUM«COLONALTHUMPATH PATHPT*1)3
ASSERT LINEPT=0 A~ LINE[OD)=2F1

ASSERT NSTEP=STEPS SINCE ISTEP PRINTS

EXIT 3

PROCEDURE IDENTSTR 1§
IF IDENTSTRI=IDENTSTRI a IDENTSTR2=IDENTSTR4
THEN IDENTSTRFLAG := TRUE
RETURN 3
FI &
IF IDENTSTR2<-IDENTSTR] 2 IDENTSTRA=-INDENTSTRI v
IDENTSTRI>IDENTSTRZ v IDENTSTR3I>IDENTSTRG
THEN TDENTSTRIFULAG t= FALSE 3
RETURN ¢
Fl ¢
1 2= 0 8
ASSERT CHARL!ST.OIXDENTSTRI.OI,...-CwAwL!ST.O(IOENTSTRI.0°I-1)=CHAQL!ST.0(IDENTS
TR3.0)vaeesCHAPLISTLO{IDENTSTR3LO0*I~11¢
ASSERT OSISICENTSTRZ-ICENTSTRI+1 3
ASSERT IDENTSTR&~-IUENTSTRI=IDENTSTR2-IDENTSTRI
ASSERT IDENTSTRILO<IDENTSTR2.014
ASSERY IDENTSTRILOCIDENTSTRG,LO8
ASSERT CHARLIST=CHARLIST,OH
ASSERT JDENTSTRI=ICENTSTRILOS
ASSERT INENTSTR2=IDENTSTR2.0%
ASSERT IDENTSTRI=IGEMNTSTRIL0H
ASSERY IDENTSTRe=IDENTSTRA4,04
WHILE I € IDENTSTRZ-IDENTSTRI 00
IF CHARLISTUIDENTSYIRL o 11 2 CHARLIST{IDENTSTR3 < I}
THEN ICENTSTRFLAG 3= FALSE 3
RETURN t
FIis
Is=1e13
ELIHW?
IDENTSTRFLAG:=TRUE
ASSERT [DENTSTRFLAG IFF CHARLIST.O(XOENTSTPI.Olo...cCHAPLIST,O(lDENTSTPZ.Ol:CHAR
LIST.OlIDENTSTR340)re0esCHARLISTLOUIDENTSTR4.033
EXITs

PROCEDURE INPUT ¢

ASSERY =~ WECOGNITION 3

ASSERT [~ASRTSCANFLAG A ATSCANSTATE A ATSAVEDPARSESTATE] ¥ ([-~ASRTSCANFLAG A ATPA
RSESTATE] v [ASRISCAMFLAG A ATASRTSCANSTATE]L

ASSERT LINERPT=0 A LINE[D}=+F1

ASSERT WRITEFILE(:wTHD)I=LISTING OF INPUTSTRING THROUGH IRODHD 3

IF 19SSTATE A STATES108 $ IoEcv IN PARSE NETWORK, S

127

128

THEN ENTER SAVEPARSESTATUS 3
ENTER SCAN 3
CARINSTRING := TOKEN 3
ENTER RESTOREPARSESTATUS 3
ELSE IF -ASRTSCANFLAG TREN IF COL=81
TREN COL = 1 %
READ CARD 3
IF CARDIO) = 7T
THEN CARINSTRING := 99 1
ELSE CARINSTRING := INTEGER(CARD{11) 8
ENTER LISTS
FI 3
ELSE CARINSTRING := INTEGER(CARDICOLI) 3
COL = COL + 1 3

F1 3
ELSE IF ASRISCANPOINTERSASRTBACK
THEN CARINSTRING:=zINTEGER (CHARLIST{ASRYSCANPOINTER})S
ASRTSCANPOINTER:I=ASRTSCANPOINTER~11
ELSE CARINSTRING:=993
F1 ¢

FI s
FI 3
ASSERT ~ RECOGNITION 13
ASSERY CARINSTRING=CARIINSTRING,.O0)
ASSERT INSTRING=CDR(INSTRING.O)?
ASSERT LINEPT=0 A LINEIQ)=2F1
ASSERT wRITEFILE(:wIMD)=LISTING OF INPUTSTRING THROUGH IRDND § ..
EXIT ¢

PROCEDURE INSERTCHMAR 3 -
ASSERY LINE(O])=2F13

CHARLIST{CHARLISTPT }:=2CHAR 3 -
LINEFRUNT :=CHARLISTPT 1

LINEBACK:=CHARLISTPT

ENTER HUILDLINE 3

ASSEPT wRITEFILE(IWTHD) U LINE(O Yoo o LINEILINEPTI=wRITEFILE(:WTHDA0) U LINE.CLO}

2ot LINESOILINEPTL0) U CHARLD 3

ASSERT LINE(Ol=+F}

ASSERT 0<S$SSCHARLISTPT=1 o CHARLIST{SS I=CHARLIST.0(3%)3

EXIT 3

PROCEDURE INSERTFIRSTCHARS

CHARLISTPT :=CHARLISTPTe) 1
CHARLISTICHARLISTPTI:=CHARACTER(NEXTCHARACTER)
TOKENSTRINGL0):=CHARLISTPTS
TOKENSTHING{ 1) :1=CHARLISTPTS

ASSERT TOENSTRING=CHARACTER (NEXTCHARACTER) S
ASSERT CHARLISTPT=CHARLISTPT,0+18

EXIT 3§ R

PROCEDURE INSERTPRV1

ASSERT LINERPT=0 A LINE[(O1=+F3

LINEFRONT 2333 o
LINEBACK:I=3AY

ENTER BUILOFROMPRESETS

ASSERT LINEPT=61

ASSERT LINEIO)s .o +LINELO6I=*F<PRV> + §
ASSERT WTMD=:WTHD.O3

EXIT 3

PROCEDURE INTPRINT 1
ASSERT INTvAL203

ASSERT LINE[O)=+F3
IF INTVAL=0
THEN CHAR:=+0 3
ENTER INSERTCHAR 3
ELSE
LINEFRONT :=CHARLISTPT 3
LINEBACK ! =CHARLISTPT~] 3 :
ASSERT CHARLISTILINEFRONT }yeesCHARLIST{LINEBACK] CONTAIN RIGHTMOST (LINEBACK-LIN
EFROMNT+1) DIGITS OF INTVAL.O IN REVERSE ORDERS -
ASSERT INTVALZINTVAL.O/10%*® (LINEBACK-LINEFRONT*1) 3
ASSERT LINE=SLINELOS)
ASSERY LINEPT=L INEPT,O
ASSEWT iwTrRD=:wTrHD.OW
wHILE INTVaAL20 DO
LINEBACK:=L INEBACK+1 I
CHARLIST{LINEBACK) :=CHARACTER{INTVALI10+27)3
INTVALS=INTVAL/Z10 3
ELIve 3
ASSERT CHARLIST{LINEFRONT 19..sCHARLISTILINEBACK] CONTAIN RIGHTMOST (LINEBACK-LIN
EFRONT+1) DIGITS OF INTVAL,.D IN REVERSE ORDERS
ASSERT WRITEFILE(:wTHD)Y U LINE{]1seasLINETLINEPT)=WRITEFILE (:WTHD.0) U LINE.OLL]
veetLINESODILINEPT.0) U DIGITS OF INTVAL.O EACEPT TnE RIGHTMGST (LINEBACK-LINEFRC
NT-}) DIGITSS
ASSERT LINEBACK2LINEFRONT=11
ASSERT LINE[Q)I=LINE.OIQ]}S
WHILE LINEBACKZLINEFRONT DO
CrAR:=CrARLISTILINEBACK]I
EXTER INSERTCHARI
LINEBACK =L INEBACK~13
FLInws
Fl 1
ASSERY WRITEFILE(:wWTHD) U LINE(OIo..oLINE(LINEPTl=HRlTEFIL£(=HTH0.0) U LINE.OTO])
veetLINELOILINEPTA0] U DIGITS OF INTVAL.OS®
ASSERT LINE[(O)=2F1
EX1T %

PROCEDURE ISANOTHERBRANCH ¢
IF BRANCRIPATHPT I=0
THEN ANOTHERBRANCH:zFALSES
ELSE IF STATEMENTIDESCLOCIPATHIPATHPT)+BIAS)1272 SCASES
THREN IF BRANCH{PATHPT =]
THEN ANOTHERPRANCHI=TRUES
ELSE ANOTHERBRANCH:=FALSE?S
Fls
ELSE IF STATEMENT(DESCLOCIPATHIPATHPT1+81A51e5]
o STATEMENTIDESCLOCIPATHIPATHPT 1¢81AS5]eb4]e2 >RRANCHI{PATHPT]
THEN ANOTHERBRANCH = TRUE 3
ELSE ANOTHERBRANCH := FALSE ¢
Fl 3
Fis
FIs
ASSERT ANOTHERBRANCK IFF THERE 15 ANOTHER BRANCHPOINT FROM PATH.OlPATHPT 03
EXIT 3

PROCEDURE ISCOLONIO®
AT:=11
ASSERT 1<AT<llz
ASSERYT 1<3$<AT=1 » TOKENL.STRING 2z COLON IDENTIFIER $$3
WHILE AT<10 00
IF COLONPTS{AT+1)-COLONPTSIATI=TOKENSTRING(1]1-TOKENSTRING(O]
THEN 1:=03
ASSERT 1<AT<iO$

129

ASSERT 159%8<AT-1 » TOKEN.STRING # COLON 1DENTIFIER 3§53
ASSERT O<ISLENGTH OF TOKENLSTRING*13
ASSERT 0<3%¢I-1 » LETTER $5+1 OF TOKENL.STRING = LETTER $s+1 OF COLON IDENTIFLER
«ATS$
WhILE IsTOKENSTRING(11-TOKENSTRING(01 A
CHARLXST[TOK{NSTRINGIOl'l)=C0tONﬂ0RDSETlCOLONPTSIAT)011 Do
]:s]o]: .
ELINWE
IF I>TOKENSTRINGll)—TGKENSTFINGIOI
THEN FOUND:=TRUES

