GROPE: A GRAPH PROCESSING LANGUAGE
AND ITS FORMAL DEFINITION

by

Daniel Paul Friedman

August 1973 TR-20

This paper constituted the author's dissertation for the Ph.D.
degree at The University of Texas at Austin, August 1973.

This work was supported in part by the following National Science
Foundation grants: GJ-778, GJ-36424, and EC-509X.

Technical Report No. 20
Department of Computer Sciences
The University of Texas at Austin
= Austin, Texas 78712

I ——

v ACKNOWLEDGEMENTS

In a piece of research which consumes the better part of four years
there are generally many people who contribute to the research effort.
There is, however, one person to whom 1 am especially indebted--Jonathan
Slocum, who almost single-handedly coded the many versions of GROPE.
Proper design of a complex language requires a critical partner pointing
out flaws, and certainly there are aspects of GROPE he inspired, initiated,
or improved. I especially want to thank my advisor Professor Terrence W.
Pratt for guiding me during every phase of the research and writing of this
dissertation, Professor Robert F. Simmons for always finding time to talk
with me and for his support of the development of GROPE, and my other two
committee members, Professors Raymond T. Yeh and Norman M. Martin, for
their critical reading. 1 wish to thank Gary Hendrix, Bary Gold, and Patrick
Mahaffey for their suggestions and encouragement. I also wish to thank
Juny Armus for all that he did for me while I was at the Lyndon Baines
Johnson School of Public Affairs, Kathy Armus for the thoroughness in which
she treated the art work in this dissertation, and Mrs. Dorothy Baker for
her outstanding typing and attention to detail and for being such a pleasure
to work with. Finally, I wish to thank all of the users for their patience
and understanding during the development of GROPE.

This research was partially supported by National Science Foundation

Grants GJ-778, GJ-36424, and EC -509X.

June 1973

ABSTRACT

This dissertation concerns the design of a programming language
for efficient processing of directed graph data structures and the precise
formal definition of the semantics of the language designed. The design
handles data structures and operations rather than control structures.
This emphasis at the semantics level gives rise to a somewhat different
view of the problem of formal definition.

This research has resulted in the development of a graph processing
language, GROPE, for efficient processing of directed graph structures.
CROPE embodies some major new ideas about representation and processing of
complex data structures. In addition, a new two- level definitional tech-
nique for programming language semantics has been introduced. One level
develops user-oriented semantics and the other develops implementation-
oriented semantics. As an illustration of this technique a major part of

GROPE is formally defined.

ii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUGCTION AND BACKGROUND . . o « « « « o o o e o o 0o 0 00 1
II. THE GROPE APPROACH TO GRAPH PROCESSING . &+ « « o o o o « s & + = 28
TIII. MACRO-SEMANTICS OF GROPE . . . o & « ¢ »o o« ¢ o v o o 00 000 64
1V. MICRO-SEMANTICS OF GROPE« « « « « ¢ o o o o o v 0 0 000 91
V. CONCLUSIONS . & & o o o o o o o o o o o o o o o 0 0 = 00 0 000 113
APPENDIX A v v o o v o o o o o o o o o s s e e e e e s s s 0 117

REFERENCES . . + o o o o o o o o o o o o o = o« o n o000 000000 134

iid

FIGURE

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

2.2

2.3

2.4

2.5

2.7

2.8

2.9

2.10

LIST OF FIGURES

A Multi-field Cell (plex) and Its Representation

As a VDL TEEE « « o o '« o s s s o s o o o o o o =

A LISP LASE « o v o o o o s o o o s o s o s e e = e s e s e
VDL Representation of a LISP LISt & ¢ o o o o s s s e e 4 s e
The LISP and VDL Function member T

Definition of H-graph . . . - « « « « « o + o o s o 00 s =
A Sample Stack . .« o« « ¢ e e e e e e e e e e e e e
H-graph Representation of the Sample Stack . . . « - + « + «
H-graph Representation of Stack Operations . . . + « « « « « =

Representation of a LISP List in the Axiomatic Approach . . .
Axiom FOr conS(X,¥) « o o o o o o o o e oo e e e e s

An Example of the '"Abstract System' Approach: The Definition

of a Hypergraph e T T
The Definition of the GRASPE Function COp . « « « « « « = = =
A Graph Skeletom . . « « « « & » ¢ o o e e e e e e e e e
A Graph Data Structure« o « « o « o+ e e s - e
Creation of a Graph Data Structure« « « « « « « « =
Accesses from a Graph Data Structure
System Set Retrievals for a Graph Data Structure - -
A Structure Which Emphasizes the nset and grset . . ; e .

System-set Retrievals for the Structure Which Emphasizes
the nset and GrSeL . .« « « « o & ¢ o o e e e e s sy

Table of Mapping Functions by class and type . . . « .« o o« . -
dmapft (rseto(W),true) . « « o o 0 e e e e e e e e e s

dorft(rseto(W),tTUe) « « o « o o + o o« s e e e e s s e 0t

PAGHE

14
15
15
17
18
19
19
20
22

23

24
26
30
30
31
33
35

36

37
40
41

42

FIGURE

2.11
2.12
2.13
2.14
2.15
2.16
2.17

2.18

2.20

2.21

3.3
3.4

3.5

3.7
3.8

3.9

Definition of the Mapping Functions . . . « « « « « = =
Versatility of the Mapping FUnctions .« « « « « o + o o s e
The nth Component of p Component (po,m) « v v o o o

The Last Component Of P« & « « o o ¢ o o v e o0 0 e e

The Last Component of p Allowing for p to Be Altered . . .
mapft(p,ft,argz,...,argk) e e e e e e e e e e e e e e

f(p,ft,argz,...,argk) O

A Complex Graph-based Data Structure . « « « « =« + o o .
Retrievals for a Complex Graph-based Data Structure . . .
Another Complex Graph-based Data Structure -

Retrievals for Another Complex Graph-based Data Structure

Traversing with the Graph Reader e e e e e e e e e

Data and Results of Algorithm « « « « & « o =+
mapft(rseto(r),chafrn,w) P
Changing the Graph of a Node + v o « « o« o o o o o o o e s
Representation of a Graph by Subgraphs« < .« -

Formal Specification of the "Abstract System'' Approach . .
A Simple Graph (or gds) . .« .« « & o o e e e e e e e
H= gds of a Simple Graph

The States of Modes and Arcs « o « « ¢ « - =
Graph Structure for Semantic Examples . . . « « « o & o
H = gds of Graph Structure for Semantic Examples
gds After State Changing Operations . . . « « « « « « =
gds After State and Structural Changing Operations

Graph for Illustrating "Subtle" Simple Traversal . . .

v

PAGE

43
44
47
47
47
48
49
52
53
54
55
57
58
60
61
63
66
70
71
76
79
80
81
85

87

FIGURE

3.10
4.1
4,2
4.3
4.4
4.5
4,6
4,7
4.8
4.9

4.10

The Complex Reader Mechanism
Arc Label Conventions .

GDS of a Simple Graph .

Diagram for CREATE-NODE (*,*%) .
Diagrams for RELATE(*) . . .
Diagram for UNRELATE (*) .

GDS for Semantic Examples .

Tabular Form of GDS for Semantic Examples .

Diagram for TRAVERSE-REIATED-SUCCESSOR(*) . .

.

Diagram for TRAVERSE-NODE-OUT (*)

.

-

Diagram for TRAVERSE-GRAPH-OUT (*) . . .

wi

PAGE

89
9%
95
98
101
103

104

. 105

109

111

. 112

. CHAPTER I

INTRODUCTION AND BACKGROUND

Overview

This dissertation has two main concerns. The first is the design
of a programming language for efficient processing of directed graph data
structures. The second is the precise formal definition of the semantics
of the language designed. 1In the design the concern is entirely with
data structures and operations rather than control structures. This em-
phasis at the semantic level gives rise to a somewhat different view of
the problems of formal definition.

This research has resulted in two major achievements. A programming
language extension, GROPE, for efficient processing of directed graph struc-
tures has been designed and implemented. GROPE embodies some major new
ideas about representation and processing of complex data structures. In
addition, a new two-level definitional technique for programming language
semantics has been introduced. One level develops user-oriented semantics
and the other develops implementation—oriented semantics.

Graph processing is a new area of language design. The next sec-
tion sheds some light on graph processing and discusses its relevant back-
ground. Likewise, formal semantic definition is relatively new, and the

appropriate literature is discussed following the graph processing section.

Graph Data Structures

The term 'graph" used in the previous section requires some explana-
tion. Here, a graph is a data structure composed of nodes (vertices) and
arcs (edges or branches). These graph data structures have labeled nodes
and arcs, and they may be organized into sets, hierarchies, etc. The
reader should not confuse our use of the term "graph" with the subject area
of "computer graphics" which is directly concerned with picture construc-
tion.

Graph data structures are important data representations in many
fields. 1In mathematics graph structures are studied for their static
properties. 1In computer science graph structures are studied for their
dynamic properties. In other fields "graph structures" have various names.
For example, there are bonding structures in chemistry, Feynman Diagrams
in physics, sociograms in sociology, circuit diagrams in electrical engi-
neering, and flow networks in operations research.

Algorithms which process graphs are important. For example, algo-
rithms which determine the maximal flow through a network, shortest path
between two nodes, a Hamiltonian Path or optimal line balance are all
usually formulated as graph processing algorithms. There are graph algo-
rithms for the well-known "Traveling Salesman Problem," for finding a maxi-
mal spanning tree, and for information retrieval. Graph algorithms have
also been applied to the "Four Color Problem," the solution of the "Knight's
Tour," and the determination of transitive closures. Programs which involve
graph processing are clearly an important class of programs.

Graphs are ordinarily represented in a computer in one of two ways.

They are either simulated by using more primitive structures (e.g., arrays

in ALGOL [25] or property lists in LISP [23]) or they are simulated by

using extensible data structures (e.g., programmer-defined data types in
SNOBOL4 [12], '"based variables'" in PL/I [19] or plexes in AED [32]).

"Incidence arrays'" are a well-known representation for graphs
using more primitive data structures. A graph is represented by a two-
dimensional square array A, having one row and one column for each node.
An edge from node i to node j with label v is denoted by the array posi-
tion Ai,j having value v. The main drawback of this representation is
the lack of flexibility for the representation of complex structures. For
example, associating additional values with nodes and arcs or allowing
parallel arcs requires additional storage. A lesser shortcoming of this
representation is the relative inability to do dynamic processing. For
example, if the graph contains k nodes, then it is difficult when using
incidence arrays to let the graph grow to k+l nodes through the creation
of a new node, for few programming languages allow an array to grow by
the addition of a row and column.

Another example of simulating graph structures by using primitive
structures involves property lists (attribute-value pairs). Nodes are re-
presented by "atoms" with attached property lists. If Ai,j is the value
of the arc from node i to node j, then there is an attribute-value pair
(Ai,j’j) in the property list of i. The property list representation
causes graph algorithms to be inefficient in terms of time due to the neces-
sity for property list searching for each arc access. In addition, the
property list representation makes it difficult to traverse arcs in both
directions, a property required in many graph algorithms (e.g., finding a

critical path on a PERT network).

When graphs are simulated by using extensible data structures, the
user defines blocks of core (plexes, records or based variables) as nodes.
Arcs are represented by pointers from one block to another. The specified
fields within a node are used to store the information associated with a
node and with the arcs leaving the node. A number of programming languages
have this ability as a built-in feature, e.g., PASCAL [43], PL/I [19],

AED [32], and L6 [17]. Each of these languages has the major difficulty
that the burden is on the programmer to define a set of logical primitives
for graph processing. 1In addition, the programmer must construct facilities
for the storage management and input/output. In SNOBOL4 [12], using
programmer-defined data types, some of these aspects disappear. For exam-
ple, SNOBOL4 has a garbage collector for storage management, and some basic
accessing and creating primitives are automatically created when a new

data type is defined. Yet the responsibility of defining most of the ap-
propriate graph processing primitives in SNOBOL4 still rests with the pro-
grammer.

In the preceding section certain shortcomings of using primitive
structures or extensible structures to simulate graph structures and pro-
cesses have been presented. Many of the arguments for choosing a true
graph processing language over one of the simulations of graph structures
mentioned above are reminiscent of the arguments for choosing a high-level
language over assembly language, For example, in both the simulation and
assembly language, input/output requires much software development whereas
graph processing languages and high-level languages have (or should have)

a well developed input/output facility. In addition, programs in assembly
language tend to be error prone and have poor sclf-documentation (that is

p

the programs are difficult to follow). The same is true for many of the

simulation techniques mentioned above. Tn each case much user-supplied

support software is required before considering‘the algorithm that is
actually being programmed. Also, a new task for such a graph simulation
may require a major redesign; however, for a graph processing language,
1ittle or no redesign should be necessary.

GROPE, the subject of this paper, is a general-purpose graph pro-
cessing language in which graphs form the basic data structure. The
general class of graph processing problems for which GROPE is designed
is characterized by two aspects. First, the problems deal with sets of
graph structures which are interrelated in complex ways and which contain
symbolic as well as numeric data. Second, the problem solutions require
the graph structures to grow, shrink, and be modified both dynamically
and irregularly. These complex graph processing problems are precisely
those for which the simple graph simulations described above are most inade-
quate.

CROPE is a graph processing language designed to provide appropriate
structures and primitives for this class of problems. The GROPE design is
based on three major design criteria. First there should be flexibility
of structure for representing a variety of classes of data. There should
be labeled nodes and labeled arcs and provision should be made for the repre-
sentation of multiple arcs between two nodes. It should be possible to
represent, in a natural manner, hierarchical graphs (graphs whose nodes
can have values that are graphs) and other relationships between graphs.
There should be supporting structures, such as simple list and set process-
ing for maintaining information during graph searches. There should be

special mechanisms for searching and processing graph structures.

Second, there must be operations which modify the structures
dynamically. There must be operations which destroy and modify graphs,
nodes, and arcs, e.g. for changing the labels of nodes and arcs.

Finally, the processes and storage management must be handled effi-
ciently. The required efficiency is dictated by the combinatorial nature
of algorithms for graph processing. Storage management must include auto-
matic bookkeeping for the dynamic allocation and recovery of storage,

e.g. using a free space list and garbage collector.

Related Graph Processing Literature

Since directed graphs are often used for informal description and
analysis of structures, and since being able to program directly in terms
of the structures which are natural to an applications area is a well-known
advantage, it is surprising that directed graphs have not been accepted as
a primitive data structure in any major programming language. There are,
however, some minor languages which have included directed graphs.

The graph processing languages of interest are HINT [13], GRASPE
[31,7,8,9], GEA [4], and LINKNET [3]. HINT and GRASPE were designed for
symbolic structure manipulation problems, and each is associated with a
list processing language. HINT is compiled into IPL-V [24]. GRASPE is a
library of LISP functions. GEA and LINKNET were designed to perform numeri-
cal data analysis within a complex, but relatively static graph structure
(problems in operations research, etc.), and each is associated with an
algebraic language. GEA is a syntactic extension to ALGOL which is precom-
piled into ALGOL; LINKNET is a library of FORTRAN functions. Using the

design criteria discussed above for the necessary characteristics of a

graph processing language, let us now compare and contrast these four

languages with GROPE.

In terms of flexibility for representing a variety of structures,
only HINT, GRASPE, and GROPE have provided for list processing as a sup-
porting tool for graph processing. Only GROPE is concerned with more
than one type of node and one type of arc. GEA and LINKNET deal only with
numeric constants as values of nodes and arcs, whereas HINT, GRASPE, and
GROPE provide for symbolic node and arc values as well as hierarchical
structures.

In terms of operations for the dynamic creation of graph components,
only HINT, GRASPE, and GROPE allow for the dynamic creation and destruction
of graphs. Each language except LINKNET provides primitives for the dyna-
mic creation and destruction of nodes and arcs. In LINKNET, these opera-
tions are the responsibility of the programmer, i.e. the programmer must
produce code which correctly affects the appropriate fields to cause the
creation and deletion of nodes and arcs.

In terms of efficiency of processes and storage management, GRASPE
and HINT are tied to their respective hosts for their representation of
graphs. Both use property lists. The efficiency of the processes in GRASPE
and HINT is poor due to their internal representation of graphs as property
1ists and the cost of their primitives (which require property list searches).
GEA uses lists to represent graphs. Little can be said about the effi-
ciency of GEA as the details of the precompiler are unavailable. LINKNET
and GROPE use plex structures for their representation of graphs. LINKNET
does not have any graph processing primitives, only primitives to change

the contents of fields in a plex. GROPE operations are very efficient (see

Chapter IV). GRASPE, GEA, and GROPE have a garbage collector. GRASPE's
is that of its host, LISP. HINT uses the storage manager of IPL-V, and
LINKNET has no storage management.

In the previous discussion of the graph processing languages, we
noted what appeared as deficiencies in some of the languages. It should
be pointed out that these were deficiencies in terms of our design cri-
teria and not necessarily shortcomings of each language. On the contrary,
each language appears to be a good model for the class of problems with
which it is concerned, although in most instances the efficiency is very

poor,

GROPE

GROPE is a successfully implemented graph processing extension to
FORTRAN. 1In this sense, since it is a library of functions, GROPE parallels
SLIP [40]. GROPE not only provides primitives for graph processing but also
includes a number of other data structures and primitives which enhance
and support graph processing.

There are a number of major new ideas embodied in the GROPE data
structures and operations which are directly associated with graph process-
ing. GROPE provides a set of building blocks (atoms, arcs, nodes, and
graphs) and operations for putting these blocks together. The building
blocks are used not only to form simple graphs but also complex graph-based
structures (see Figures 2.18 and 2.20). 1In addition, because of the flexi-
bility of the GROPE data structures, there are a number of graph modifica-
tion primitives which perform unusual operations (for example, an operation

to move a node from one graph to another). Arcs and nodes are partitioned

into four classes. Each class provides for a different level of struc-

tural information. For example, an arc between two nodes n and m may be
accessible from n only, from m only, from both, or from neither. Although
the structures a programmer can create are likely to be very complex,
experience has shown the usage of the accessing primitives to be straight~
forward.

It is unreasonable, for our purposes, to consider a graph process-
ing language as just a set of graph processing operations. The support
operations are equally important to the development of efficient graph
algorithms. Some of the support features are list, set, and array process-
ing, and a large class of mapping functions which build or destroy struc-
tures by sequentially accessing elements in a set or list. In addition,
there is an extensive input/output facility and a garbage collector.
Throughout the design of GROPE, there has been a fanatical concern with
efficiency and a serious endeavor to maintain generality.

GROPE has been a useful tool in many applications. Slocum [34],
Hendrix [14,16], and Thompson [38] used GROPE in the area of natural lan-
guage processing. In the area of programming language semantics, an ALGOL
interpreter (see, for example, Wilson [42] or Wesson [41]), written using
H-graphs [30], is being tested in GROPE. The Linguistics Research Center
at The University of Texas at Austin has used GROPE to develop a central
portion of its machine translation system [21,36,37]. Work in the analysis
of programs (Griggs [11]), optimal overlay structures for LISP and FORTRAN
programs (Greenawalt [10]), and robotics (Hendrix [15]) are further illus-

trations of the scope of GROPE usage.

