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ABSTRACT

This report describes a verification condition compiler
for the Nucleus Language. The first part shows how the Nucleus can
be described by an SLR(1) grammar, and also shows the correspondence
between Nucleus programs and reduced programs. The second part
shows how the verification condition terms constructed. This
compiler accepts Nucleus programs and free-form inductive assertions
as input and then compiles verification conditions that are sufficient

to imply the correctness of the program.
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CHAPTER 1
INTRODUCTION

This thesis describes the implementation of a verification
condition compiler for Nucleus programs. This compiler, which is
written in Snobol4 and runs on a CDC 6600, accepts Nucleus programs
and free-fofm inductive assertions as input and then compiles
verification conditions that are sufficient to imply the correctness
of the program. The verification conditions must be proved manually.

Chapter II begins by giving a brief overview of the method
used to state the formal definition of Nucleus. This method consists
basically of defining a mapping from Nucleus programs into reduced
programs, and then specifying axioms that define the executions of
reduced programs. The remainder of Chapter II gives an SLR(1) grammar
for Nucleus and, using this grammar, shows how Nucleus programs map
jnto reduced programs. This mapping is a central issue because the
reduced programs provide the basis for construction of the verification
conditions.

Chapter III describes the actual operation of the verification
condition compiler which consists of a recognizer and a verification
condition generator. The SLR(1) parsing algorithm is reviewed, and the
modifications of this algorithm that were used in the program are
discussed. We then describe how the parser constructs an internal

representation of the reduced program and also describe the program



listing and verification conditions that are produced as output.

The verification condition compiler described here is a
partial automation of the inductive assertion method of proving
program correctness. The first system to automate this proof method
was the program verifier of King [7]. This verifier automates the
entire inductive assertion method except for the choice of intermediate
assertions. The verifier accepts programs written in a simple, Algol-
1ike source language that includes an ASSERT statement for associating
the inductive assertions with various points in the program. The
assertions are Algol boolean expressions extended to include the
logical quantifiers ¥ and 3. Given the program with its assertionms,
verifier then automatically reduces the program to a flow-chart like -
model to which‘the inductive assertion method is applied. Verification
conditions are constructed automatically using backward substitution and
algebraic simplification. The verification conditions then are subjected
to an automatic theorem prover specifically designed for working with
integers.

Good [6] describes another approach to automating proofs of
correctness by the inductive assertion method. The major difference
between this system and the one of King is that there is no automatic
theorem prover. Proofs of the verification conditions are supplied
manually through man-machine interaction. The system is composed of
a non-interactive program analyzer and an interactive proof synthesizer.

As in the system of King, the program analyzer accepts programs in an



extremely simple Algol-like language and constructs a flow-chart like
model of the program. This system, however, does not permit assertioms
to be included in the source program. Instead, they are entered
later through the interactive proof synthesizer. The generation of
verification conditions also is done by the synthesizer as well as
maintaining a detailed record of the proof.

A number of other systems have been built since these first
two. A more detailed summary of these other systems can be found in
London [8]. This paper also describes the wide class of programs

that have been proved.



CHAPTER II

THE NUCLEUS LANGUAGE

0. Method of Definition

The Nucleus language has a complete, formal definition of
both syntax and semantics. In this section we present a brief overview
of this method of definition. For a complete discussion of the method,
see Good and Ragland [5].

The syntax of Nucleus is a set of rules for determining
whether or not any given character string is a Nucleus program. The
Nucleus syntax is defined in terms of transition networks modeled
after those of Woods [10]. The language defined is the set of strings
accepted by the network. This amounts to defining the syntax by
defining a Nucleus recognizer in terms of‘a transition network.

The semantics of Nucleus define the execution of the program
for any given input. The semantics are defined by the axiomatic method
described by Burstall [1]. First, a transformation, called the
semantic mapping, from Nucleus programs into sentences in the predicate
calculus is defined. This set of sentences is called the reduced
program. The same transition network that defines the Nucleus syntax
also defines the semantic mapping. The second part of the definition
of semantics is the specification of a set of axioms such that the
execution of any Nucleus program can be deduced from its reduced program

and the axioms.



Figure II.1 is a Nucleus program of two procedures and its
corresponding reduced program. The numbers with parentheses such as
(p) and (p.n) are not a part of the program. The numbers p serve
effectively as labels, local to thé procedure, for key points in the
programs. The sentences in the reduced program are listed in the
order in which they are defined. The points p are referred to in
stating the reduced program. For example, the sentence
IF (READDATA:1,A[0] = 4T,3,4), has references to points 1,3 and 4.

The meaning of this sentence, which is established by the axioms, is
that point 1 in procedure READDATA has a two way branch. If the
expression A[O] = 4T is true at point 1, control goes next to point 3,
else to point 4.

(p.nj ASSERT ...; is an assertion which is not executable,
and hence, is not in part of the reduced program.

The reduced program is a set of predicate calculus sentences
that describe the structure of a Nucleus program, that is, they say
what stétements and expressions the program contains and how these
statements and expressions are related. Given these relations, the
program execution can be deduced from the axioms. This can be put in
less abstract terms by viewing the reduced program as a machine
language program for a virtual machine whose interpreter is defined by
the axioms. Figure II.2 shows the virtual program of the previous
Nucleus program. The first column is the virtual address, and the
second column is its content. The first block is the data memory and

the second block is the instruction memory.



$ THIS PROGRAM IS DESIGNED TO SHOW THE MOST FEATURES OF NUCLEUS
LANGUAGE $

CHARACTER ARRAY A[80], c[10], L[10];
INTEGER LAMB, COW, I, MORECOW, MORELAMB;
PROCEDURE READDATA;
(0.1)ASSERT LAMB=X(1)+...+X({1I-1);
(0.2)ASSERT COW=Y(1)+...+X(I-1);
(0.3)ASSERT IF 1<K<I-1, THEN-:REOF (K) ;
(O)READ A;
(1)WRITE A
(2)IF A[0] = 4T (3)THEN (3)RETURN; (4)FI;
(4)CASE INTEGER(A[80]) OF
4: (5)LAMB := LAMB + 10 * (INTEGER(AI1]) - 27)
+ (INTEGER(A[2]) - 27) ;
(6)2: (7)COW := COW + 10 * (INTEGER(A[3]) - 27)
+ (INTEGER(A[4]) - 27);
(8)ESAC;
(9.1)ASSERT :RDHD=:RDHD.O+1, :WTHD=:WTHD.O0+1;
(9.2)ASSERT LAMB=X(1)+...+X(IF :REOF(:RDHD) THEN I-1 ELSE I);
(9.3)ASSERT COW =Y(1)+...+Y(IF :REOF (:RDHD) THEN I-1 ELSE I);
(9.4)ASSERT IF A[0)=4T THEN I=FIRST K SUCH THAT :REOF(X) ;
(9.5)ASSERT IF A[0]#4T AND 1<K<I, then -1:REOF(K) ;
(9)EXIT; '
PROCEDURE MAIN;
(0)1:=1;
(1)CoW := 0;
(2)LAMB := 0;
(3.1)ASSERT I=:RDHD=:WTHD;
(3.2)ASSERT 1<I<101;
(3.3)ASSERT LAMB=X(1)+...+X(I-1) WHERE X(X)=THE INTEGER IN COLUMN
1-2 OF READ RECORD K IF COLUMN 80 BHAS +D AND ZERO IF NOT;
(3.4)ASSERT COW=Y(1)+...+Y(I-1) WHERE Y(K)=THE INTEGER IN COLUMN
3-4 OF READ RECORD K IF COLUMN 80 HAS 4B AND ZERO OTHERWISE;
(3.5)ASSERT WRITE RECORDS 1»...°I-1 ARE COPIES OF READ RECORDS 1l:...°I-1;
(3.6)ASSERT IF 1<K<I-1, THEN -:REOF(K);
(3)WHILE I<100 DO
(4)ENTER READDATA;
(5)IF A[0]=+1 (6)THEN (6)GO TO S; (7)F1;
(NI =1+ 1;
(8)ELIHW;
(9.1)ASSERT I=MIN(101,FIRST K SUCH THAT +:REOF(K));
(9.2)ASSERT LAMB=X(1)+...4+X(1I-1);
(9.3)ASSERT COW=Y(1)+...+Y(I-1);
S: (9)IF LAMB<COW (10)THEN
(10)MORECOW := COW - LAMB;
(11)G0 TO W;
(12)ELSE (13)MORELAMB := LAMB - COW;
(14)F1;



(14)L[0] := *F;

(15)L[1] := CHARACTER(MORELAMB / 10 + 27);

(16)MORELAMB := MORELAMB ¢ 10;

(17)L[2] := CHARACTER(MORELAMB + 27);

(18)WRITE L;

(19)GO TO E;

W: (20)C[0] := +F;

(21)C[1] := CHARACTER(MORECOW / 10 + 27);

(22)MORECOW := MORECOW + 10;

(23)C[2] := CHARACTER(MORECOW + 27);

(24)WRITE C;

E: (25)NO0P;

(26.1)ASSERT IF LAMB<COW THEN WRITE RECORD I+1 HAS COW-LAMB IN
(26.2)ASSERT 1IF COW<LAMB THEN WRITE RECORD I+1 HAS LAMB-COW IN
(26)EXIT;

START MAIN

FIGURE II.la. Nucleus Program

COLUMN 1-2;
COLUMN 1-2;



ARRAY (A, 80)
ARRAY (C,10)
ARRAY (1.,10)

SIMPLE (LAMB)
SIMPLE (COW)
SIMPLE (I)

SIMPLE (MORECOW)
SIMPLE (MORELAMB)

READ (READDATA:0,A)

WRITE (READDATA:1,A)

IF (READDATA:1,AJ01=4T,3,4)

JUMPTO (READDATA : 3, EXITPOINT (READDATA) )

CASE (READDATA: 4, INTEGER(A]80]),9)

CASELABELSET (READDATA:4)={4,2}

ASSIGN (READDATA: 5,LAMB ,LAMB+10*[NTEGER (A]1]-27)+(INTEGER(A[2])~27) )
POINTLABELLEDWITH(READDATA:4:1)=5

JUMPTO (READDATA : 6, CASEJOINPOINT (READDATA:4))

POINTLABELLEDWITH (READDATA:4:2)=7

ASSIGN (READDATA:7,COW,COW+10XINTEGER(A[3])-27)+(INTEGER(A[4])-27))
JUMPTO (READDATA : 8, CASEJOINPOINT (READDATA :4) )

JUMPTO (READDATA:8,9)

CASEJOINPOINT (READDATA:4)=9

EXIT(READDATA:9)

EXITPOINT (READDATA)=9

FIGURE II1.1b. Reduced Program for Declarations
and Procedure READDATA



ASSIGN(MAIN:0,1,0)

ASSIGN(MAIN:1,COW,0)

ASSIGN(MAIN:2,LAMB,0)

IF(MAIN:3,I < 100,4,9)
ASSIGN(MAIN:4,I,I+1)
IF(MAIN:5,A[0]=4T,6,7)

JUMPTO (MAIN:6,POINTLABELLEDWITH(MAIN,S))
ENTER(MAIN:7 ,READDATA)

JUMPTO (MAIN:8, 3)
POINTLABELLEDWITH(MAIN:S)=9

IF(MAIN: 9,LAMB < COW,10,13)
ASSIGN(MAIN:10 ,MORECOW, COW-LAMB)

JUMPTO (MAIN:11,POINTLABELLEDWITH (MAIN:W))
JUMPTO (MAIN:12,15)

ASSTIGN (MAIN:13,MORELAMB , LAMB-COW)
ASSIGN(MAIN:14,L[0],4F)
ASSTIGN(MAIN:15,L[1],CHARACTER (MORELAMB/10+27))
ASSTGN (MAIN: 16 ,MORELAMB,MORELAMBY10)
ASSIGN(MAIN;17,L[2],CHARACTER (MORELAMB+27))
WRITE (MAIN:18,L)

JUMPTO (MAIN:19,25)

POINTLABELLEDWITH (MAIN:W)=20
ASSIGN(MAIN:20,C[0],4F)
ASSIGN(MAIN:21,C[1],CHARACTER(MORECOW/10+27))
ASSIGN (MAIN:22 ,MORECOW,MORECOW+10)
ASSIGN(MAIN:23,C[2],CHARACTER (MORECOW+27))
WRITE (MAIN:24,C)

POINTLABELLEDWITH (MAIN:E)=25

JUMPTO (MAIN:25,26)

EXIT(MAIN:26)

EXITPOINT (MAIN)=26

INITIALPROCEDURE=MAIN

FIGURE 1I.1lc. Reduced Program for Procedure

MAIN

by
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A[0]

(80]

alsle .-

0]

.

0] Data

C
L{O]} Memory

1180]

COW

I

LAMB

MORECOW

MORELAMB

READDATA:0 READ (READDATA:0,A)

READDATA:1 WRITE (READDATA:1,4)

READDATA : 2 TF (READDATA:1,A[0]=4T,3,4)

READDATA: 3 JUMPTO (READDATA:3,9)

. Instruction
READDATATO | EXIT(READDATA:9) Memory
MAIN:O ASSIGN(MAIN:0,1,0)
MAIN:26 EXIT(MAIN:26)

AXIOMS Interpreter

FIGURE II.2. The Virtual Program of the Previous Nucleus Program
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1. Description of Nucleus

In this section we present a description of Nucleus with
particular emphasis on the semantic mapping from Nucleus programs into
reduced programs. The reduced programs are extremely important because
they are the base from which the verification conditions are generated
by the program described in the next chapter. Although the formal
definition of the Nucleus syntax is given by a transition network,
the description given here is based on a context-free grammar. This
is for two reasons. First, this provides a description of Nucleus
by a more conventional method than a transition network; and second,
the verification condition generator described in the next chapter is
based on this grammar.