Al:=z=ATY
RETURNS
F1t
Fls
ATS=ATo18
ELINWE

FOUND:=FALSES

ASSERT FOUND » TOKENSSTRING 1S COLON IDENTIFIER AT3
ASSERT ~FOUND » TOKEN.STRING IS NOT A COLON 10ENTIFIERS
EXIT ¢

PROCEDURE LABELREFCHECK ¢
ASSERTY OSTOKENSTSIHG(O]STOKENSTRING(llSCHARLISYPTt
ASSERT REFERENCECULABELSETPT>=13
ASSERT OSSSSZ'REFEQENCEDLABELSETPTOl [4 OSREFERENCEDLAEELSET(SS!SCHARLISYPT:
IDENTSTRI::TQKEMS1RXMG(013 '
lDENTSYRZ::TCKENSTRING(13!
AT:=0%
ASSERT 0<33<AT-1 CHARLXSY.OIREFEREKCEDLABELSET.0(2’$S)lo...vCHAPLXST.D(REFEREN
CEDLABELSET.OtZ'SSOIE)‘CHAQLXST-OKTOKENSTRING-OIO))!...oCHAPLIST.G(TOKENS‘Q!NG.O
{111
ASSERY OSATSGEFERENCEDLAEELSETPT.0~1t
ASSERT IDENTSI:X:TOKENSTRING.O(0\!
ASSERT IDENTSTR2=TCKENSTQXNG.0l1lt
ASSERT «EFERENCECLABELSET=REFEPENCEDLABELSET.Ol
ASSERT REFERENCECLABELSETPT:REFERENCEDLABELSEYPT.D $
ASSERT C~ARLIST=CHARLIST,.O ¢
ASSERT TOKENSTEIszTDKFNSTRING.O)
wHILE AT<REFERENCECLABELSETPY 0o
{UDENTSTR :=REFE§ENCEDLAEELSET(Z’ATll
IDENTSTR~:=9£FE9ENCEDLAFELSET(2'AY~1]l
ENTER IDENTSTR 3
If IDENTSTRFLAG

THEN FOQUND = TRUE §
RETURN
Fl 3
AT:=ATe18
ELIMW 3

FOUND := FALSE 3

ASSERT FOUND ~ 0<AT<REFERENCEDLARELSETPT.0 » CHADLIST.0[FEFEQENCECLABELSEY.O(Z'
A1lloa.otCHAQLIST.0(QEFEPENCEDLAHELSET.O(?°1101)l:CHAVLlST'O(TCKENS1°ING.0{Ol]-.
..oCHARLIST.O(TOKENRTQING.O(1)l%

ASSERY ~FOUND » <SS <REFERENCEDLABELSETPT.0 ~ CHARLIQT.O(REFE°ENCEDL£&ELSET.0(2‘

SS)lc...QCHAPLIST-O(VEFEREHCEDLAEELSET.0(2’$$‘1)ltCHAOLIST.O(IOKENSTPING.O{OIlg.
..oCHARLIST.OITOKENSY?XNG-OIlllt

EXIT 3

PROCEDURE L1STS
$HRINTS CURRENT CONTROL POINT FOLLOWED BY CARD IMAGE $
ASSERT ATSAVEDPARSESTATE 13
ASSERYT LINEPT=0 » LINE(O)=+F}
ASSERT CARD{OIz+T%

130

131

ASSERT WRITEFILE (:wTHD)=LISTING OF INPUTSTRING UP TQ :ROHD}
IF PARSESTATE241 v PARSESTATE=36
THEN INTVALI=POINTS
ENTER INTPRINTS
CrAR:=+
IF POINT<10
THEN ENTER INSERTCHARS
FIt
ENTER INSERTCHAR
ENTER INSERTCHARY
ELSE CHAR:iz=+ I
ENTER INSERTCHARS
ENTER INSERTCHARS
ENTER INSERTCHARS
ENTER INSERTCHARS

Fls
1:=18
ASSERT 1<I<Als
ASSERT CARD[O)z+TI
ASSERT LINE{O)=+F3 R
ASSERT LINE[1Jeee LINEILINEPTI= LISTING LABELY
ASSERT LINEILINEPT 1), sl INEILINEPTo1=11=2CARDI{1YssesCARDII-11Y
ASSERT WRITEFILE{:wTHD.0)=LISTING OF INPUTSTRING UP TO :RODHD3
wHILE 1<80 DO .
LINE{ISLINEPT):=CARDII)¢
- S lixlely
- - . ELIMWE
LINEPTZ=UINEPT 801
' ENTER PRINTLINES
- ASSERT WRITEFILE(:wTND)I=LISTING OF INPUTSTRING THROUGH :RDHOD ¢
- ASSERY LINERPT={ A LINE[QI=eF
EXITs

PROCEDURE LISTCALLEDPROCS?
1:=0%
ASSERT 0<1<200%
ASSERT 0¢8$$<I=1 » ~PROCFLAGISS) A ~PROCFLAG1I[S33)3
ASSERT PROCCALLEC=PROCCALLED.O}
wHILE 1€199 0O
PROCFLAGII):=FALSES
PROCFLAGILII:=FALSES
1:=0+13

ELIMWE .
3 PROCFLAGIPROCCALLEDI:=TRUES
PDONE:=FALSES
ASSERT DONE » PROCFLAG(SS) IFF PROCECURE $$ CAN BE REACHED BY A CALL TO PROCEDUR
€ PROCCALLED.OS
ASSERT PROCFLAGIPROCCALLED.OI
ASSERT PROCFLAGISS) » PROCEDURE $% CAN BE REACHED BY A CALL TO PROCEDURE PROCCAL
LEDLO -
ASSERT PROCFLAGI{SS]) » PROCFLAGI$S] A PROCFLAGI{*] IF PROCEQURE * CAN BE REACHED
BY A CALL TO PROCEDQURE $%3
ASSERT PPOCCALLED=PROCCALLED.OS . -
wrHiLE -~DONE DO .
DONE := TRUES
PROCNUMS=(0S
ASSERYT 0<PROCNUM<C2003
ASSERY DONE A (0<3$<PROCNUM~1) A PROCFLAG{S$S) » PROCFLAGLI(%S)3
ASSERT PROCFLAGIPRCCCALLEDLOYS
ASSERY PROCCALLED=FPROCCALLED.OS
ASSERT PROCFLAGIS$Y] » PROCEDURE $% CAN BE REACHED BY & CALL TO PROCEDURE PROCCAL
LED.O3

132

-

" ASSERT PROCFLAG1I{33] » PROCFLAG(SS) A PROCFLAG(®*] IF PROCEDURE ® CAN BE REACHED
BY A CALL TO PROCEDURE $%3
WHILE PROCNUMSIS9 DO :
IF PROCFLAGIPROCNUM) A =PROCFLAG](PROCNUM]
THEN ENTER LISTPROCCALLSS
PROCFLAG1IPROCNUM) :=TRUES
Fis
PROCNUM :=PROCNUMe1 3
ELINwS
ELIHwS '
ASSERT PROCFLAGIS$S) IFF PROCEDURE $% CAN BE REACHED BY A CALL TO PROCEDURE PROCC
ALLED.OS
EXIT 3

PROCEDURE LISTPRCCCALLS?E
1:=PROC{T2PROCNUM+3]
ASSERT PROC{7*PRCCNUML.0+3)1<I<PROCIT*PROCNUM,0+418
ASSERT PROCNUMSPROCNUM, DG)
ASSERT DONE » PRCCFLAG=PROCFLAG.O3
ASSEPT (PROCI7#PROCNUM.0+3)5535]1~1) A (CALLED PROCEDURE $$ = PROCEDURE #) » PROC
FLAGE*®])S)
WHILE I<PRCCIT®*PROCNUMe4) DO
FINDID):=PRCCCALLS[(2%]])
FINDID2:=PRCCCALLS[{2%]%1)3
ENTER FINDIDS

K3is ' -
ASSERT PROCNUM=PROCNUM,03 . -
ASSERT PROCI{T*PRCCNUML0O«II<I<PROCI 7*PROCNUM, 0418
ASSERY DONE » PRCCFLAG=PROCFLAG.OS _
ASSERT {(PROCIT*PROCNUM,0+31<535I~1) A (CALLED PROCEDURE $% = PROCEQURE ®) » PROC -
FILAGI®*)S :

ASSERT C2LLED PROCEDURE 1 = IDENTIFIER AT$
wHILE PROC{7*x}zAT DO
t=Keld
ELIHNY
IF -PROCFLAGIK]
THEN DCNE:=FALSES
PROCFLAGIK]):=TRUE M

Fls

I:=]+13
ELIMWS
ASSERT DONE » PRCCFLAG=PROCFLAG.OS
ASSERT PROCFLAGI$3) IF PROCEDURE $$ CAN BE REACHED By A CALL TO PROCEDURE PROCNU
M.03
EXIT 3

PROCEDURE L OOPCHECK 3)
ASSERT PATH{O)eeesPATHIPATHPT] CONTAINS NO UNTAGGED LOOPS?S
1=z} 3
ASSERT 1<1<PATHPT .0+l - -
ASSERT PATH =pPATH.O -
ASSERY PATHPT=PATHPT .0t -
ASSERT 123$8<I-] ~ PATH.LO(SS J2PATH 0L PATHPT 011
ASSERT :iwiHD=iwTHD.03
WHILE I<PATHPT DO
IF PATHII}=PATHIPATHPT+11

THEN WRITE LOOP 1
ASSERT PATH.0{0lveesPATH,OIPATHPT,0+1] CONTAINS AN UNTAGGED LOOPS
ASSERT WRITEFILE (:wTHD) =wRITEFILE(:WTHD.0) U LOOPS
. HALT 3