GROPE has fostered the development of GROPE 2.0 (Slocum [35]).
GROPE 2.0 is a complete, modular programming language with block structure
which has a somewhat ALGOL-like syntax. The GROPE 2.0 compiler (written
in GROPE) generates GROPE-FORTRAN code and thus serves as a very sophisti-
cated FORTRAN preprocessor. GROPE has been implemented on the CDC 6600
and IBM 360 (Baron [1]).

For a complete description of GROPE, see Appendix A.

Programming Language Semantics

Techniques for formally defining programming languages generally
follow a common pattern. First a translation is necessary which maps the
program strings into some "internal form." This internal form is then con-
sidered as the 'initial state'" of an abstract machine. The abstract ma-
chine moves from state to state as a result of applying a primitive operation
of the machine with a transition rule to the current state. A “final state'
is encountered if the program terminates. This scheme is used in Landin's
[18] definition of ALGOL, Lucas' [22] definition of PL/I, and Pratt's [30]
definition of ALGOL.

This paper is also concerned with the formal definition of program-
ming languages, in this case the definition of GROPE. However, because
GROPE is defined as a language extension (a set of data structures and pri-
mitives operations), its formal definition presents somewhat different
problems from those encountered in a definition of a language such as ALGOL
or PL/I. Where our approach differs is in two aspects. First, because
we are not concerned with syntax (i.e. with program strings), there is no

concern with translation from strings into an internal form. Second,

11

because we are not concerned with control structure we simplify our problem
at the "abstract machine'" level. We need only be concerned with "'states"
composed of constants and data structures and "transition rules' defining
operations on constants and operations on data structures.

By restricting our concern to the definition of data structures
and operations we avoid many of the complexities of other definitional
techniques. This allows us freedom to attack some problems which have as
yet received scant attention in the literature. Stated informally, the con-
cern here is with formal definitions which satisfy two particular criteria.
First the formal definition should be such that a reader of the definition
can obtain a conceptual understanding of the data structures and operations
involved. Second, a reader should be able to understand how the data
structures and operations can be implemented and to determine the relative
efficiency‘of processing.

These criteria are of fundamental importance if formal definitions
of languages are to be of practical value to language users and implementers.
Existing definitional techniques tend to be either unintelligible to the
programmer, impractical as the basis for an implementation, or both. 1In
fact, we usually find that an implementation definition is too detailed
for the development of a conceptual understanding of the data structures
and operations and that on the other hand a conceptual definition is too
simple for the development of an implementation which utilizes the struc-
tural subtleties that we find in a well-thought-out model. In point of
fact, there really are two problems, and generally any approach which treats
the definition of data structures and operations as only one problem has

the shortcomings noted above.

12

The problem of finding a single definitional technique to display
the external (conceptual) and internal (implementation) structure and
hence satisfy both criteria is resolved in this paper by defining formally
the same operations over two conceptually different formal systems. The
two levels of definition are termed the "macro-semantics' and the 'micro-

' The macro-semantics is the user-level semantics. Both a

semantics.'
formal system to describe the data structures and the formal definitions

of the set of operations over the data structures are included in the
macro-semantics. Similarly, the micro-semantics is the implementer-level
semantics. The micro-semantics is composed of a formal system to describe
the data structures and a set of formal definitions of the operations over
the data structures (storage structures).

The concern of the macro-semantics is to present the whole picture
of the language model from the standpoint of the potential user who needs
the answer to the following question: Notwithstanding storage and execution
time requirements, are the structures and operations suited to my particu-
lar problem? The micro~-semantics deals with the formalization of the
implementation-level concepts. From these definitions an implementer can

ferret out the "bits and pieces."

In addition, for the potential user,
the micro-semantics yields some approximation to the storage and execution

time requirements to execute algorithms,

Formal Definition of Programming Language Semantics

Formal definition of programming language semantics is a relatively
new area. Debakker [5] provides a good (although dated) survey of research

in the formal study of programming language semantics. Since the concern

13

here is with objects and operations on objects, the discussion is limited
to the treatment of this limited area of semantics. For each approach we
are concerned with three basic questions. First, how is the total data
space or ''overall state'" of the abstract machine conceived? Second, how
are data structures represented? Third, how are primitive operations
defined? The approaches of interest are the Vienna Definition Language
[22,39,20], the H-graph approach [26,27,28,29,30], the axiomatic approach
[2], and the author's "abstract system" approach [31,7,8].

The most well-known definitional technique is the Vienna Defini-
tional Language (VDL). 1In VDL, the total data space is represented by a
set of trees with labeled arcs. The overall "state of all data structures
at any point in a computation is represented by a single ''state tree"
which also contains components concerned with control structures.

VDL has the facility for handling data structures and operations
over data structures. Consider the representation of a LISP list in VDL.
Recall that two lists may have the same sublist and thus the simple tree
representation of lists is inappropriate. The representation of a multi-
field cell (plex) in VDL (see Figure 1.1) can be defined as a one-level
tree where each si (si # sj for i # j) are the fields in the cell, and ni
(the leaves of the VDL tree) are integers (indices) or data constants. A
LISP list (car,cdr) is a LISP-like list (head,tail), c = (Cl’CZ""’ck)
where each ¢, is a 2-field cell. We define a function elem(i,c) which maps
to . The VDL tree of Figure 1.3 is the representation of the LISP list
of Figure 1.2.

Operations in VDL are presented using conditional expressions. As

an example of the definitiom of a VDL operation, consider the LISP function

Figure 1.1.

1 a data constant or elem(nl,c)

2 a data constant or elem(nz,c)

K a data constant or elem(nk,c)

n, may be a data constant or an integer

A Multi-field Cell (plex) and 1lts Representation
As a VDL Trec

15

c2 c3
+ a b
1 2 3
Figure 1.2. A LISP List
Cc o=
head tail
cy=
car cdr head tail
EI CZ=1'|II|'b
car cdr head
lIIIl “lill’ CB:
car cdr

Figure 1.3. VDL Representation of a LISP List

16

member (see Figure 1.4) over the LISP lists defined above. Note that in
the VDL member, i is initialized, in this case as 1.

Pratt [26,27,28,29,30] suggests a definitional technique based on
"H-graphs" (see Figure 1.5 for its definition). The value of each node
in an H-graph is a terminal or a graph, thus allowing the graphs to be
organized into hierarchies. The total data space or the overall state of
the "abstract machine'" is an H-graph.

Data structures can be modeled as H-graphs. Consider Pratt's [30]
representation of a stack. A stack is defined recursively to be a graph
composed of two nodes. The first node is an arbitrary data node and the
second is either null or a stack. (See Figure 1.6 for sample stack and
Figure 1.7 for its representation as an H-graph.)

There are ways of defining operations using H-graphs which change
the overall state. An operation in the H-graph approach is a transformation
which maps an H-graph into an H-graph. Pratt [30] introduces a formal
diagramatic approach to define the operations. Figure 1.8 illustrates the
formal diagramatic approach for the operations--push and pop--over the stack
defined above. 1In the figure, the push node and the pop node represent
function references. An arc pointing into a function reference node implies
that the node from which the arc emanates contains a parameter to the func-
tion and similarly an arc pointing out of a reference node implies that the
node at which the arc terminates may have its contents altered.

Burstall [2] develops an axiomatic approach to programming language
definition. This approach is based on the first-order predicate calculus;

the axioms for a simplified ALGOL-like language are presented.

LISP definition

member[ajc] = [
null[c] - NIL;
eqlajcarfc]] » T;

T — member[a;cdrc]]]

VDL definition

member(a,i,c) =

is-nil(i) - nil

car(elem(i,c)) = a —» t

t — member(a,cdr(elem(i,c)),c)
elem(i,c) =

i =1 - head(c)

t —» elem(i-1,tail(c))

Figure 1.4, The LISP and VDL Function member

17

18

An H-graph is a finite set of directed graphs over a
common set of nodes, organized into a hierarchy. Assume a

set A of basic data "atoms' and a set N of nodes.

DEFINITION: A graph over A and N is a triple (M,E,S) where M
is a finite non-empty subset of N, the node set, E is a finite
set of triples of the form (n,a,m) where n,m ¢ M and a € A, the

arc set, and S € M, the entry point node.

DEFINITION: An H-graph over A and N is a pair (M,V) where M, the
node set, is a finite non-empty subset of N, and V, the value

or contents function, is a function mapping M into A U {X|X is

a graph over A and Mj}.

Figure 1.5. Definition of H-graph

Figure 1.6. A Sample Stack

Figure 1.7,

H-graph Representation of the Sample Stack

19

290

push - B

stk
Tval

push —EEE’ ol » P
lval
o

pop dfuﬂi a ~—-—;[}€::

=
: —

‘ stk
pop P B
lval
a

Figure 1.8. H-graph Representation of Stack Operations

21

The overall state of the abstract machine in the axiomatic approach
is represented by a sentence of the predicate calculus and a '"state vector."
A state vector, S, is an association of variables with their values. As
a program is executed, the values in the state vector get altered (actually
a new state vector, s*, is generated with perhaps some of the old values
carried over as new values), and new sentences are concatenated (by the
conjunctive connector, &) onto the old sentence.

Data structures can be represented using the axiomatic approach.

In this technique each cell in a data structure is represented by the con-
junction of the appropriate relational primitives (see Figure 1.9 for the
representation of a LISP list).

Operations are defined in the axiomatic approach by showing what
new axioms need to be added to the logical sentences which have thus far
been built in order to describe how the state vector is to be altered. 1In
order to give the reader the flavor of this approach, let us suppose that
we want to add the LISP operation cons to an existing system, Figure 1.10
presents a possible axiom with a loose translation of its meaning for the
operation cons.

The author [7,8,31] introduces the technique which employs an ab-
stract system. The particular abstract system referred to is termed a
"hypergraph'" (see Figure 1.11). 1In this paper we define two other abstract
systems: a gds for the definition of the macro-semantics and a GDS for the
definition of the micro-semantics.

We can characterize the author's abstract system approach in the
following fashion. An abstract system, call it H (hypergraph, gds, or GDS),

is defined to represent the total data space. Each operation op (note that

22

(+ ab)

equal (fcar(i,s),+) & equal(fedr(i,s),j) &

equal(fcar(j,s),a) & equal(fedr(j,s),k) &

equal(fcar(k,s),b) & equal(fcdr(k,s),nil)

Figure 1.9.

Representation of a LISP List in the
Axiomatic Approach

23

ii.

iiis

iv.

ii.

iii.

iv.

equal (freespace(s),n) -
equal(freespace(s¥*),next(n)) &

equal(fcar(n,s*),value(x,s)) &
equal(fcdr(n,s*),value(y,s)) &

for all m such that not equal(m,n) -
equal(fcar(m,s*),fcar(m,s)) &
equal (fcdr (m,s*), fcdr(m,s))

-

1f while processing we encounter a statement cons(x,y)
and if we denote n as the first available cell in the

freespace stack, then

n will be popped off the freespace stack, and

the car and cdr of n will become the current binding (value)

of x and the current binding of y respectively, and

all other cells (different from n) will remain unaffected.

Figure 1.10. Axiom for cons(x,y)

24

A hypergraph is a quintuple (G,N,A,s,f) where

G is a finite set (of graphs)
N is a finite set (of nodes)
A is a finite set (of arc labels)

st G = ZN, s defines the nodes which occur in each graph

f: ¢ - ZNXAXN, and for each g € G, £(g) € s(g) XAXs(g)

1f (n,a,m) e £(g), then there is said to be an arc
from node n to node m with label a in graph g.
Note that any single graph is completely defined
by the value of s(g) (giving its nodes) and £(g)

(giving its arcs).

Figure 1.11. An Example of the "Abstract System' Approach:
The Definition of a Hypergraph

op is defined over the total data space, yet op is not part of the total

data space) is described in the following manner. Given op, its arguments
XpsEyrer s Xy and H, then some entity from H, call it v, is the value of the
operation, and H is transformed into a new abstract system H'. Mathematically,
QE(H’xl’x2’°'°’Xn) = (H',v). For purposes of convenience and naturalness,

H and H' are considered implicitly as the underlying (overall) data space

and the relatioqship becomes the familiar 22(X1’XZ’°"’xn) = v, and the
implicit argument H is now transformed into H'.

From the viewpoint of a state transition in an abstract machine,

H is the structure of the state. Thus applying op to XisXyyeenr X is equi~-
valent to making transitions from state to state in an abstract machine
where the states (H's) are generated.

The hypergraph (see Figure 1.11) is an illustration of an abstract
system where the total data space or overall state is any hypergraph
(G,N,A,s,f). In the GRASPE description, the legal GRASPE data structures
are presented. Figure 1.12 illustrates the definition of the GRASPE func-
tion cop which creates an arc. One important attribute of the definition
of cop (which is true for all operations) is that only set operations
(union, intersection, set difference, etc.) are required to specify the
condition of the generated abstract system.

In this dissertation we present the formal semantics of GROPE using
the abstract system approach. The technique of defining both levels--con-
ceptual and implementation--in a single coordinated manner is a novel idea.
None of the existing techniques has as yet been applied to more than one

level.

26

It

cop(n,a,m,g) = true with the side effect of setting

G=06U {g]}
N=NU {n,m}

s(g)

il

s(g) U {nym}

i

f(g) f(g) U {(n,a,m)}

Figure 1.12. The Definition of the GRASPE Function cop

27

Chapters III and IV present the two-level formal definition of
GROPE. Our formal definitions differ from the actual programming language
GROPE. In particular, the formal definitions do not include the supporting
constructs such as set and list processing. Because each of the graph
processing constructs in GROPE are not independent of the supporting con-
structs, we found it necessary to use terms that have a slightly different
meaning in the actual programming language. Also, certain definitions
were changed to bring out the essence of graph processing. Perhaps the
clearest statement that c#ﬁ be made about the differences in the two lan-
guages is that the graph processing primitives in the abstract system are
somewhat simplified versions of their equivalent in the actual programming
language GROPE. For a complete description of the actual programming
language, see Appendix A.

In the next chapter, the reader is introduced to the GROPE approach
to graph processing. In Chapter I1I, there is a description of the GROPE
model from the user's point of view (macro-semantics) and in Chapter IV,
there is a description of the GROPE model from the implementer's point of

view (micro-semantics).

CHAPTER II

THE GROPE APPROACH TO GRAPH PROCESSING

In this chapter most of the GROPE programming language is intro-
duced. A complete description of GROPE is given in Appendix A, This
chapter is composed of four sections. The first covers the elementary
Structures and operations. The second introduces the notion of "system
set'" as a constrained collection of elementary structures; the third sec-
tion presents two natural mechanisms (mapping operations and system set
readers) for searching and processing system sets; and in the final section
there is an introduction to some of the generality and flexibility of
GROPE's approach to graph processing.

As mentioned earlier, we believe that it is absolutely crucial that
a graph processing language have a large class of support features, Be-
sides the various supporting features described in this chapter, GROPE has
a complete list and set processing facility including input/output and a

garbage collector. The details are given in Appendix A.

Elementary Ideas

In this section the elementary data structures and constants are
introduced. 1In addition, operations are presented for creating, detaching,
and accessing information that has been associated with these structures,
The elementary data items are atoms, arcs, nodes, and graphs; and the opera-
tions are crgraph, crnode, and crarc as the creation functions, detgraph,
detnode, and detarc as the detaching functions and graph, frnode (from node),

tonode (to node), object and value as the accessing functions.

28

29

Atoms are the legal constants in GROPE. In the FORTRAN implemen-
tation of GROPE, atoms are any integer or real numbers which are valid in
FORTRAN, any arbitrary string of characters, one, two, and three dimen-
sional arrays and functions created from FORTRAN externals. For purposes

of this explaunation, GROPE atoms may be considered similar to LISP atoms.

Elementary Graph Data Structures

The elementary data structures in GROPE, as might be expected in
a graph processing language, are graphs, nodes, and arcs. In Figure 2.1,

g is a graph, x, ¥, and z are nodes, and a, b, c, and d are arcs. The
graph g is really only a graph skeleton as there are no data constants
associated with any of the structures. In order to get a useful structure
out of this graph skeleton, it is necessary to introduce constructs for
associating constants with the individual structures.

There are operations for creating and detaching the elementary graph
structures. The creation of a graph requires only an atom as a parameter.
For nodes, the parameters for creation are an atom and a graph; and for
arcs, an atom and two nodes are necessary. During the processing of graphs,
it is often the case that we find an arc, node, or graph which we would
like to detach. The philosophy used in GROPE is that an arc or node is de-
stroyed when it has been detached (it is no longer accessible) from the
structure.

There are operations for accessing information from the structures.
Given a node, it is possible to determine upon which graph the node resides.
Given an arc, there are operations for accessing the node from which the
arc emanates and the node to which it points. All the data atoms are re-

trievable given a node, arc, oOr graph. Figure 2.3 presents the operations

Figure 2.1,

A Graph Skelaeton

g: EUROPE
b: NORTH
1
]

12
CROSSED

VISITED

Figure 2.2,

A Graph Data Structure

31

Operation Arguments Result
cr graph EUROPE g
cr node LONDON g X
cr node PARIS g v
cr node ROME g z
cr arc Z SOUTH a
cr arc p:d NORTH b
cr arc y NORTH c
cr arc z SOUTH d
hang b CROSSED b
hang y VISITED b

Figure 2.3. Creation of a Graph Data Structure

and arguments to the operations for the creation of Figure 2.2, and

Figure 2.4 presents its accessing functions.

System Sets

In this section the ''system sets' are introduced. A system set is
an ordered collection of elementary structures which satisfy some pre-
determined specifications, These are called system sets because they dif-
fer from ''user'" sets and because no system set may contain more than one
occurrence of the same elementary structure.

At this point all of the information has not been gleaned from the
structures, There is an alternate way of viewing the structures of Fig-
ure 2.2. This perspective introduces us to the notion of a system set.

The system sets with which we are concerned are the rseto (the set
of all arcs emanating from a node), the rseti (the set of all arcs termin-
ating at a node), the ndset (the set of all nodes oa a graph), the nset
(the set of all nodes with the same object), and the grset (the set of all
graphs).

A system set is a collection of elementary structures which have
certain properties in common. For example, using Figure 2.2, the components
of the set {a,d} have the followingz properties in common:

1. a and d are both arcs

2. a and d both emanate from the node z (have the same [rnode).
Similarly, the components of the set [b,d} sharc the properties that:

1. b and d are both arcs

2. b aad d both terminate at node y (have the same tonode).