The semantic mapping from Nucleus into reduced programs is
shown by using two functions, rdc and par, in conjunction with the
productions. The function rdc(<symbol>) means the reduced program
associated with <symbol>. Consider the example

<program> »> <decseq>; <procseq>; <startpt>
rdc(<program>} = rdc(<decseq>)rdc(<procseq>)rdc(<startpt>)

<startpt> - START ID
rde(<startpt>) = INITIALPROCEDURE = 1D

This first production states that the reduced program of <program>
consists of reduced programs of <decseq>, <procseq>, and <startpt>.
The second production then specifies the reduced program of <startpt>.
The function par applies to an expression and gives that expression
fully parenthesized. This defines precisely the order of evaluations

within the expression.
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In specifying the semantic mapping, it is also necessary to
specify the correspondence between points (virtual addresses) in the
reduced program and lexical position in the Nucleus program. This is
done by writing the points above the production at their proper
positions. For example,

<stmt> » Puart P

This means that if p is the point corresponding to the beginning of

the HALT statement, then p+1'is the point corresponding to the end.

2. Basic Elements

Nucleus programs are composed of characters from the set
{blank ABCDEFGHIJKLMNOPQRSTUYV
WXYZ20123456789 ([1)+*/++-<x

, 3 2 . $ i}

2>=#qnA VY

i

These characters are grouped into tokens which correspond to the
tefminal symbols of the grammatical description of Nucleus given in
the following sections.
Each of the following single characters is a token.
([ 1)+ * /] v +-<z2>=¢F- A Vv, 3
Also certain character strings are tokens. Each of the reserved words
ARRAY, BOOLEAN, CASE, CHARACTER, DO, ELIHW, ELSE,
ENTER, ESAC, EXIT, FALSE, FI, GO, HALT, IF, INTEGER,
NOP, OF, PROCEDURE, READ, RETURN, START, THEN, TO,
TRUE, WHILE, and WRITE,

is a token. Finally, the tokens INTEGERN, ID, CH, ASSERTION and :=
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are defined as follows:
INTEGERN: A non-empty sequence of decimal digits.
ID: A non-empty sequence of letters and digits. The first character
must be a letter.
CH: The character + followed immediately by the character c where ¢
is any element of the basic character set.
ASSERTION: An ASSERTION token has the form
ASSERT text;
where text is any sequence of characters not containing an unquoted
semicolon. A quoted semicolon is one that is immediately

preceded by *t. —
:= : consists of : followed immediately by =.

Nucleus allows comments to appear between any two adjacent
tokens. The form.of a comment is

$ text §

where text is any string not containing a 5.

3. Programs

<program> > <decseq>; <procseq>; <startpt>
rdc(<program>) = rdc(<decseq>)rdc(<procseg>)rdc(<startpt>)

<startpt> ~ START ID
rdc(<startpt>) = INITIALPROCEDURE=ID

A Nucleus program consists of a sequence of declarations,
a sequence of procedures, and a starting point. The declarations define
the global data variables of the program. Since Nucleus has no concept

of a local data variable, these are the only variables that can be



14

manipulated by the procedures in the procedure sequence. The ID
following START specifies the name of the procedure where execution

of the program is to begin.

4. Declarations

<decseq> - <dec>
rdc(<decseq>) = rdc(<dec>)

<decseq>, > <decseg>,; <dec>
rdc(<decseq>l) = rdc%<decseq>2)rdc(<dec>)

<dec> - <simpledec>
rdc(<dec>) = rdc(<simpledec>)

<dec> -+ <arraydec>
rdc(<dec>) = rdc(<arraydec>)

<simpledec> =+ <type> ID
rdc(<simpledec>) = SIMPLE(ID)

<simpledec>, - <simpledec>,, D
rdc(<simple%ec>l) = rdc(<31mpledec>2) SIMPLE(ID)

<arraydec> + <type> ARRAY ID[INTEGERN]
rdc(<arraydec>) = ARRAY (ID, INTEGERN)

<arraydec>, - <arraydec>,, ID[INTEGERN]
rdc(<arrayéec>l) = rdc(<arraydec>2) ARRAY (ID, INTEGERN)

<type> - INTEGER

<type> - BOOLEAN

<type> - CHARACTER

The declaration sequence consists of simple declarations
and/or array declarations. Simple declarations declare simple variables
of either type INTEGER, BOOLEAN, or CHARACTER. A CHARACTER variable
takes on single character values. Array declarations declare arrays
of type INTEGER, BOOLEAN, or CHARACTER where the lower subscript bound

is assumed to be zero and the INTEGERN between the brackets is the array

upper bound.
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5. Procedures

<procseq> * <proc> _
rdc(<procseq>) = rdc(<proc>)

<procseq>, > <procseg>,; <proc>
rdc(<procseq>l) = rdc(<procseq>2)rdc(<proc>)

<proc> -+ PROCEDURE ID; (@) ¢poay> P) ExrT
rdc(<proc>) = rde (<body>) EXIT(ID:p) EXITPOINT(ID) = p

The procedure sequence consists of one or more procedures.
Each procedure has a procedure name, ID, followed by a <body> and
EXIT. The identifier used as procedure name must not be declared
previously as a simple variable, an array, Or another procedure.
Procedures have no parameters, but may be called recursively.

Each procedure has associated with it a sequence {0,...,p}
of local control points. Control always enters a procedure at point
0 and leaves from point p. The association of these two points with
the program text are shown in the <proc> production above. The
association of the intermediate points in the sequence are shown in
the subsequent productions that define <body>. 1In order to distinguish
between the local control points of different procedures, the notation
ID:p is used to denote point p in procedure ID. In the subsequent
definition of the reduced program corresponding to <body>, we use the
pnotation m:p to refer to control points and 7™ refers to the name of the

procedure in which <body> appears.

6. Bodies

<body> > ASSERTION
rdc(<body>) = ¢
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<body>, = <body>, ASSERTION
rde(<body> ) = rdc(<body>,)

<<body> + <labelledstmt>;
rdc(<body>) = rdc(<labelledstmt>)

<body>, - <body>, <labelledstmt>;
rdc(<body>l) = ¥ c(<body>2) rdc(<labelledstmt>)

<labelledstmt> - (q)ID :(q) <labelledstmt>
rdc(<labelledstmt>) = (POINTLABELLEDWITH(w:ID)=q)
rdc(<labelledstmt>)
A <body> consists of assertions and/or statements. Note
that each statement is terminated by a semicolon. A statement can be

labelled by a sequence of identifiers or may be unlabelled. Labels

are local to the procedure in which they appear.

7. Assignments

<stmt> > (P)<cellref>':= <exP>(p+1)
rdc(<stmt>) = ASSIGN(m:p,par(<cellref>),par(<exp>))

The <cellref> and <exp> must be of the same type. The
function par(x) gives the fully parenthesized form of its argument x,
thus specifying the order of applying operations in evaluating <cellref>

and <exp>.

8. Go To

<stme> » P go To 0 (PHD)
rde(<stmt>) = JUMPTO (7 :p,POINTLABELLEDWITH(7:ID))

ID is a label which must be within the procedure 7.

9. Return

<stmt> » P) perury PHD)
rdc(<stmt>) = JUMPTO(7:p,EXITPOINT (7))

A return statement is a jump to the exit of procedure 7.
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10. Null
<stmt> » (Plyop PFD)
rdc(<stmt>) = JUMPTO(m:p,p+l)
The null statement is a jump to the next statement in
sequence.
11, 1If
<stmt> > DI <exp> mHEN (D) cpody>, (P prse (THD <body>, 1 (s)
rdc(<stmt>) = IF(m:q,par(<exp>),q+l,r¥1)
rdc(<body>l)
JUMPTO(m:x,s)
rdc(<body>2)
cstmt> » D1 <exp> HEN DD <pody> pr (0
rdc(<stmt>) = IF(w:q,par{<exp>),q+l,r)
The if statement has two forms, either IF-THEN or IF-THEN-ELSE.
In both cases <exp> must be type boolean. The if statement is a two
way branch, if the value of <exp> is true, then execution goes to the
body after THEN, else to the next <body>. In an IF-THEN-ELSE control
flows from the end of the <body> following THEN to the end of IF.
12, Case
cstmt> >~ PlcasE <exp> oF PV <altseq> Ppsac@™D)
rdc(<stmt>) = CASE(m:p,par(<exp>),m:q+l)
rdc(<altseq>)
CASEJOINPOINT (n:p) = q+1
+
cstmt> » PeasE <exp> 0F P <altseqs (@Dprsp () hoday> msact™
rdc (<stmt>) = CASE(w:p,par(<exp>),m:q+l)
rdc(<altseq>)
rdc(<body>)

CASEJOINPOINT(w:p) = T

<altseg> - <alt>
rdc(<altseq>) = rdc(<alt>)
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<altseq>, - <altsegq, <alt>
rdc(<altseq>l) = rdc <altseq>2) rdc(<alt>)

calt> » P inrecEry : ) <body> (a)

rdc(<alt>)= INTEGERN ¢ CASELABELSET (7 :c)
(POINTLABELLEDWITHCH:c:INTEGERN)=p)
rdc (<body>)
JUMPTO(W:q,CASEJOINPOINT(ﬂ:c))
where ¢ is the point at the beginning of the
case statement.

caltr. » ®nrrcery : ® <ares, @
rdc(<alt>1) = INTEGERN € CASELA%ELSET(W:C)
POINTLABELLEDWITH(m : c: INTEGERN)=p
rdc(<alt>2)
where ¢ i§ the point at the beginning of the
case statement.
In both forms of the case statements, the <exp> following
CASE must be type integer. If the value of <exp> is k and k is in the
CASELABELSET(w:c) (c is the point at the beginning of the case
statement), then control goes to the alternative having k as a numeric
label. When execution of an alternative is complete, control jumps to
the CASEJOINPOINT(m:c) at the end of the statement. In a simple
case statement if the value k of <exp> is not in CASELABELSET(m:c),

control goes to CASEJOINPOINT (7:c) whereas in the CASE-ELSE form control

jumps to the <body> following the ELSE.

13. While
<stmt> - (q)WHILE <exp> Do(q+1) <body> (r) (r+1)
rdc(<stmt>) = IF(n:q,par(<exp>),q+l,r+l)
rdc(<body>)
JUMPTO (7w :r,q)

ELIHW

Beginning at point q, if the value of <exp> is true control

goes to the <body> and then jumps back to the back to point q. This
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statement loops continuously until the value of <exp> is false, and

then control goes to point r+l.

14. Enter

<stmt> » Dgyrer 10Tt
rdc(<stmt>) = ENTER(w:q,ID)

This is a possibly recursive call of the procedure name ID.
Before entering the procedure, the point m:q+l is saved on the return
point stack. When a procedure exits, control flows to the point on
the top of the return point stack provided the stack is not empty. If
the stack is empty, execution terminates. The upper bound on this
stack size is an implementation parameter, and any attempt to exceed

the stack limit causes program termination.

15. Halt

<stmt> » Dyary (@D
rdc(<stmt>) = HALT(w:q)

HALT causes execution of the entire Nucleus program to

terminate immediately.

16. Read

<stmt> » Dpgpap 100D
rde(<stmt>) = READ(mw:q,ID)

The following discussion of read and write statements is
taken from Good and Ragland [5]. 1ID is the name of some array of type
character. The read statement accesses the standard input file. This

file is structured as a sequence of records numbered 1,2,.... Each
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of these records either is, or is not, an end-of-file record. 1If a
record is not an end-of-file record, it consists of a sequence of n
elements of the basic character set. The record size, n, is the same
for all records and is an implementation parameter.

At the beginning of program execution an input file record
pointer is set to zero. The execution of a read statement then
proceeds as follows:

i) The input pointer is increased by 1 to a value of, say, p.

ii) If record p is an eof record, the character T is placed in
ID[0]} and the rest of the elements in the array are
unchanged.

iii) If record p is not an eof record, the character F is
placed into ID[0]. Then character 1 of record p is
placed into ID[i] for all i such that 1 < i < min(upper
bound of ID, record size). The remainder of the array,

if any, is left unchanged.

17. Write

cstme> » Dyrire 0@
rdc(<stmt>) = WRITE(m:q,ID)

1D is the name of some array of type character. The write
statement accesses a standard output file whose structure is similar
to the input file, the only difference being the record size. The
size of the records on the output file is also an implementation

parameter and need not be the same as the record size of the input file.
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i) The output pointer is increased by 1 to a value of, say, q.
ii) 1If ID[0] contains the character T, record q becomes an
eof record.
ijii) If ID[0] does not contain the character T, characters
1,...,m of record q become the characters contained in
1p[{1],...,ID[m] where m = min(upper bound of ID, record
size). The rest of the characters in the record, if any,

become blanks.

18. Expressions

<exp> * <andexp>
par(<exp>) = par(<andexp>)

<exp>, > <exp>, ¥ <andexp>
par(<exp>1) = par(<exp>2)) v (par(<andexp>))

<andexp> - <notexp>
par(<andexp>) = par (<notexp>)

<andexp>, - <andexp>, A <notexp>
par(<andexp>1) = (par(<andexp>2)) A (par(<notexp>))

<notexp> > <relexp>
par(<notexp>) = par(<relexp>)

<notexp> ~ =<relexp>
par (<notexp>) = -~(par(<relexp>))

<relexp> -+ <binadexp>
par(<relexp>) = par(<binadexp>)

<relexp> + <binadexp>.<relationop><binadexp>
par(<relexp>) = (par(<binadexp>l))<relationop>(par(<binadexp>2))

<binadexp> - <multexp>
par (<binadexp>) = par (<multexp>)

<binadexp>, - <binadexp>,<adop><multexp>
par(<binadexp>l) = (par(%binadexp>2))<adop>(par(<multexp>))
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<multexp> »> <unadexp>
par (<multexp>) = par (<unadexp>)

<multexp>, > <multexp> <multop><unadexp>
par(<mu1texp>l) = (par%<multexp>2))<multop>(par(<unadexp>))

<unadexp> —+ <primary>
par (<unadexp>) = par (<primary>)

<unadexp> + <adop><primary>
par (<unadexp>) = <adop> (par (<primary>))

<relationop> > <
<relationop> > =

<relationop>

v

<relationop> > >
<relationop> > =
<relationop> > #
<adop> » +
<adop> > -
<multop> > *
<multop> ~+ /

<multop> - ¥

The following discussion of expressions, primaries and the
transfer functions is also taken from Good and Ragland [5]. Expressions
are built from primaries in the usual way. Type integer primaries are
required for required for <adop> and <multop> operands. Type boolean
primaries are required for logical operands, =, A, and v. The
relational operations may be applied to operands of any type, provided

both operands are of the same type. 1f operands of type boolean or



23

character are used, the transfer function to type integer is applied

automatically.

below:

The operators that are available are given in the table

Operator Priority
+,~(unary) 1
LA 2
+,-(binary) 3
<’5"=’#">—’> 4
| 5
A 6
Vv 7

Operand Type

INTEGER
INTEGER
INTEGER
explained above
BOOLEAN
BOOLEAN
BOOLEAN

The division operator / gives the integer part of the quotient and

the modulo operator + gives the remainder, (atb=a-(a/b)*b).