ELSE J:=]<1 3

$

ELIHW §

ASSERT PATH,0{0)s4++PATH,O0{PATHPT.0¢1) CONTAINS NO UNTAGGED LOOPSS

ASSERT WTHO=:wTHD.03
EXIT 3

PROCEDURE NILMATCH
WHILE ARC < FIRSTARCISTATE«1) A SYMROLIARC) = 0 DO
ENTER TESTS 3
IF TESTIFLAG
THEN NILMATCHFLAG = TRUE 3

RETURN
FI 3
ARC 3=z ARC < 1 3§
ELIMW §
NILMATCHFLAG 3= FALSE
EXIT 3

PROCEDURE PARSE 3§
ASSERY READFILE (:ROMD) = INPUTSTRING
ASSERT CURRENTPROC=~11
ASSERT STATEMENTPT=z-1t
ASSERT ASRTLOCPT=-11%
ASSERT ASRTICC1(01=03
ASSERT 0$85$<1659 » ASRTLOC[S$SSI=~11
ASSERT EXPLISTPT==11
ASSERT EXPSTRINGIO)=03
ASSERT EXPSTHINGI1)=-]3
ASSERT CASELABELSETPTzw]1
ASSERT CASELASELFRONT{01=01
ASSERT DEF INEDCASELARELSETTOP=z=11
STATE = PARSESTARY 3§
PARSESTATE :=PARSESTARTS
READ CARD 3
LINEPT =01
LINE[Q):i=eF2
IF CARD(O)z+T
THEN ENTER LIST
FIs
coL := 1 3 ’ .
RECOGNITION = FALSE ¢
ASRTSCANFLAG:=FALSE?S
ENTER SCAN 3
CARINSTRING := TCKEN 3
RTINSTACKTOP = =} 3
ASSERY ATPARSESTATE 3
ASSERY =~ASRTSCANFLAG 3 :
ASSERT LINEPT=C A LINE{QI=+F1

ASSERT WRITEFILE(:wTHD)=LISTING OF INPUTSTRING THROUGH

WHILE =~ KECOGNITION DO
ENTER TRANSNET 3
ELIHW 3

SRDMD ¢

ASSERT PPROGRAM{ALTSET+ASRTLOC+ASPTLOC+ASRTS +30UNDFUNCT IONs CASELABELFRONT+CASELA
BELSeCASELABELSET+CHARLISTy DEF INEDIDENTIFIERSETDEFINEDIDENTIFIERSETPT,DEF INEDPR
OCEGURESET 4 DEF INEDPROCEDURESETPT 4DESCLOCSEXPLIST INITIALPROCEDURE s+ PROC +PROCCALLS

2 STATEMENT) §

ASSERT wRITEFILE(:wTHD)=LISTING 3§
ASSERT LINEPT=0 A~ LINE(OI=+F3
EXIT 3

PROCEOQUKRE PRINTCASELABELSS
ASSERY LINE[O)=2F3
IF FROMTLABEL>BACKLABEL

133

I THEN RETURNG
Fls
INTVAL:=CASELABELSIFRONTLABEL)
ENTER INTPRINTG
ASSERT FRONTLABEL <DSFRONTLABEL<BACKLABEL ,0=BACKLABEL?$
ASSERT wRITEFILE(:wTHD) U LINE{11seeosLINEILINEPTI=WRITEFILE (:WTHD40) U LINELOC1)
700 LINELO(LINEPTL0) U CASELABELS{FRONTLABEL«O) Veseosv CASELABELS{FRONTLABEL)
]
ASSERY LINEIOI=LINE.O[O):
WHILE FRONTLABEL<BACKLABEL DO
FRONTLASEL s=FRONTLABEL 1.
CrARS=2 §
ENTER INSERTCHARG
CraARizevy
ENTER INSERTCHARY
CrARI=» §
ENTER INSERTCHARY
INTVAL :=CASELABELS{FRONTLAREL S
ENTER INTPRINTS
ELIHwWE .
ASSERT WRITEFILE(:WTHO) U LINE(]1Jeaao L INEILINEPT J=WRITEFILE (SWTHNGO) U LINELO[1]
oo tLINELO{LINEPTL0) U CASELABELSIFRONTLABEL.O) v ,.. VCASELABELSIBACKLAREL.G]S
ASSERY LINE[O)I=LINELOLOTS
EXIT 3 .

PROCEDURE PRINTIDS
ASSERT LINE{Ol=tF1
LINEFRONT:=DEF INEDIDENTIFIERSETI 291D 13
LINERACK i =DEFINECIDENTIFIERSETI2IDe1 13
. ENTER BUILDLINE 3
ASSERT WRITEFILE(IWTHD) U LINELI1)+aeesLINELLINEPT)=WRITEFILE(:WTHD.0) U LINELO(1)
2oasLINELOILINEPTL0) U DEFINEDSIDENTIFIER 10404
ASSERT LINE(Q)=+F3
EXIT 3

PROCEDURE PRINTIOSUBS
ASSERT LINE(O)=2F3
ENTER PRINTIOB
IF ALTNUMITIOD) > 0
THEN CHAR:=%,3
ENTER INSERTCHARS
INTVAL:=ALTNUMIID]S
ENTER INTPRINTS
FIs
ASSERT WRITEFILE(IWTHD) U LINEL] s oo s LINEILINEPT I=WRITEFILE (:WTHDG) U LINELDL])
o..cLINE.O(LINEPT.O) U IDENTIFIER ID SUBSCRIPTED wWITH ITS ALTERATION COUNTERS
ASSERT LINE[OI=LINE.O[O])
EXIT

PROCEDURE PRINTIDSUR]S

ASSERT LINE(O}=+F}

ASSERT ALTNUMIIDI20% .]
ENTER PRINTIDS ‘ -
CHAR:z=*,13

ENTER INSERTCHARS

INTVAL :=ALTNUM{ 10«13

ENTER INTPRINTS

- ASSERT WRITEFILE(SWTHD) U LINECL)eaeoLINEILINEPT 1zwwITEFILE (:WTHD.0) U LINELO(1}
2oorLINELQILINEPT.0) U IDENTIFIER ID SUBSCRIPTED WITH ITS ALTERATION COUNTERe13}

ASSERT LINE{O)=LINE.OLO]}

EXIT 3

134

e

PROCEDURE PRINTLINE §
ASSERY OSPSSLINEPT .0 » LINE[SS)SLINE.O(SS) 3
ASSERT LINEPT,.0*1<3SSLINEPT » LINE(SSI=BLANK 3
WHILE LINEPT<120 DO
LINEPT:=L INEPT] 3
LINELLINEPT)S=2 §
ELTrW 3
WRITE LINE 3
LINEPT =04
ASSERT WRITEFILE(:WTHD)=wRITEFILE(IWTHD.0) U LINE,OTO) s et LINELOILINEPT,O1 3
ASSERT LINEPT=01 '
ASSERT LINEIO)=LINE.OLO}S
EXIT 3

PROCEDURE PRINTPATH 3
ASSERT LINEPT=0 A LINE([QO)=+F
ASSERT PATH{DleowsPATH{PATHPT] IS A SPATHSS
wRITE PATMIS
1:=0 3
ASSERT WRITEFILE(IWTHD) U LINE{1deeoas LINEILINEPT I=WRITEFILE(:WTHD.0) U PATHIS U
PATH{O0)seeePATHII~11]1
ASSERYT LINE{QO)=2F3
ASSERT O<I<PATHPTel
ASSERT PATR =PATH,.O3
ASSERT PATHPTI=PATHPT L0
ASSERT O<LINEPTS<1201%
wHILE ISPATHPT DO
CradPRizes
ENTER INSERTCHMAR 1
INTVAL:=PATHIT) 3§
ENTER INTPRINT 8
1:=1+1 3
ELInw 3
ENTER PRINTLINE @
ASSERT LINEPT=Z0 A LINE{Q)I=eF3
ASSERT WRITEFILE(:aTHD)=WRITEFILE(IWTHD.0) U PATHIS U PATH.O0l0)eceosPATH.OIPATHPT
<0113
EXIT 3

PROCEDURE PRINTRCHDOSUBS
ASSERT LINE{Ol=z+F}
IF COLONALTNUM{ 31>0
THEN CHAR:z=*,.$
ENTER INSERTC-aRS
INTVAL :=COLONALTNUM{3]3
ENTER INTPRINTS
Flz
ASSERT WRITEFILE(:WTHD) U LINE{11veasLINEILINEPTI=WRITEFILE(:WTHDL0) U LINELOC(]]
veosL INELOILINEPTLC] U ALTERATION COUNTER OF 3ROHD®
ASSERT LINE(OI=LINE.O(O])S -
EX1IT 3

PROCEDURE PRINTSUREXPS P
ASSERT SUBRACK=SUBBACK,.(Q1%
ASSERT SUBFRONT.0SSUBFRONTSSUBBACK,0+18
ASSERT wWRITEFILE(:wTHD) U LINE{]}eeosLINETLINEPT JowRITEFILE(IWTHDLO0) U LINELO(1]
veetLINE.CILINEPT.0) U SUBSCRIPTED EXPRESSION IN EXPLIST FROM SURFRONT.0 TO SUBF
ROMT-13 ’
ASSERT LINE{O)=4F3
wHILE SUBFRONT<SULBBACKX DO

CASE EXPLISTI{Z2®*SUBFRONT) OF
SCHARACTER,L,CONSTANTS 653 CHAR:I=»+ §

135

136

ENTER INSERTCHARS.
CHARI=CHARACTER(EXPLIST{2*SUBFRONY+1 1)
ENTER INSERTICHARS
SNUMBERS 66: INTVALI=EXPLIST{2*SUBFRONT+«11s
ENTER INTPRINTS .
SIDENTIFIERS 67: IC:=EXPLIST{2*SUBFRONT+11)2
ENTER PRINTIDYS
IF ALTNUMIIDI>O
THEN CHaAR:=+.3
ENTER INSERTCHARY
INTVAL:=ALTNUMIIDI)
ENTER INTPRINT3