These, in fact, are the criteria for membership in the rseto and rsecti

graph

frnode

tonode

g X y z a b c d
g g g

z X y z

X y z y

object | EUROPE | LONDON | PARIS ROME SOUTH | NORTH | NORTH | SOUTH
value VISITED CROSSED
Figure 2.4. Accesses from a Graph Data Structure

33

34

respectively. Thus for some node n the rseto(n) is the set of all arecs
emanating from the node n and the rseti(n) 18 the set of all arcs ter-
minating at the node n.

In addition, the components of the set {x,y,z)} share similar pro-
perties:

1. x, y, and z are nodes

2. %, y, and z reside on the same graph (have the same graph).
Thus for some graph g, the ndset(g) is the set of all nodes on graph g.
See Figure 2.5 for the system sets of the structure depicted by Figure 2.2.

There are two other system sets; however, the structure of Figure 2.2
is inadequate for displaying the relationships associated with these sets
(see Figure 2.6). These system sets are the nset (the set of all nodes
with the same object) and the grset (the set of all graphs).

In the structure represented by Figure 2.6, we are now dealing
with two graphs, g and h, as the entire structure. The system set, grset,
is the set {g,h}. The final relationship which can be noticed from Fig-
ure 2.6 is the notion of two or more nodes having been created from the
same atom. The nset(a) for some atom a is a system set which is the set
of all nodes with the object a. Figure 2.7 illustrates all the system
sets of this structure.

There appears to be little necessity to give motivation for the

existence of the system sets rseto, rseti, ndset, and grset. However, the

system set which is composed of all the nodes with the same object, the
nset, requires some explanation. Consider once again Figure 2.2 and sup-
pose we would like to find the node y given the graph g, and the atom PARIS.

There are obviously two alternatives for finding the node y. One way is

35

g x y z
ndset {%,y,2}
rseto {b} (c} (a,d}
| rseti (a} (b,d) {c}

Figure 2.5. System Set Retrievals for a Graph Data Structure

36

Figure 2.6.

g: KUROPK

CROSSED

VISITED

h: AMERICA

A Structure Which Emphasizes the nset and grset

37

J953F pue 39su =y3 sozrseydwyg YOTyM SINIONIIS 9Y] 103F STBASTIISY jos-wo3shg °/°7 =2and1J
{2} {p‘q) {®] (@) {3 13981
{p‘e) {2} {a} {] {®]} 03981
{nfa) EALSES) jaspu
{afz} 'S {x) 39su
(g8} | 39818
Z L X I\ A Y 3 HWOY STdvd NOGNO'1

34

to search all the nodes on graph g [ndsct(g)], until we find one with
object PARIS. The other way would be to search all the nodes with object
PARIS [nset(PARIS)], until we find one on graph g. Since most graph struc-
tures contain many nodes, the search down the ndset (set of all nodes on

a graph) is in general likely to be more expensive than the search down
the nset (set of all nodes with the same object). It should be pointed
out that there are diabolical structures where the reverse is true, but
experience has shown that these diabolical structures rarely occur.

One motivating aspect of the system sets that cannot be overlooked
is that the structures are woven into one another to form all the system
sets and do not require any storage beyond that required for graphs, nodes,
and arcs. Thus once the creations (crgraph, crnode, and crarc) have been
accomplished, no new sets need be created in order to process the system

sets. Details of this storage structure are presented in Chapter 1IV.

Processing Graphs

The primary mechanism for processing graphs is by accessing system
sets and searching these system sets. There are two searching techniques
in GROPE. The first is the utilization of the mapping functions and the

second is the system set readers with their associated operations.

Mapping Functions

The mapping functions allow the user to selectively search a systoem
set and sequentially process each individual element of the set. The mapping
functions are distinguished by their class and by their type. There are
four classes of mapping functioas. First there is a class of mapping func-

tions which simply process the elements of a set; second, there are those

39

that detach specified clements from the system scts; thied, there arce
those which build a new list composecd of specified values; and finally
those which build a new set (user's set) composed of specified values.

There are three types of mapping functions. The three types are
those that process every element of a set (map type), those that process
until a value is false (and type) and those that process until a value is
not false (or type). Every mapping function is in one class and is of one
type. Thus we can describe the set of all mapping functions using a chart
(see Figure 2.8).

A mapping function requires a system set p as its first parameter,

a fuaction ft as its second parameter, and zero or more additional para-
meters. Consider the following example of a mapping function which re-
moves all of the arcs emanating from a particular node as a typical mapping
operation. The transformation of Figure 2.9 would be accomplished by
dmapft(p,true) where p = rseto(w) = {a,b,c} and true(x) = x for all x.

What actually happens with dmapft is that for each P; € P, true(pi) is pro-
cessed and if true(pi) # false (as it always is) then 1 is removed from p.
Note that had the function been dorft(p,true) then just the first arc would
be removed (ses Figure 2.10).

Figure 2.11 presents a definition of all the mapping functions, and
Figure 2.12 shows some of the versatility of the mapping functions by
illustrating each with six different functions. In Figure 2.12, the con-
tents of each position is the value of f(p,ft) unless that position contains
"p = " which means that p, the rseto of w, has perhaps been side-effected.
The examples (dmapft,true) [dmapft(p,true)] and (dorft,true) [dorft(p,true)]

from Figure 2.12 are illustrated by Figures 2.9 and 2.10. Note that the

40

type
class
map and or
mapft andft orft
d dmapft dandft dorft
£ fmapft fandft forft
s smapft sandft sorft

Figure 2.8. Table of Mapping Functions by class and type

Figure 2.9. dmapft(rseto(w), true)

42

Figure 2.10. dorft(rseto(w),true)

43

v
£ false not false q
control action i control
|
i
mapft - no action ! - vorpifp= (]}
i
!
dmapft - P=7P- [Pi} ; - P
|
ﬁ,mapft1 - t =t . (V) i - t
smapftl - t =1t U (v} E - t
|
]
andft stop no action : - vorpif p= (}
I
I
dandft stop P=P - (pi} : - P
H
zandftl stop t=t . (v) i - t
i
sandft’ stop t=1tU (v} } - t
; !
| i
orft - no action : stop v or false if p = (}
i
dorft - Pp=pP - (pi} ' stop)
i
,Zorft1 - t=t . (v) ! stop t
1
sorft1 - t=tU {v} ' stop t
i

Figure 2.11. Definition of the Mapping Functions

Each mapping function, f, has the same calling sequence, q = f(p,ft,argz,
.eny argk) where p is a system—set2 (pl,...,pm}. The elements of p are

sequentially processed and return the value v = ft(pi,argz,...,argk).

- means that if all the elements of the system-set have been processed then
stop, otherwise process the next element.

1 t is a newly created list or set depending upon the class.

Actually p can also be a list or set.

. is concatenation of two lists - (vl,vz,...,vk) . (ul,uz,...,uj) forms the

1iSt (V]_’VZ’ .o O)Vk’ul’uz.’ . "uj)‘

44

ft

£
frode tonode object value true false
mapft W z 3 XED c false
dmapft |p={} p=1{] p={} p= (b} p={]} p={a,b,c}
fmapft (www) (xyz) (233) (XED XED) (abc) O
smapft {w} (xyz) {23} (XED} {abc} (]
andft W z 3 false c false
dandft | p={) p=(} p={} p=(b,c} p={} [|p=(a,b,c]}
Landft (Wwww) (xyz) (233) (XED) (abe) @)
sandft {w} (xyz) {23} {XED} fabc} (]
orft w X 2 XED a false
dorft | p=(b,c}| p=(b,c}|p=(b,c} | p=(b,c] | p=(b,ec) p={a,b,c}
Lorft (w) =) (2) (XED) (a) O
sorft {w} {x} {2} (XED} {a} {}
true(p,) = 1
false(pi) = false

Figure 2.12.

Versatility of the Mapping Functions

45

user of GROPE may pass any function as the second paramecter to any mapping
function including those that the programmer writes himself.

Experience has shown that the mapping functions of GROPE are suffi-
cient for most graph problems. There are two aspects wnich need to be
emphasized about mapping functions. First, there is the aspect that
graph processing 1is enhanced by the mapping functions and that in fact
the mapping functions are merely support routines. Second, the mapping
functions are built-in control structures represented functionally. It is
this second fact which allows a programmer to use mapping functions and
avoid numerous logical errors.

In the remainder of this section we discuss some aspects of the
reader mechanism of GROPE. As an illustration of the reader mechanism we

present an algorithm for the definition of all the mapping functions.

System Set Readers

In the event that the mapping functions are insufficient, there
are mechanisms which allow for a step-by-step processing of structures.
These mechanisms, called linear readers, exist for the purpose of search-
ing system sets. Every system set has a finite number of components and
the reader mechanism allows for their processing, one element at a time,
in the analysis of aﬁ algorithm.

There is an operation which creates a reader of a system set. Thus
r = creedr(p) where p is a system set causes T to be a reader of that system
set., Next, given any reader of any system set, the operation traverse out
(to), has two separate responsibilities. First, to advances the reader to
the next component in p, and second the value returned by to is that com-

ponent. For example, using t = to(r), the first execution causes t to be

46

the sceond causes t to be Py> etc. Thus we can write an algorithm to find

th

the n component of any system set. Let p be a system set; then Figure 2.13

represents an algorithm which terminates with t as the nth component of p.

There are two ways to determine when a reader has read the mth
(recall that p = {pl,pz,...,pm}) component in a system set. The first way
is to note that there is a function which, given a system set p, determines
the number of components in p. The function is called length. The second
mechanism is a predicate that determines whether or not a reader has just
read the last component in a system set. The predicate is termed isatnd
(which asks if the reader is at the end of the system set). Thus two ways
of searching for every element in a non-empty system set p are given by the
algorithms depicted by Figure 2.14 and Figure 2.15. Note that Figure 2.13
and Figure 2.14 are effectively the same.

In the definition of the mapping function, mapft, the algorithm
using isatnd is employed because, for example, creations (with the ft)
might increase the length of the system sets. Recall that x = mapft(p, ft,
arg25...,argk) is the standard parameter sequence of the function mapft.
Figure 2.16 gives the definition of mapft. Note that in this definition,
length is used as a predicate to determine whether or not the system set p
is non-empty. Figure 2.17 is the definition of all the mapping functions
(recall Figure 2.8 for the definition of type and class predicates).

It is expected that for most problems, the mapping functions suffice
and the user of GROPE should make every effort to become familiar with the

mapping functions and to relegate the reader creation and to operations to

secondary consideration.

—

47
m = length(p)
r = creedr(p) r = creedr(p)
t = to(r) t = to(r)
t - t
Figure 2.13. The nth Component of p Figure 2.14. The Last Component
Component (p, n) of p
r = creedr(p)
> t = to(r)
————(:j isatnd(r) ::)
true

Figure 2.15. The Last Component of p Allowing for p to Be Altered

48

(:: length(p) . 9

v = ft(to(r),argz,...,argk)

{:: isatnd(r) ﬁi:>

true

Figure 2.16, mapft(p,ft,argz,...,argk)

49

length(p) }

r = creedr(p)

gii

to(r)

i

<
it

ft(pi,argz,...,argk)

class

isatnd(x)
or true £,s,d

Cam

£,s d or

Figure 2.17. f(p,ft,argz,...,argk)

I

50

Generalizations

In the preceding three sections we have been dealing primarily
with very elementary relationships. In this section we present some of
the more subtle aspects of GROPE. Specifically, we shall discuss the
notion of a one-way arc, complex graph-based structures, sophisticated
graph readers, and the graph modification operations. Most graph pro-
cessing algorithms can exist without these features; howevar, it is these
features of GROPE that make GROPE unique. It is these relationships whnich
make graph processing an exciting, challenging, and rewarding (both con-
ceptually and productively) experience. A prozrammer can master the first
three sections and yet not fully understand what we mean by "graph process-

ing."

One-way Arcs

The removal of restrictions is a very natural way to incorporate
generality. This paradigm is one of the cornerstones of GROPE. In the ex-
ample of one-way arcs we use this paradigm. The restriction is that an
arc joining nodes n and m is necessarily in the rseto(n) (the set of out
pointing arcs leaviug the node n) and in the rseti(m) (the set of incoming
arcs to the node m). Although for many algorithms this restriction causes
no problem, by removing this restriction we obtain a more complete class
of structures. We still maintain that an arc has a frnode (the node from
which the arc emanates), a tonode (the node to which the arc points), an
object and a value. But it is possible to find an arc in the rseto of some
node which is not in the rseti of aiy node, and which thus conceptually can

be traversed oaly in the directioa it points. Thus, pictorially, we denote

51

m:

this type of arc as where rseto(n) = fa) and

S

rscti(m) = {}. A natural use for "one-way-out' arcs would be for inter-
preters of flow graphs or as a simulator of abstract automata represented
by state transition graphs.

More unusual than the "one-way-out' arc is the "one-way-in' arc.

n: .mz2
. a: s .
This type of arc is pictured as ! where rseti(m) - (a}
and rseto(n) = [}. Such arcs are useful when one wishes to traverse an arc

and then make it impossible to traverse the arc again if the graph contains
a loop.

Thus there are one-way-out arcs, one-way-in arcs, and regular arcs
(where a € rseto(n) and a € rseti(m)). It is important to note that one

graph may contain any combination of these arcs.

Complex Graph-based Structures

On the surface, nothing has been presented which directly allows
for any kind of sophisticated data structures. But with the removal of
one more restriction, we can enter the world of complex graph-based struc-
tures. We remove the restriction that objects and values must be atoms
and allow objects and values to be arcs, nodes, and graphs as well, With
this generalization, we can consider Figures 2.18 and 2.20 as typical illus-
trations., In each figure, g and h are graphs; n, m, w, x, y, and z are
nodes, and a, b, ¢, d, and e are arcs. Figure 2.19 and Figure 2.21 present
the associated retrieval information for Figures 2.18 and 2.20, respectively.
These complex graph-based structures have a number of potential uses.

For example, by allowing the values of nodes to be graphs, these structures

wut
N

Figure 2.18. A Complex Graph-based Data Structure

53

sin3onils ®aed peoseq-ydeid xo1dwo) ® 103 STBAPTIIN *61°7 °In31d

———y
™ | O el O 0 P 13951
{p} (=11 O (3| (&3] O o3esa
(m kY | wiER) {u) ja9su
{2 |{ méufu) jospu

(y‘8)| 19818

anieA
€ S K [4 1 S ! S 01 g 0T 01 11 393(qo
Z n w z £ apouol
A w u pd X spouij

g 2 y L& q 8 ydeasd

01 c 2 P o q) w u z A X M Y 3

Figure 2.20.

Another Complex Graph-based Data

Structure

1)

san3oniag BIBQ poseq-ydeid xodwop 19yjouy 103 STEASTIIZA *12°7 °an8Td

{} {} poa) (=) {} {=} 13981

(23] (a3 O (o) ((ep&} (I 07981

ﬁamiu josu
RExm)

HNQ

..,SnEw nunmﬁw

198pU

{y‘8) 19813

p anies

1 1 ! 1 u S S S S S S S S 303fqo

M z y2 Z A apouol
w X L u X apouxj
q 3 8 8 8 q ydeasd

01 S ° P 0 q B W [Z K X [q g

56

simulate hierarchical graphs. Nested finite automata (the Woods machine

[441) can be represented by allowing the value ol arcs to be graphs.

The Graph Reader Mechanism

The graph reader is a new idea in graph processing. This mechanism
allows searching graph structures in a controlled manner., As a graph
reader moves across an arc from one node to another node, it "ages'" the
arc it crosses. By this we mean that the arc which was crossed becomes the
"oldest" arc leaving a node. The arc that the graph reader mechanism had
chosen was the ''youngest' arc.

Actually, every node which has a non-empty rseto, also has one of

these arcs as the current-arc-out. Since the system sets are ordered, it

is possible to retrieve the next arc after the current-arc-out. This next

arc is chosen and it becomes the new current-arc-out, Similarly, when an

arc is crossed in an in direction, the current-arc-in is affected. The

graph traversal operation requires a graph reader. A graph reader is cre-
ated with some node on the graph. The operation r =creedr(v) where v is
some node, creates a graph reader r. The operation to(r) traverses the
reader in an out direction and ti(r) traverses the reader in an in direction.
There is a function, curarc, which has as its value the latest arc
crossed by any graph reader. If a + 1is placed on an arc when it is the

current-arc-out and a - on the current-arc-in, then the algorithm in

Figure 2.22 produces the results shown in Figure 2.23,
At this point very little experience has been gained using the
graph reader, and it would be unreasonable to make any generalizations

about this tool. Suffice it to suggest that the memory used within the

node for the current-arc-out and current-arc-in appears to be a good way

r = creedr(v)

A, = to(r

;= to(®)

B. = curarc
i

C. = ti(r
-t

D. = curarc
i

Figure 2.22.

Traversing with the Graph Reader

57

W X X false false

a b c £ f
false z false false

a c b £ f

Figure 2.23.

Data and Results of Algorithm

15—

59

of automatically keeping a path between nodes on certain types of graphs.
We look forward to some experimentation with graph readers to determine
the relative flexibility of this tool within the context of graph process-

ing.

Graph Modification Functions

The "changing functions' or structural modification functions intro-
duce us to another aspect that makes GROPE very general. One of the ob-
vious changing functions is the function hang. All that hang (x,y) does
is simply hang the value y from the structure x. A more interesting chang-
ing function is the function chafrn, which changes the frnode of an arc.
Here chafrn(x,y) causes y to be the node from which the arc x emanates.
Consider the implication of this operation using mapft(p,chafrn,w) where
p = rseto(n) = {a,b,c}. See Figure 2.24 for an illustration of this trans-
formation.

When we consider that chafrn requires no searching, although possibly
a deletion and an insertion, it is pleasing to note that the cost of this
transformation is a small constant times the length(p). In fact, there
are no searches in any of the changing functions.

Other changing functions change the tonode of an arc, the graph of
a node, and the object of a graph, node, or arc. Consider the function
chagr, which changes the graph upon which a node resides. Any arcs attached
to the node on the original graph remain attached to the node on the new
graph. Thus note that an arc from a node on one graph to a node on another
graph is perfectly acceptable. See Figure 2.95 for an illustration of this

transformation. One of the uses of such structures, as a natural generali-

zation, is the representation of a graph by its subgraph structure with

60

Figure 2.24, mapft(rseto(n),chafrn,w)

Figure 2.25. Changing the Graph of a Node

62

arcs connecting nodes from one subgraph to another. See Figure 2.26 for

an illustration of a graph represented by subgraphs. We believe that, as
graph processing algorithms get more sophisticated, these efficient chang-
ing (requiring no creations, no destructions, and no searches) functions--
as well as all the generalizations mentioned in this section--will play a
major role in reducing some of the combinatorial aspects of graph process-

ing.

CHAPTER IIX

MACRO-SEMANTICS OF GROPE

In this chapter the macro-semantics of GROFE are developed, Recall
that by "macro-semantics’” we mean a formal definition which is designed to
provide user understanding. Just as Chapter Il is a description of GROPE
from a user's point of view, so are the definitions presented in this
chapter. In the next chapter we concern ourselves with the formal imple-
mentation level definitions, the micro-semantics.