If an expression would evaluate to a value v such that the

implementation parameter inrange(v) = false, then the value of the

expression becomes undefined.

An expression also becomes undefined

upon division (or remaindering) by zero, and array bound violation.

If the value of expression is undefined, the execution terminates.

19. Primaries

<primary> - INTEGERN
par(<primary>) = INTEGERN

<primary> - TRUE
par(<primary>) = TRUE

<primary> - FALSE
par (<primary>) = FALSE

<primary> > CH
par(<primary>) = CH

<primary> - <cellref>
par(<primary>) = par(<cellref>)
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<cellref> > ID[<exp>]
par(<cellref>) = ID[par(<exp>)]

<cellref> - ID
par(<ce11ref>) = 1D

<primary> + (<exp>)
par (<primary>) = ( par(<exp>) )

<primary> > INTEGER ( <exp> )
par (<primary>) = INTEGER ( par(<exp>) )

<primary> - BOOLEAN ( <exp> )
par (<primary>) = BOOLEAN ( par(<exp>) )

<primary> - CHARACTER ( <exp> )
par (<primary>) = CHARACTER ( par(<exp>) )

A primary may be a constant token such as INTEGERN, TRUE,

FALSE, or CH, may be a single variable or an array reference. In an

array reference, ID[<exp>], type integer is required for the <exp>.

1f the va

lue of <exp> falls, outside the array bounds, the value of

array reference is undefined. A primary also may be the application

of a type transfer function.

20.

Transfer Functions

The type transfer functions INTEGER, BOOLEAN, and CHARACTER

are defined by the functions below:

boolofchar(x) = boolofint (intofchar (x))

boolofint (x) = false if abs(x) mod 2 = 0
= true if abs(x) mod 2 =1

charofbool(x) = charofint (intofbool(x))

charofint (x) " if gbs(x) mod 64 = 0
1

A" §if abs(x) mod 64

|
L]

fl

= "#" if abs(x) mod 64 = 63
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intofbool(x) = 0 if x = false
= 1 if x = true
intofchar(x) = 0 if x = " "
=1 if x = "A"
= 63 if x = "#"

(The order in charofint and intofchar is the
same as that shown in the basic character
set in Section 2 of this chapter).



CHAPTER IIl

THE VERIFICATION CONDITION COMPILER

0. Introduction

This chapter describes the verification condition compiler
for Nucleus that was writtin in SNOBOL4. The compiler, which is
given in Appendix A, consists of two parts, a table-driven parser for
an SLR(1) grammar and a verification condition generator. The parser
not only checks for the syntactic legality of a Nucleus program, but
also is extended to include actions that transform the Nucleus program
into an internal representation of its reduced program. The verification
condition generator then constructs verification conditions from the
reduced program. There were two primary reasons for using a table
driven parser. First, the verification condition compiler was being
written at the same time that Nucleus was being defined. With the
table driven method, modification of the compiler to accomodate
syntactic changes in Nucleus was quite straightforward. Second, most
of the development of the Nucleus definition was done in terms of its
syntax being defined by an SLR(1) grammar. The decision to define
the Nucleus syntax in terms of transition networks was made quite late
in the development process, and at that point it was not deemed necessary
to rewrite the verification condition compiler in terms of transition
networks.

Since the compiler uses a table driven parser, the program

input consists of two parts, (i) the parse table, followed by

26
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(ii) the Nucleus program. A description of the Nucleus parse table

is given in Appendix B. This is the table derived from the SLR(1)
grammar given in Chapter II. The output of the compiler also consists

of two parts. Thé first is a listing of the Nucleus program showing

the correspondence between points in the reduced program and position

in the Nucleus program. If the Nucleus program is syntactically correct,
then the second part of the output is the list of verification conditioms
for the Nucleus program. If the program is not syntactically correct,
verification conditions are not constructed, and the output is just the-

listing of Nucleus program with points as described above and the

error messages.

1. Parsing Method

The parsing of Nucleus programs by the verification condition
compiler is based on a table-driven parser for SLR(1l) grammars as
discussed by DeRemer [2]. The basic ideas of this approach are
reviewed with the following example. Let G = ({}-,a,+,~}, {S,E}, S, P)
be a context-free grammar where {F—,a,+,~{} is the set of terminal
symbols Vt, {S,E} is the set of non~-terminal symbols Vn, § is the

starting symbol, and P the set of productions

#1 s+ £ -
#2 E~>a+E
#3 E~-> a

To show that grammar G is a SLR(1l) grammar, we begin by attempting to
construct a parser for G. This requires the computation of configuration

sets. Each member of a configuration set is a production in P with a
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special marker " " 4n its right part. Each configuration set
represents a possible "state of the parse." If the parser is in a
state corresponding to a set having a marker before the symbol s, and
if the next symbol to be read is an s, then the parser will read the
s and enter a state corresponding to the s-successor of the original
state. A special symbol "#'" in the successor indicates that a
reduction should be made. Figure I1I.1 shows the configuration sets

and successor relations of the parser for grammar G.

State name Configuration set Successor Next state
0 {s~ .-} [ 1
1 {s> |} .EH E 2

E ~> .atE a 3

E ~> .a} a 3

2 {(s >k E. 4} - 6

3 {E > a.+E + 4

E-> a.} #3 7

4 {E.» a+.E E 5

E » .atE a 3

~E -+ .a} a 3

5 {E »~ atE.} #2 7

6 (s> Fe-.} # 7
7 {1

FIGURE III.1. Configuration Sets and Successor Relations of the
Parser for Grammar G.

From the configuration sets and their successor relations, we can

abstract the essential structure and get a characteristic finite state

machine (CFSM). For each configuration set there is a corresponding

state in the CFSM; the empty configuration set corresponds to the final

state. The transitions of the CFSM correspond to the successor

relations. Figure III.2 shows the CFSM for grammar G.
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N B EE-i p Y !

#2
+ 4 5 7

FIGURE III.2. Characteristic Finite State Machine of Grammar G

In the CFSM any state with transitions only under symbols in Vn union
Vt is called a read state. Any state with one transition under one of
the special # symbols and zero or one transition under a nonterminal
symbol is called a reduce state. States having two or more # transitions
or having one or ﬁore # transition and one or more transitions under
terminal symbols are called inadequate states. In Figure I1II.2,

states 5 and 6 are reduce states, state 3 is an inadequate state, and
states 0, 1, 2, and 4 are read states. If the machine has no
inadequate states, a simple algorithm can be used to parse the grammar.
But if the CFSM enters an inadequate state, we do not know whether to
stop and make a reduction or to allow the CFSM to continue reading.

The notion of a SLR(1l) grammar arises from a particularly simple
solution to the indecisiveness associated with inadequate states. A
context-free grammar is said to be SLR(1l) if and only if each of the

inadequate states of its CFSM has mutually disjoint simple 1-look-ahead
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sets associated with its terminal and # transitions. Grammar G is
SLR(1) since the inadequate state 3 of its CFSM has the disjoint
simple 1-look-ahead sets: {+} for the + transition and {<|} for the
# transition. Intuitively, a 1l-look-ahead set is the set of all
terminal symbols that could possibly occur next.

The parsing algorithm used by the Nucleus verification
condition compiler is based on the algorithm for SLR(1) grammars given
by DeRemer [2]. It has been extended to use a scanner which groups
the basic character string of the Nucleus program into tokens, to
include error detection and recovery, and éo include actions for
building the reduced program. The parser starts by giving the stack

the initial state of CFSM and will take Nucleus tokens as input symbols.

The algorithm:

0) If the top of stack is an inadequate state go to 2.
If the top of stack is a reduce state go to 3.

If the top of stack is a read state go to 1.

1) Read the next token from the input string by calling the scanner.
Store on the stack the token read followed by the name of the
state entered subsequently, if a transition can be made. Then
do the actions associated with the transition, produce any error
messages dealing with context sensitive features of the language,
and return to 0. If no transition is possible, a syntactic error
exists and a message is given. Then the recovery routine adjusts

the stack and input string so that syntactic error detection can be
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carried out for the rest of the program, and the algorithm
returns to 0.

2) Call the scanner to look one token ahead. If the token is in the
1-look-ahead set of a transition under a symbol of the grammer,
then go to 1. If the token is in the l-look-ahead set of a
transition under the special symbol #, go to 3. If neither, then
a syntactic error exists. Perform the recovery routine and return
to 0.

3) Let A » W be the production in the # transition, and let |W| denote
the length of W. Pop the top 2*‘Wl items off the stack. If
A =S (S is the starting symbol of productions) then the parse is
complete so stop, otherwise return to the state whose name is on
the top of the stack, and store A followed by the name of the state

entered subsequently. Go to O.

2. Reduced Program

The reduced program is represented internally by means of
jndirect referencing. The symbol table is stored in such a way that
"ID X" has content "X" for variable X; "X BOUND" has the upper bound
of array X; and "type X" has X, where type is "INTEGER", "INTEGER ARRAY",
"BOOLEAN", "BOOLEAN ARRAY'", 'CHARACTER", or "CHARACTER ARRAY'". 1In
addition to the symbol table, an instruction table is constructed for
each procedure. This table is stored in cells 'pname CODE p" and
"pname p" where pname is the procedure name and p ranges over the set

of virtual address for that procedure. For example, consider the
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instruction table shown below for procedure READDATA.

) "READDATA CODE p" "READDATA p"

0 READ A

1 WRITE A

2 IF 3,A]0] = 4T,4

3 JMP 9

4 CASE 5,INTEGER(A[80]) = 4,7,INTEGER(A[80])=2,9

5 = LAMB, LAMB+10*INTEGER(A[1]}-27)+
INTEGER(A[2])-27

6 JMP 9

7 = COW, COW+10*%INTEGER(A[3]}-27)+
INTEGER(A]4])-27

8 JMP 9

9 EXIT 9

FIGURE III.3. The Instruction Table for Procedure READDATA

One can observe that this table is quite similar to the one in Figure
I11.2. Most of the differences are rather minor such as the use of :=
rather than ASSIGN, JMP rather than JUMPTO, and a different order for
the arguments in the IF sentence. A major difference is the CASE
sentence. In the table above
4 CASE 5,INTEGER(A[80])=4,7,INTEGER(A[80])=2,9
means that at point & if INTEGER(A[80])=4, go to point 5; if INTEGER(A[80])=2,
then go to point 7; else go to 9. This records all the necessary
information contained in the
CASE (READDATA: 4, INTEGER(A,[80]),9)
CASELABELSET(READDATA:4)={4,2}
POINTLABELLEDWITH(READDATA:4:l%:;

POINTLABELLEDWITH(READDATA:4:2

of the reduced program in Figure II.1b.
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3. Program Listing

The first part of the output is a listing of the Nucleus
program containing numbers in parentheses that correspond to points
in the reduced program. The appearance of "(q)" in the listing of
procedure P means that control point P:q is associated with that position
in the program. The symbols "(q.n)" preceeding an assertion mean that
this is the nth assertion associated with point q in the current
procedure. For example, the listing for the sample program in Appendix
C is shown in Appendix D. (0),...,(9) are points corresponding to
the reduced program for procedure READDATA. (0.1), (0.2), and (0.3)
indicate that their succeeding adssertions are associated with point O,
and similarly assertions (Q.l),...,(9.5) are associated with point 9.

If any syntax errors occur in the Nucleus program, then the
output will also tontain error messages as shown in the example below.

ERRL (O)READ <UNDEF VAR> A:

This means that variable A is not declared, it is an undefined variable,
<UNDEF VAR>. "ERR1" means that upon completing that line, a total of
one error has been detected within the program.

There are only seven error messages defined as follows.

<MTDEF VAR> means that the next variable name is multiply defined.
<UNDEF VAR> means that the next variable name is undefined.

<MTDEF LAB> means that the next label name has been used previously
as a label in the same procedure.

<ERR SYNTX> means that the next token can not legally appear next.
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<WRON TYPE> means that the next identifier or expression is not of
required type.

<UNDEFINED LABEL NAME> means that the following label is referenced
but not defined.

<UNDEFINED PROCEDURE NAME> means that the following procedure name is
referenced but not defined.

The first five error messages are inserted to the Nucleus program as
shown in the example above. The undefined label name is listed at the
end of procedure because it is not possible to tell if a label is
undefined or not until the end of the procedure is reached. For the
same reason, undefined procedures are 1isted at the end of entire
Nucleus program.

If any error ocCCurs {n the Nucleus program, then construction
of the reduced program is stopped, and verification conditions are
not generated. If there are no errors, verification conditions are

constructed as described in the next section.