O
SBOOLEANS 71: AT:=]1

ENTER RESWORNPRINTY
SCHARACTERS 742 AT:=3%
: ENTER RESWORNPRINTS
SFALSEY ®1: AT:=10%
ENTER RESWORNDPRINTS
SINTEGERS R7: AT:=1S5%
ENTER RESWORDCPRINTS
STRUES 96 aT:i=z241
ENTER RESWORNDPRINTS)
$SINGLE CHARACTERSS ELSE CrARI=CHARACTER(EXPLIST(2¢SUBFRONTI)S
ENTER INSERTCHARS

ESaCt -
SUBFRONT:=SUBFRONT#13 -
ELTIHWSE

ASSERT wRITEFILE(IWTHD) U LINET]1eeusLINELLUINEPTI=WRITEFILE (:WTHD.0} U LINELOTY)
soesLINELOILINEPTL01 U SUBSCRIPTED EXPRESSION IN EXPLIST FROM SURFRONT.0 THROUGH

SuUBRACK . D1 -
ASSEFT LINE(CIz=+f2
EXIT ¢

PROCEDURE PRINTWIMDSUSS
ASSERY LINE(O)=¢F3
IF COLONALTNUMIG)>0
THEN CrHaR:ze+,8

ENTER INSERTCHARS

INTVYAL $=COLONALTNUMEIS)

ENTER INTPRINT
FIs
ASSERT wWRITEFILE(:wTHD) U LINEL1) e ees LINELLINEPTISWRITEFILE(IWTHDC0) U LINELOC1]
s2etLINELO{LINEPTL0] U ALTERATION COUNTER OF :wTHD3
ASSERT LINE[OI=LINE.O(O]
EXIT ¢

PROCEDURE PROCVCGEN §
ASSERT LINEPT=0 A LINE[OI=+F3
CURRFRONT 1= H
ENTER FROMPOINTVCGENS
CURKFRONT =1 ¢ e
ASSERT 1<CURRFRONTSPROC(7*CURRENTPROC*2)+11 -
ASSERT WRITEFILE(:WTHD)=wRITEFILE(:wTHD.0) U VERIFICATION CONDITIONS FOR PATHS I
N PROCEDUNE CURKENTPROE STARTING FROM PGINTS UP TO CURRFRONTS
ASSERT LINEPT=Q A LINE[OI=+F¢
WHILE CURHFRONT<PFOC(72CURRENTPROC+2] DO
1f STATEMENT(DESCLOCICURRFRONT+RIAS] 1284 SHALTS AASRTLOCICURRFRONT+R]AS12~]
THEN ENTER FROMPOINTVCGENS
Fls

CUKRFRONT 3= CURRFRONT + 1 &
ELIMW 3

137

ASSERT WRITEFILE(:WTHD)=WRITEFILE{3WTHD.0) U VERIFICATION CONDITIONS FOR PROCEDU
RE CURRENTPROCH

ASSERT LINEPT=0 A LINE[O)}=*F3
EXIT 3

PROCEDURE REGEN 3
ASSERT THERE 1S ANOTHER $BRANCHS FROM PATHIPATHPT
ASSERT LINEPT=0 A LINE{Q)=+F?$
R:=PATHPTY
PATHPT =0 3
NSTEP:=0%
ENTER RESETALT 3 .
ASSERT RzPATHPT,.O0$
ASSERT O0<PATHPTSPATHPT,O01
ASSERT ALTLIST(ALTNUM«COLONALTNUMIPATH.PATHPT)
ASSERT WRITEFILE(:wTHD) =wRITEFILE(:WTHD.0) U VERIFICATION CONDITION TERMS FOR PA
TH{Oloee s PATHIPATHPT=11}3
ASSERT PATH =PATH,.O%
ASSERT NSTEP=STEPS SINCE :STEP PPINTS
ASSERT LINERPT=0 A LINE{O1=2F1
wHILE PATHPT<R CO

ENTER GENTERM 3

PATHPT:=PATHPT+]
ELING 3 .
BRANCHIPATHPT 1 :=ERANCH(PATHPT]I 8
ASSERT wRITEFILE (:wTHD) =wRITEFILE(:WTHD.O) U VERIFICATION CONDITION TERMS FOR PA
THOT0)seaoePATH DIFATHPT 0=11]8
ASSERT PaATH =zPATH.2S
ASSERT PATHPT=PATHPT .04
ASSERT ALTLISTU(ALTNUMSCOLONALTRUMSPATHPATHPT)S
ASSERT NSTEP=STEPS SINCE :STEP PRINTZ
ASSERT LINEPT=0 A LINELQI=+F1
EXIT 3§

PROCEDURE RESETALT 1
1:=08
ASSERT 0<1<2503
ASSEPT 0<38<i~]l » ALTNUM{SS1=03
wMILE 1<249 DO
ALTNUMIT =08
. J:=31e12
ELInwe
1:=11
ASSERT 0<$%$<249 » ALTNUM(SS120¢
ASSERT 1<1<11¢
ASSERT 1<¢8%<]=1 » COLONALTNUM{$S]=01}
wHILE <10 00
COLONALTNUMI11:=03
132113
ELINWS
ASSERT D€3$<249 » ALTNUMISS1=0
ASSERT 1<3$%<10 » COLONALTNUMI{S$S)=01 »
EXIT 3)

PROCEDURE RESETFLAGS!

1:=01

ASSERT 0<1<250%

ASSERYT 0<38<f=1 « ~ALTFLAG(S$S1}

wHILE <249 0O
ALTFLAGLI):=FALSES
1s=fel

ELIHWE

1:=21
ASSERT 0<383<249 » ~ALTFLAG{S$S]3
ASSERT 2<1<10%
ASSERY 2:38<1-1 » ~COLONALTFLAGIS$SS]S
wHILE 1<9 DO

COLONALTFLAGLI J:=FALSES

=11

ELIHWS
COLONALTFLAGE 11:=TRUES
COLONALTFLAGLIO0):=TRUEL :
ASSERT ALL ALTERATION FLAGS IN ALTFLAG AND COLONALTFLAG ARE FALSE EXCEPT COLONAL
TFLAGE)] AND COLONALTFLAG(10) wHICH ARE ALWAYS TRUES
EXIT 3

PROCEDURE RESTOREPARSESTATUS 13
ASSERTY =1<PARSESTACKTOP:
STATE := PARSESTATE 3
1 1= 03¢
ASSERT O<I<PARSESTACKXTOP,.0e1s
ASSERT 0<%8<I~] » RTNSTACK{$S1=PARSESTACK.0{$S5]
ASSERT STATE = PARSESTATE.O o
ASSERT PARSESTACKTUP=PARSESTACKTOP,.OS
WHILE 1 & PARSESTACFTOP DO
RINSTACK{]I) 3= PARSESTACK{I]
I 321 ¢ 1 3
ELIHW §
RINSTACKIOP = PARSESTACKTOP 3
ASSERT STATE = RPARSESTATE.O
ASSERT O<$S<PARSESTACKTOP,0 » RINSTACK{$S)=PARSESTACK,0(S$S] 3
ASSERY HTINSTACKT(OP = PARSESTACKIOP.O §
EXIT 3

PROCEDURE RESWORCPRINTS
ASSERT LINE(O)=+F3
I13=RESWORDPTSIAT)E
ASSERT RESWCROPTSIATI<I<RESWORDPTS[ATe1l]t
ASSERT wRITEFILE(iwTHD) U LINELIJeoesLINETLINEPTI=WRITEFILE(INTHN.O) U LINE.O[1]
2eetLINEOILINEPTL0) U THE FIRST 1-RESWOROPTS(AT) LETTERS OF RESERVED WORD AT
ASSERY LINME{Q)=F1 ’
wHILE I<RESWORDPIS{AT+1) DO
CHAR:=RESERVEDWORDSET(I 1S
ENTER INSERTCHARS
I:=1e13
ELIHWS
ASSERT wWRITEFILE(IWTHD) U LINEI1 V9 oosLINEILINEPTI=wWRITEFILE(SWTHDWD) U LINELOLLY
2ot LINELOILINEPTL0] U RESERVED «ORD AT3S
ASSERY LINE{O}=+F3
EXIT 3

PROCEDURE SAVEPARSESTATUS

ASSERT «1<RTINSTACKTOPS

PARSESTATE := STATE 3

1 :=0 3 -

ASSERT PARSESTATE = STATE.O 3 ’

ASSERT O<ISHINSTACKTOP,0e1t

ASSERT 0<8$<I=] » PARSESTACKISS)=RTNSTACK.0{$S) 1

ASSERT RINSTACKTOP=RINSTACKTOP.03

WHILE I < PTNSTACKTOP DO
PARSESTACK{I) := RINSTACK{I]
1321 +13

ELInw 8

PARSESTACKTOP := RINSTACKTIOP §

138

-

(X1 .w

ASSERT PARSESTATE = STAVE.O @

ASSERT C<SPSSRINSTACKTIOP.0 » PARSESTACK{SS I=RTNSTACK.0(SS]) §
ASSERT PARSESTACKTOP = RINSTACKTIOP.O 3

EXIT &

PROCEDURE SCaN 3
ASSERT = RECOGNITION 1
ASSERT INPUTSTRING = CARDIO)+CARDICOL)s0esCARDIROT+READFILE(3ROHD)E
ASSERT =ASRTSCANFLAG 3
ASSERT LINEPT=0 A LINE[Q)=¢F3
ASSERT WRITEFILE (:wTHDI=LISTING OF INPUTSTRING THROUGH IRDHD 3
ASSERT ATSAVEDPARSESTATE 3% -
STATE = SCANSTART 3
RINSTACKRTOP = =1 13
IF CarD(0]) = +T
THEN CARINSTRING = 99 &
ELSE CARINSTRING = INTEGER(CARDICOLD) 3