As mentioned earlier, the GROPE extension that has been chosen for
formal specification is somewhat different than the actual programming lan-
guage extension, GROPE. For the most part, the formal GROPE is a slightly
simplified version of the actual GROPE. From here on the term HGROPE"
will be used for both GROPEs; however, in Chapters IIT and IV it will
generally refer to the formal GROPE.

At this point we have discussed some of the highlights of GROPE
(Chapter I1) and have given an informal introduction to the "abstract sys-
tem' approach (Chapter I) to formal definition of programming languages,
In this chapter we present the macro-semantics of GROPE as an example of
the “abstract system' approach. This chapter is composed of four sectionms.
Tn the first section a formal statement of the "abstract system' approach
is presented; in the second section a sample abstract system for the macro-
semantics is defined; in the third section the data structures for the
macro-semantics are described; and in the fourth section operations over

these data structures are given.

64

65

The "Abstract System' Approach

Recall from Chapter I that "abstract gystem' definitions of pro-
gramming languages are composed of three basic aspects. First, a total
data space is defined; then data structures are described; and finally,
operations over the data structures are presented., Figure 3.1 defines the
concepts abstractly. Our treatment of the macro-semantics and micro-semantics
follows a similar patterm.

In the macro-semantics the total data space is an abstract system,
gds; the data structures are described by the definition of bodies (ordered
n-tuples); and the fixed set of operations are developed by giving the
transition rule for generating new states (gds's). In the micro-semantics
the total data space is an ''abstract system," GDS. The data structures are
described by the definition of the functions ARCS and TYPE, and the fixed
set of operations once again are developed by giving the transition rule
for generating new states (GDS's). Thus our definitional technique defines
the same fixed set of operations over two different "abstract systems' with
two different conceptual data structures (i.e. one for the users and one

for the implementers).

The Total Data Space of the Macro-semantics

The first phase of the formal definition of programming languages
is to describe the total data space. The gds (graph data structure) defined
below is the total data space of the macro-semantics.

A gds is a pair (L,body) where

| i, L is a countably infinite set of location points. L is

partitioned into two sets, L0 (the unused locations) and

[5R8)

Let H = <81’SZ’°°°’Sj’F1’EZ’”‘°’Fk> be an abstact
system where

1. For all i such that 1 < 1 < j, Si is a set.

2. For all i such that 1 < i <Kk, Fi is a function.
An operation £ defined over H with parameters S EL T ERRPL W
is given by f(H,xl,xz,saﬁjxn) = (H',v) where
V,%, € S1 U 82 U... U S;,5 and H'= {Si, é,e‘ﬂ;S%fFj,Fi,.,ngFi)
For notational convenience and naturalness, H and H' are
considered implicitly., Hence the operation, f, becomes
the familiar £(X,,X.,...;%)} = V.,

172 n
Figure 3.,1. Formal Specification of the "Abstract System” Approach

67

a finite set V. V is further partitioned into sets
E, G, N, A, C, and (A\}. 1Initially, V contains A, the
null value.

ii. body is a function such that

E - {x:x is an element-body}

c-»{x:xis a graph—bodx}

(Y3

body : N-{x:xis a node-body }

A - {x:x is an arc-body}

| C—o({x:xis a cursor-body}

Elements of the sets E, G, N, A, and C are termed elements,
graphs, nodes, arcs, and cursors, respectively. Note that
if x, x' e v with x # x', then it is still possible for
body (x) = body(x'). For example, two arcs may have equi-

valent arc-bodies and still be different arcs.

The Data Structures of the Macro-semantics

The second phase of the formal definition of programming languages
is the description of the data structures, The data structures of the
macro-semantics of GROPE are bodies (ordered n-tuples). For each data
type (elementl, graph, node, arc, and cursorz) there is a body type defined
which contains the necessary components for describing the macro-semantics
of GROPE. When a body contains an ordered k-tuple as a component, then
the ordered k-tuple is a system set (Chapter II). The nset is denoted by
N, the ndset is denoted by N+, the rseti is denoted by A and the rseto

is denoted by A+.

1Element is synonymous with atom in the actual GROPE.

2Cursor is synonymous with reader in the actual GROFE.

68

The Bodies

An element-body is a pair (V,N-) where

v € V, the value

N e (A} U {(yl,...,yk) :y; €N for all 1 <i <k}, the

attached set of nodes., For i # j, then i # ¥y and
for an element, e, if y ¢ N;, then by is e (where

by is the b-component of the node-body of y).
A graph-body is a pair (V,N+) where
v €V, the value

N e (A} U ((%,-+->%) 1%, € N for all 1 <1 <k}, the

k

related set of nodes. For i £ j, then x; # x, and

for a graph, g, if x € N;, then u is g (where u

is the u-component of the node~body of x).
A node-body is a septuple (v,u,b,A+,a+;A—,a-) where

v € V, the value
u € G, the origin (the graph of residence)
b € E, the object

AT e (MY U {((x,..05%) 1%, €A for all 1 <1 <kJ, the

related set of arcs. For i £ j then X, # xj and for
a node, n, if x € A;, then u is n (where u is the
u-component of the arc-body of x).

+ +
a e (A} UA', the current-arc-out

A e (A} U ((yy7+-,9) 2 y; € A for all 1 < i <k}, the

attached set of arcs. For i # j then ' # Y5 and for

69

a node, n, if y € A;, then by is n (where by is

the b-component of the arc-body of y).

a e {A} UA", the current-arc-in.

An arc-body is a triple (v,u,b) where
v € V, the value
u € N, the origin (the node from which an arc emanates)

b € N, the object (the node at which an arc temminates).

A cursor-body is a triple (v,u,b) where
v € V, the value
u e N UA, the origin
b e N UA, the object.

If b € N, then u € N; and if b € A, then u e A,

In order to illustrate a simple gds consider a graph composed of
two nodes and one arc. Figure 3.3 is a formal statement of the gds of

Figure 3.2,

Operations in the Macro-sgemantics

The GROPE primitive operations are partitioned into five classes.
The first class contains all of the creation operations along with their
associated predicates which determine whether or not a value is of a cer-
tain type. The second class is composed of the basic retrieval operations,
The third class contains the "state" changing operations., The fourth class
contains the structural changing operations, and the fifth class is the cursor

- (reader) traversal operations.

70

Figure 3.2.

A Simple Graph (or gds

)

1}

il

1f

(LOlJV,bodz) where V = EUGUNUAUCU{A}, C = ¢

{ei,ez}

il

bOdz (el) (7\: (nl))

il

body (e,) (A, (@y))

(gl}

it

body (gl) (A, (nl’nz))

{nl’ nz}

I

bodz(nl) (K,gl,el,(al),al,%,%)

il

Mi(nz) (7\,81,82,7\, A, (al)’al)
{al}

body(al) = (K,nl,nz)

Figure 3.3. H = gds of a Simple Graph

71

Creation operations and associated predicates

{(Recall that each function definition has a gds, H, as an implicit

argument and a modified gds, H', as an implicit result.)

a. create-element() = r where r € L. Let r ¢ LO. Place r € E, remove

r from LO and define body(r) = (A,A).

[#1r%cs
b, is-element(*) =

1 A otherwise

¢, create-graph() = r where r ¢ L., Let r € LO. Place r € G, remove

r from LO and define body(r) = (A,A).

* 1if * € G

d. is-graph(¥) = .

A otherwise

e, create-node(¥*,*¥%) = r where ¥ € G, *%* ¢ E, and r € L. Let r ¢ LO.

Place r ¢ N, remove r from L., and define body(r) =

07
(}\’ e Kk 7\’ ?\’ ?\, ?\) .

J* if % e N
is-node(¥) =

h

L% otherwise

1o

z create-arc(¥*,%%) = r where *,** ¢ Nand r ¢ L. Let r ¢ LO' Place

r € A, remove r from L_, and define body(r) = (A, %*,%%},

O}
* if ¥ e A

h., ds-arc(¥) = .
A otherwise

i. create-cursor{(®*) = r where * ¢ N UA and r ¢ L. Let r ¢ LO' Place

r € C, remove r from L., and define body(r) = (A,*,%),

O’

73

* if * € C
j. is-cursor(¥*) = .
A otherwise

2. Retrieval operations

The group of operations referred to as the retrieval operations can,
for the most part, be discerned directly from the data structures of the
gds., There are, however, aspects that at this point could bear clarifica-
tion.

The operation value is primarily to allow for the development of
hierarchical structures, For example, a node whose value is a graph might
very well be a representation of a list structure. The value of a cursor
may be another cursor, thus allowing for the construction of a stack of
cursors simulating a SLIP [40] reader, The operation, value, is also,
of course, a natural mechanism for retrieving constants associated with
nodes and arcs,

The operation object is of a more specialized nature than that of
value. The object of a node must be an element and the object of an arc
must be a node. The operation attach (in class 3) ties together those nodes
and arcs with the same object.

Much that can be said about object is true also for origin with
slight variations, The origin of a node must be a graph and the origin of
an arc must be a node., The operation relate (in class 3) ties together
those nodes and arcs with the same origin. A more complex situation exists

for the origin and object of a cursor., When the origin of a cursor is a

node, then the object of that cursor must be a node. Similarly, when the

origin is an arc, then the object must be an arc.

74

The current-arc-oul (in) represents the arc most recently crossed

by a traverse-node (graph) -out (in) operation (see Class 53).

The last-of-related (attached) -set represents the fact that there

+ - + -
is direct access to the last structure in the sets N (N) and A (A).

These structures being circular and with related (attached) -successor and

related (attached) -predecessor, one can access all the structures in the

sets NT () and AT (A7),

o, - ‘ e -
a. wvalue(*) = v where ¥ ¢ V {A} and Vbody (*) e V.

b. origin(¥) = u where * e N UA U C and Upody (%) © G UN.

¢. object(*) = b where * € N UA UC and bbod () ¢ E UN.

A |
- -) - Y € -
d. current-arc-out(*) = a where * ¢ N and A ody (%) c AU (A}

In order to proceed we introduce some

notational conventions

(1 X: is N: if s € G and X: is AZ if s € N; similarly
v is N_ if s ¢ E and v~ is A if s e N.
s s s s

(2) Shod) is abbreviated to s for s being v, u, b, X+, a+, Y, or a .

3) i®j=1+ jmod k
i@ j=1i- 3 +kmodk
However, when we consider arithmetic of subscripts, the ordered k-tuple
is renumbered (XO’Xl’Xz""’Xk-l)' Recall that k is the number of com-

_+ -
ponents in the tuple (system set) N, A*, N, or A . Defining @ and

© this way should make the structure appear circular.

75

Continuing with class 2 (retrieval operatioms),
?xkex+ifx+¢?\
e. last-of-related-set(¥) = i , where * € GUN,

A otherwise

[Xiel < X +
f. related-successor(¥) = , where ¥ eNUA and *=x, eXu.
A otherwise 1

]Xi@l € X,
g. related-predecessor(¥*) = ’ , where *e¢ NUA and
17\ otherwise * = X €x .

h. current-arc-in(¥*) = a where * ¢ N and a e AU},

Yy € Y if Y #A
i. last-of-attached-set(¥*) = , where ¥ ¢ G U N,
A otherwise
!'y. eY, _
i@l b , where *e NUA and *=y, eY,.
17\ otherwise :

j. attached-successor (*) =

y. eY
k. attached-predecessor(¥*) = iol b , where *e NUA and _
A otherwise * = s eYb.

3. State changing operations

There are four possible states that a node or arc can be in:

isolated, related-only, attached-only, or regular., Figure 3.4 shows the

notation for the possible states of nodes and arcs. Regular structures

are both attached and related; isolated structures are neither attached

nor related. Freshly created nodes and arcs are obviously isolated. When

a structure is related (attached) it is placed into a set, the elements of

which share the same origin (object). When a structure is unrelated

(detached) it is removed from the set; however, it maintains the same origin

76

states nodes arcs

™
/ \
isolated (——’""“} -
N /
S

related-only Q Q
_z/

TN
/ \
attached-only

regular @

Figure 3.4. The States of Nodes and Arcs

77

(object) for perhaps a later insertion. If a structure has been unrelated

(detached), then at worst it is isolated and at best it is attached-only

(related-only).

At this juncture we introduce a final

notational convention

(4) When body(z) = (pl,pz,...,pm) and we want to redefine the body(z) =
(ql,qz,...,qm) then for all i such that p; = 4; ve denote q; as ﬁi.
Using this definitional notation allows us to emphasize what concep-
tually stays constant and what conceptually varies during an operation.
a. relate(*) = * where * ¢ N UA and * ¢ XI. Define

body(u) = (¥, (*)) if * e N and N, = A or
(¥, (%5 ek) if % € N and N:; 4\ or
(v,8,B, (%), %,A7a7) 1f * e A and A = A or
,4,b, (*,;zl,...,;zk>,é+,A‘,é‘) if % c A and A_ 4 A,

b. unrelate(*) = * where * ¢ N UA and * = X, € Xz, Define

body(u) = (v,A) if * ¢ N and NZ = (*) or
(v, (}.cl,...,fciel,)'{i@l,...,ﬁk)) if * ¢ N and N: 4 (¥) or
(v,8,b,\,\,A,47) if % ¢ A and A = (¥) or
SRR S S S R G

) +
if ¥ ¢ A and a £ * or

(v,u,b, (Xl, SRR 1v¥aq1r "Xk)’xigl’A ;8)

. + \
if ¥ ¢ A and au = %,

c. attach(¥) = * where * ¢ N UA and * £ Yg- Define
body(b) = (¥,(¥)) if * e N and Ng = A or

(v, (*,&1,...,§k)) if *# ¢ N and N,; /N or

(ﬁ,ﬁ,E,A ,a ,(¥),%) if * € A and A = A or
+s e o *F+ o4 , . . .- ., - -
(v’u’b’A ,a ’(‘A"yl,.,.’yk)’a)y if * € A and A.b % A.

d. detach(*) = * where * ¢ N U A and * = vy ¢ Y;. Define

P_O.gﬂb) = (\.’)7\) if * e N and N;) e (’k) or
(\}) (}'71)'0')}.7@1;}.7@1;-..,5’1()) 1f * ¢ N and N;) / (‘«'C) or
(\',’ "’1) E)A.’+) é'+) 7\) 7\) if * € A and A]; B (7'() or

e e ot e e-
(v,u,b,A ,a, (yl’”"yial’yi@l"”’yk)’a)

if * € A and ay £ * or

(;’;ﬁ:B)A ,a ’(yl’ ”"yi*@l’}"i@l’ '“’:;Ik)’yi@l)

if ¥ € A and ab = %,

In order to show how the gds is changed as a result of these operations,
consider Figure 3.5 as a typical data structure represented by the gds of
Figure 3.6, Then the following sequence of operations generates a new gdsg

depicted by Figure 3.7.

relate(a6) makes a, a related-only arc by redefining

body(nl) = (K,gl,el,(a6,a2,a3,a4),a4,K,K) and

attach(a6) makes ac a regular arc by redefining

bodz(nz) = (%,gl,el,h,K,(a6),a6) and

Figure 3.5.

Graph Structure for Semantic Examples

79

80

H = ubumgg&)wmxev==EUGUNUAUCU{A}
E = {el}

body(g;) = (s (m,5m5))

bOdY(gz) = (?\:7\)

N = {nl,nz,n3,n4}

Egiz(nl) = (K,gl,el,(az,aB,aq),aA,K,%)
Egéz(nz) = (%,gl,el,K;%,K,%)

Eggx(n3) = (%,gl,el,K,%,(ah,a5),a5)
Qggz(nq) = (K,gz,el,K,%,(al,az),al)

A= {al,az,aB,aA,aS,a6}

body(a;) = (A,ng,m,)
body(a,) = (Any5m,)
body(ay) = (Amny,ng) = body(a,)
body(az) = (A;n,,ny)
body(a,) = (%,nl,nz)
C = {cl,cz}
body(e) = (Aymy,m))
body(c,) = (A,a,,a5)

Figure 3.6. H = gds of Graph Structure for Semantic Examples

81

Figure 3.7. gds After State Changing Operations

82

unrelate(aa) makes a, an attached-only arc by redefining

body(nl) = (%,gl,el,(a6,a2,a3),a3,%,%) and
detach(aa) makes a, an isolated arc by redefining
body(nB) = (A,gl,el,K,%,(aS),as) and

detach(as) makes as an isolated arc by redefining

.13.9.@1(“3) = (A 81° el:'}\ﬂ\: NN

4. Structural changing operations

The next operations are the structural changing operations. In-
cluded in these operations is the operation hang, which gives structures

values. The operation change-current-arc-out (in) simply makes the arc

which is its argument the current-arc-out (in) of the appropriate node,

For change-last-of-related (attached) -set, the argument passed becomes

the last structure in the set. Its related (attached) -successor becomes

the first structure in the set, etc. In both change operations the argu-

ment must be related (attached). The operation change-origin (object) re-

gquiires that its first argument not be related (attached) if it is a node

or an arc. If it is a node, the node is moved to a new graph; if it is an
arc, the arc emanates from a new node. If it is a cursor, then the opera-
tion effectively reinitializes the cursor. In the event that the origin

of the cursor is the same type as the second argument, then only the origin
(object) is changed.

a. hang(*,*%) = * where * ¢ V- {A} and ** e V. Define

body(*) = (*¥*,N) if * ¢ E or

(##,§) if * € G or

83

e e e et s em
(*¥*,u,b,A ,a ,A ,a) if * € N ox
(*%,0,b) if * € A or

(**%,4,b) if * e C.

+
change-current-arc-out (¥) = * where * ¢ Au' Define

body(u) = ({I,G,E,A+,*,A ,a).

change-last-of-related-set (%) = * where * = x; € X:. Define
body(u) = (v, (xiﬂal"””xk’xl""’xi)) if * ¢ N or

o e e e . . . e oam e
(v,u,b,(xi@l,...,xk,xl,...,xi),a ,A ,a) if * e AL

change-current-arc-in(¥*) = * where * e Ab Define

body(b) = (v,u,b,4 ,a ,A7,%).

change-1ast-of—attached—set(*) = % wyhere * = Y [Y'];. Define

_@,Qd_z(b) = (".7: (}.7]»_@1)'-'53}1()3.’13'-“)5’1)) if * € N or
. e c+ O »- .
(v,u,b,A ,a ’(y:i_@l’“"yk’yl"“’yi)’a) if * e A,

change-origin(*,*%) = * where * ¢ N U A U C and **% ¢ GUNUA,

Define

. P T
body(*) = (v,**,b,A ,a ,A ,a) if * e N, ** ¢ G and * ¢ N: or

(v,%%,B) if * c A, % ¢ N and * ¢ A ot

(v,%%,b) if * € C and ** ¢ NJA with b and ** in the
m@ set or

(v, %k, %%) if * ¢ C and ** € N JA with b and ** in

different sets.

change-object (*,%%) = * where * ¢ NUAUC and *% ¢ EUNUA,

Define

84

. . R -
body(*) = (v,u,*%,A ,a ,A ;a) if * e N, ** ¢ E and * ¢ N, or
(v,0,%k) if * ¢ A, ¥* ¢ N and *éA; or
(v,u,**%) if * € C and ** ¢ NUA with u and *% in the
same set or
(v, %%,%%) if * € C and ** ¢ NUA with u and *%* in

different sets.