4. Verification Conditions

The second part of the output of the compiler is a list of
verification conditions that are sufficient to imply the partial
correctness of the Nucleus program. These verification conditions
are sufficient to prove that each assertion included in the program is
true whenever that assertion is reached during program execution,
provided the initial assertion is satisfied when execution begins.
Thus, if the initial assertion and all the verification conditions

are satisfied, then the final assertion of the program will be
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satisfied if it terminates. The verification conditions are constructed
for each procedure in the order in which they appear in the program.
Then within each procedure one verification condition is constructed
for each possible path of control between points that are tagged with
assertions. In order for there to be a finite number of these paths,
every possible loop must have at least one point tagged with an
assertion.

The verification condition for each path is constructed to

be consistent with the form described by Ragland [9]. Each verification

condition has the form

A

s e 0 e 080800

which means '"if A and B, then C." The A part is the set of assertions
tagged to the point at the beginning of the path, the B part consists
of statements that are true as a result of execution following that
path, and the C part is formed from the assertions tagged to the point
at the end of the path. To show that the verification condition is
satisfied, it must be shown that C is provable from A and B.

The assertions are free-form and may consist of any arbitrary
string of characters. These strings are interpreted as referring
to program variables. A program variable is any identifier that is
declared (in the declarations of the program) to be either a simple

variable or an array, or any one of the special strings ":STEP", ":RDHD",
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".WTHD", ":LVL", or ":RINPT". The appearance of a program variable
in an assertion is interpreted as referring to the current value of
the variable. A substring of the form "yariable.0" refers to the value
of the variable at the time the procedure in which it appears is entered.
A verification condition ié built by making a forward
traversal of the path, which has a set of assertions at its beginning
and another set at the end. In most cases the A part of the verification
condition consists of precisely the assertions at the beginning of the
path, the exception being for paths that start at the entry point of a
procedure. First, "yariable.O" is changed to "variable". This is
because the value of the variable at the time the procedure entered is
also the current value of the variable at the time the path begins.
Second, if there is no assertion at the point zero, then initial
assertion is assumed to be "true". Third, if the procedure happens to
be the beginning of the execution of the program, then the following

four statements

are included. These give the initial values for each of these system
variables when the program starts.

The B part of the verification condition is constructed
from the program operations at the successive points along the path.
For each operation, one or more terms are constructed. The key to

these constructions is an alteration counter that is kept for each
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variable as the path is traversed. At a given point on the path the
alteration counter of program variable X equals the number of times
that the value of X has been altered in traversing the path up to

that point. In the verification conditions, the notation X.0 refers to
the value of X upon entering the procedure, just X refers to the value
of X at the beginning of the path, and X.k for k =2 1 refers to the
value of X after it has been altered k times in traversing the path.
The construction of the various terms for the B part is discussed in
more detail below.

Some of the terms in the B part are labelled with "(PRV)".
In proving partial correctness these terms may be used to prove the
C part of the verification condition just as the unlabelled B terms
are. However, if each of the labelled terms is itself proved from
the lines preceeding it in the verification condition, these proofs
are sufficient to imply that the program will never terminate due to
an array subscript violation, divide or modulo by zero or a run time
stack overflow (the stack size used is 511).

The C part of the verification condition is constructed
from the assertions at the end of the path. It consists of the assertions
with the alteration counter tagged to each program variable and also
:RDHD, :WTHD, :LVL, :RTNPT, and :STEP. For example, if variable X is
altered k times, it is changed to (X.k). If it is not altered, it
is left unchanged. Similar changes are made for any other program

variable except for :STEP. :STEP is changed to (:STEP+n) where n is



the number of points on the path. If ".0" appears after a variable
then "variable.0" is jeft as it is, except for the paths starting at
the beginning of the procedure in which case " 0" is omitted. This
is because the value at the beginning of the procedure is the same
as the value at the beginning of the path.

We now explain how each of the terms in the B part of the
verification condition 1is constructed for each of the possible elements
in the reduced program. The notation ay denotes the current value of
the alteration counter of variable X, and if V is an expression, v* is
the result of substituting X.ax for every occurrence of each altered
variable X in V. For example, if V is the expression (S+T)*(S+T) and

S has been altered once and T is unaltered the v* is (S.14T) (S.14T).

4.1. ASSIGN(P:q,N.V)
1f N is a simple variable, then the term is
g
N.(aA + 1) v

and the alteration counter for N is increased by one. All other

counters remain unchanged.
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1f N is an array reference A[E] where E is an expression, then

the term is
A (2, M) [$] = TF §=g* THEN V* ELSE A.a,[$]
and the alteration counter for A is increased by one. All other
counters remain unchanged.
Consider, for example, path(9 13 14 15 16 17 18 26) of

procedure MAIN which is shown in Appendix D. Point 16 has
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ASSIGN (MAIN:16 ,MORELAMB ,MORELAMB¥10), and the terms are

16 (PRV) 10 # 0
16 MORELAMB. 2=MORELAMB.1+10

The first term means that the.expression on the right side of the
statement has a defined value provided the divisor of the modulo
operation is not zero. The second term states that the value of
MORELAMB at the next point along the path is the value of the right
side expression at the current point. After point 16 the alteration
counter of MORELAMB equals 2 because it has been changed twice.

In the same path at point 14 has ASSIGN(MAIN:14,L[0],4F),
and its terms are

14 (PRV)

0<0x<10
14 L.1[$] =

IF $ = 0 THEN 4F ELSE L[$]

The line with "(PRV)" means that the value of expression which is the
subscript of array L must be within the declared bounds of the array.
The second line means that in the array only the value of element 0

is changed to +F while the rest of the elements in the array are unchanged.

4.2. CASE(P:q,E,f)
The term is either
E* = the element of CASELABELSET(P:q)
that is next on the current path if the next point on the path is in
CASELABELSET(P:q), or
E* # any of the elementsof CASELABELSET(P:q)

if the next point on the path is P:f. For example, consider the

case statement CASE(READDATA:4,INTEGER(A[80])9) in procedure READDATA



shown in Appendix D.
For the path(0 1 2 4 5 9), the terms are

4(PRV) 0 < 80 < 80
4 INTEGER (A[80])=(4)

For the path(0 1 2 4 7 9), the terms are

4(PRV) 0 < 80 < 80
4 INTEGER(A[80]1)=(2)

And for the Path(0 1 2 4 9), the terms are

4 (PRV) 0 < 80 < 80
4 INTEGER(A[80]) # (4 v 2)

The value of case expression is defined to be integer number 4, 2, or
any other value. The elements of CASELABELSET (READDATA:4) are 4 and 2.
Hence for the first two paths, next points on the path are READDATA:S
and READDATA:7 respectively. For the third path, the value of
expression is not in the CASELABELSET (READDATA:4), hence the next

point on the path is READDATA:9.

4.3. Egﬁ?:q,E,t,f)

The term is either E* or qE*, depending on whether the next
point on the path is P:t or P:f respectively. For example,
IF(MAIN:3,I < 100,4,9) in path(3 4 5 7 3) has the term

3 I < 100
path(3 9) has the term

3 -(I < 100)
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4.4, JUMPTO(P:q,r)
A JUMPTO function simply indicates which point comes next
on the path and does no operation on the variables. Thus no terms
are shown in the verification condition. For example, JUMPTO(MAIN:6,9)
is on the path(3 4 5 9), but there is no term for it. Path(3 4 5 9)

actually refers to path(3 4 5 6 9) with no terms shown for point 6.

4.5. READ(P:q,A)
The terms are

:REOF(:RDHD.a_RDHD+1) -+ A.(a,+1)[0])=4T
' All £°$ < bound(A) > A.(aA+l)[$]=A.aA[$]
- :REOF (:RDHD. +1) > A.(a,+1)[0]=4F
“RDHD all £é$ < MIN(readsize,bound(A) ~
A.(a +l)[$]=:RDFL(:RDHD.a_RDHD+l,$}E
sl (readsize+l) < $ < bound(A) »°
A. (aA+1)[$]=A-aA[$]]

+RDHD. (a +1)=(:RDHD.a Y+1

:RDHD :RDHD
For example, READ(READDATA:0,A) has the term
0 :REOF(:RDHD+1) > A.1[0]=4T A [1 < § < 80 > A.1[$]1=A[$]]
- :REOF (:RDHD+1) - A.1[0]=4F
Al < $ < MIN(80,80) >~ A.1[$]=:RDFL(:FDHD+1,8$)]
A8l < $ < 80 > A.1[$]=A[$]]
+RDHD.1=(:RDHD)+1
This means that if the next read record is an end-of-file, then "T"
is placed in the element zero of the read array A, and the rest of the
elements in the array A are unchanged. :REOF is the function for
read end-of~file, :RDHD is read head, a pointer to the next record

to be read, and :RDFL is the read file itself which consists of a

sequence of records. If the next read record is not an end-of-file then
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"p" ig placed in element zero of the array and the rest of the record
js placed in the comsecutive elements up to the minimum number of array
bound and 80, the read record size. In this array A, if its upper
bound happens to be 80 we get 81 < § < 80 > A.1[$]1=A[$] which is
satisfied trivially. If the array upper bound is less than 80, then

it means the elements between upper bound of the array and 80 are
unchanged. A read statement also causes the alteration counter for

the array to be increased by one as well as the counter for :RDHD.

4.6. WRITE(P:q,A)

The terms are

A.(aAfl)[0]=+T > :WEOF(:WTHD'a‘WTHD+1)
A.(aAfl)[O]#+T + —:WEOF (:WTHD.& +1)

AL < § < MIN(SURAUA) writesize)

sWIFL (:WIHD.a, HD+1,$)=A.aA[$]]
Al (bound(A)+1 < $ < writésize)
¢WIFL(:WTHD.a+1)=4 ]
+1)=(:WTHD.a

sWTHD .wrnp’ T
For example, WRITE (READDATA:1,A) has the term

:WTHD. (a

1 A.1[0]=4T - <WEOF ( :WTHD+1)
A.1[0]#4T ~ - :WEOF (:WTHD+1)
All < § < MIN(80,132) ~ ‘WTFL (:WTHD+1,R)=A.1($1]
Al81 < $ <132 ~ <WTFL (:WTHD+1,$)=% ]
«WTHD.1=(:WTHD)+1
For a WRITE only the alteration counter for :WTHD is increased. The
above term means that if the element zero of array A is a "T'", then
make the current write record an end-of-file. If it is not a "T",
then all elements of the current record up to the minimum of array the
upper bound and the write record size, 132, are made equal to the

elements of the array. The elements beyond the bound become blanks in

the write file, :WTFL.
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4.7. ENTER(P:q,H)
The terms are

:LVL.(a:LVL+1)=(:LVL.a: )+1

(PRV) 0 < :LVL.(a

LVL
'LVL+1) < maximum return point stack size

:RTNPT'(a:RTNPT +1)

THEN P:(q+l) ELSE :RTINPT[$]

+1)[$] = IF $=:LVL'(a:LVL

(PRV)I*
ot

:LVL.(a:LVL+2)=(:LVL.(a +1))~1

:LVL
where I is the initial assertion of the called procedure and 0 is the
final assertion of it. I* is the I with its variables, and :RDHD,
:WTHD, :LVL, :RTNPT, and :STEP tagged with current alteration counters,
and O*+1 is 0* with the alterable variables of procedure H having their

alteration counters increased by one. For example,

ENTER(MAIN:4 ,READDATA) has term

4 :LVL.1=(:LVL)+1
4 (PRV) 0 < :LVL.1 < 511
4 :RTNPT.1[$]= IF $=:LVL.1 THEN MAIN:5 ELSE +RTNPT{S]

4 (PRV) LAMB=X(1)+...+X(I-1)

4 (PRV) COW=Y (1)+...+Y(I-1)

4 (PRV) IF 1 £ k £ I-1, THEN +REOF (K)
(:RDHD.1)=(:RDHD)+1,(:WTHD.1)=(:WTHD)+1
(LAMB.1)=X(1)+...+X(IF :REOF((:RDHD.1)) THEN I-1 ELSE I)
(COW.1)=Y(1)+...+X(IF :REOF( (:RDHD.1)) THEN I-1 ELSE I)
IF (A.1)[0]= T THEN I=FIRST k SUCH THAT :REOF(X)

IF (A.1)[0]# T AND 1 < K < I, THEN =:REOF(K)
:LVL.2=(:LVL.1)-1

N R R

The first three lines mean that the new return point stack level :LVL.1
is within the bound of the :RTNPT array, which is 511. 1If the element
of :RTNPT is :LVL then it changes to the value of the next point of

the path which is MAIN:5, the rest of element in :RTNPT is unchanged.
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Line 4-6 require a proof that the initial assumption of procedure
READDATA is satisfied on the current values of the program variables.
The alteration counter for all the alterable variables that can be
altered by procedure READDATA are all increased by one at this time.
These are variables which are either the left side of assignment,

the array name of a read statement and :RDHD, :WTHD for write statements,
or :LVL and :RINPT for enter statements. The alterable variables for
procedure READDATA are LAMB, COW, A, :RDHD, and :WTHD. Line 7-11 are
the final assertion of READDATA with "X.0" changed to "X.ax" for
program variables X. For program variables not followed by ".0", X
is changed to X.aX+1 if X is one of the alterable variables of the
procedure, and is unchanged otherwise. Line 12 means that after the

enter, the next level of return point is the current level minus one.



CHAPTER IV

CONCLUSION

This report describes a verification condition compiler
for the Nucleus language. We have shown how Nucleus can be described
by an SLR(1) grammar, and also shown the correspondence between Nucleus
programs and reduced programs.

The verification condition compiler itself consists of a
table-driven SLR(1) parser that recognizes the Nucleus program and
builds an internal representation of the corresponding reduced program.
Path forward verification conditions are then constructed from the
reduced program. These are simply printed as part of the compiler
output and must be proved manually.