Fl
ASSERY ATSCANSTATE 13
ASSERT ~ASRTSCANFLAG 3
ASSERY LINEPT=0 A LINE(Q)=+F?
ASSERT wRITEFILE (:wTHD) =L ISTING GF INPUTSTRING THROUGH tRDOHD 3
ASSERT ATSAVEDPARSESTATE
WHILE ~ RECOGNITICN DO
ENTER TRANSNETY 3
ELIHw 3
RECOGNITION = FALSE 3
ASSERY INSTRIMGSWEMOVETOKEN{INSTRING.O}3
ASSERT TOXEN=NEXTICXEN(INSTRING.O)
ASSERT TOKENSTRING=“EATTOKENSTRING(INSTRING.O)S
ASSERT =~ RECOGNITICN 3
ASSERPT LINEPT=0 A LINE{Q)=+F1
ASSERT wRITEFILEt:wTHO)=LISTING OF INPUTSTRING THROUGH (RDHD 3
EXIT

PROCEDURE SETALTIDSS
PROCNUM =03
ASSERT 0<PROCNUMS2003
ASSERT 0SSS<PROCAUM=1 A PROCFLAG{SS] » ALTERATION FLAG IS TRUE FOR ALL IDENTIFIE
RS IN ALTERATION SET OF PROCEDURE 3313
WHILE PROCNUMS199 DO
IF PROCFLAGIPROCNIM])
THEN 1:=PROC{ 7#PROCNUMeSS
ASSERT GSPROCNUMSIO9:
ASSERT 0<$S<PROCAUM~1 A PROCFLAGI$S) » ALTERATION FLAG IS TRUE FOR ALL TDENTIFIE
RS IN ALTERATION SET OF PROCEDURE $%1
ASSERT PROC{T7*PROCNUMSSI<I<PROCI7*PROCNUM6]+13
ASSERT ALTERATION FLAG IS TRUE FOR ALL IDEANTIFIERS IN POSITIONS PROCIT*PROCNUMS
] THROUGH I-1 OF ALTERATION SET OF PRCCEDURE PROCNUMI
WrILE I<PROCI[7*PROCNUMe&] DO
IF ALTSET1I1)20
THEN ALTFLAGCALTSET(II]:=TRUER -
ELSE COLONALTFLAGI-ALTSETII13:=TRUES

Fls
1i=7+18
ELIHAS
Fls
PROCNUM:=PROCNUMe1 ¢
ELIHWS

ASSERT PROCFLAGUSS) » ALTERATION FLAG IS TRUE FOR ALL IDENTIFIERS IN ALTERATION
SET OF PROCEDURE 3%
EXIT &

139

140

PROCEDURE SETUPS

$ INITIALIZES SEVERAL VARIABLES USED IN ACTIONS S
1:=0%
ASSERT 0<1520003
ASSERTY 0533<I~]1 » ASRTLOC{SSI=-1%
WHILE 151999 DO

ASRTLOCIT):==13

i=ls1s

ELIHWS
CURRENTPROC:==113
STATEMENTPT:=«13
ASRTLOCPT:==113
ASRTLOCI{01:=03 .
EXPLISTPT =11
EXPSTRINGI0]3=03
EXPSTRINGIYI):==113
CASELABELSETPTt==-112
CASELADELFRONTIDII=01
DEF INEDCASELABELSETTOP =138
ASSERT CUNRENTPRCC=z=11
ASSERT STATEMENTPT=-13
ASSERT ASRTLOCPT=-1%
ASSERT ASRTLOC1(0)=03
ASSERT 0<35%3<1999 » ASRTLOCISS)z~1}
ASSERT EXPLISTPT==13
ASSERT EXPSTRINGIO)}=03
ASSERT E#PSTRINGI1)I=~1% -
ASSERT CASELABELSETPT=w11
ASSERT C&S5ELABELFRONTIO0)=03
ASSERT DEFINEDCASELABELSETTOP==13 T
EXIT 3 : -

PROCEDURE STACKTEST
IF RINSTACKTOP 2 ¢
THEN § =z ARC §
ARC := RTNSTACK(RINSTACKTOP]
ENTER TESTS ¢
ARC = S 3
IF TESTFLAG
THEN STACKTESTFLAG := TRUE 3§

RETURN 13
F1 ¢
F1
STACKTESTFLAG := FALSE 3
EXIT 3

PROCEDURE SUYSCRIPT:
ASSERY ASKTFLAG =0 IF NOT IN ENTER STATEMENTs =1 IF IN INITIAL ASSERTION OF ENTE
R STATEMENT. AMD =2 IF IN FINAL ASSERTICON OF ENTER STATEMENTS
ASSERT ALTLIST (ALTNUMCCOLONALTNUMIPATHIPATHPT) §
ASSERT AT IS IDENTIFIER NUMBER OR COLON IDENTIFIER NUMBERS
ASSERT CHARLISTIASRTSCANPOINTER) s ese CHARLISTIASRTBACK]) IS PORTION OF ASSERTION F
OLLOWING IDENTIFIER ATy —
ASSERY LINE[Ol=2F 1
ASSERY NSTEP=STERS SINCE :STEP PRINT3
1F aT20
THEN INTVAL:=ALTNUMIAT)S
ELSE INTVAL:=COLONALTNUM{<ATIS
Fls
ASSERT ASRTFLAG=ASRTFLAG.O3
ASSERT ALTNUM=ALTNUM.OY

' 'mﬁ

ASSERT COLONALTNUM=COLONALTNUML O}
ASSERT PATH=PATH.O3 .
ASSERT PATHPT=PATHPT.OS
ASSEPY AT=AT.O0%
ASSERT CHARLIST=CHARLIST.O3
ASSERT ASRTSCANPO1NTEQ=ASRTSCANPOINTER.03
ASSERT ASRTRACK=ASRTBACK.O}
ASSERT LINE=LINE.OS
ASSERT LINEPT=L INEPT.O
ASSERT NSTEP=NSTEP.OI :
ASSERT INTyAL= IF AT20 THEN ALTNUMIAT) ELSE COLONALTNUMI~AT]S
ASSERT :WTHD=:wTHD.C3 . :
iF ASRTSCANPOINTER«1SASRTBACK A CHAFLIST(ASRTSCANPOINTER]=*. A
CHAPLXST(ASRTSCANQOINTEQOI]=?0
THEN ASRTSCANPOINTER:3ASRTSCANPOINYER’Z!
IF ASRTFLAG=D A PATHI01>0
THEN CHARI=®.3
ENTER INSERTCHARS
Criap:z=+03
ENTER INSERYCHARE
RETURNS
F13
IF ASRIFLAG=Z
THEN IF AT20
THEN IF ALTFLAGIAT)
THEN INTVAL:=INTVAL-1$
Fls
ELSE 1F COLONALTFLAGI-AT]
THEN INTVALI=INTVAL-1%
Fls)
Fls
Fis
FIs
ASSERT INTVAL=ALTERATION COUNTER FOR IDENTIFIER AT.0
ASSEPT swTHD=:iwTrD.0}
ASSEPY LINE=LINE.O?
ASSERT LINEPT=LINERPTLOS .
ASSERT IF ASHTSCANPOINTEQ.00)SASQTRACK a CHAPLXST.O(5SRTSCANPOINTEP.Q)=’o A CHAR
LXST.O(ASRTSCANPOINTER.Ool)='0 THEN ASRTSCANPO1NTER=ASRTSC§NPOINTE9.002 ELSE ASR
TSCANPOINYEQ=ASRTSCANPO]NTER.O!
1F INTVAL>O
THEN CHARI=®,.3
ENTER INSERTCHARS
ENTER INTPRINTI
FI3
ASSERT WRITEFILE(:wTRD) U LINE(l)o..oLINE(LlNﬁPT)=UQITEFILE(:wYHDoO) U LINE.O(1]
coesL INEQUILINERPT.G) U SUBSCRIPT OF IDENTIFIER AT.O3
ASSERT 1IF ASRTSCANPO]NTER.O¢lfASPTRACK A CHAQLIST.O[ASRTSCANPOINYEQ.O):*. A CHAR
LXST.O(ASPTSCANPOINTEQ.Ool1=90 THEN ASRTSCANPOINTER:ASRTSCANPOXNTER.002 ELSE ASR
TSCANDOlNTER:ASRTSCANPCINTER.Q:
ASSERT LINE[O)=LINELOLOI}S
EXIT 3
PROCEDURE TESTS 3
ASSERT [~ASRTISCANFLAG & ATSCANSTATE A ATSAVEDPARSESTATE] v {~ASRTSCANFLAG A ATPA
ESESTATE) v [ASKTSCANFLAG 4 ATASRTSCANSTATED)
CASE TESTLARC] OF
0: ARCTEST := TRUE 3
ENTE® TESTY 3
ENTER TESTZ 3
ENTER TEST3
ENTER TEST4 3

& W N
e os s o0

141

142

ENTER TESTS
ENTER TESTS
ENTER TEST?
ENTER TESTS
ENTER TESTO 3
ENTER TEST10
ENTER TESTI11
ENTER TEST1Z2
ENTER TEST13
ENTER TEST14
ENTER TESTIS
ENTER TEST1S
ENTER TEST17
ENTER TEST1S
ENTER TEST1S
ENTER TEST20
ENTER TESTZ21
ENTER TESTR22
ENTER TEST23
ENTER TEST24
ENTER TJESTR2S
ENTER TEST26
ENTER TEST27
ENTER TESTZS8
ENTER TEST29
30: ENTER TEST30
31: ENTER TESTII
32: ENTER TESTI2
33: ENTER TESTID
34 ENTER TEST34
35: ENTER TESTIS
36: ENTER TEST36
37 ENTER TESTAT?
£SAC ¢
ASSEFT TESTFLAG IFF ARCTESTU(ARC.0)S
ASSERYT ARC=ARC,0 §)
ASSERT STATE=STATE.O §
ASSERT RTNSTACK=RINSTACK,O
ASSERT RINSTACKTOP=RINSTACKTOP,0 §
ASSERT S5=S5,0
ASSERT CARINSTRING=CARINSTRING.D ¢
ASSERPT iwTIKD=:wTHD.OS
EXIT 3

o
o oo we oo

o se o0

PLND VRNV P WNe O e o s

I R R EEE

NN NG T bt bt 1o bt 4t Dt s ot Dt bt O O =~ OV AN

NN YN
© N
o e or

.