'Once again, using the gds of Figure 3.5, the following sequence of
state and structure changing operations forms a new gds depicted in Figure

3.8.

change—origin(as,nl) makes a5 have the origin, ny, by redefining

body(as) = (K,nl,nB) and

change—current—arc—out(az) makes a, the current-arc-ougﬁnl) by redefining
bodz(nl) = (%,gl,el,(az,as,aA),az,%,K) and
relate(as) makes a5 a regular arc by redefining

Eﬂéi(nl) = (%,gl,el,(as,az,aB,aA),az,K,%) and

change-last-of-related-set(aB) makes a, the 1ast-of-re1ated-set(n1)

by redefining bodz(nl) = (?\,gl,el,(34,a5,a2,a3),a2,7\,7\)°

5. Traversing operations

The traversing operations are partitioned into two types of opera-
tions. The simple traversing operations move around on the sets and the
complex operations move around on the graph structures. The simplicity of
the definitions for the simple traversals might cause the reader to over-

look a powerful capability of this model. As an illustration, consider

Figure 3.8.

gds After State and Structural Changing Operations

85

86

a, Five execu-

]

Figure 3.9 with a cursor 8 where object(s) = origin(s)

i

tions of traverse-related-successor(s) makes object(s) f by stopping at

b', ¢', d', and e'. One more execution of traverse-related-successor(s)

makes the object(s) = a once again. This is a simple linear structure
+ . a
search--we looked at all the arcs in the system set, Au where u = origin(a).

Now consider three executions of the operation sequence (traverse-attached-

successor(s), traverse-related successor(s)). Here, once again, object(s)

becomes a, but this time by stopping at b, c, d, e, and f.
: +
%01 if b = x;, € Xub

a. traverse-related-successor(¥) = R
A otherwise

where * € C and define body(¥*) = (G,ﬁ,x.)y if b e X+ .
idl uy

+
xi()l if b = xi € Xub

b. traverse-related-predecessor(*) = R
A otherwise

where * € C and define body(¥*) = (G,ﬁ,x Y if b e X",
i®l uy

c. traverse-attached-successor(¥*) = 5
A otherwise

where * ¢ C and define body(¥*) = (G,G,yieyl) if b evY; .
b

inﬂl if b = v, € Ybb
d. traverse-attached-predecessor(¥) = R
A otherwise

where * € C and define body(*) = (0,&,yi<>l) if b e Yb .
b

The more sophisticated cursor operations each require a cursor

which has as its origin some node. These operations allow the cursor

87

Figure 3.9. Graph for Illustrating "Subtle" Simple Traversal

88

to bounce from node to node so long as there exists an arc related (attached)
to the node which is the object of the cursor. The value of these opera-
tions is the arc which is crossed or A if none can be crossed. There are

operations--traverse-graph-out or traverse-graph-in--which cross only

those arcs which lead to nodes with the same origin (i.e., which are on the
same graph) as the object of the cursor.

As arcs are crossed they become either the current-arc-out (if

crossed in an outward direction) or current-arc-in (if crossed in an in-

ward direction). TFor notational convenience we place a + (recall

Figure 3.2) on the tail of a current-arc-out and a - on the head of a

current-arc-in,

For a cursor whose origin and object is the node x (see Figure 3.10)

the execution of 16 traverse-node-out operations stops at the nodes in this

order (a, e, £, x, b, e, f, x, ¢, d, £, x, a, d, £, and x) while producing

the after diagram of Figure 3.10. The current-arc-out(x) has been changed.

It should be noted that the current-arc-out (in) is not crossed unless it

is the only related (attached) arc leaving (entering) a particular node.

Also note that the related (attached) -successor of the current-arc-out (in)

is the arc chosen to cross each time,

Traversing operations (complex)

+ +
xiGBl if ab = xi € Ab

a. traverse-node-out(%*) = P)
A otherwise

where * ¢ C and b € N and define body(b) = (G,G,B,A+,xi€91,A-,a

and define body(*) = (v,u,b).
X,
il

Before 16 traverse-node-out operations with the cursor residing on node, x

) After 16 traverse-node-out operations

Figure 3.10. The Complex Reader Mechanism

90

;. . + + ..
if a, = x; € Ab, where j is the

% 0j b
smallest integer such that
b. traverse-graph-out(*) = % 0<j<kand uy - u;
*10j
A otherwise,

where * ¢ C and b ¢ N and define body(b) = (§,G,B,A+,xiGBj,A ,a)

and define body(¥*) = (v,u,b).
X s
i®j

Y o1 if a, =y; € Ab

c. traverse-node-in(%*) = ,
A otherwise

where * ¢ C and b ¢ N and define body (b) = (v,u,b,A",a",A",y, o1

and define body(*) = (V,u,u)
Yiol

4 - -
inBj if a = s € Ab, where j is the

smallest integer such that

d. traverse-graph-in(¥*) = < 0<j<kandu = U3
= u
Ti®j

A otherwise,

where * ¢ C and b ¢ N and define body(b) = (;,ﬁ,b,A+,;+;A ’yiégj)

and define body(*) = (v,u,u).
Ii®j

CHAPTER IV

MICRO-SEMANIICS OF GROPE

In this chapter we present the micro-semantics. The micro-semantics
is the formal definition of GROPE from the implementation point of view
(see, for example, Earley [6] or Shneiderman [33]). In the preceding chap-
ter the macro-semantics were presented. One of the shortcomings of the
macro-semantics is that no indication is given as to the execution time
or storage cost of any of the data structures or primitive operations. A
second more important weakness is that the macro-semantics does not dis-
play any notion of how GROPE might be implemented.

The micro-semantics of GROPE resolves both of these waaknesses.
1t can be correctly argued that the micro-semantics suffice and that the
macro-semantics are superfluous. However, one need only coasider the de-
tailed descriptions of the micro-semantics (see Figure 4.6) to understand
why we believe that the macro-semantics are important.

In the preceding chapter on macro-semantics, we introduced the no-
tion of the "abstract system'" approach using the gds as an illustration.
Very little new need be presented here because direct parallels can be
drawn for the micro-semantics from the macro-semantics. Once again we note
that the "abstract system" follows the pattern of programning language defi-
nition by defining a total data space, data structures, and operations over
the data structures. The total data space is the GDS; the data structures
are defined by the functions ARCS and TYPE; and the operations are given

as the transition rule from one state (GDS) to another state (GDS').

91

92

The Total Data Space and Data Structures of the Micro-semantics

The first and second phase of the formal definition of programming

languages is to describe the total data space and the data structures.

The GDS is the total data space, and the functions ARC8 and TYPE present

the data structures.

A GDS is a quintuple (L,T-set,A-set,TYPE,ARCS) where

ii.

iii.

iv.

I, is an infinite set of nodes partitioned into two sets,
iO (the unused nodes) and a finite set V. 1Initially v

contains A, the null node.

T-set is the finite set of types.

T-set = {element,graph,node,arc,cursor}.

A-set is the finite set of arc labels.

+ -
A-set = {u,b,v,a ;x-k’xya ,Yk;}’}-

TYPE is a partial function mapping V - T-set.
As a point (node) in 10 is placed into V, then its TYPE

becomes defined.

ARCS is a partial function mapping V X A-set —» V. More

specifically,
- n
{n : TYPE(n) = element]} X {v,yk} U
{n : TYPE(n) = graph} X {v,xk} U
ARCS : | {n : TYPE(n) = node} X A-set U -V
{n : TYPE(n) = arc} X {u,b,v,x,y} U
{n : TYPE(n) = cursor} X {u,b,v}

93

I £ Aggg(n,a) = m then therc is said to be an arc from node n
to node m with label, a. Note that there may not be two

arcs leaving a node with the same label.

To illustrate the micro-semantics of GROPE, let us consider, once
more, a graph composed of two nodes and one arc (see Figure 3.2). Figure 4.1
shows the arc labels as kinds of arrowheads for the purpose of clarity,
and Figure 4.2 is the GDS for that structure using the arc label conven-
tions.

Let us focus our attention on the major differences in Figure 3.2
and Figure 4.2. Although the gds (macro-semantics) and GDS (micro-semantics)
represent the same information, it appears that the simplicity of the gds
for describing an arc is more natural for a user of a language than the
complexity of the GDS for describing the same information (see also Figure
3.5 and Figure 4.6). On the other hand, if we consider the arc-labels
as fields of a multi-word cell (plex), then the storage structure of GROPE
is readily apparent, whereas it is possible (very likely) that an imple-
mentation developed from the gds (macro-semantics) would prove to be very

inefficient in terms of storage and/or execution time.

Notational Coaventions

T1f we choose an arc label a out of the A-set then

(1) if a(n) exists is the same as ARCS(n,a) is defined. 1In other words,

if a(n) = m there is an arc with label a from node n to node m.

(2) a(n) becomes m means that an arc is created from node n to node m with

label a. This means that an existing arc with label a from node n, if

any, is removed.

94

>

Figure 4.1.

D> > >>

Arc Label Conventions

Figure 4.2,

GDS of a Simple Graph

95

06

(3) a(n) is removed means that ARCS(n,a) is undefined.

Operation-diagram Conventions

These diagrams are before/after diagrams where

‘(1) Double thickness arrows are to attract attentiom.
(2) All darkened nodes are the same node.
(3) In the before diagram, darkened arrows do not exist.

(4) In the after diagram, dashed arrows do not exist.

QOperations in the Micro-semantics

The GROPE primitive operations are partitioned into five classes
as in Chapter III. The first class contains all of the creation operations
along with their associated predicates which determine whether or not a
value is of a certain type. The second class is composed of basic re-
trieval operations. The third class contains the '"state' changing opera-
tions. The fourth class contains the structural changing operations and

the fifth class is the cursor (reader) traversal operations.

1. Creation operations and associated predicates

a. CREATE-ELEMENT() = R where R € L. There is a free1 node R € L

O’
define TYPE(R) = element. (Recall that if R is in the domain

of TYPE, then R is placed in v.)

From the implementation point of view, CREATE-ELEMENT() requires

some explanation. In the definition of the operation CREATE-ELEMENT()

there is no data constant (print image) associated with the created element.

1A node is free if it is not A and if it is not in the domain of the
function TYPE.

97

This is not quite the case. We actually would expect that CREATE- ELEMENT()

would build a LISP-like atom from the host's simple structures. We would
want to place this element into a bucket-sorted hash list (OBSET). Thus

we might have the operation

PUT-ON-OBSET(*) = * where TYPE(*) is element.

There should also be an operation which removes elements from the OBSET.
Hence

TAKE-OFF-OBSET (%) = * where TYPE(%*) is element.

Finally, there should be a predicate which determines if an element is on
the OBSET:
* if * is on the OBSET

15-0ON-OBSET(*) = , where TYPE(¥*) is element.
A otherwise

As in LISP, any element that is on the OBSET must be protected from the

garbage collector.

(Continuing with creation operations and associated predicates)

* if TYPE(*) is element
b. IS-ELEMENT(*) =
A otherwise

¢. CREATE-GRAPH() = R where R ¢ 1. There is a free node R € L

O?
define TYPE(R) = graph.
* if TYPE(*) is graph

d. IS-GRAPH(¥*) =
A otherwise

e. CREATE-NODE(*,*%) = R where TYPE(*) is graph, TYPE(**) is element
and R € L. There is a free node R ¢ iO’ u(R) becomes %,
b(R) becomes **, and define TYPE(R) = node.

98

Figure 4.3, Diagram for CREATE- NODE (*, %*%)

99

* if TYPE(*) is node
£. 15-NODE(*) = .
A otherwise

g. CREATE-ARG(*, **) = R where TYPE(*) and TYPE(**) is node and R € L.
There is a free node R ¢ 10’ u(R) becomes *, b(R) becomes *¥%,

and define TYPE(R) = arc.

* if TYPE(*) is arc
h. IS-ARC(¥*) =
A otherwise

i. CREATE-CURSOR(*) = R where TYPE(*) is node or arc and R € L. There

is a free node R € 10’ u(R), and b(R) become * and define

TYPE(R) = cursor.

% if TYPE(*) is cursor
j. I1S-CURSOR(¥*) =
A otherwise

Retrieval operations

v(*) if v(*) exists
a. VALUE(*) = , where TYPE(*) e T-set.
A otherwise

b. ORIGIN(*)

u(*) where TYPE(*) is node, arc, or cursor.

c. OBJECT(%*)

il

b(*) where TYPE(*) is node, arc, or cursor.

a+(*) if a+(*) exists
d. CURRENT-ARC-OUT(%*) = , where TYPE(*) is node.
A otherwise

xk(*) if xk(*) exists
e. LAST-OF-RELATED-SET(*) = ’
» otherwise

where TYPE(*) is graph or node.

100

x(*) if x(*) exists
f. RELATED-SUCCESSOR(*) = ’
A otherwise

where TYPE(*%*) is node or arc.

x_l(*) if x_l(*) exists
g. RELATED- PREDECESSOR (*) ,
A otherwise

]

where TYPE(*) is node or arc. (See note below.)

a (%) if a (¥*) exists
h. CURRENT-ARC-IN(*) = , where TYPE(*) is node.
A otherwise

yk(*) if yk(*) exists
i. TLAST-OF-ATTACHED-SET(¥*) =)
A otherwise

where TYPE(*) is element or node.

y(*) if y(*) exists
i. ATTACHED-SUCCESSOR(*) =)
A otherwise

where TYPE(*) is node or arc.

yrl(*) if y-l(*) exists
k. ATTACHED-PREDECESSOR(*) = s
A otherwise

where TYPE(*) is node or arc. (See note below.)

3. State changing operations

a. RELATE(*) = * where TYPE(*) is node or arc and x(*) does not exist.
Set T = xk(u(*)) if xk(u(*)) exists. x(%*) becomes x(T) and
x(T) becomes *, If xk(u(*)) does not exist, then x(*) and

x, (u(*)) become * and if TYPE(*) is arc then at(u(*)) becomes *.

Note: x "(¥) = *' such that x(*') = * and g L(%) = *' such that y(*') = %,

101

General Case

Trivial Case where
TYPE(*) 1is arc

Figure 4.4. Diagrams for RELATE (*)

102

b. UNRELATE(*) = * where TYPE(*) is node or arc and x(*) does exist.
1f x(xk(u(*))) is *, then xk(u(*)) and x(*) are removed.
1f TYPE(*) is arc then a+(u(*)) is also removed.
Otherwise, (X& has more than one component) set T==x—l(*).
If xk(u(*)) is * then xk(u(*)) becomes T.
1f TYPE(*) is arc and a+(u(*)) is * then a+(u(*)) becomes T.

In any case, however, x(T) becomes x(*) and x(%*) is removed.
c. ATTACH(*) = * where TYPE (*) is node or arc and y(*) does not exist.

Set T = yk(b(*)) if yk(b(*)) exists. y(*) becomes y(T) and
y(T) becomes *, If yk(b(*)) does not exist then y(*) and
yk(b(*)) become * and if TYPE(*) is arc then a (b(*)) be-

comes *,
d. DETACH(*) = * where TYPE(*) is node or arc and y(%*) does exist.
1f y(yk(b(*j))is*, then yk(b(*)) and y(*) are removed.

1f TYPE(*) is arc then a (b(*)) is also removed.
Otherwise, (Y has more than one component) set T = y-l(*).

If yk(b(*)) is * then yk(b(*)) becomes T.
1f TYPE(*) is arc and a (b(*)) is * then a (b(*)) becomes T.

In any case, however, y(T) becomes y(*) and y(*) is removed.

In order to show how the GDS is changed as a result of these opera-
tions, consider Figure 3.5 as a typical data structure represented by the
GDS of Figure 4.6 given by Figure 4.7. Then the following sequence of opera-

tions generates a new GDS.

163

General Case
where TYPE (%)
is arc

Figure 4.5. Diagram for UNRELATE (*)

”
|

105

ARCS u b X X a' y Yie a TYPE
ey n, element
&1 g graph
=P graph
n, gy ey a, a4 node
nl 81| (1| 3 node
ngl 8y | °p | ™2 o, |35 | s node
i 82| %1 R I | node
a;| 7Ty n, a, arc
) a,| ™y n, aq a; arc
83 nl 1'13 34 ?_._];E
3,4 nl n3 32 a5 arc
as| M | 3 i arc
/ 3.6 I'll n2 é_l:_c_
C]. n4 nl cursorxr
CZ aa a.S cursor

Figure 4.7. Tabular Form of CDS for Semantic Examples

106

RELNTE(a6) makes ag a related-only arc by redefining

ARCS(a,;x) = ag and ARCS(ag,x) = a,-

ATTACH(a6) makes a. a regular arc by redefining

ARCS(nZ,yk), ARCS(nZ,a.), and ARCS(a6,y) = ag.

UNRELATE(aA) makes a, an attached-only arc by redefining
+ ,
ARCS(nl,a) and ARCS(nl,xk) = a,; ARCS(aB,x) = ag; and

ARCS(aa,x) = N,

DETACH(aQ) makes a, an isolated arc by redefining

ARCS (ag,y) = g and ARCS(a,,y) = A.

DETACH(aS) makes ag an isolated arc by redefining

ARCS(aS,y), ARCS(n3,yk), and ARCS(nB,a-) = A,

Notice here that if x-1 is also stored, then removing structures
from the sets is not a function of length. More importantly, a user ought
to be able to state for a particular problem whether his algorithm re-
quires detaching or unrelating. Whenever it is necessary to aestroy the
whole graph, all that must be done is to remove access to the graph, and
the garbage colector gobbles up the whole structure. We would recommend
for a first implementation that all x-l and y-1 arc labels be stored expli-
citly. The reason for this recommendation is that graphs don't normally
grow so large that they can't be stored; on the contrary, the difficult prob-
lems in graph processing are the result of the combinatorial nature of the

graph algorithms.

107

4. Structural changing operations

a.

HANG(*, **) = * where TYPE(*) € T-set and TYPE(**) e¢ T-set or ** is A.

1f *% is A, v(*) is removed. If not, v(#*) becomes *%,

CHANCE- CURRENT-ARC-0QUT (%) = * where TYPE(*) is arc and x(%*) exists.

a+(u(*)) becomes *,

CHANGE- LAST- OF- RELATED- SET(*) = * where TYPE(*) is node or arc and

x(*) exists. xk(u(*)) becomes *,

CHANGE- CURRENT-ARC-IN(*) = * where TYPE(*) is arc and y(*) exists.

a (b(*)) becomes *.

CHANGE- LAST~- OF- ATTACHED-SET(*) = * where TYPE(*) is node or arc

and y(*) exists. yk(b(*)) becomes *%.