This verification condition compiler makes it possible to
prove the correctness of programs of moderate size. For example, this
compiler was used to help prove the correctness of another verification
condition compiler written by Ragland [9]. The Ragland compiler
consists of about 200 Nucleus procedures each approximately one page in
size. A proof of a program of this size would not have been possible
without the kind of automatic help provided by the compiler described

here.
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APPENDIX A

THE VERIFICATION CONDITION COMPILER PROGRAM

PROO

PROL

PROZ

PROJ

PRO4

PROS
ENDP

OUYPUT(*EJECT*.*OUYPUT*'*')

EJECT = 1

A = *NOPRINT®

EROR = 0

11 =0

[FLVR = *IFLVR?

ELSELEVER = *tELSELEVER?

IFLEVER = *tIFLEVER®

sTaCcx = *0007

DARSET = ARRAY(40:163%)

P = TRIM(UINPUT)

P LENID) o L =

L %199+ :S(ENDP)
PARSETIL) = PARSETILI P

PARSETILY LEN(I) o ¥

Wt e : 1S (PROD)
PARSETIL) BREAK(+01%) vV LEN(3) . SST = :f (PROO)
$(v L) = 5ST

PARSETIL) LEN(1) o ¥

L 1F (PRO2)
$LrINADY L) = L

cC =0 .

PARSFTILY * * =

PARSETIL] GREAK (trt) o LT %ot =

§(+RENLEFT: L) = LT

PARSETIL) = tF (PROS)
c=¢C-*1 $ (PRO&)
$(+RgDUCEr L) = C S (PROO)

DI1GIT = ANY (1G1236567894)

LETTER = ANY(?hSDFGHJ‘LQNERTYUXOPZKCVBNM?)

DEL = *3 3-.0-'/0()1152<>=&Av~»$* 22

DELIMITER = ANY(#: ema/e ()L IvaazedcEtive 280 V 2e2

CUTPUT = * NUCLEUS VERIFICATION CONDITION GENERATOR
+ yERSION 1+ CATE

RESINTEGER = *INTEGER®

RESPOOLEAN = +BO0LEANT

RESCHARACTER = +CHARACTER?

RESAQRAY = TARRAY®

RESPROCEDURE = +PROCEDURE"

DESEXIT = tEXIT#

RESGO = *CO*

RESTO

RESTF

CESTHEN = +THEN®

RESELSE = tELSE?

RESWHILE = *tWwnILE®

RESHO = +00*

RESEMTER = tENTER®

RESWRITE = *wRITE?®

WESREAD = #READ?

KESRETURN = tRETURN®

RESMOP = tNOP*

RESELIHW = tELINW®

RESTRUE = *TRUE+

won o
>
—t
(=)
>
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S RESFALSE = tFALSE*
55 RESSTARY = +STARTe
56 “ESF] = +F ]t
57 RESESAC = +£SACe
58 RESHALT = *HALT®
59 RESCH = t(H*
L] RESCASE = +CASE*
6] RESOK = #CF+
62 PINGO = +GO*
63 PINRETURN = *RETURN®
- PTNwHILt = #twHILE®
65 PINIF = +1F+
66 PTHCASE = *CASEe
67 PTMENTER = tENTER®
68 PTINREAD = +READ®
69 PINWRITE = *wRITE®
79 PTINNOP = #NOPe
71 PINELSE = 2ELSES
T2 PTINEXIT = +EXTTe
13 PINMALT = *tHALTe

cones INSERT AHSOLUTE OVERLAY GENERATION MHERE

. SCANNER
T4 DEFTK DEFINE(PTCKENS(X)+e2T0OK*) SLDEFSYM)
75 TOX ICENT(CARD) tF(TOK4)
76 IDENT{1+2E0R") ISIRETURN)
17 ToKO SCARD LEN(1I3D) IS(TOKO0%)
78 T0x01 OUTPUT = SCaRD
79 SCarD = InPUT $S(TOK1)
80 1 = *+FOR* 3 (TOK&)
8l TOx04 SCARD LEN(90) . W =
A2 OUTPYT = W
83 ToK0S SCARD LEN(S0) , W = SFLTOK06)
84 : CUTPUT = + + W T(TOK0S)
&5 TOx06 SCARD = + SCARD $(T0K01)
8o Tox1 CinrD = CARD SCARD
87 SCAWD = ¢ *
88 IDENT(I+*E0RT) 1S{TOKa)
a9 CARD RTAB(1) LEN(1) . 8
90 [ SFLTOK2)
91 CARD = TPIM(CARD) LY .
92 Toxk2 X *NOPRINT» $S(TOKG)
93 QUTPUT = CARD
94 TOx& KEELPBLANK =
95 TOK&G& CaRD LEN(1) . B SF(TOK&GA)
96 g *r ¢ IF(TOKGA)
97 KEEPBLANK = KEEPBLANK L
98 CARD + + = 2 {TOK4LG)
99 TOK3 CARD +%+ =
100 SCARD = SCARD KEEPBLANK +$7*
101 TOK31 CAKRD RREAR (+3+¢) , V %+ = F(TOK3ID)
122 SCARD = SCARD Vv *5¢ 3(TOK)
103 Tox33 QUTPUT = SCARD CARD
104 SCARD =
108 CARD = INPUT ${TOX3L)
106 ToK4A ICE* T(CARC) PR ATORGH)
107 IDENT(Ls1EORY) FLICK0}
108 TOK4B CAND NELIMITER P (TOKS)
109 ACRD = CAKD $LTOKTM)
110 TOKS CARD LEN(1) o W
111 W OOELIMITER FALTONT)
112 FEEL Y 1IS(TCKRY)
113 N oEre TF(TORM)
114 CARD LEN(2) o« WORD IS(TORR)
115 JOENT (T etEuRt) SS(TOKMCIF(TI0KD)
116 ToKé TOKEN = tCHT P (RETURN)
117 ToK7 CARD RREAKIDEL) o« WORD
118 TOKT™ JOENT (WONHD » tASSERT?) ISUTOKTA)Y
1l IDEMT(S(*REST WORD)) FATOKTR)
120 TOKTH wORD LETTER SFATORTO)
121 WORD LEN (YY) o W
122 W LETTER F(TCRTH)

123 TOKEN = +1D+ S {RETURN)



126
125
12%
127
128
129
130
131
132
133
134
135
136
137
138
139
160
141
142
143
l4e
145
146
147
leb
146

151
152

153
154
15%
156
157
1538
159
162
161
162
163
164
165
166
167
168
169

170
171
172
173
174
178
17%
177
178
179
1890
181
182
123
184
168%
186
187

168
189
190
191
192
193

TOK78

TOKTR
Tox7D
TOK7A

Tox7Z

Tox722
TOK7AA

TOoK74AB
TOX74aC
TOKTAG

TOKA3
TOKA2
TOoKB

TOxBA

TOKBC

DEFSYM
SYM

SYMTYA
SYMTYS
SYsMBND
Syulyg

ERDEC

°

DEFCONT
Conas

COoNnASl

CONAS2

DEFCON]
Conl

CONED
&
DEFCHK
CHK

WORD RREAK (+ASDFGHJIKLZXCVONMOWERTYUIOP*) o W

wORD = W
TOREN = WORD
TOREN = * INTEGERN®

CARD BREAK(t3+) , WORD
TOERT LI« +EORT)

A0RD = CARD

TOKEN = +ASSERTIONT
w = INPUT

I = +EQRe*

CARD = CARD W

WORD = WORD t:i¢
WORN #tiz

TOKEN = *tASSERTION®
IDENT (I tEOR™)

CARD WORD LEN(D)
TCARD = CARU

TCARD WNRD =

TCARD BREAK({t3%) , w2
WORD = WORD W2 *35¢
TDENT (I ++EOR®)

W orze

CARD LENI(2) o W

W orIz=t

W= et

WORD = W

TOXEN = W

WORD = g

TOKEN = WORD

3L10K7D)

S(RETURM)
S (RETURN)
:SITOK7AA)
HFATOKTZ)

T {(RETURN)
$S(TOKT722)

S(TOK72)

$S(TCKTAG)
${RETURN)
SF(TOKQ)S(TOKTAB)
SF(TOKRTACQ)

tF(TOKA2)
S(TOK7ABY
SFATOKO)S(TOKAJ)
FLTOrRA)
SF{TOKO)
IS{TOKEA)

${RETURN)

S (RETURN)

BUILD THE SYMBOL TABLE FOR SEMENTIC ROUTINE

DEFINE(*SMBTABLE(X) *s2SYNT)
TDENT (PROKRP)

STOXEN +{*
TOREN +10t
TOKEN tARRAY®

IDENT(S(+REST TOKEN))

TYPE, = TYPE * ARRAY®*

TYFF = TCREN

BLAPRAYNAME ¢ BOUNU®) = wORD
TDENT($(*1D * WORD))

$4tID * wORD) = wORD
ARRAYNAME = w(ORD

3(TYPE WORD) = WOND

TYPFLIST = TYPELIST 40K + ¢
ERPOR = EROR + 1

SCAND LEN(&) =

SCARD = tERRT EROR SCARD
DEFINE CONTROL POINTS

DEF INE (+CONTRULAS(X)*++CONASH)

REYASRT PRORP

ASP = ]

KEEP = KEEPHLANK *(+ PROHP *,¢ ASP *)»
KEYASRT = PROWP

= ANKD

LASSE~T? = ¢+ 2

+ + = 2+

= PROHP +,+ aSP ¢ +

LENCIO) o wW

= WW W

X

TVO VOV X

+ <MTDEF VAR>

S (DEFCONT)
IFARETURN)
$S{SYMAND)
IS{SYMTHY
1S{SYMTIYA)
IF(SYMTYS)IS(RETURN)
PIRETURNY

TIRF TURN)

T (RETURN)

TFALERDEC)

TURETURN)

$ARETURN)

S(DEFCONT)
1S{CONAST)

wWORD

1S{CONAS2)

PIPNAME +AS? PROMP) = $(PNAME tASt PROHWP) P

ASP = ASP e« ]
DEFINE(ACONTRL(X) +92CONL )

KEEP = KEEPBLANK +(* PROWP %)+ WORD
REYAGRT =

+F1 TmEN® TOKEN

PROHP = PRO~P o ]

S{RETURN)
P {OEFCHK)

1S{RETURN)
3 (RETURN)

DEF INE CHECHING IDENTIFIER DEFINED OR NOT

DEFINE(*CHECKID(X) *etCHKT)
IDENT(PRORP)

*:r TOKEN

tID+s  TOrREN

+*10¢ RTOKEN

BRTOKRE! +PROCENURE®

1 (DEFEXP)
$S{RETURN)
$S(CHK])
tF (RFTURN)
$S{CHKG)
$S(CHK])
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264
2%
266
207
256R
269
270
271
272
273
214
275
270
2717
278
279
280
281
282
euvld
284

2185
286
287
28R
289
293
291
2s2
293
254
25%
296
2917
29R
299
300
391
e
3.3
306
395
306
307
308
309
310
311
312
313
314
31
316
a7
318
ale
329
321
322
323
324
325
3246
327
328
329
3N
331
332
333

£XPSC
ExwCC
EXPY
£xP10
ExPll
ExP12
EREXP
DEFINT
INTO
INTY

INTS
e

DEFPT
PY

CONPR

CONASP
PT7

P11

¥T16

ARYS

PT18

Chxé

DECFINE

$ (*CHARACTER® WORD) WORD 1S (RETURN)
H{PCHARACTER ARRAY® WORD)Y WORD TS URFTURN)F (ERFXP)
EXPsny =

FXPQyH =

EXPSNC = T(RETURN)

S {PMAME AENTEW?)  WORD ¢ % tS(EXPCC)

$(PNAME PENTER*) = FPHAME TENTER®)Y  WORD * ¢ s (exPCC)
§(PNAME PENTERM) *iwirkD 7 15 (ExPCO)

§(PNAME TENTER®T) = B(PNaMb FENTERDY 2iWinD * THEXPCC)
G(PNAME HENTER®) *3IRDHD SSLEXPIO) -
$ (PNAME tENTERT) = $ (PNAME *ENTERS®) +:RCHD * ${EXP10)
ERDR = ERQOR ¢ ]

SCARD LEN(4) =

gCarp) = *ENR* EROK SCARD ¢ <WROM TYPE> * t {RETURN)
DEF INE (+ INTERNAL {X)2e 2 INTOT) $(DEFPT)

W= 0

X ANOPRINT® tS{RETURN)

QUTPUT =  $(PNAME *AST W)

OUTPUT = $(PNAME tCASE* W)

QUTPUT = * * W 7
W o= LT(W.5(ONAME *tLASTP®)) W @ 1
ARKAY FOR TeE HEAD POINS
OEFINE(QPCIN¥S(X)?-TPIf)

TOREN *PRCCEDURE®

TOENT (PROFP)

TORKEN *ESACH

KSUCER *aLTt

270+ TOKEN

TOKEN *STARTH

TCKEN *ASSERTIONT

+G0 RFTURNT TOREN

TOENT IS (+PTN® TOKEN))

+STaRT+  ETOKEN

231 TOREN

TOKEN TEL THwW?