~N
O
P

'

O e G4 OB S% @2 G e B0 @6 B0 S OGP GE W 4 G OP G4 GE 4% 4t B8 Be SE B B4 44

PROCEDUNRE TRANSNET
ASSEFT (~ASRTSCANFLAG A ATSCANSTATE A ATSAVEDPARSESTATE]) v [~ASRTSCANFLAG A ATPA
PSESTATE] v {ASRTSCANFLAG A ATASRTSCANSTATE] 3
ASSERT ~ RECOGNITICOM
ASSERT —~ASRTSCANFLAG » LINEPT=0 A LINE[O)=+F1
ASSERT =ASRISCANFLAG » wRITEFILE(:WTHD)I=LISTING OF INPUTSTRING THROUGH ‘RDND!
ENTER ALPHARETMATCH 3
1F ALPHARETMATCHFLAG -
THEN ENTER TRAVERSE § -
ELSE ENTER NILMATCH §
IF NILMATCHMFLAG
THEN ENTER TRAVERSE 3
ELSE IF ARC < FIRSTARCISTATE+1) A SYMBOL(ARC] < 0
THEN RTNSTACKTOR :3 RTINSTACKTOP «) 3§
RINSTACKIKINSTACKIOP) = ARC
STATE := ~SYMBOLIARC) 1
ELSE IF RECOGNITIONSTATE(ARCY
THEN ENTER STACKTEST ¢

1F STACKTESTFLAG
THEN ARC := RINSTACKIRTNSTACKTOP] #
RINSTACKTOP 3= RINSTACKTOP=-1
ENTER TRAVERSE 3§
ELSE IF PINSTACKTOP < O
THEN WECOGNITION := TRUER
. ELSE WRITE NONRECOGNITIONS
ASSERT INPUTSTRING NOT RECOGNIZED RY TRANSITION NETWORKS
ASSERT HRITEFILE(:wTHD):HRlTEFXLE(:-YH0.0) U NONRECOGNITION MESSAGESR
HaALT 3
FI 3
F1 3
ELSE wRITE NONRECOGNITION 3
ASSERT INPUTSTRING NOT RECOGNIZED BY TRANSITION NETWORKE
ASSERT WRITEFILE (:wTHD)=wRITEFILE(:WTHD.0) U NONRECOGNITION MESSAGES
HALT 3§
F1 8
FIl ¢
F1 3
Fl s ’
ASSERY ASRTSCANFLAG.O » ATASRTSCANSTATE 3
ASSERT =ASRTSCANFLAG.D » ATSCANSTATELO » ATSCANSTATE A ATSAVEDPARSESTATE §
ASSERT ~ASRTSCANFLAG.O A ATPARSESTATE.O » ATPARSESTATE 3
ASSERT LINERT=0 A LINE{OY=+F1
ASSERY =ASRTSCANFLAG.D » wRITEFILE (:wTHD) = ISTING OF INPUTSTRING THROUGH 3ROHOS
ASSERT =ASRTSCANFLAG.D ~ twTHO®3WTHD O
EXIT 3%

PROCEDURE TRAVERSE 1
IF FLAGLARC)

THEN ENTER INPUTS
Fis
ENTER ACTIONS ¢
STATE = NEXTSTATE[LARC) ¢
EXIT 3

PROCEDURE UPDATEALTNUMS
ENTER RESETFLAGS?
ENTER LISTCALLEDPROCSS
ENTER SETALTIDS?
:=03
ASSERT 0<1<25013 °
ASSERT ALTERATION FLAGS 1IN ALTFLAG AND COLONALTFLAG ARE TRUE IFF THE CORRESPONDI
NG IDENTIFIER CAN BE ALTERED B8Y A CALL 1O PROCEDURE PROCALLED.OS
ASSERT PRGCCALLEC=PROCCALLED.O3
ASSERT ALTERATION COUNTERS IN ALTNUM HAVE BEEN UPDATED FOR IDENTIFIERS © THROUGH
1-1%
WHILE 15249 DO
1€ ALTFLAG(I]
THEN ALTHNUMITI:=ALTNUM{TI]e1}3
FIs
fi=1e]s e
ELTIHwS
COLONALTNUM{1]:=COLONALTNUMIL]=112
IF COLONALTFLAGI3)
1 THEN COLONALTNUM(J}!=COLONALTNUN(3)013
]
IF COLONALTFLAGlS4]
THEN COLONALTNUMI&):=COLONALTNUMI&]e1 Y
FIt
COLONALTNU“(!O}:=COLONALTNUH()0101t
ASSERT ALTERATION COUNTERS IN ALTNUM AND COLONALTNUM HAVE BEEN UPDATED FOR A CAL

143

L TO PROCEDURE PROCCALLED.OS
EXIT 3

PROCEDURE UPDATEALTSET 1
ASSERT Q<CURRENTPROC<200:
ASSERT 0<PROCIT*CURRENTPROC*S JSPROCT T*CURRENTPROC61<1000%
$zPROCITOCURPENTPROCS 1S

ASSERT PROCLT#CURRENTPROC*5)<E5<T~]1 ALTSET.O0[SS12AT,03
ASSERT PFUC.OLT#CURRENTPROCL0+51SISPROCLOL7%CURRENTPROC.0+61+1 4
ASSERT ALTSET=ALTSET.03%
ASSERT AT=AT,.0 3
ASSERT PROC=PROC.0 1@ .
ASSERT CURRENTPRCC=CURRENTPROC.D §
WHILE 1SPROCI7*CURRENTPROC6] DO

IF ALTSET(II=AT

THEN RETURN 3

FI 3

1i=1 4«13
ELIHW § ,
PROC(7*CURRENTPROC+513:2PROCI 7*CURRENTPROC+6) 14
ALTSETIPROCI 78CURRENTPROC*& 1)1 =ATS
ASSERT S$$27eCURRENTPROC,0*s o PROCI{S% I=PROC.0(%% 1}
ASSERT THERE EXISTS A UNIQUE VALUE OF $% SUCH THAT PROC.OI7%CURRENTPROC,0+531¢88¢
PROC,OL72CURRENTPROC.0+6) A ALTSET($3)=AT, 0%
EXIT 3

PROCEDURE VCGEN 3
ASSERT LINEPT=0 A LINE[Q)=z+F}
Piz0s
ASSERT O<P<DEFINEDPROCEDURESETPT+11
ASSERT WRITEFILE(:wTHD)=wQITEFILE(:NTHD,LO) U VERIFICATION CONDITIONS FOR ALL PRO
CEDURES IN DEFINED.PROCEDURE.SET FROM) THROUGM P=lt
ASSERT LINEPT=0 A LINELQO)=+F3
WHILE P<DEFINEDPROCEDURESETPT DO

CURRENTPROC: =N
ASSERT O<SPSOEFINEDPROCEDURESETPTH
ASSERT WRITEFILE(:wTHD)=wHITEFILE(:wTHD.0) U VERIFICATION CONDITIONS FOR ALL PRO
CEQURES IN DEFINED.PROCEDURESET FROM 0 THROUGH P-l3
ASSERT LINEPT=0 A LINE{Q)=+F}

wHILE DEFINEDPROCEDURESETIP 12PROCI 7*CURRENTPROC] DO

CURRENTPROC:=CURRENTPROC+]§
EL IHwgS
BIAS:=PROC({7*CURRENTPROC+111
ENTER PROCVCGEN &
t1=Pels

ELIHW §
ASSERT WRITEFILE(:wTHD)=WRITEFILE(:WTHD.0) U VERIFICATION CONDITIONS FOR INPUTST
RING?
EXIT 8

PROCEDURE VERIFY 1

$ TOP LEVEL OF TrE VERIFICATION SYSTEM, § T
ASSERT KEADFILE(:RDHD) =INPUTSTRINGS

ENTER SETURy

ENTER PARSE ¢

ENTER VCOEN §

ASSERT INPUTSTRING IS A LEGAL NUCLEUS PROGRAMS3

ASSERT WRITEFILE(:wTHD)=LISTING U VERIFICATION CONDITIONS FOR INPUTSTRINGS
EXIT 3

PROCEDURE WRITEASRTSS
ASSERT ALTLIST(ALTNUMICOLONALTNUMSPATHPATHPT) §

144

-

i

D

ASSERT NSTEP=STEPS SINCE :STEP PRINTH
ASSERPT LINEPT=0 A LINE(O)=*F3
ASSERT NOT IN ENTER STATEMENTS
IF ASRTLOCIPATHIPATHPT}+81451<0
THEN wRITE ASRTTRUE 3
ELSE Wi=ASRTLOCI{ASRTYLOC(PATHIPATHPT JeB81AS])H
ASRTIFLAG:=03
ASSERY ASRTLOCIPATH{PATHPT }+BIASI204
ASSERT ASRTLOCIiASRTLOC(PA!H(PATHPT)OBIAS))SNSASPTLOCIlbsﬂTLOC(PATF(PATHPTJOBXAS
11131 ’
ASSERT ASRTFLAG=0 A~ NOT IN ENTER STATEMENTS
ASSERT ASRTLOC =ASRTLOC.O}
ASSERPT PATH =PATH.OS
ASSERT PATHPT=PATHPT,.O04
ASSERT ASRTLOCYI=ASRTLOC1.O03
ASSERY wRITEFILE(:wTHD)z=wRITEFILE(:WTHD.0} U SUBSCRIPTED ASSERTIONS FOR PATHIPAT
HPT) FrOM ASRTLOCI{ASKTLCCIPATHIPATHPT)+BIAS]]) THROUGH wW-li
ASSEPT LINEPT=0 A LINE(Q)=+F3
ASSERT ALTLIST (ALTAUMs COLONAL TNUMPATHPATHPTI
ASSERT NSTEP=STEPS SINCE :STEP PRINTS
wHILE w<ASRTLOCL{ASRTLOCIPATHIPATHPT}+RB1AS]+1] DO
ASRTFRONT :=ASRTS{2*v]t
ASRIS;&NPOINTER:=ASRTFRONT 3
ASRTBACK:=ASKTIS{2*wW+113
ENTER WRITENEXTASRT 1§
‘Wizwells
ELImw §
Fl ¢
ASSERT WRITEFILE(:wWIHD) =wRITEFILE(IWTHD.0) U SUBSCRIPTED ASSERTIONS FOR PATH.OIP
ATHPT 013
ASSERY LINEPTI=0 A LINE{QI=+F3
EXIT §)