CHANGE-ORIGIN(*, ¥%) = * where TYPE(*) is cursor, if TYPE(u(%)) is

TYPE(**) then u(*) becomes *%; if not, b(*) also becomes *%¥.

1f TYPE(*) is node and TYPE(**) is graph or TYPE(*) is arc

and TYPE(**) is node then u(*) becomes ** if x(¥*) does not

exist.

CHANGE-OBJECT (*,**) = * where TYPE(*) is cursor, if TYPE(b(*)) is

TYPE(#*) then b(¥*) becomes *%*; if not, u(*) also becomes *%,

1f TYPE(*) is node and TYPE(*¥*) is element or TYPE(*) is arc

and TYPE(**) is node then b(*) becomes ** if y(*) does not

exist.

Once again, using Figure 4.6, the following sequence of state and

structural changing operations forms a new GDS.

108

CHANGE—ORIGIN(aS,nl) makes ag have the ORIGIN, n, by redefining

ARCS(aS,u) =y and

CHANGE—CURRENT-ARC-OUT(aZ) makes a, the CURRENT—ARC—OUT(nl) by redefining

+
ARCS(nl,a) = a, and

RELATE(aS) makes ag a regular arc by redefining

ARCS(a4,x) = ag and ARCS(aS,x) = a, and

CHANGE—LAST-OF—RELATED-SET(aS) makes a3 the LAST—OF-RELATED—SET(nl) by

redefining ARCS(nl,xk) = a,.

5. Traversing operations (simple)

x(b(*)) if it exists
a. TRAVERSE—RELATED-SUCCESSOR(*) = ’
A otherwise

where TYPE(*) is cursor. If x(b(*)) exists, then b(%)

becomes x(b(*)).

_ x-l(b(*)) if it exists
b. TRAVERSE-RELATED-PREDECESSOR(*) = s
N otherwise
where TYPE(*) is cursor. If x-l(b(*)) exists then b(¥%)

becomes x_l(b(*)).

y(b(*)) if it exists
c. TRAVERSE-ATTACHED- SUCCESSOR (%) =

N otherwise
where TYPE(%*) is cursor. If y(b(*)) exists then b(%)

becomes y(b(*)).

y'l(b(*)) if it exists
d. TRAVERSE-ATTACHED-PREDECESSOR(%) =

A otherwise
where TYPE(*) is cursor. If y-l(b(*)) exists, then b(%)

becomes - L(b(¥)).

Figure 4.8.

Diagram for TRAVERSE- RELATED-SUCCESSOR(*)

109

110

Traversing operations (complex)

u if it exists
e. TRAVERSE~-NODE-OQOUT(*) = P)
A otherwise

where TYPE(*) is cursor, TYPE(b(*)) is node, and a is

x(at(b(*))). If o exists then a (b(*)) becomes o and b(*)

becomes b(a).

a if it exists
f. TRAVERSE-GRAPH-OUT(*) = s
A otherwise

where TYPE(*) is cursor, and TYPE(b(*)) is node. If there
is an arc o such that u(x(a)) = b(¥*) and u(b(a)) = u(b(*))
+ +
with minimum Bathlengthx(a (b(*)),a) then a (b(*)) becomes
o and b(*) becomes b(x). (See note below.)
o if it exists

g. TRAVERSE- NODE-IN(*) = ,
A otherwise

where TYPE(*) is cursor, TYPE(b(*)) is node, and a is

y(a (b(*))). If a exists then a (b(*)) becomes a and b(*)

becomes u(a).

a if it exists
h. TRAVERSE-GRAPH-IN(*) = s
A otherwise

where TYPE(*) is cursor and TYPE(b(*)) is node. If there
is an arc a such that b(y{a)) = b(*) and u(u(®)) = u(b(*))
with minimum Eathlengthy(a-(b(*)),a) then a (b(*)) becomes

o and b(*) becomes u(w).

Note: 1 if ARCS(n,a) = m

Eathlengtha(n,m) =
pathlengtha(ARCS(n,a),m)+l otherwise

111

Figure 4.9. Diagram for TRAVERSE-NODE-OUT(*)

112

Figure 4.10. Diagram for TRAVERSE- GRAPH-OUT (*)

CHAPTER V

CONCLUSIONS

This dissertation has been concerned with two issues: the design
of a graph processing language, and its formal definition. These two
research efforts have resulted in the development of a graph processing
language extenmsion, GROPE, and the macro-semantics and micro-semantics
two-level definitional technique.

GROPE embodies some major new ideas about representation and pro-
cessing of complex structures while maintaining a serious concern with
efficiency. GROPE is like LISP in that everything is dynamic. That is,
the graph structures can grow, shrink, and be modified both dynamically
and irregularly. In addition, GROPE has many support features which enhance
the power of the graph processing primitives and special mechanisms for
searching and processing graph structures. From the standpoint of the
GROPE programming language extension, there is nothing new about embedding
a set of operations in a high-level language. GROPE makes available to the
programmer 154 operations and fifteen data types. Despite this complexity,
trhere have been enough users of GROPE to warrant its development.

Considering the formal definitional technique, we accomplished what
we set out to accomplish. That is, our formal definition is a relatively
readable definition of the operations and structures available to the user
(macro-semantics) and our formal definition provides an implementation de~
sign and an indication of the cost of the operations (micro-semantics).

In both the macro-semantics and the micro-semantics we have used the same

113

114

approach, the abstract system approach. Thus we have shown that the ab-
stract system approach is a viable alternative for programming language
definition. One weakness of our model, however, is the lack of concern
with such issues as control structure and parameter transmission.

Both the design of graph processing languages and the formal defi-
nition of programming languages have generated some interesting research

problems.

Research Problems

The graph processing language GROPE has many interesting features
that may or may not, in the final analysis, be considered useful graph
processing tools. For example, graph readers appear to be clever mechan-

isms for searching graphs when combined with the current-arc-out and

current-arc-in. An interesting problem would be to discover under what

conditions this tool imparts a powerful algorithmic technique. Also, we
introduced the notion of states of arcs and nodes. Recall that arcs and

nodes can be related, attached, neither related nor attached, or both

related and attached. Allowing a single graph to contain any of four types
of nodes and any of four types of arcs could (and has) produced some in-
teresting approaches to graph algorithms and the representation of graphs.
Perhaps these structures could be the seed for some mathematical develop-
ment as an extension of digraph theory. The wide range of flexibility as
discussed in Chapter II could also lead to new schemes for representation.
Finally, if the ideas of graph processing are further explored, a good re-
search area would be to design a graph processing machine.

In the area of formal definition, there are a number of interesting

research problems. The macro-semantics and the micro-semantics are both

-

115

abstract systems. An interesting research area would be to develop some
mathematical results about these two systems. For example, a formal
definition of a garbage collector could be defined, and one might prove
that all and only those nodes which were available to become garbage
would become so. One could show that by making simplifications or addi-
tions to the formal systems, other languages such as SLIP or LISP might
be defined. Furthermore, an interesting result would be to prove that
the micro-semantics and the macro-semantics were equivalent. Let us map
out a strategy for this problem.

Define f as a one-to-one correspondence which shows for any gds
(the formal system of the macro-semantics) how it can be mapped into a
GDS (the formal system of the micro-semantics). For example, part of the
correspondence would contain: " ¢ G if and only if TYPE(f(x)) = graph" .
In addition, we can extend f over the operations such that f(op) = OP where
op is an operation defined over the macro-semantics and OP, similarly
named, is defined over the micro-semantics. Thus we try to prove the fol-

lowing theorem.

THEOREM. The macro-semantics are f-equivalent to the micro-semantics
if and only if for all op defined over the macro-semantics

op(gds,xl,xz,...,xn) = (gds',v) if and only if

f(op)(f(gds),f(xl),f(xz),...,f(xn)) = (f£(gds"'),£(v)).

Similarly, we could prove that the application of op to a gds with legal
parameters leaves the gds "yell defined." The same analysis could be made

on the micro-semantics.

116

It has long been understood that one of the major bottlenecks in
the application of computers to old as well as new problems is the fact
that in general each problem must undergo a number of transformations
(some very complicated) to make it compétible with the language which the
computer scientist decides to use. Languages such as GROPE, in which the
data structures correspond more closely to those used to describe problems
in applications areas, should hopefully lead to the eventual elimination

of this bottleneck.

APPENDIX A

The listing presented here is the GROPE language manual for the
CDC 6600 implementation. Although the manual is self-contained, a few
words of direction are suggested.

The chart on page 120 is a VENN diagram. For example, a list is

a lnsr, a rdsr an object, and a value whereas a node is not a Insr. 1In

addition, the v can be read as '"only contain(s)." For example, the grset
3)

only contains graphs, the rseto and rseti only contain arcs. The chart on

page 121 is also a Venn diagram.

Page 122 is a table of contents which does not give page numbers
and is organized by classification of the function. The *'s are an indi-
cation of how important it is to understand a particular subclass of func-
tions in order to program in GROPE (the more *'s, the more important). Be-
cause there are 154 functions in GROPE, we decided that placing the functions
in alphabetical order was perhaps a reasonable way to organize the functions
since the table of contents classification is available.

Also, the following correspondences hold:

Chapter I1 Appendix A
mapft mapft
orft orft
andft andft
dmapft delft
Imapft loft
smapft soft
crgraph(x) relate(cregr(x))
detgraph(x) unrel(x)
detnode(x) unrel(detnd(x))
detarc detrc

Note that no other mapping functions that appear in Chapter II are in

Appendix A,
117

1138

ARRKARK AR
* GROPE *
KRNRAKKKIRN

THERE ARE CERTAIN CONVENTIONS EMPLOYED IN THIS DESCRIPTION OF
THE GROPE FUNCTIONS? THEY ARE BRIEFLY DEFINED AS FOLLOWS 3

ARGUMENTS TO FUNCTIONS

ARG 1 SOME ARGUMENT == NOT NECESSARILY A GROPE VALUE,

BITS t AN EXTERNAL REFERENCE OR A ONE=DIMENSIONAL ARRAY, POSSIBLY OF
LENGTH | (HENCE A VARIABLE), HWITH USERw»SPECIFIED INFORMATION
10 BE PASSED TO AN ATOM CREATION FUNCTION,

FUN t AN EXTERNAL REFERENCE OR A FUNCTION®ATOM,

G 1 A GRAPH,

Lt A LIST,

LS t A LINEAR STRUCTURE 1A 1,181, SET, OR READER] ,

N t A NODE,

NG 1 A NODE OR A GRAPH,

NUM § A NUMBER,

0pJ t AN OBJECT) THE FUNCTION DEFINITION MAY STIPULATE RESTRICTIONS
ON THE KINDS OF OBJECTS THAT ARE VALID,

P t A PAIR,

PS 1 A PSET,

© 1t A DUMMY ARGUMENTY 1T 1S ALWAYS IGNORED,
RC ¥ AN ARC,

RDR 1 A READER) THE FUNCTION DEFINITION MAY STIPULATE RESTRICTIONS
ON THE KINDS OF READERS THAT ARE VALID,

RS § A READABLE STRUCTURED X I3 A READABLE STRUCTURE IF 17 18 A
LINEAR STRUCTURE OR A NODE OR A GRAPH,

TARENUMBER ¢ AN INTEGER TAPE REFERENCE,
VAL 1 SOME ARGUMENT »o= MECESSARILY A GROPE VALUE,

VECTOR 1. A ONEwDIMENSIONAL ARRAY WITH NO USEReSPECIFIED INFORMATION
WITHIN THE ARRAY,

CONCERNING MNEMONIC FUNCTION NAMES
~aTTe MEAMS ATTACHLED)
CHe OR CHAw MEANS CHANGE
CRe OR CRE= MEANS CREATE
wCURe MEANS CURRENT
DEL» MEANS DELETE
DET» MEANS DETACH
*END MEANS END

wFT MEANS THE SECOND ARGUMENT IS A FUNCTION w= WHETHER AN EXTERNAL
REFERENCE OR A FUNCTION=ATOM,

HS= MEANS HAS
w] MEANS IN

1S= DENODTES A PREDICATE FUNCTION THAT RETURNS ITS ARGUMENT [TRUE]
DR ZERO [FALSE),

»ISw» AEANS ISOLATED [UNATTACHED)
MAw= MEANS MAKE

MOVEw» MEANS MOVE [A READER] DIRECTLY
=0 MEANS QUT

eRCe MEANS ARC

~REL» “EANS RELATEID)

SFRT» MEANS INSERT

«5ETe QR =»STe MEANS SET

»8R MEANS STRUCTYURE

Te MEAYS TRAVERSE [A READER]

GROPE ADDS ELEMENTS TO ([SYSTEM] SETS BY FITHER STACKING [IF IN MODES]
OR AUEUEING [IF IN MODEQYjy THE USER MAY CHANGE THE MODE,

119

120

RELATIONSHIPS AMONG THE GROPE DATA=TYPES

i!lﬂ!%!!iiﬁEé?!allﬂ!iﬂaﬂs!aiil!!ﬂ!!!!!!lE!EEIII!E!B!EE!!I!B!BEIISBEEE!E!IESEIII!

g VALUE E
L]
L] L]
5]
L N
8 s
& []
8 .‘-0.-.-..-----.--y|-—-v.--.--.pu------—---un-o—p-‘------qvgcn ‘
2 L] OBJECT =
-]) - F
L » [ATOM). -]
- - v »]
& - v) B
] " v [PAIR] ™ "
] - v v {ARC] -]
8 - v v v L]]
a 0f0§+++++*#+VQ++*++QV++#¢§*f+*¢++++++++V+*¢+$++++0++*#++#+++++§+++¢#¢++000 []
B - v v v - RDSR + =
8 * - v v v ” + =
B ¢ [] v v v L] + N
g 4 " v v v - ¢ =
B ¢ " v v v [(NODE} = + B
g ¢ - v v v v » ¢ N
a ¢ ” v v v v - + =
2 ¢ » v v {GRAPH] v v - + B
B ¢ - v v v v v . ¢ n
B ¢ - v v v v v » ¢+ 8
E ¢ - v v v v v ™ ¢ B
B ¢ *******ﬁtVt***t**vi***t***vtt**itt**v****t***t*ﬁ**tﬁatVt**t**ﬁttttt* ¢ 8
B ¢ % = ¥ v v v v w _NSR » + @
E % % = v v v v v L * ¢ 0
i ¢ * m v v v v {LisT) v " ® ¢ =
B ¢ % @ v v v v v L] *x ¢ B
g 4+ % w® v v v v v - * ¢ B
8 & * n-----V-----—.V..—-q-.p\'--------»V---.-p----------qV----q ® + R
® ¢ % v v v v v * ¢ B
8 ¢ » v v +»>>>>> {RSETO) v * + 8
a ¢ % v v v v +>>>>>» [NSFTY » ¢ &
B ¢ # v v v v v * ¢ B
g2 ¢ % v (PSET) v v v " % B
8 4 & v v {RSETI) v « ¢ B
8 ¢ = v v INDSET) * ¢ N
2 & = tOBSET) v * ¢ &
8 ¢ % v x ¢ @
E ¢ % v « + &
8 ¢+ % [GRSET) *« & B
2 ¢+ a * ¢ B
C I B [READER) * ¢ &
E ¢+ = " ¢ 8
8 4 % « ¢ &
¢ % « 4+ B
8 ¢+ i*********i****tt**t*tt*it*tt**att**t*t*t*ktttttttttt***tt*t**tt*tﬁi + &
E % ¢+ =
g 9 + =N
B Q#++#f++++++++++f§+++++++++#+0++++0¢+*¢¢++++++§+0¢++0++0&+#++++++++¢+##ﬁf§ =
& []
4]
l!lllal::as:snlllltil!saslnlltllll:lllsl-lll::lslu:llll!!llllzlalulllnllnlllllll

EEENECERBPPERSSARFEERENSEEEED

RELATIONSHIPS AMONG THE GROPE ATOMeTYPES

*********tt***i*****it**tk********t*************k****t***t***

*
*
*®
]
*
*
*
*
®

RAKRAARANRRKRARK

¥*
*
x
*
*
"
]
*
*
®
*
*
*
]
*
*
*
*
*
¥
*
w
*®
*

!ll!il!!ﬁE!i!!ﬁl!!iﬁi!!!llﬁ‘!ﬂ!iﬂﬁiﬂi!!lil&i!!ﬂﬁﬁ!

HOLLERITH

(e w0) e e O R R O D TR G Y GR TR e s e
" FUNCTION =
- -
L] -

.-.--vu--q---------—---.--q-q’--—-------q

****t********t**ti***i**tt****ﬂ*****ti*******it*tt**t**ﬁﬁ**

P--.Qp---o---—.-n—---------nqv--o--.--—--

- REAL =
-]
- -

.-,--_QQC-.F--O-----.----.-a--qp---.-.—---ﬂ

- T Y O e P e W e e P 0 e e R

- INTEGER =
- -
[-
- EtrtEEEEIEE L L L L AL L E LS -
- + QUOTED ¢+ d
» +* +* L
- [+ -
L R N RS2SR R A .
-)
] »
» -

q--q-._-----.-------n------—y-——------.