+0F+ TOREN

+THEN 0O F1 § * TOKEN

434 STCKEN

~QF ¢+ STOKEN

+3 THEN ELSE DO ASSERTION * BTOKEN
TOXE* izt

10ENRT (CODED)

PROMP = ¢

QrP = tHHP®

CaLL = CONTRLAS(X)
CODE =
CALL = CONTRLIX)

BeP = PROMP = 1

g (PNAME 4+CODE+ BHP) = MNP
$(PNAME BRP) = S(IFLEVER n

cobDE = TOKEN

CALL = CONTRLIUX)

HHP = PROAP = 1

& (PNAME +CODE® BwP) = TOKREN
+CASEr TO®EN

+1F wHILE * TOKEN

TONFN *ELSET

TOKEN *EX]TT

£ (PNAME tLASTPH) = RnP

REEPGORTN OREAR(® *) o W * + =
$(PNAME *CODE* W) *GO0t = +UNPe
$IPNAME W) BREAK(*et) o V =
S{PNAME W) = SUtPTLHS V) *e*

$ (PNAME +CODE+ W) = tJMPe
S{PNAME W) = § {PNAME $tLASTPY) *e*
IDENT (FOPWORDLE)

EMOR = ENQR » 1

QuUTPUT =
MULARL =
LABLEV =
FOR=OROLB =

+ ${PNAME +CODE® w) *

+ F{PNAME W)
TSCINTIIFARETURN)Y

t(DEFCTRY
1S (CONPR)
16 (RETURN)
IS(PTID)
sS(PTIN)
1S URETURNY
S IRETURN)Y
1S (CONASP)
1SIPTLS)
IF(PTL)
15(PT16)
1SIPTS)Y
1SIPTT)
:15{PTG])
1SIPTY
:S(PT95)
$S(PTY0)
1S(PTR)
1S(PTHY)
s (RETURNIF(PT2)

P (RETURN)
$ (RETURN)

1{PTLS)

154{PT10)
1S(PT4)
1S (PTL4)
tF (RF TURN)

IF(PTIR)

CIFEPTLT)

1 {PT16)

1 {(PT16)
1S LCHKS)

+EWR  <UNDEF INED LABEL * FORWORDLB *> ¢



403
L4
405
406

407
w8
«09
410
411
“iz2
413
]l
(339
3%
©)7
418
419

“29
%21
w22
“23
“wlh
425
w2t
w27
2R
w29
&390
4«31
432
433
&34
435
TR
437
L3R
«39
L%
Gl
ba2
Y]
Y
buS
Lab
aa7
LB
“a9
4590
[5-3
w52
“53
456
455
«50
457
L58
459
460
Wbl
“62
463
“b4
“6S
“66
“wb?
468
b9
«T0
471
472
“73

. DEFINE VARIABLE COUNTER FOR ASSERTIION

DEFCTR DEFINELLCOUNTRIN) 2o 2CTRY) 2 (DEFNRS)

cTw 471 = [YPELIST .

CIR1 Wl AREAX(* *) , WORD *+ ¢ = $F (RETURN)
${+1D * WORD *CIR*) = 0 T{CTRIY

@ DEFINE VARIFICATION CONDITION ON RIGHT HAND SIDE OF 3=

DEFNRS OEFINE {eNEWRSIDE(X) Ty *NR?) SADEFHRE)

N NR»y =

NR1 INENT(RWate?) $S(NR100)
R LFN(L) o 1w
Iw CELIMITER $S(NR2)
AW RHEAK(Tere=9/3[ 1 ()1 <S25FAVARI3S 22) ., IW =

NRl2 IW LETTER IF(NR3G)
X *ASSERT+ F{NR13)
+1RDHD * giw [w *t ¢ $SINRICGL)
AIWTRD * Biw 1w * ¢ $SINR1O2)
tILVL Ot Biw Iw + ¢ IS (NRIOD)
+ISTEP * Biw Iw * ¢ ISINRLIOA)
+IRINPT 2 ulw Iw * + $S(NR105S)
+iRNFL twTFL IREOF SWEOF :LCC + HBIW Iw + ¢ 1S {NRIL)

NWl3 NEATw =

Ru LFN(2) o NEXTW

NEXTA  t.0t

IDEST(R(rID + Iw 2CTR®Y)

EQ(R{+IN ¢ IW *tCTRT)«0)

A *ASSERT

NRw = MRW W t.t $(+]D + IA *CTR™)
Nilé Biw = IW

1DENT (UPAM)

NR1S NRW = NRW t(¢ IW ¢,t ${(*1D * Jw +Cik?*)
NRZ2 /4 BlW
*{* 1w
+1t  Iw
BRlad 22
X *LSSERT*
191 1w
NP3 Ra 1w =
NR34 B3ia = 19
NRW = NHW Iw
NR39 IDENT(URPAN)
NH&O RW NFXTwW =
Y rY?
NRw = NRW Iw +.07t
NRGl Ble = Iw
NRG2 TW = $(+ID * IW *CTR*) - ]
NWRA = NRW IwW t.+ T4
NRW 2,0 =
NR& TDENT(IWet0*)
NR4S RwW 2%+ =
: Re RREAK(25t) o IW +3%¢ =
MRA = NRw 13+ Jw +$1
NRS UPAM = S (BIw * BOUND®)
NR6 MIDAM = MIDAM 1w
MIDAM 2{+ =
NRT MIDAM = MIDAM Iw t.¢ $(+]D ¢ IWw +CTR*)
NR 40 IDENT (UPAM)
NRB MID&M LETTER
MiDAM  DELIMITER
GT{MICAMIUPAM)
NR9Y X +ASSERT+

QUTPUT = B8 *0<* MIDAM +<* UPAM
NRS1 urPav =

MIDAM =
NR10 QUTPUT = kP 2 o8 ARRAY OVERFLOW?
NRE QUTPUT = 4ZERO DEVISOR®
NR10O X TASSERTe
NRMUD MO = NRA
NRSO MOD BREAK(+/et) =

MOD LEN(Y) LEMN(1) « Q@ = Q
SAVEMOD = MOD

Qg *(*

MOD BREAK(4)+=%/¢%) o SAVEMOD =
OQUTPUT = B SAVEMCD +20+

1S (NRGD)
TS INR 36D
S ANRIG)
TS INRLS)

SFINRTISINR])
t) e T(NR1&)
1S INRG)

1S (NRS)

IS (NREO)

1S INRD)

IF (NR3)

1S (NRGS)

$F(NR6)S(NR])
1S(NRG2)

$ {NR39}

s (NRa 1)
$SINRE)IF (NR3)

2 (NRY)
1 (NR3)

T{NR])
T{NRT)
$SINR3)
IS INKG)
$SINRY)
1S {NR}O)
TS INKRGL)

TINRDY)
$INRD)
2INRD)
IS (RETURN)

$F (RETURN)

IS (NRS30)

2 (NRSO)
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Sub
545
K46
547
548
49
590
551
£92
553
5H4
55%
556
557
558
556
563
561

562
563
564
565
566
567
568
569
5719

571

5712
573
574
575
576
577
S8
s79
S80
581

582
583
S84
585
586
s67
588
%89
592
591
592
563
594
595
596
S97
598
599
500
601
602
6G3
604
605
606
607
608
609
6190
611

612
613

ENTLL8
ENTLI08

ENTL09
DEFGO
GOCALL
PTHO

PTrl

PTHZ

PImde
PTrHe3d
PIni2

PTH69
PT=6

PTnll

PIH30
P13

PTH5S

PTHS56

PTHST
PTHS54
PTHé

PTH70

PTu7

PTHT1

PYHT3
DEFASN
PTHEE

NRTN = NRTN ¢ INCLVL

54

S (RETURN)

wWa = $(P tCALLENTER®)

wh RREAK(+ ¢} . V * ¢

WAV
PV
INCLVL = 1

WA oz S(V +CALLENTER®) W

V = ${V +ENTER®)

V BREAK{® *) . AW * ¢+ =

L 2w
Lw = LW AW t 4

DEF INE (+PATHNASSERT (X} +,+GOCALLY)

111 = 0

H§o =

PATHRGN = NP

227 = 0

PATH = PATH NP * ¢
PATH * =t = 4~ ¢
NP smr =

$ (PNAME *tCODE* NP)
${PNAME +CODE+ NP)
$ (PNAME *CODE+ NP)
$ (PNAME +CODE® NP)
NP = NP ¢ ]

s (PNAYE tCOCE+ NP)
IDENT (S (PNAME tASH
PATH = PATH NP * ¢
IDENT(PASSTF)
PASSIF =

CALL = ASSFRINS(X)
NP = PATHBON

222 = 0

GTIITI-O)

NP = NP o+ ]

tF(ENT102)
ISLENTI08)
$SLENT1I08)

L}

(F(ENT108)
$S(ENTI0G)
SCENTIOS)
$ (DEFASN)

tIF+ 1S (PTHIO0)
+JMPe 15{PTHL)
+CASE" 1S(PTHTO)
THALT® IS(PTHZ3)
tEXIT? 1S(PTHZ2)
NP1 tS{PTHI)

SFAPTHST)

1S (PTHY)

$ (PNAME +COCE+ NP) +EXITe IS(RETURN)
1DENT (S (PNAME *AST NP)) SSIPTHAIF(PTKHO)
PATH = PATH NP ¢+ ¢

PATMH + =t = *a ¢
NP tat =

${PNAME tCODE* NP) +EXIT® IS (PTHST)
10ERT (D (PNAME +ASt NF)) tSUPTHPIF(PTRST)
L14Z22Z+110 1) 15 (PTHSS)

W = S{PNAME NP)

W oowFAK{(ter) o TW 2ot =

A BREAK(tet) tet =

A BREAK(+e®) o FWw *ot =

111 = 111 + 1

$LIFLVR 111) = Tw * ¢ ot Fw * 3 (P THSS)
22¢ = 222 1

PASSIF = *tPASSIF+

SUIFLVR ZZZ) BREAK(+ ) o NP HEALINE]
111 = 6T(Ille1) 111 -1 ISIPTHST)
111 = © t(PTR12)
SOIFLVR 111) HREAX(+ +) ¢ ¢ = L {PTHO4)
ICENTISCIFLVR TT1ID) IS {PTHSOIF (PTHIZ)
F{PNAE NP) BREAR(T+%) . NP ${PTHID)
LY(ZZZ111) 1S (PTHSS)
111 = 111 + 1

SLENEGLASES NP) =

w = S (PNAYME NP)

W BREAK({Tet) o TW tat =

W SPEAK(ts1) . P tsr = F(PTHTL)
${*NEGCASET NP) = $(tNEGCASEr NPY P

S(IFLVYR 111) = SUIFLVR II1) Tw + ¢

INENT (W) IF(PTHT)
SUIFLVR I11) ¢ ¢ Tw # 72 = * o Iw ¢ 2 3{PTHSS)
DEF INE (+ASSERTNS (X) 4+ 2PTHEE?) $ (GOES)

CALL = COUNTR{X)
ar) 9
W 0

wou



«~Ba
HEG
699
65}
692
693
696

695

696
697
598
a9
750
™
752
703
704
705
706
737
708
709
710
711
712
713
714
718
T1e
717
718
719
720
72}

122

723

124
725
726
127
72R
729
730
731

ASNDE
ASNSS

ASNST
A%+S$33
457453

ASNG6BB
asnT

ASNTL

ASNT3

ASNE

AsnEC
ASNEH

ASNBE
ASNB6

ASNBS

ASNBJ
ASNBK

NRwW +,0+ =

NeW LENTIG0)
QUTRPUT = ANW
ouUTPUT =

[DENT (W)

BONZERO =

ouUTPHT = =P t,.]
QuUTPUT = wP .1
CALL = oRALENIX)
IDENTUINEG)

1S (ASKNSRE)
S (ASNABR)

P LASNA)
P LASKDD

TRUE* :LASKBRY -
TRUE® S CASNGY
$(ASNST)
LS {ASND)

RW = S UtNEGCASE® BP) #)et

NEG =
RW +z+ = 31

2 (ASM30)

Rw = S(PHAYE tCASET HP)  t)e¢

ww LEN(LIL) o A

[ 4 + = t{PRV)I®
CALL = NEWRSIDE(X)
P LENILIL) o B
QUTPUT = NRW

QuUTPYT =

TLASNOLD)

$(PNAME HP) HREAK(%+%) , CWORD
A2ALT = $(+10 + CwORD 2CTR*)

HWRALT = wWALT ¢ 1}
EI(WRALT ()

WRALT = t.t WRALT
wRALT =

1S (ASNRC)
: (ASNHH)

CHUND = ${CWORD + BOUND*) « 1

$(PNAME 2CODE+ HP) *wRITE®

EQIRHN0)

CALT =

CALY = %.% RHD
KHD = RMD ¢ 1

$(+1D * CwORD *CTRT)

QUTPUT = L

+ A (1488t

BWRALT *(5]1=1*

QUTPUT = ¢

CWORD +.+ BWRALY
S (CWORD + HOWUNDT) *4R0) » =

BWRALT +(3%1)=

QUTPUT = * A [* CBUND t<$S<n0 ~» ¢

CWORD #.* BHWRALT *[$]1=t CwOrRD wHALT +(8]1)¢
P = ¢ tROHD.* RHC *={iRDHC* CALT *)e]1¢
QUTPUT = P S (ASNP)
EQ(vHDs0) IFLASNAY)
CALY = : (ASNEK)

CALY = *,* WHD
WrO = WHD e 1

+REQF (IRDHDT
CwWwORD 247

$S(ASNRB)
IF LASNBE)
S (ASNBG)