PROCEDURE WRITENEXTASRT 3
ASSERT LINE(Q)=tF1
ASSERT ALTLIST (ALTNUMsCOLONALTNUMSPATH PATHPT)S
ASSERT ASRTFLAG =0 IF NOT IN ENTER STATEMENTs =} IF TN INITIAL ASSERTION OF ENTE
R STATEMENT. AND =7 IF IN FINAL ASSERTION OF ENTER STATEMENTS
ASSERT ASKTIFRONTSASRTBACKE
ASSERT NSTEP=STEPS SINCE :STEP PRINTH
TOKEN:=01
ASSERT ASHTFLAG =6 IF NOT IN ENTER STATEMENTs =1 IF IN INITIAL ASSERTION OF ENTE
R STATEMENT, AND =2 IF IN FINAL ASSERTION OF ENTER STATEMENTS
ASSERT ASRT3ACK=ASRTBACK.O3
ASSERT ASRTIFRONTLOCASRTIFRONTSASRYIBACK+13
ASSERT WRITEFILE(:wTHD) U LINEL])9eas LINECLINEPT)=WRITEFILE(:WTHDL0) U LINE.O(1]
toectLINELOILINERPT,.O0) U SULSCRIPTED ASSERTION
CHARLISTIASRTFRONT20)vaae CHARLISTIASRTFRONT~1138
ASSERPT BEFORETOUKEN = PREVIOUS VALUE OF TOKENS
ASSERY LINE(O)=+F}
ASSERT ALTLIST (ALTHLUMSCOLONALTNUMsPATHPATHPT) S
ASSERT PATH=zPATH,03 .
ASSERT PATHPT=PATHPT,O1 -
ASSERY NSTEP=STEPS SINCE :STEP PRINTS
WHILE ASRTFRONTCASHTBACK 00
BEFORETORENI=TOKENS
ENTEFR ASRTSCAN 8
LINEFRONT:=ASRTFRONTS
LINEHACK:=ASRTSCANPOINTER=~1 3
ENTER BUILDLINE 8
IF TOKEN=67 3108
THEN IF BEFORETOKEN=39 $:3

145

Fl

ELIHW ¢

ASSERT WRITEFILE(:wTHD)=WRITEFILE(:WTHDL0) U LINELOIY TreeasLINELOILINEPTLO0) U SU
BSCRIPTED ASSERTION IN CHARLIST{ASRTFRONT.0)seessCHARLISTIASRTBACK.0]}

ASSERT
EXIT ¢

THEN ENTER I1SCOLONIDS
IF ~FOUND

FIs
ELSE

THEN FINDID1:=TOKENSTRING(O]}
FINODID2:=TOKENSTRINGL1]
ENTER FINDIDS

FINDIDI:=TOKENSTRINGIOY 3
FINDIDZ2:=TOKENSTRING(1] 3

ENTER FINDID 3
FI &
IF FOQUND

Fis
1 3

THEN ENTER SUSSCRIPTS

ASRTFRONT :=ASRTSCANPOINTER

ENTER PRINTLINE 3

LINEPT=0 A LINE{O)=*F}

PROCEDURE WRITEREADLINEL:

ASSERT
ASSERT
ASSEPT
ASSERT
ASSEFT
ASSERT
ASSERT

LINEPT=0 A LINE{QO)=*F3

ALTUIST(ALTNUMsCOLONALTNUMGPATHPATHPT) §
STHT=LESCLUC{PATHIPATHPT)+BIAS]S

STATEMERTISTMT I=913

NSTEP=STEPS SINCE 1STEP PRINTS

ID=SSTATEMENTISTMT 1 18
B=BOUNDFUNCTIONLIID)S

LINEFRONT =683
LINEBACK:I=733 $:REQF{IRDHDS

ENTEFR &

UILDFROMPRESET S

ENTEP PRINTRCHDSUBS

LINEFRO
LINEBAC
ENTER ©
ENTER P

NTS=w08

K:i=z853
UILDFROMPRESETS
RINTIOSUBLS

LINEFRONT =563

LINEBAC
ENTER &
INTVAL S

K3=993
UILOFROMPRESETS
=83

ENTER INTPRINTS
LINEFRONT =838
LINEBACK (=853

ENTER sUILDFROMPRESETS
ENTERP PKINTICSUBILS
LINEFRONT:=1008

LINERAC
ENTEP o

Ki=103%
UILOFROMPRESETS

ENTE® PRINTIDSUES
LINEFRONT:=1043
LINEBACK:=1nTY

ENTERP HUILDFROMPRESETS

ENTER P

RINTLINES

ASSERT LINEPT=0 A LINE{OI=2F?8 .
ASSERT wRITEFILE(:WTHD)=WRITEFILE(:WTHD.0) U READLINELS

EXIT 3

PROCEOUKE WRITEREADLINEZ2S
ASSERT LINEPT=0 A LINE[O)=*F3

146

147

ASSERT ALTLIST(ALTNUMsCOLONALTNUMPATHSsPATHPT) S
ASSEFT STMT=DESCLOCIPATHIPATHPT1+BIASIS
ASSERT STATEMINTISTMTI=911
ASSERT NSTEP=STEPS SINCE $STEP PRINTS
ASSERT ID=STYATEMENT(STMT«11$
ASSERT B=30UNDFUNCTIONIIDIS
LINEFRONTS=6T78
LINEBACK:=7813
ENTER SUILCFROMPRESETS
ENTERP PRINTROHDSUBS
LINEFRONT:=308
LINERACK:=853
~w ENTER oUILDFROMPRESETS
s ENTER PRINTIDSUSIS
LINEFRONT:=1083
LINEBACKI=12]1
ENTER =UILDFROMPRESETS
IF 8<89
THEN INTVEL:=B81
ELSE INTVAL:I=801%
Fls
ENTER INTPRINTS
LINEFPONT2=823
LINEBACK:=831
ENTER =UILDFROMPRESETS
- ENTER PRINTIOSUBL
- LINEFFUNT =122
LINEBACK:I=] 368
ENTER =-UILDFFROMPRESETS
. ENTER PRINTRDHDSUBS
- LINEFRONTI=)37
LINEBACK:=]62¢
ENTER HUILOFROMPRESETS
IF 8281
THEN LINEFRONT 21433
LINEBACK:I=151¢
ENTER SUILDFROMPRESETS
INTvaL:=813
ENTER INTPRINTS
LINEFRONT :=8131¢
LINEBACK:=8S
) ENTER ~UILDFROMPRESETS
: ENTER PRINTIOSUBLY
; LINEFRONT:=1003
LINEBACK:=10312
ENTER HUILOFROMPRESETH
ENTER PRINTIDSUBS
LINEFRONT=]"43
LINEBACK:I=10T1¢
ENTER YUILDFROMPRESETS
FIs i
ENTER PRINTLINES
ASSERT LINEPT=0 A LINE[{OI=+F3
ASSERT WRITEFILE(:WwTHD)=WwRITEFILE(:WTHD.0) U READLINE?S
EXIT 3 ’

PROCEDURE wRITEREADLINE 38

ASSERT LINERPT=0 A~ LINE[O)}=+F1}

ASSERT ALTLIST (ALTAUMCOLONALTNUMOPATHPATHPT) §
ASSERT STMI=DESCLUCIPATHIPATHPT }+BIAS)S

ASSERT STATEMENTISTMTI=G]1S

ASSERT NSTEP=STEFS SINCE :STEP PRINTS

ASSERT ID=STATEMENTISTMT«11)3
ASSERT B=AOQUNDFUNCTION(ID]
LINEFRONT =753

LINEBACK:=T793

ENTER rUILDFROMPRESETS

INTVAL $=CUOLONALTAUMI 3«13
ENTER INTPRINTS

CrHARI=*=1

ENTER INSERTCHARGS

LINEFRCONT 2751

LINEBACK:=T783

ENTER =UILDFROMPRESETS

ENTER PRINTRDHDSUGS
LINEFRUNTI2KOZ

LINESBACKI=A]E

ENTER oUILDFROMPRESETH

ENTER PRINTLINES

ASSENRT LINZPT=0 A LIRE[D)=+F3
ASSERT WRITEFILE(:wTHD)=WRITEFILE(:WTHD.0) U READLINE3®
EXIT ¢

PROCEDURE WRITERTNPTLINE?®
ASSERT ALTLIST (ALTHUMCOLONALTNUMPATHIPATHPT) §
ASSERT LINERPT=0 A LIRE(Q)z2F 3
LINEFRONT =273)
LINERACK =323 SIRTNPTS
ENTER cUILOFROMPRESETS
 CHARIST .}
ENTER INSERTCHARS
quvaL::COLonALTNUH(S].;;
ENTER INTPRINTS
LINEFRONT =0
LINERACK:=21% SMIDDLE OF :RTNPY LINE $
ENTER ~UILDFROMPRESETS
LIMNEFRONT: DEFINEDlDENTIFKERSEY!Z'PROC(7'CURPENTPROC))l
LIMEBACK $=DEF INEDIDENTIFIERSETI2*PROCI7T*CURRENTPROC]I#1)8
ENTES WUILDLINES
CHARI=*+3S
ENTER INSERTCHARS
INTVALI=PATHIPATHPT+1 1}
ENTER INTPRINTS
LINEFRONTES218
LINEBACKI=32§ $SMOKE OF :RTNPT LINE S
ENTER cUILDFROMPRESETS
1F COLONALTNUM(S1>0
THEN CHAR:=+,3
ENTER INSERTCwHARS
INTVAL :=COLONALTNUM(S]S
ENTER INTPRINTS
FIs
LINEFRONT:=0S
LINERACKI=?: SEND OF :RTNPT LINE 8
ENTER oUILDFROMPRESET
ENTER PRINTLINES
ASSERY uRITEFILE(.uTHD)-wRXTEFXLE(.HYHD 0) U RINPTLINES
ASSERT LINEPT=0 A LINE(Q)=2F3
EXIT &