****t****ﬁ*i****i****iﬂk*iiﬁ*ﬁtk***ttkﬂ*iniﬁﬁt**‘*tt**ﬁitkt*ﬂ

*®

*
*
]
*
]
*
*
"
*

t*ti******i*******t*k**i***t****itt*tiiit*

*
L]
]
*
*
*
L]
L]
|]
L]
*
L]
]

*
*
*
*
*
*
*
*
*
]
]
*

ESCARENENEREEERRSRERLNNQERNR

121

El!!EEEEEESBiEEEiEEEEE5EEEEHE‘BiEBEiHEE!E!!EE!!!EBI!B

&
B
]
]
[|
=
=
a
]
a
]
|
L
u
L
L
o
L
L
=
3
|
2
L
e
n
®
|]
]
B
]
|
|
-]
|
.
|]

THE RELATIVE IMPORTARCE OF FUNCTION=GROUPS

AYOM AND LIST PROCESSING FUNCTIONS

SETUP/SAVAR/SAVCOM/RETURN
ATOM/QUOTE
IMAGE/LENATM
CREL/LIST/QUEUE/STACK/CONCAT/POP
IDENT/ZEQUAL

APPLY/EQULFT/COMPOS

GRAPH PROCESSING FUNCTIONS

CREGR

ANODE/CRNODE/CRISN

GrRAPH/CHAGR

RELATE/UNREL
CRARC/CRAHCI/CRARCO/CRISR
FRNODE/CHAFRN/TDNODE/CHATOM/REVRC
ATTRC/DFTRC/ATTRCI/DETRCI/ATTRCO/DETRCO
ATTND/DETND
CLRCI/MACUYRI/CURCO/MACURD
OBJECT/CHOBY
VALUE/HANG/UNHANG/BUMP

PROPERTY=SET FUNCTIONS

PUT/GET
PSET/CREPS/HSPSETY
CRISP

ATTPR/DETPR
AFFIX/APPEND

LINEAR STRUCTURE FUNCTIONS

FIRST/LAST

LENGTH

MEMBER

ANDF T/ORFT/MAPFT/LOFT/SOFT/DELFY
GRSET/NDSET/NSET/HSNSET
RSETI/RSETO

OBSET

READER PROCESSING FUNCTIONS

INPUT /

CREEDR/ORIGIN/CHORIG/REED/RESTRT/CDPYRD
T0/71

DStND/DSNDTOIASEND/PtVERT/CONECT
SERTO/SERTI/SUBST/DELETE/MERGE
CREXD/MOVEND/MOVETO

TIFT/TOFT/CURARC

OUTPUT AND MISCELLANEOUS FUNCTIONS

RDFILE/RDEXP/ECHD
PRFILE/PRXPFT/PRINFT/TERPRI/MARGIN/TAB
MODEG/MODES

INYGER/REALE/TRUE

MAXERR/MESAGE

ISATOM/ISHOL/ISINT/ISREAL/ISFUN/ISQINT/ISNUM

ISLIST

ISGRAF
ISNODE

ISREL
I13ARC

ISRCI/I8RCO
1SATTN

1808J
ISVAL

1SPSET
ISPAIR
ISATTP

ISLNSR

1SGRET/ISNDSET/ISNSBET
ISRSTI/ISRSTO
150887

JSRDR/1ISRDSR

ISDEEP

ISATND/ISATBG

15M0DS

ANRRTRRK
Kk NAKkKK
Ak hhkkhk
KERKKRAFR
AAKRRNKRAN
kRARRKAK

kkkhkKR
LEE LR
o xk kK
AkkrAk
* Kk &k kK
KR kR kK
£ 3.2 2.1

* &

L3]

KRR ARKN
*k AR

KR KkARARKX
LA L]

L3

w &

L 4]

hARRERKK
ARkRkANRKRR
ARkRAKKRR
kRNAKARAKX
AEREAR
EE R T A0
Lad

KRRk RRRK
AARAARAAR
ARKRERR
KA RKKK
LEE 1]
RKkE

ARARAKAR
L2288 2 ¢
RARW
KARh kR
"R

123

AFFIX (DBJ,PS) ¢t = 0BJ, THE PSET PS IS AFFIXED Tn 0HJ UIN ADDITION TO ANY
OTHER OBJECTS TO WHICLH IT MAY kb AFFIXED), HENCFFORTH HMSPSET(OBJ) =& PS,
[ONLY ONE PSET MAY BY AFFIXED TO ANY GIVEN UOBJECT,)

ANDFT (LS, FUN,ARGZ,ARGD,)ARGH,ARGS) 1 = LS, PROVIDED THAT APPLY(FUN,ELEMENT,
ARGZ2, ARG, ARGG, ARGS) RETURHS TRUE (#@]1 FOR EACH SUCCESSIVE ELE™MENT 1IN
THE LINEAR STRUCTURE LS3 IF FUN RETURNS FALSE [=2), THE PROCESS I8
TER4INATLD AND ZERD 18 RETURNED,
NOTE 3§ THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP T0O 6,

ANODE (0B8J,G) 1 IF THERE IS A NODE N IM THE NSET(0OBJ) WITH GRAPH(MN) = G
THEN THAT NODE IS THF VALUE, ELSE ANNDE 1t = CRNODE(OBJ,6),

APPEND (08J,RS) 1 = OBJ, THE ELEMENTS OF THE PSET PS ARE QUEUED INTO
THE PSET(OBJ)Y AND PS BECOMES EMPTY.

APPLY (FUN,ARG1,ARG2,ARG3,ARGA,ARGS) ¢ = BITSCARG1,ARG2,ARGS,ARGY, ARGS)
WHERE FUN = ATOM(BITS,=3) FOR SOME EXTERNAL REFERENCE BITSs OR IF FUN
5 AN EXTERNAL REFERENCE APPLY 1 = FUN(ARG1»ARG2,ARG3, ARG4,ARGS) ,
NOTE 1 THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP T0 6,

ASEND (RDR) 1 THE VALUE IS THE READER PASSED IN THE CALL TO THE DESCEND
FUNCTION WHICH RETURNMED THE VALUE RDRg TKIS CORRFSPONDS TO THE SECOND
READER IN THE STACK TO WHICH RDR REFERS. RDR 1S NOT SIDE=AFFECTED,

ATOM (BITS,NUM) t RETURNS AN ATOMIC ORJECT ATM13

(1) IF NUM > @ THEN ISHOL(ATM) 15 TRUE AND NUM 18 TAKEN TO BE AN
INTEGER INDICATING THE MAXIMUM NUMBER 0F CONTIGUOUS WORDS OF BITS
CONTAINING THE DISPLAY=CODE PRINT=IMAGE OF THE ATOM, LEFT=
JUSTIFIED, ZERO FILL. IF BLANK FILL 1S GIVFN, ZERO FILL wILL BE
SUBSTITUTED, THE VECTOR BITS IS SCANNED FROM RIGHT TO LEFT
FAR THE FIRST NONwBLANK, MON=ZERQ CHARACTER.

(2) IF NUM = @ THEN ISINTC(ATM) AND ISNUMCATM) ARE BOTH TRUE

(3) IF wUM IS5 =1 (OpR =2} THEN BI18 1S SINGLE [0OR DOUBLE] PRECISIONS
ISREAL (ATM) AND I1SNUM(CATM) ARE BOTH TRUL,

€4) IF NUM 1S5 =3 THEN ATM IS A FUNCTION=ATOM, TH1S IS A REFERENCE TO
THE EXTERNAL FUNCTION BITS WHICH mAY BE STORED IN LISTS, ETC. AND
MAY BE EXECUTED BY CALLING APPLY WITH ATM AS THE FIRST ARGUMENT,
ISFUNCATHM) AND ISHOL(ATH) ARE BOTH TRUE,

{(5) IN ALL CASES, ISATOM(ATM) IS TRUE,
[ONLY ONE ATOM HWILL FXIST FOR ANY GIVEN BITS AND NUM,)

ATIND (N) t = N, IF ISATTN(N) I8 TRUE, THERE 1S NO EFFECTy ELSE THE NODE
N Is STACKED OR QUEUED INTO THE NSET(OBJECT(N)I,

ATTPR (P,P3) t = P, TIF ISATTP(P) IS TRUE, THERE 1S NO EFFECTy ELSE
THE PAIR P 15 STACKED OR QUEUED INTO THE pSET PS,

ATTRC (RC) t = ATTRCO(ATTRCI(RC)).

ATTRCI (RC} 3 = RC, IF ISRCI(RC) IS TRUE, THERE 1S NO EFFECTy ELSE THE
ARC RC 18 STACKED OR QUEUED INTO THE RSETI(TONODE(RC)),
{IT CAN BE SAID THAT THE ARC IS ATTACHED INe}

ATTRCO (RC) § = RC, IF ISRCO(RC) 13 TRUE, THERE IS ND EFFECT) ELSE THE
ARC RC 1S5 STACKED OR QUEUED INTO THE RSETO(FRNODE(RC)) .
(1T CAN BE SAID THAT THE ARC IS ATTACHED QuUT,]

BUMP (0BJ,NUM) & = 0BJ, THE [GUOTED INTEGER) VALUE(0BJ) IS INCREMENTED BY NUM,
1F VALUE(OBJ) RETURNS ZERO [NO HANGINGY, THEN GQUOTE(NUM) 185 HUNG,

124

CHAFRN (RC,N) § = RC, THE FRNODE (RC) BECOMES. N3 THE ATTACHED RELATIONSHIP
[1SRCOY RETWEEN THE OLD FRNODE AND THE ARC 18 MAINTAINED BETWEEN
THE NEW FRNODE AND THE ARC,

CHAGR (N,G) t = N, THE GRAPH(N) BECOMES G, AND THE RELATED CONDITION ({ISREL}
OF THE NODE N IS MAINTAINED, {IT MAY BE SAID THAT THE NODE N NOW
RESIDES ON THE GRAPH Gl

CHATON (RC,N) ¢ = RC, THE TONODE (RC) RECOMES Ni THE ATTACHED RELATIONSHIP
{1SRCI) BETWEEN THE OLD TONODE AND THE ARC 18 MAINTAINED BETWEEN
THE NEW TONODE AND THE ARC,

CHEND (RDR) t = RDR, THE SET DR LIST BEING READ BY RDR 1S ALTERED SO THAT
ISATNDCROR) BECOMES TRUE, THAT 1S, THE WDR POINTS TO THE NEW END
OF THE SET OR LIST,

CHOBJ (OBJ1,0BJ2) 1 = 0BJ1. THE OBJECT(0BJY) BECOMES 0BJZ2, AND ALL
ATTACHED AND RELATED RELATIONSHIPS ARE MAINTAINED FOR 0BJ1,
NOTE §.0BJ1 MUST NOT BE AN ATOM,

CHORIG (RDR,RS) 3 = ROR, FIRST THE READER I8 RESTARTED {SEE RESTRTl» AND
THEN 1TSS ORIGIN IS CHANGED 70 THE READABLE STRUCTURE RS,

COMPOS (VAL/FUNI,FUN2,ARG2,ARG3) 1 = APPLY(FUNI,AFPLY(FUNZ:VAL,ARGS),
ARG2,ARG3),

CONCAT (L1,L2) 1 = L1+ THE LISTS L1 AND L2 ARE CONCATENATED, AND L2 BECOMES
EMPTY, THE LENGTH OF L1 BECOMES THE SUM OF THE FORMER LENGTHS DF L1
AND L2, LAST(LI) BECOMES THE FORMER LAST(L2),

CONECT (RDRL,RDR2) 1 = RDR1, ESSENTIALLY, ROR! AND RDR2 ARE CONCATENATED,
RDR2 18 UNAFFECTED, BUT RORY 18 ENLARGED BY THE ADDITION OF THE
ELEMENTS OF RDR2 AT THE END OF THE READER [STACK) ROR1,
1SDEEP (RDRY) IS ALSO GUARANTEED TRUE,

COPYRD (RDR) 1 CREATES AND RETURNS A READER X SUCH THATH
(1) ORIGIN(X) = ORIGIN(RDR)
(2) REED(X) = REED(RDR)
(3) ISDEEP(X) = @,

CRARC (N1,0BJ,N2) ¢ = ATTRCC(CRISR(NS,08J,N2)),

CRARCI (n1,0BJ,N2) 1 ATTRCICCRISR(NE,0BJ,N2)),

CRARCO (N1.0BJ,N2) 1 ATTRCOCCRISR(N1,0BJ,N2)),

CREEDR (RS) 1 CREATES AND RETURNS A READER X OF THE STRUCTURE RS}
RS “AY BE A NQDE, GRAPH. LIST, SET OR READER,
ORIGIN(X) = RS REED(X) = @ ISDEEP(X) = ¥

CREGR (QRJ) & CREATES AND RETURNS A NEW, EMPTY, UNRELATED GRAPH WITH OBJECY
0BJ

CREL (0BJ) t CREATES AND RETURNS A NEW EMPTY LIST WITH OBJECT 08J.
CREPS (G) t CRFATES AND RETURNS A NEW, EMPTY, NONmAFFIXED PSET,
CRISN (0BJ,G) 1 CREATES AND RETURNS A NEW ISOLATED NODE N 1

OBJECT(N) = 0B8J, GRAPH(N) = Gy ISREL(N) = @4
AND ISATTN(N) = @,

125

CRISP (0nJ,VAL) ¢ CRUATES AND RETURNS A NEW TSOLATED PAIR P 1
OEJECTIP) & 0RJ AND VALUE(P) = VAL,

CRISR (N1,0BJ,n2) 1 CREATES AND RETURNS A NEW ISOLATED &RC RCH
FRNQDF(RC) = NI OuJECT(RC) = 0OBJ TOMDDE (RCY = N2

CRNODE (1BJ,6) ¢ = RELATECATTHND(CRISN(URT G),

CURARC (Q) ¢ RETURHS THE MOUST RECENT ARC [CURRENT ARC] CROSSED BY A
NODE QR GRAPH READER,

CURCT (N) t RETURNS THE CURRENT ARC INCOMING TO NODE N3 ELSE @ IF THERE 1S
NONE » THE EXISTENCE OF ONLY OME ARC IN THF RSETI(N) CAUSES IT TO0 BE
THE CUKRENT ARC INCOMING BY DEFAULT,.

CURCO (N) 8 RETURNS THFE CURKENT ARC DUTGOING FROM NODE Ny ELSE % IF THERE IS
MONEe THE EXISTENCE 0OF ONLY ONE AKRC IN THF RSETO{(N) CAUSES 17 TO BE
THE CURRENT ARC puUTGOING BY DEFAULT,

DELETE (RDR) 't = RDR, VHE LISI READER RDR IS MODVED IN ONF POSITION [SEE T1l},
AND THE ELEMENT WHICH IT WAS PREVIDUSLY RFADING [SEE REED) IS
REMOVED FROM THE (IS8T, IF THE FINAL REMAINING ELEMENT IS DELETED
IN THIS MANNER LTHE LENGTH(ORIGIN(RDR)) BFCUMES 4. THEN THE
READER 1S RESTARTED [SEF RESTRT],. AFTER DFLETE HAS BEEN EXECUTED,
TH(RDOR) wWILL MOVE RDR 7O THE ELEMENT PREVIOUSLY JUST QUT FROM
THE DELETED ELEMENT,

DELFTY (LS, FUN, ARG2) ARGZ (ARG, ARGS) 1 = LS, THE ELEMENTS NF THE LINEAR
STRUCTURE LS FOR WHICH APPLY(FUN;&LEMEHT,AR&Z,ARGSpARGM,ARGS)
1§ TRUE ARE DELETED FROM THE STHUCTURE, WHILE IN DELFT, THE USER MAY
NOT CHAMGE THE STRUCTURE LS IN ANY WAY: ANY OTHER STRUCTURES MAY BE
ARBITRARILY AFFECTED,
NOTE 1 THIS FUNCTION ACCEPTS A VARIABLF NUMBER OF ARGUMENTS UP 10 6,

DETND (N) 1 = N, THE NODE N IS DETACHED FROM THE NSET(OBJECT(N)),
DETPR (P,PS) t = P, THE PAIR P 15 DETACHED FROM THE PSET P8,
DETRC (Rc) t = DETRCOCDETRCI(RE)).

DETRCI (RC) t = RC, THE ARC RC 1S DETACHED FROM THE RSETI(TONODE(RC)),
{17 MAY BE SAID THAT THE ARC IS NO LOMGER VISIBLE AT THE TONODE,)
NOTE § IF THE ARC RC WaS THE CURCI(TONODE (kCY) THEN THE ARC
IMMEDIATELY PPECEDING RC IN THE RSETI BECOMES THE NEW
CURCI(TONODE(RCY),

DETRCO (RCY & = RC, THE ARC RC 1S DETACHED FROM THE RSETO(FRNODE(RC)),
{17 MAY BE SAID THAT THE ARC IS NO LNNGER VISIBLE AT THE FRNODE .1
NOTE t IF THE ARC RC WAS THE CURCO{FRNODE (KC)) THEN THE ARC
{MMEDIATELY PRECEDING RC N THE RSETO BECOMES THE NEW
CURCOCFRNODE(RC)),

DSEND (RCR) 1 = DSNOTOC(RDR,REED(RDR)),
DSNDTO (RDR,RS8) t = CONECT(CREEDR(RS),RDR),
ECHO (TAPENUMBER) 1 = TAPENUMBER, THE DATA RFAD BY RDEXP [SEE ROFILF)
1S ECHO=FRINTED, & LOGICAL RECORD AT A TIMF, ON FILE TAPENUMHER IF

TEPENUMBER IS PNSITIVER OTHERWISE THE PRINTING 1S5 SUPPRESSED,
INITIALLY ¢ ECHN(B),

126

ENUAL (OBJ1,0BJ2) 1 = 0BJ1 IF OBJ1 AND OBJ?2 ARE IDENTICAL, OR IF OBJ1 AND
DBJ2 ARE LISTS SUCH THAT THEIR ELEMENTS ARE EQUAL,

EGULFT C(ARG1,FUN,ARG2) 1 = ARGL IF IDENT(APPLY(FUN/,ARGL),ARG2) IS TRUEy
ELSE EGULFT 3 = 8,

FIRST (LS) § RETURNS THE FIRST ELEMENT OF THE LINEAR STRUCTURE L8,

FRNODE (RC) 1 IN THE ARC <N1,0BJ,N2> , N1 IS THE FROM=NODE,

GET (08J1,08J2) 1 GENERALLY SPEAKING, GET g = VAL WHERE PUT (OBJ1,0BJ2,VAL)
WAS LAST EXECUTED, MORE ACCURATELY, GET 1t = VALUE(P), WHERE P 15 THE
FIRST PAIR IN THE PSFT AFFIXED 70 0BJ1 SUCH THAT OBJECT(P) = osJ2, IF
NO SUCH PAIR OR PSET EXISTS, THE VALUE I8 @,

GRAPH (N) § RETURNS THE GRAPH ON WHICH NODE N RESIDES,

GRSEY () 1 RETURNS THE SET OF ALL RELATED GRAPHS,

HANG (0BJ,VAL) 1 = 0BJ, THE VALUE(OBJ) BECOMES VAL,

HSNSET (0BJ) 3 RETURNS THE SET [NSET] OF ATTACHED NODES WITH OBJECT = 0BJ,
IF NONE HAVE BEEN ATTACHED, HSNSET 3 3 ¥,

HSPSET (0BJ) t RETURNS THE PSET AFFIXED TO OBJ3 IF NONE, HSPSET 1 = @,

IDENT (ARG1,ARG2) § = ARG IF ARG)1 AND ARG2 ARE IDENTICALj ELSE 1DENT 1 = o0,
SINCE IDENT 13 A BITWISE COMPARISON, ARG1 AND ARG2 NEED NOT BE
GROPE VALUES,

IMAGE (ATM,VECTOR,NuMt) t RETURNS THE [FIRST WORD OF THE)] BITS PASSED IN THE
CALL ATM = QUOTE(BITS) OR ATM = ATOM(BITS,NUM2) == UNLESS NUM2 1S =3,
IN HICH CASE THE (HOLLERITH) NAME OF THAT EXTERNAL REFERENCE 18
RETURNED. IF MORE THAN ONE WORD 1S REQUIRFD TO CONTAIN THE IMAGE
OF ATM, THEN (AT MOST) THE FIRST NUM1 WORDS OF BITS 18 STORED
INTO VECTOR,

INTGER (ARG) 1 = ARG, THE MOTIVATION FOR THIS FUNCTION I8 AS FOLLOWSS
M = ARG CAUSES MODE CONVERSION, AND THE EFFECY I8 A CATASTROPHE
IF 4 18 70 BE USED AS A GROPE VALUE) HENCE M = INTGER(ARG).