= YWRALT
CALT 4+1) » »
BWRALT 2{01=2T%
$(CWORC + BOULD*) * » ¢ CWORD *.*
CWORD WRALT *(%]) *
4+ +~3iREQF (IRDHD? CALT 2¢1) p ¢
2{0)=+F A 2 FLISSCEMINGE
CAORD tet

tROFL (IRCHD CALT telsb) it

ouUTRPUT = L CWORD WRALT 2{0)=2Y » IWEQF (1wTHDZ CALT *+1)2

OUTPUT =

f.wEOF( WikD?r
$(CWORD * wOUNDT)
CALT teled)=* CWORD

+  CwORD
CALT ++1)¢

WRALT {0122 27 » =%

+ A [JCSSMINIe
241323 * o INTFL{IWIRD?
wRALT *(%1]*

56



781
182
763
The
785
784
167

TRRA
TH9
799
191
192
793
TG4
79%
196
797
798
199
890
adl

age
~

AE3
AL
#ds
80A
8e7
£08
899
810
all
812
R13
ale

815
al¢
A17
B1A

819
az20
221
822
823
82u
825
R26
827
828
229
a3
a3l

R32
a3l
834

A35
835
a37

LT
839

ARTOxFM = HTOXEN
dIOREN = TOREN
Hwtk) = WORD

58

HXEER KEEP
GOE X TNOPRINT® 1S (GOES)
QUTPUT = <Talx
ouTPUT = ¢ + CARD $(GOES)
- RECOVERY RCUTINE FROM ERROR SYNTAX
ER TIRY =
v o=
TO<EN *EXIT* 15 {GORS)
INENT (B (PTN TOKEN)) SF(GORK)
CARD RREAK(23+) , V 3¢ = 1S {GORO)
CARD 31t = S (G0OR0)
Vv = CawD
CARD = S{GNRD)
6ORS I0ENT (FORWORDLB) 1S {GORA)
QUTOUT = +ERR <UNCEFINED LABEL + FORWORCLHE > *
FORwQOROLS = 1 (GOR6Y
w00 v o= Yy tie :
GOR1 TOENT (]« tEOR™) 1S (T0KS2)
OORG ERDOP = EROR ¢ 1
5CaqD LE* (&) =
SCABD = *EXR® ERCR SCARD * <ERR SYNTX> ¢ v
10ENT (PROFP) S {GOR2)
STack LEN(T7) o C
C 4s1pYe 1S (HORG)
LOR7 STAC« LEN(3) o P LEN(4) o C =C IF (GORG)
. ¢ *=nDY* 15 (HNRA)
STACK HREAK(+01*) = $S(GOKTIF (GORAL)
GORR STack = P STACK 1 {GOES)
VRN STaCx = ?OJPEJOYO?BxOEEIDOl?PROCEOUR£009:0010FCSEOOOO' $(GOES)
6OWe TDELT (S (4P TN TOKEN)) IF(GOR3)
STACK = +0093001DECSEQONQ® 2 (GOES)
GOR3 PROWP = 0 $(GORG)
e INAUEQUATE STATE
GO TRY +TmY* $S{GON])
Caty = TOXENS(X)
Gonl IDENTIS(TOXEN L)) tF(GOC)
T~Y = 2TRY*
° ~EDUSE STRTE
[ehv ] C = H(TRECUCE® L)
LEFT = % (*REDLEFT+ L)
GO« STACK LENE3) =
STACK BREAK(fL1®) =
C = GT(Ce1y C =} 1S 4GOK)
ooLl JCENTILEF T+ *PROGRAMT) S (GOMM)
STAC~ LEN(3) o L
IDENTUS(LEFT L)) 1S(ER)
+aLTSEQT LEFT IF(GOM)
KSUCER = LEFT
GOM STACK = $(LEFT L) LEFT STACK S (GOE)
GOMM OQUTPUT = SCARD
oUTPUT =
° PRINT QUT SE tANTIC ERWORS
TOoKS2 I0ENT (REEFPPRONAME D 1S (TORS D)
QUIPUT = *UNDEF INED PROCEDURE NAME ¢ KEEPPRONAME t(END)
TOKS3 GT(FRIR0) TS LEND
° VARIFICATIOY START
PinG00 PROCECURENAME BREAK(® *) o PNAME * SEAERNDY
EJeCT = 1
OUTPUT = + NUCLEUS VERIFICATION CONDITION GENERATOR *
. + vErsiOon 1+ DaTE
CALL = PATHNASSERTIX) $(PTRO0O)
END



APPENDIX B

NUCLEUS PARSE TABLE

COCPECStQOOIDECOOZS1MQLEnECOOJARRAYDECOOthHEOOSINTEGEROObHOOLFANOO?CHANnC1!9008
001300y

002 DECSEw<DEC 159

2034010 DECSIM2LLLEC 199

0d4enl) DEC~2~RAYDEC 193

CasINdléa~RavYdll

006 TYCESINTEGER 199

0C7 TYPEAS00LEAI Y9

00k TYFE~CHARACTER 199
QQQPQCCSEUClkDECOXSPROCO165INPLEDECOOJARRAYDECOOGPROCEDUREO17TYFEOOSINTEGER00680
009SLEANOO7CHARACTERDCS

Cl2Indld

Cl1In0ly

012 SIMPLEDEC~TYPE IN 199

0131n02C

0la:d2l

015 NECSES-DECSER & DEC 199

Gln OROCSEG-PROC 199

c171n022

01F SIMILEDECHSIMPLEDEC + 1D 159

pistozs

020102«

02151;4191025990(6263!AQTOZTPRUCEDUPEOI7

223027

D23INTEOERNDEY

p24 INTEGENND3C

3725 PRUGPAMABECSEY ¢ PPOCSEQ &+ STARTPT 199

o6 PROCSEQ-FROCSEG ¢ PROC 165

0e717031 .
02*n03¥032n5§£4110&033LAGELLEDSTMTOJASTMT035XUOJbCELLﬂEF037GOO381F039wh1LE0&OCAs
026E0~1ENreu0he~£nnoa3wRIIan»RETURNoasmovguﬁnALTOQ7

6291047

C30104v

031 STuRTPT-START 1D 169
03?£XXTCSGLSSERTIONOSILA“ELLEDSTMTOS?SIMTO}SIOO36CELL9tF037GOOBBIF039thLEOQOCAS
O32£0#1ENTENC&Z£EADOQJi?lTEOBQRETURNO“SNO“O“éHALTOQ7

033 ROUY=ASSERTICN 199

0363053 .

035 LEA-ELLEDSTMTASTMT 199

036:35%1 055 CELLHEF-~1D 199

037:=056

G3RTCEST
OJQEXPDb“AWDExPosgnﬂtExP06OHELEx906l-0523YhADiX°063MULTEXPOhAUNAnExPObSPQ!NARY06
0395&30Pco7lwTEuEFnobdTAUEObQFALSEO70CHG7ICELLQEF072(0731NTEGERE7#POOLEANO7SCHAR
30ACTERDTne 07707010073
cuosxPCoGANﬁExVOtv\OTixAObOJELExDOQX-ObEH!nADExPOhsvuLI&XPOnaunADExpobSPH!Mnnvob
O“QEADOPOh7INTEG£9N90b1?UEOD9FQLSEO7OCHG7XCLLLREF072(073lNTEGEFO7“EOOLEAN075CHAP
040ACTErn075«077-CTal100T7Y
O“lEX”JhI*\0(X90$9NOYEXPOGOWELEX9061-OdelNADE1906JMUlTEXPOGMUNADEXPObSPQIMARYOG
00]6:009037INTEOERNObﬁ?QUEOOQFALSEO70CH07ICELLREF072(073INTEGEPO7“HOOLEANO75CHAQ
0418CTE~OT6e07T7-0C701D079

gu2ing=2

063INon3

Qudlnné

oS ST=TeRFTURN 199

fat STHTANCY 139

a7 STHTe-AILT 193

OuR ARWAYOECAARRAYLEC o ID t INTEGERN 1 199

049 ARNAYUECATYRE ARPAY D [ INTEGERN 1 199

050 PRUCAPROCEDURE ID 3 RODY EXIT 199

051 RQOUYeoODY ASSERTION 199

59



61

I RELATIQNGPe> 19y

Ce9 RELATIONOPe2 199

100 #ELATIONTPaz 199

101 FELATIONNGEmr Tuy
lQPHﬁ&JE\“ll'Pﬁ1MA~Y056000P067INTEGEQNObHTDUEObQFhLSE070CH07ICELLNEF072(073XNT£G
102683 79=00L8 A0 T5CHARACTERI 700 T77-07810079

103 vuLTOra2 L4y

10w MULTN2w/ 199

108 MUl Tars. 14y

1356 UNAUTAPALO0F PRI¥ARY 199

1071129v0Y1
19~5x9121&uﬁ5&905vaTEAncoowELExpoqx-OhaaXHL0619053MULYEXPO5~UNAnExPObSPwlMARYOb
1945ADOPC:7lhTEwERNChSYRUL069FALSEO70CHu7lctLLNEFOYZ(0731NTEGER07«POOLEANGTSCHAR
192a0T2R07R577-57510079
1guExPlZ?AHGEXVDSQHDYt)RO&O?EL6x906l~062NIHAUEXPOhJMUIVExPOﬁhUNADExPObSPQIMARYOb
)oueaouDUarlmIEﬁtQufaﬁTRLL059FAL<E070C~07XCLLLREFO72(0731NTEuEw07hP00LEANOISCHAN
109ACTENOTnelT77=0T75%10307
1)CEXPXZJAwnExvazwaYExpoao;gLExPOhl-OéaHIuAuEx9053MULIExPOb~UNAanP06SPR1MARYU6
)]Q§LDJPOb71\YquFNOHhTQUE05CF3LSE07OCH07lCtLLREFO72(073INTL0ER07&HOOLEAN075CHAH
110ACTERD ImeQT7-07HTICTY
lllﬁnu‘l2~iSiEHTl0N33}Ld“ELLEUSTNTOBQSTMT015100JhCELLQEF037GOOBBIFOBQWHllEO“OCAS
1 1E G ENTE DR 2REAGIL 3w JTEDGARETURNNGSNOPOL0HA1.TOGT
112ALT5E0125ALTIc6INTEGERNI2T

113 CFLlmeFa10 [ E+2 1 199
!1~£L5tl?<$l129A35L=1IGNSSILAdtLLEDSVMI052:1«1035!DO3hCELLREF037600381F039unlLE0
lXLQECLEEQQIENTE«BhZ*EiDOQBhFlTEOQ&RETURNﬂﬁbhopohﬁhALTOAT

1164062 Eav-£aP v ANDEXP 199

115 250bAPLNUERP A NOTEXP 169

117A00P095+077-078 RELEXPHRINACEXP RELATIONOP BINADEXP 189

115U TOP10229103/1049105 BINACEX2ARINADEXP ADOP MULTEXP 199

116 MULTEXP-MULTEXP MULTOP UNADEXP 189

120 PRI=a<Yal vAP ) 198

1213 136Gv0~1

1221131vev]

123)1152vivl
IZ«ELlﬁnlJlasseﬁTI3N3:1LABELLEDSTMYOSZSTMTOJSIOO36CELLREF03760038IF039leLE060CA
l?hsi0“lE\TE“C*ZHEJJCQ3dQlTE0~“RETURKOASNOPO“OHALTOQT

12560581348 3aC1354ALTI30INTRECERNLET

126 2UTSEV=ALT 199

127:137
12—“G0V135LSSL€YlQNQ33Ld“tLLEDSTMYOJGSTMTOKSlDOB&CELLPEF037GOOJBIFOBQhHILEO“OCAS
1?~504XEHTE~0ha~EA00~3v9!TiuaaﬂiruPno~5nnP0~6HAL10«7

129 ST=T~1f £aP TheN «QDY FI 199

130 PRIMARYINTCCE= ( FeP ) 199

131 PRIMA~YSECUOLEAL { E4P ) 199

132 PRIMaxya(rRa~aCTER ( FXP ) 199

123 STVTAsa~[LE £XP D) B0ODY ELIrmw 199
13»HODV1384SSENTXOH?33LAJELLEDST”TO}“ST”TO3510036C£LLPEF037GOO3BIF039khlLE060CAS
]3&534lfhfﬁwﬁh(ki&DGQJv“XTECQANETUQNOQENOPOQOHALTOQT

135 STHT~CASE E£aP OF ApLFSES £5AC 189

13 ALTaF=alTsra ALY 199
x37qﬁ;vx~uAL11uxASs€~¥IGNOJJLAUELLEURIMToiuthEGENNl?ISIMTOJBIDOBbCELLHtFO316003
137~IFGJ~au1LE0~GC~>:O~1[NTE&0~J~E&DO~3wPlTh0~auFYuunonstP0uﬁwaxTou7
lJ*FxX%ZA%ifiTlouﬂ%lL&uFLLtDSIuTosesYMrGJ%iu&;&ceLLuhi037600351FOJQWH1LEQQOCA<EO
13861 EnTFA0u2NE AL INRTITEDaGRE TURNCLENOP O ArALT 4T
13§E94C1~J655t91lOKuSILnﬂiLLEUSTVTOB?STMTO\blUOBﬁCiLLWEF03760036XF039RHILEOQOCAS
1396061 T EmDG2REAICE3AR I TEOGunETURNDO®SNOP Q46N TOGT
luOASSt~T13105]LACELLECSTVIOBZSTMTDJQIﬂ036(ELLREF037Gn038XFOBQwHKLEO“OcﬂsioélENT
140EP0me=r 800 3ak ITEOSARE TURKOISNOPOLOHALTO4T ALTAINTEGERN 1 BOOY 199

tal ALTAINTECE~N @ ALT 199

lw2 STMT=IF EXP Ingh H400Y ELSE 8BODY F1 199

143 STHT~CasE ExF OF ALTSEG ELSE BODY €SAC 199

199



APPENDIX C

A SAMPLE PROGRAM OF NUCLEUS LANGUAGE

$ THIS PROGRAM 15 DESIGNED TO SHOW THE MOST FEATURES OF THE NUCLEUS LANGUAGE §

CHARACTER ARRAY A1H01e CL10), L1013
INTEGEN LAYde COws 1o MORECOWS HMORELAMHY

PROCEDUWE
ASSERT LAM
ASSERT COw
ASSERT IF
READ Al
WRITE A3
IF A(0) =
CASE INTEG
4t LA

READDATAY
HzX{l)eeaatA(1=-1)%

=¥ (1) sasasXil=1)3
1<K<l=ls THEN ~3REQF{K)3

47 THEN RETURNS F11

ER(A{RO)) OF

My 3= LAME + 10 * (INTEGER (AL1)) = 2T7)
* (INTEGER(ALZ)) - 27) 3

2% COw := COW ¢« 10 * (ILTEGER(AL3]) - 27)

ESACH

o (INTEGER(AL&]) = 2723

ASSERT TROMHDE1RDRUL 2+l o tWTRDZTWTAD 0013

ASSERT LAMBEX(1) *eaaeX(IF tREOF (3RDAD) THEN I=1 ELSE I)3
ASSERT CNW =Y{1)4aaasYLIF tREOF (tROKD)Y THEN I-1 ELSE 103
ASSERT IF A{0)=2T THEN [=FIPST K SUCK THAT IREOF (K) ¢
ASSERT IF AL0)2+T  AND 1SKSTe THEN =~:RHEQF(X)3