PROCEDURE WRITESTEPLINELY

ASSERT LINEPT=0 A LINE(Q)=2F3

ASSERT NSTEP=STERPS SINCE :STEP PRINTI

ASSERT ALTLIST(ALTNUMeCOLONALTNUMIPATHIPATHPT) $

148

-

LINEFRONT =401
LINEBACK =453 $:STEPS
ENTER cUILDFROMPRESETS
INTVAL P SCOLONALTAUM{10)1}
ENTER INTPRINTZ
LINEFRONT =398
LINEBACK =441 $=:STEPS
ENTER BUILDFROMPRESETS
IF COLONALTNUM{10)>0
THEN CHARI=%,1
ENTER INSERTCHARS
INTVAL:=COLONALTNUM{101)3
ENTER INTPRINTS
FIs
CHAR Sz
ENTER INSERTCHARS
INTVALISNSTERPS
ENTER INTPRINTS
ENTER FRINTLINES
NSTEP:=01 '
ASSERT WRITEFILE (:wTHD)=wRITEFILE(:WTHD.0) U STEPLINE]?
ASSERT LINEPT=0 A LINELO)=2F1
ASSERT NSTER=03
EXIT 8

PROCEDURE WRITESTEPLINE?S

ASSERY LINEPT=0 A LINE(O]=+F2
ASSERT ALTLIST(ALTNUN-COLONALTNUMvPATHoPATHPY)!
LINEFRONT 12403

LINERACK:=4ST $:ISTEP,S

ENTER oUILDFROMPRESETS

INTVAL :=COLONALTANUMI 10118

ENTER INTPRINTS

LINEFRONT =293

LINEBACK:=45T $=:STEP,.S

ENTER r~rUILDFROMPRESETS
INTVALS=COLONALTAUMILO0)S

ENTER INTPRINTS

LINEFRONY =46l

LINEBACK:I=H61 $END OF $STEP LINES
ENTER rUILCFWOMPRESETS
10:=PRUCLT*PROCCALLED]S

ENTER PRINTIDS

ENTER PRINTLINES

ASSERT LINEPT=0 A LINE[O)=*F3
ASSERT WRITEFILE (:wTHO)=WRITEFILE(:WTHD.0) U STEPLINE2S
EXIY ¢

PROCEDURE WRITEwRITELINELS

ASSERT LINEPT=0 ~ LINE(O)=+F3

ASSERT ALTLIST (ALTHUMsCOLONALTNUMePATHIPATHPT)
ASSERT STMI=DESCLOUCIPATH(PATHPT 1+BIAS]E
ASSERY STATEMENTISTMT 1=9A31

ASSERT NSTEP=STERS SINCE :STEP PRINTS
ASSERT B=BCUNDFUNCTIONIIDIS

ASSERKT ID=STATEMENTISTMT«1)8

ENTER MRINTIDSUGE

LINEFRPUNT 21521

LINEBACK:=1T13

ENTER RUILDFROMPRESETS

ENTER PHRINTWTHDSUBD

LINEFRUNT =503

149

150 O

LINEBACK:=821

ENTER vUTLOFROMPRESETS
$8 ENTER PRINTLINES
ASSERT LINEPT=0 A LINE(O)=*F1
ASSERT wRITEFILE(:WTHD)=wRITEFILE(:WTHD,0) U WRITELINELS
EXIT & .
PROCEDURE WRITEWRITELINE2S
ASSERT LINEPT=0 A LINE(O)=+F3 .
ASSERT ALTLIST(ALTANUM»COLONALTNUM+PATH«PATHPT) S
ASSERY STHMT=0ESCLOCIPATHIPATHPTI«BIASI]
ASSERT STATEMENT{STMT1=6A3.
ASSERTY NSTEP=STEPS SINCE :STEP PRINTZ (::)
ASSEST ID=STATEMENT{STMTe+1)3
ASSERY B=HOUNDFUNCTION(ID}S
ENTER PRINTIDSUnS
LINEFRONT:=172%
LINERBACK:=1923
ENTER ~UILDFKOMPRESETS
ENTER PRINTWTHDSLEI
LINEFRONTZ=13943
LINEBACK:=20641
ENTER =UILDFROMPRESET?
IF 85120
THEN INTVAL:=81
ELSE INTVAL:=1208 : .
Fls -
ENTER INTPRINTS
LINEFRONT=2053
LINEBACK:=2]Rs "
ENTER cUILCFROMPRESETS
ENTER PRINTWTHDSLES
LINEFRONT 222193
LINEBACK:I=2241
ENTER -UILDFROMPRESETS
ENTER PRINTIOSUBSSG
LINEFRONTI=1063
LINEBACK:I=]1071
ENTER cUILDFROMPRESET?
IF 82121
CTHEN LINEFRCNT:=22S%
LINEBACK:=23418
ENTER cUILDFROMPRESETH
INTVAL =281
ENTER INTPRINT)
LINEFRCONT:=205s
LINEBACK:=218¢
- ENTER 2UILOFROMPRESETS
ENTER PRINTWTHDSUBS
LINEFRCONT 22101
LINEBACK: =224
ENTER BUILDFROMPRESET? -
LINEFRONT 22353
LINEBACK:=23T¢
ENTER BUILDFROMPRESETS

Fls
$3 ENTER PRINTLINE!
ASSERT LINEPT=0 A LINE(OI=+F1

QSSERT WRITEFILE(:WTHD) =WRITEFILE (:WTHD,0) U WRITELINE2?
XIT %

PROCEDURE WRITEWRITELINE3S

¥ 1"

(L

ASSERT LINEPT=0 A LINE{O)}=1F14

ASSERT ALTLIST(ALTNUMsCOLONALTNUMPATHSPATHPT)
ASSERT STMT=DESCLOCIPATHIPATHPTI+BIAS)S
ASSERT STATEMENTISTMT }J=983

ASSERY NSTEP=STEFS SINCE :STEP PRINTS
ASSERY ID=STATEMENTI{STMT+113

ASSERT HB=gdOURDFUNCTIONIIDIS
LINEFRONT:=]1883

LINERACK:I=1933%

ENTER BUILDFROMPRESETH

INTVAL S=COLONALTANUML &)18

ENTER INTPRINTI .
LINEFRONT:=2383

LINEBACK:I=2438

ENTER JUILOFROMPRESETS

ENTER PRINTNTHDSUHS

L INEFRONTI=R0S

LINEBACK:=811

ENTER SUILDFROMPRESET?

$3 ENTER PRINTLINES®

ASSERT LINEPT=0 A LINE[O)=+F3

ASSERT wRITEFILE(:wTHD)=wRITEFILE(:WTHD.0) U WRITELINEDS

EXIT 3

START VERIFY

151

‘I’J

(1]

[2]

(31

[4]

I5]

[6]

[7]

(8l

(91

[10]

| [11]

[12]

[13]

BIBLIOGRAPHY

Burstall, R. M., Formal Description of Program Structure in
First Order Logic, Machine Intelligence 5, Meltzer, B. and
Michie, D. (Eds.) American Elsevier, 1970.

Cooper, D. C., Programs for Mechanical Program Verification,
Machine Intelligence 6, Meltzer, B. and Michie, D. (Eds.),
American Elsevier, 1971.

Elspas, B., Levitt, K. N., Waldinger, R. J., and Waksman, A.,
An Assessment of Techniques for Proving Program Correctness,
Computing Surveys 4, 2(June, 1972).

Floyd, R. W., Assigning Meanings to Programs, Proceedings of a
Symposium in Applied Mathematics, Vol. 19 -- Mathematical Aspects
of Computer Science, Schwartz, J. T. (Ed.), 1967.

Good, D. I., Toward a Man-Machine System for Proving Program
Correctness, Ph.D. Thesis, University of Wisconsin, 1970.

Good, D. I., Developing Correct Software, Proceedings of the First
Texas Symposium on Computer Systems, 1972.

Good, D. I., and Ragland, L. C., Nucleus--A Language of Provable
Programs, Program Test Methods, Hetzel, W. C. (Ed.), Prentice-
Hall, 1972.

Hoare, C. A. R., An Axiomatic Basis for Computer Programming,
Comm. ACM, 12, 10(October, 1969).

King, J. C., A Program Verifier, Ph.D. Thesis, Carnegie-Mellon
University, 1969.

London, R. L., The Current State of Proving Programs Correct,
Proceedings of ACM Annual Conference, ACM, 1972.

Naur, P., Proof of Algorithms by General Snapshots, BIT, 6 (1966).

Scott, D., Outline of a Mathematical Theory of Computation,
Proceedings of the Fourth Annual Princeton Conference on Information
Sciences and Systems, 1970. '

Snowdon, R. A., PEARL: An Interactive System for the Preparation
and Validation of Structured Programs, Program Test Methods,
Hetzel, W. C. (Ed.) prentice-Hall, 1972 and SIGPLAN Notices 7,
3(March, 1972). ‘

152

[14]

[15]

153

Wang, Y. Y., A Verification Condition Generator for Nucleus
Programs, M. S. Thesis, University of Texas at Austin,[n.d.].

Woods, W. A., Transition Network Grammars for Natural Language
Analysis, Comm. ACM 13, 10(October, 1970).

	tr73-18
	tr73-18a
	tr73-18b