EXIT '

PROCEDUKE MAINS

1:=1%

COow := 03

LAME = 03

ASSERT 1 = :HDHD = :wIHD 3

ASSERT 1<1<1013

ASSERT LAMB=X(1)%ean

RECORD ¥

ASSERT COwzY{l)eaeasY(I-1) WHERE Y (K)

ASSERT WRITE RECORDS lesesel=l ARE COP1ES OF READ RECORDS lseaeel=1}
ASSERT IF 1SKE]=1sTHEN ~1REQF(K) S
wHILE 1<1C0 0O
ENTER <READDATAZ
1F Alg)=+T THEN GO TO st F13
1 3= 1 ¢ 13
ELIMAS
ASSERT 1=41:5(101+FIRST K SUCK THAT SREOF (X))
ASSERT LAMAZX (1) teaeeXtI=1)4
ASSERT COazY{l)*eaatY (=122
§t IF LAMB<COW TrEN
MOECOW 3= COW = LAMBY
GO TO w3
ELSE MORELAMB = LAMB ~ Cows
Fls
LIo1 t= *k3
LI1) := CHARACTERIMORELAMB / 10 « 273
MORELAMY = MOKELAMB ¢ 113
L2y = CHANACTER LHORELAMB ¢ 27) 3
wHRITE L3
G0 TO ki
w: CIO)Y t= +F3
Cl1] = CrARACTER(MORECOW / 10 « 273
MORECOw 3= MOWECCW ¥ 10¢
Cl?) = CHAWACTEK(MORECOWw ¢ 2711
whkilt C3
g1 HOFS

ASSERT IF LaMB<COW

ASSERT IF

EAIT:
STawY MaAIN

IF COLUMN ARD HAS +D AND ZERQ IF NOT3

1F COLUMN RO HAS 4B AND ZERC OTHERWISER

62

=THE INTEGER IN COLUMN 3-4 OF K

THEN WRITE RECORD 1+ ™aS CCw-LAMB IN COLUMN 1-2%
COwCLAMEB THEN WRITE RECORD Is1 HAS LAMH=-COW IN COLUMN 1=21

eX11=-1) WHERE X(x)}=THE INTEGER IN COLUMN 1-2 OF READ

£AD RECORD X



APPENDIX D
A SAMPLE OUTPUT OF THE VERIFICATION CONDITION COMPILER PROGRAM - THE
NUCLEUS PROGRAM CONTAINING NUMBERS IN PARENTHESES AND VERIFICATION

CONDITIONS

NUCLEUS VERIFICETION CANDITION GENERATOR VERSION ]

§  ¥rln PROGHAM IS DESIGRED TO SHOw Thi MOST FEATURES OF THE NUCLEUS LANGUACE $%
CRAVACTER ARKAY A{«0)s CL103e LRG]S
INTEGEW LaMidse CONe 1o MONECOWS HORLL AMKSY
PRUCLOURE we ALDATAR
(Cal)ASSERT LAMMEZX(1)saaerXi]=1)3
(0 2VASSERY COwsYtl s 0 X(l~1)3
(0a3VASuERT IF 1sn¢l=]e TreN =i1RLOF (K)3
(QIRELD A3
(1YW ITE &3
(2)1F AL01 = +T1T (NTHEN (JIRETURNG (6)F 13
(«)CASE INTEGER(ATH4GI) OF
w: (S)LAME 3= LAMK + 10 ® UINTFGeklACL)) - 27)
¢ (IRTEGER(ALZ2))Y - 27) &
(6123 (71CCW = COw + 10 ® (INTEGER(A(3)) - 27)
o (INTEGERUA[4])) = 27)3
(#1E5aC03
{9211 AGSERT $Q0FD=:R0AD.Oeletalr0=iuwTrnDL 0]
(Ge2) ASSERT LAMAZX(])*eae*X{IF IREOF(:RDONC) THEN I-1 ELSE I3
(YeIVASSERT Clw =Y (1)@, 0o Y(IF tREOF (:RDAC) ThfN I~]1 ELSE D)3
(9ewdASSERT IF A[0Y=+T THEN I=sFIRST K SUCh THaT TREQF (KD 3
(S.5)1ASSERT IF AlCI12*T AND 1SK<Is THEN =3IREOF (K}
(YIEXRITS
PROCEQURE MaINS
(SHli=13
(L1~ = 03
(2reasa 3 }
(3.11A8SERT 1 = 12000 = 1WTHD 3
(3.21ASSE-T 1e1<1013
(3e3)ASSERT LAMAEX(1)eeeeeX{I=1) NHERE X(K)=Trit INTEGER IN COLUMN 1=2 OF READ RECORD
X 1# CCLUMN <™ HAS +D AND ZERO IF NOT
(3.6)ASSERT COWTY{))eoaeoYiI=1) WHERE YiK)=THE INTEGER IN COLUMN 3-4 OF REAC RECORD K
1F COLUMN 80 HAS 48 AMND JERO OTRHERWISE:
(3.5} ASSERT wRITE WKECORCS le,eesl=l A%E CUOPIES OF READ RECORDS lsaeari=li
(3e6)ASSERT 1F 14R<I=1aTHEN ~3REQF (XD 3 :
(3)wrlLE 1¢100 DO
(WY ENTER READDATAS
(51IF AlG)=+T (6)THEN (6)G0 TO S3 (7)F13
(7)1 3= 1 ¢ 1%
{n)ELIrAS
(911 ASSERT I=MIN(1O)+FIKRST K SUCH THAT :IREOFI{K))S
(Ye2)ASSEST LAMnzX (1) o a0 X(I=1)3
(9eI)ASSEKRT COW=Y (1) e uasY(]I~1)3
S (9)F LAMBE<CC~ (10)TrEN
{101MOPECOW 1= COwW = LAMBS
(11)u0 10 wi
(12)ELSE (13)IMORELAMR 3= LAMB - COWi
(lalfF i
(FedL {0 = *F3
(151L11) := CHARACTER(MCRELAMA /7 10 + 27)3
(16)M0<ELAME = MCRELAME + 103
(1770121 = CHARACTER(MOKRELAMB + 27)3
(18) W2 ]TE LS
tlvrud TO €3
Wi (20)CI0) = *F3
(211CI1] 3= CRARACTER(MCRECOW / 10 « 2713
(22)#0QQECOW = MORPFCOw ¢ 103
(23)C12] 3= CnARACTER(MORECOW « 2713
(2L)ariTE C3
£: (25)NOP3

-

(260 11ASSERT IF LAMR<COW THEN WRITE RECORD I+l HAS COw=-LAMB IN COLUMN 1-2i%

(2542)ASSERT 1F COW<LAME THEN W#RITE RECORC I+l HAS LAMB-COW IN COLUMN 1-2%
(2HIEXTITR ‘

START MAIN
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HEADDATA
0.} LAMBZA(1) ¢sseeX(1-1)
0s2 COwzY (i) taaoexil=~1)
0.3 1F 1<K<l=)s THEN ~:REOQF(K)
0 T T AR OF (t UMD 1) & ALLT0)ZAT A (1<SSHO o AL11$)=A(S]]
AIREUF (JRDAD*1) » A 1(0Y=#tF A [1S3EMINIBOWRBO) » ALIESI=IRDFL(IROND+1+%))
A [8lShCH0 o ALl[3)=A(9])
THOHD < 1= (2RDKHND) ¢
1 AJ1(01=+T » wEOF {3WTHD1)
LedID124T o ~:MEOFLIWTHDS1) A [1SHEMINIBO2132) » IWTFLUIWIHD13)=A,1(%)])
A H1<E<112 » SWIFL(IWTHD*14%) =22 ]
IwTHD 1= (2WThi) 0]
2{PRV) 0<0<p0
2 ~{A,1(01=2T)
4 (PRV) 0<80<d0
&4 INTEGER(ALLTIAO Y =(2)
7(PRY) 0¢3<60
T{PRY) 0<u<B0
7 COW,1=CUWC100 LINTEGER(A,1131)1=27) ¢ {LINTEGER(ALLLG])=2T)
9.1 (IROHU 11 =RDHD ¢l (2 WTHD 1) =2WTHD ]
9.7 LAME=X (1) o, 0eX{1F SREOF((IRDHD,1)) THEN I-1 ELSE I}
9.3 (COWel) ZY(1)eanesYLIF tRFOF(LIODHULL)) THEN I-1 ELSE 1}
Y 1F (A 1)1 0)=+T THEN I=FIRST KX SuCH THAT :REOF (X)
9.5 IF (A.1)(012+T AND 1$KSls THEN ~2REOF (K)
FCADDATA
Oal LAMHZA(]) 4o 00 R t]=])
0.2 COwz=Y{1)e,0eex{l=1)
0.3 1F 1enel=ls THEN «i1RENF(K)
6 o SREOF (3wDHDeY) » AL110)=+T A [1<8580 » AL1{S])=A0%]])
IREQF(:RDAD+1) » ALJ1O01=2F A [ISHSMIN(ROWRO) » ALL(S)=IRDFL(:RDHD+14%) )
A (nl<p<A0 » A 11%1=A(%]))
SROHD (1= (3RDND) )
1 Asl(01=2T » WEOF (SWTHDe1)
AdllOI2*T » IWEOF (IWTHO1) A [1SHSMINCBO132) » IWTFL(IWTHDe14$)=A.1(S])
A Inl1<42132 » IWTFL{IWTHD Y ob) = ]
tWTHDL I (iwTnD) ¢}
rats A 0s0¢AC
2 (A1 {01+
4{PRV} 080520
b INTEGER(ALLIRD)) 2(4 v 2)
9,1 (3RO 1) =3HDHD 1o (EWTHD W1 )=t wTHD ]
9.2 LAMB=X (1) o, o ¢X{IF REOF((SRDOMD,1)) THEN 1«1 ELSE 1)
9.3 COW =Y {1)eaeo+Y(IF SREOF((IRDHD,L1)) THEN I=1 ELSE 1)
Yolo IF (A.1)10)=+T THEN [=FIRST K SUCH THAT IKEOF (K)

9.5 IF (ALL)(0)2+T AND 1<¢x<ls THEN =3IREOF (K)
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MAIN

3.1 1 = $kDHD = IWIMD

3.2 1<1¢101

3.3 LAMB=X(1) veseohi]=]) WHERF X(K)=THE INTEGFR® IN COLUMN 1-2 OF READ RECORD X IF C
NLUMN 87 HAS *D anh ZEPO TF NOT

3

oh COW=Y{l)vaa,oY(l=1) WHERE Y(K)=THE INTEGEK IN COLUMN 3~4 OF READ RECOFPD K IF CO
LUMN 83 HAS +H AND ZERO OTHERWISE

3.5 wRITE RECURDS leseael=]l ARL COPILES OF READ RECORDS leaeerl=]
3.6 1F JSKSI=1sTHEN ~IREOF (K)

IR FENENNE S NN E NN ENNER] -
3 1€100

b LVL.I=05LVL) »)

4 (PRV) 0<iLVLL14¢511

& SRINPTL1{8)= IF $=:Lvi.l THEN MAINIS~ ELSE :RINPT(S]

4 (PRY) LAMBH=X 1) ¢, eX(]1~])

L{PKRV) COW=Y (1) v qaasX(1-])

4 (PRV) IF 1SKST=1s THtN =:REOF(K)

& (D0 1) =3 IRUHDY oL e L2WTHD L=t (IWTHD) #]

“ (LAMB, 1) =X 1)) esae* X (1F IRFUF((IRDHDS1)) THEN I-1 ELSE I

& (COWal) =Y({1)oasueY (IF REOF((2RDHDW1)) THFN I-1 ELSE 1)

4 IF (AL1)10)=4T THEN 1=FIRST K SUCH THAT :REOF(K)

4 IF (A 1Y101#+T AND 1<¢KSIs THEN ~IREQF(K)

4 ILvL.2=(3LVL 1) =]

Stenv) [33:23-14]

s ~tA,1(0)=2T)

7 Telz]el

3.1 {1.1) = (IRDHDLY) = (:WTHDL1)

3.2 1€(1.10¢101

3.3 (LAMBL1)2X (1 e oo oX{{I.10~1) WHERE X({K)=THE INTEGER IN COLUMN 1-2 OF READ RECOR

0 K IF COLUMN B0 MAS +D AND ZERO IF NOTY

Je4 (COWG1)aY(1) o aeeY({1,))=1) WHERE Y(K)=THE INTEGER IN COLUMN»J—# OF READ RECORD
K IF COLUMN 80 HAS +R ANC ZERO OTHERWISE

3.5 WRITE RECORDS loseesllel)=1 ARE COPIES OF READ RECORDS lessestlel)-l

3.6 IF 1SKS(1al)=lsTHEN =:REQF (K)

MAIN

3.1 1 = :RDHD = 1aTHD

3.2 1el1¢10l

3.3 LAMBzX {11 eeeaeX(1=1) WHERE X(K)=THE INTEGER IN COLUYN 1-2 OF READ RECCRC KX 1F C
OLUMK B0 MHAS +D AND ZERO IF NOT

3ot COW=Y (1) vaeasY(I=]) WHERE Y(R)=THE INTEGER IN COLUMN 13-4 Of READ RECORD K IF CO
LUMN &0 HAS +H AND 2ERO OTHERWISE

3.5 WRITE HECORDS ls,ees1=1 APE COPIES COF READ RECORDS leseerl-]

3.6 1F 1K<=l e THEN ~:FREOFIK)

'EEEEEE R E RN R EE N NN RN

3 «(1<100)

9.1 [=MIN(LIOLFIRST K SUCH THAT :REOF (X))

9.2 LAMBER (1) e, 00X (1-1)

9.3 CUNZY{1) oY l]~])
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