ISARC (VAL) 1 = VAL IF VAL IS AN ARCy B OTHERWISE,

1SATBG (RDR) § ® RDR IF ROR 18§ POINTING AT THE FIRST ELEMENT OF ITS
(SET, L1ST, OR READER) ORIGIN; @ OTHERWISE,

1SATND (ROR) t = RDR IF RDR IS POINTING AT THE LAST ELEMENT OF 178
{SET, LIST, OR READER] ORIGINM; © OTHERWISE,

1SATOM (VALY 1 = VAL IF VAL 13 AN ATOMg @ OTHERWISE, VAL 1S AN ATOM IF
1T #4AS GENERATED BY A CALL TO ATOM OR QUOTF

ISATTN (N) § = N IF THE NODE N IS ATTACHED T0 THE NSET(OBJECT(N)),
ISATTP (P) & ® P IF THE PAIR P 1§ ATTACHED TO BOME PSET,
1SDEEP (RDR) t = RDR IF THE READER ROR MAY BE ASCENDEDs @ OTHERWISE,

1SFUN (VAL) § = VAL IF VAL 18 THE RESULT OF SOME VAL = ATOM(BITS,=3))
© OTHERWISE,

ISGRAF (VAL) 8§ = VAL IF VAL IS A GRAPH3 © OTHERWISE,

127

1SGRST (VAL) & = VAL IF VAL 18 THE GRAPHSET ([GRSET] 9 OTHERWISE,

ISHOL (VAL) t = VAL IF VAL 1S AN ATOM WITH A HOLLERITH [D1SPLAY=CODE]
IMAGE (THAT 1S, IT WAS CREATED BY A CALL TO ATOM(BITS,NUM) #1TH
MM 2 1 OR NUM = =3]y @ OTHERWISE,

I1SINT (VAL) 1 = VAL IF VAL 15 AN ATOM HWITH AN INTEGER [BINARYI]
IMAGE [THAT IS, 1T WAS CREATED BY A CaLL 10 ATOM(BITS,8) OR BY
A CALL TO QUDTELlS 2 OTHERWISE

ISLIST (VALY 8

11

vaL IF VAL I8 A L1ST; © DTHERWISE .

ISLNSR (VAL) 8 = VAL IF VAL IS5 A LINEAR STRUCTURE {THE GRSET, THE OBSET,
A LIST, PSET, RSETI, RSETO, NSET, NDSET OR READER] 1 & OTHERWISE,

18H40ODS (@) ¢ = =1 IF GROPE IS IN THE STACK MODES @ OTHERWISE,

ISNDST (VAL) 8

”n

VAL IF VAL IS A MODESET ([NDSET) OF SOME GRAPH) © OTHERWISE,

{SNODE (VAL) § = VAL IF VAL IS A NODEy P OTHERWISE

i

ISNSET (VALY t = VAL IF VAL 18 AN NSET (OF SOME ORJECT}y © OTHERWISE,

ISNUM (VaL) 1 = VAL IF VAL 1S A NUMERIC ATOM [FIXED® OR FLOATING=POINT])
@ OTHERWISE,

180BJ (vAL) ¢ = VAL IF VAL IS5 A GROPE OBJECT (ATOMs, PAIR. ARC, NOOE,
GRAPH OR LIST)) © OTHERWISE,

1s0BsT (vAL) ¢ = vaL IF VAL 1S THE OBSETy @ OTHERWISE,

VAL IF VAL 1S A PAIRy @ OTHERWISE o

"

1SPAIR (VAL) 1t
1SPSET (VALY t = VAL IF vAL IS A PSETy @ OTHERWISE,
1SQINT (vAL) 1 = VAL IF VAL IS THE RESULT OF SOME VAL 3 QUOTE(RITS))

@ OTHERWISE, IF 1SOIMT(YAL) 18 TRUE, THEN SO ARE ISINT(VAL)

AnD ISATOM(VAL) .
ISRCI (RC) t = RC IF THE ARC RC IS IN THE RSETI(TONODE(RC))y @ OTHERWISE,
{SRCO (RC} & = RC IF THE ARC RC I8 IN THE RSETO(FRNODE(RCI)y @ OTHERWISE,
1SRDR (VAL) & = VAL IF VAL 1S A READERy © OTHER¥ISE,

ISRDSR (VALY § = VAL IF VAL 1S A READABLE STRUCTURE [A LINEAR STRUCTURE,
NODE QR GRAPH) ¢ 2 OTHERWISE ,

ISREAL (VALY 1 = VAL IF VAL 1S AN ATOM WITH A FLOATINGwPOINT (REAL]
IvAGE) @ OTHERWISE.

{SREL (NG) 1 = NG IF THE NODE OR GRAPH NG 18 RELATED} 2 OTHERWISE,
ISRST1 (VALY 1 = VAL IF VAL 1S AN RSETI (OF SOME NODE]) @ OTHERWISE,
ISRSTO (VAL) 1 = VAL IF VAL 1S AN RSETO [OF SOME NODE)j © OTHERWISE,

1SYAL (ARG) ¢ = ARG IF ARG IS A LEGAL GRUPE VALUE 1 AN OBJECT, A BET,
Or A READER3 ¥ OTHERWISE,

LAST (L.5) 3 RETURNS THE LAST ELEMENT OF THE LINEAR STRUCTURE LS,

128

LENATM (ATM) § = THE NUMBER OF WORDS CONTAINING THE IMAGE OF THE ATOM ATM,

LENGTH (LS) 1 RETURNS THE LINTEGER] NUMBER DF TOP=LEVEL ELEMENTS IN THE
LINEAR STRUCTURE LS. IF ANY OTHER TYPE OF ARGUMENT 1S PASSED,
LENGTH ¢t = =1, FOR SETS AND LISTS, THE LENGTH 18 IMMEDIATELY
AVAILABLE [STORED],

LISY (ARGl.ARGE,&RG},ARGQ,ARGS) y RETURNS A NEW LIST L WITH
OHJECT(L) = QUOTE(A), IF 5 ARGUMENTS [GROPE VALUES] ARE PASSED T0
LIST, THE NEW LIST WILL CONTAIN THOSE S FLEMENTS, OTHERWISE THE
LIST IS CoMpPNSED OF Kei ELEMENTS WHERE ARGK IS THE FIRST
ARGUMENT WHICH IS NOT A GROPE VALUE, {2 1S NOT A GROPE VALUE,)
NOTE § THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO Se

LOFY (LS,FUN,ARG2,ARG3,ARGU,ARGS) 1 RETURNS A NEW LIST L WITH
OBJECT(L) 3 QUOTE(A), FUNCTINN FUN IS APPLIED TO THE SUCCES3SSIVE
ELEMENTS IN THE LINEAR STRUCTUKE LS, IF FUN RETURNS A GROPE
VALUE, VAL, THEN VAL IS GUEUED INTO THE NEw LIST,
NOTE t THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

MACURI (RC) 1 = RC, CURCIC(TONODE(RC)) BECOMES RC, [THAT 1S, RC BECOMES THE
CURRENT ARC INTO THE TONODE(RC),)

MACURO (RC) t = RC, CURCOCFRNODE (RC)) BFCOMES RC, (THAT 1S, RC BECOMES THFE
CURRENT ARC OUT FROM THE FRNODE(RC) .1

MAPFTY (Ls,FUN,ARGZ,ARGS,ARGa,ARGS) 1 = LS, MAPFT APPLIES FUN T0 EACH
ELEMENT IN THE LINEAR STRUCTURE LS, IX = APPLY(FUN.ELEMENT,ARGZ.ARGS,
ARGUY,)ARGS) IS CALLED N TIMES WHERE N = LENGTH(LS))
NOTE t THIS FUNCTION ACCEPTS A VARIABLE HWUMBER OF ARGUMENTS UP TO 6,

MARGIN (NUM) 1 THE MARGIN, INITYIALLY SET YO 1, IS THE NUMBER OF
COLUMNS ON THE LEFT OF THE GROPE OUTPUT HUFFER WHICH PRINFT WILL
NOT FILL, 1F NUM I8 NONNEGATIVE, THEN THE MARGIN BECOMES
NUMs IN ANY EVENT THE MARGIN 1S RETURNED AS THE VALUE of
THE FUNCTION,

MAXERR (nNuUM) ¢ = NUM, HENCEFORTH GROPE WILL ABORY THE PROGRAM AFTER
NuM ERRORS,
INITIALLY 3 MAXERR(10)

MEMBER (VAL,L8) t = VAL PROVIDED THAT VAL 1S ONE OF THE ELEMENTS IN THE LINEAR
STRUCTURE LSy ELSE @4 IN MANY CASES MEMBFRSHIP IN SETS {GRSET, NOSET,
NSET, RSETI, RSETO, £7C.) MAY BE TESTED MORE EFFICIENTLY WITH AN
APPROPRIATE 18=FUNCTION {ISREL, ISATIN, ISRCI, ISRCOs ETCY,

MERGE (RDR,L) 1 2 RDR, THE FLEMENTS IN THE LIST L ARE INSERTED 1IN
OPDER T0 THE RIGHT OF [OUT FROM] THE LIST READER RDR,
L BECOMES EMPTY, AS IN CONCAT, THE EFFECT 15 THAT THE NEXT
TO(RDR) WILL RETURN THE VALUE WHICH WAS PORMERLY FIRST(L),

MESAGE (TAPENUMBER) 1 = TAPENUMBER, 1F TAPENUMBFR S @ THEN ERROR MESSAGES
WiLL NOT APPEAR, ELSE THEY WILL BE WRITTEN ON FILE TAPENUMBER,
INITALLY 1 MESAGE(6)

MODEQ (B8) 1 = @3 HENCEFORTH GROPE I8 IN THE GUEUE MODE,.

MODES (Q) & = =13 HENCEFORTH GROPE IS IN THE STACK MODE,
INITIALLY t MODES(®)

MOVEND (RDR) t = RDR, THE LINEAR STRUCTURE READFR RODR 18 MOVED DIRECTLY TO THE
LAST ELEMENT 1IN 17TS ORIGIN, IF LENGTH(ORIGINCRDR)) = 9, THEN RDR 18

RESTARTED,

129

MOVETO (ROR,VAL) ¢ = RDR, THE READER RDR MOVES DIRECTLY TO THE VALUE
VAL WITHIN ITS ORIGIN, [(FOR A L1ST READER, RDR IS RESTARTYED,
THEN MOVED TO THE FIRST OCCURENCE OF VAL.] REED(RDR) BECOMES VAL,

NDSET (G) 1 RETURNS THE SET OF NODES ON GRAPH G THAT ARE RELATED,

NSET (0BJ) 1 RETURNS THE SET OF ATTACHED NODES WITH QBJECT = 0BJ, {THE EMPTY
WSET 1§ CREATED IF NECESSARY,!

OBJECT €0BJ) ¢ IF OBJ IS A PAIR, THEN OBJECT 1t = X WHERE 0BJ = CRISP(X,V),
1F OBJ IS AN ARC, THEN OBJECT 1 = X WHERE 0BJ = CRISRIN,X,M),
IF OBJ 15 A NODE, THEN ORJECT 1 = X WHERF nNBJ = CRISN(X,6),
IF nBJ 1S A GRAPH, THEN ORJECT t = X WHERE OBJ = CREGR(X),
IF OBJ IS A LIST, THEN OBJECT 3 = X WHERE 0BJ = CREL(X) 4
NOTE ¢ 0BJ CANNOT BE AN ATOM,

OBSET (@) 1 RETURNS THE ORSET, THE OBSET 1S THE SET OF ATOMS CREATED BY
ATOM (B1TS,HUM), THE SET IS MOT ORDERED, AND THE USER MAY NOT
DIRECTLY AFFECT 17 [ISUCH AS WITH DELFT, SERTO, ETC), BUT IT
MAY BE SEARGCHED WITH THE READER MECHANISM (USING YO, LOFT, ETCI,

QRFTY (LS,FUN,ARG?,ARG3, ARGH, ARGD) ¢ = ¥ 1F APPLY(FUN,ELEMENT,ARG2,ARG3,
ARGU,ARGS) RETURNS FALSE (=9] FOR EACH SUCCESSIVE ELEMENT 1IN
THE LINEAR STRUCTURE LS IF FUN RETURNS TRUE [2v]}, THE PROCFSS I8
TERMINATED AND THAT VALUE (#@] 18 RETURNED,
NOTE § THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

ORIGIN (RDR) 1 THE ORIGIN OF THE READER RHR 1S THE READABLE STRUCTURE RS USED
in RDR = CREEDR(RS), WHETHER CALLED DIRECTLY [BY THE USER) OR BY
DSNDTO, [THAT 1S, THE ORIGIN IS LOCAL TO THE CURRENT LEVEL OF
THE READER, AND [NORMALLY] CHANGES WHEN ASEND OR DSNDTO IS EXECUTED]

pOP (L) t REMOVES THE FIRSY ELEMENT OF THF LI8T L AND RETURNS THAT ELEMENT,

ARFILE (TAPENUMBER,NUM) t = TAPENUMBER, TERPRI wILL WRITE THE CONTENTS OF
THE GRQPE DUTPUT BUFFER ON FILE TAPENUMBER OF COLUMN LENGTH NUM,
INITALLY ¢ PRFILE(b6,136),

PRINFT (VAL:FUN,AGR?-ARGSpARGQ,AQGS) t = VAL, THE FOLLOWING ALGORITHM
DETERMINES WHAT 1S WRITTEN INTO THE GROPE OQUTPUT BUFFER ==
SET X = VALY
(1) IF X 1S AN ATOM, WRITE ITS IMAGE INTO THE BUFFFR,
OR (2) IF X 1s A PAIR, ARC, NODE, GRAPH, OR REAUER, THEN SET X &
APPLY(FUNpXrARGZ:APGS,ARGQ,ARGS)1 IF ISVAL(X) IS TRUE.
GO 10 STEP (1), ELSE DO NOT WRITE X,
ELSE (3) X MUST BE A LINEAR STRUCTURE [NOT & READERI 1
WRITE THE CHARACTER (, IF X IS A LIST, WRITE ITS
OBJECT [AS ABOVE], DELIMITED BY THE CHARACTER i,
PROVIDED 1TS QRJECT IS NOT A LISY OR QUOTE(Q),
AND (4) SET X [SUCCESSIVFLY] 10 EACH ELEMENT IN THE
LINEAR STRUCTURE AND PROCLED AS (1) ABOVEy THEN
WRITE THE CHARACTER) AND EXIT, THE GROPE
pUTPUT BUFFER IS PRIMTED AND EMPTIFD (TERPRID
ONLY AS NECESSARY TO PREVENT BUFFER OVERFLONW,
BE CAREFUL TO NOTE THAT THERE ARE MANY WAYS TO GENERATE
INFINITE LOOPS, A RECOMMENDED CALL 1S PRIMFTC(VAL,OBJECT) WHICH
WORKS SUCESSFULLY IN MOST CASES,
NOTE § THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

PRXPFT (VAL FUN,ARG2,ARG3,ARGUARGS) ¢ = TERPRI(PRINFT(VALFUN,ARGZ,ARG3,
ARGY s ARGS)),

NQTE t THIS FUNCTIGN ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP T0 6,

130

PSET (0BJ) § RETURNS THE PSFT AFFIXED T0 08J. TF NONE EXISTS, ONE 1S CREATED,
AFFIXED TO DBJ AND RETURNED,
To THE EXTENT TO WHICH OBJECTS SHARE THE SAME PSET, THEY
SHARE THE SAME VALUE,

PUT (OBJY,08J2,vAL) ¢ = DBJL, GET(ORJ1,0BJ2) BECOMES VAL, PUT STACKS
OR GQUEUES THE CRISP(OBJ2,VAL) ON THE PSET(0BJ1), UNLESS THERE
ALREADY IS A PAIR P DN THE PSET(NRJL) WITH THE OBJECT(P) = 0BJ2,
IN AHICH CASE HANG(P,VAL) 18 EXECUTED,

QUEUE (VaL,L) 1 = L , THE VALUE VAL IS QUEUED ONTO THE LIST L.
THE QUEUESTACK MODE 15 UNAFFECTED BY QUEUE

QUOTE (BI713) t RETURNS A QUOTED INTEGER Xt ISINT(X), ISQINT(X),
AND ISATOM(X) ARE TRUE, THE ABSOLUTE VALUE OF THE INTEGER BITS MUST
BE s 131,871, X DOES NOT APPEAR IN THE GROPE SPACE (VECTORI,
NOTE 1 EQUAL(ATOM(BITS;@)pQUDTE(BITS)) 18 FALSE,

RDEXP (G) & RETURNS THE NEXT ATOM OR LIST {A BALAMCED SET OF PARENTHESES AND
ATOMS) IN THE INPUT BUFFER, READING LDGICAL RECORDS [CARDS) INTQ
THE BUFFER FROM THE CURRENT RDFILE AS NECFSSARY T0 COMPLETE THE
OPERATION, NOTE 1 1F THE USER WISHES TO USF READ AND RDEXP ON THE SAME
FILE, WHEN CHANGING THE READING MODE FROM READ TO RDEXP OR RDEXP TO
READ ALWAYS START THE DATA ON A NEW LOGICAL RECORD {(CARD), WHEN
RDEXP ENCOUNTERS AN END=OF=FILE, RDEXP 3§ = ©, THE OBJECT OF ANY NEW
LIST 18 GUOTE(®),

ROFILE (TAPENUMBER NUM) 1 = TAPENUMBER, THE FUNCTION RDEXP WwlLL READ
FrROM FILE TAPENUMBER OF (COLUMNY LENGTH NUM,
INITIALLY ¢ ROFILE(S,88)

REALE (IARG) t = 1ARG, THE MOTIVATION FOR THIS FUNCTION 1S AS FOLLOWSY
X = 1ARG CAUSES MODE CONVERSION, AND THE EFFECT IS A CATASTROPHE
1F X 1S TO BE USED AS A GROPE VALUES MENCE X = REALE(IARG),

REED (RDR) § RETURNS THE VALUE AT WHICH THE READER RDR 1S POINTING, IF THE
KEADER 1S UNMOVED [NOT READING AMYTHING) , REED & 3 @,
1IF RDR IS AN ORSET READER, AN ATOM 1S5 RETURNED,
1F RDR IS A PSET READER, A PAIR 1S RETURNED.,
1F RDR 15 AN RSETI DR RSETO READFR, AN ARC 15 RETURNED,)
1F RDR 15 A NODE, GRAPH, NSET OR NDSET READER, A NODE 18 RETURNED,
1F RDR 1S A GRSET READER, A GRAPH 15 RETURNED,
IF RDR IS A READER READER, A READER 18 RETURNED,
IF RDR 1S A L1ST READER, THEN A GROPE VALUE 1S RETURNED,

RELATE (NG) t = NG, THE NODE {OR GRAPH] NG IS STACKED OR QUEUED INTO THE
ApPROPRIATE NODESET (OR THE GRAPHSET) IF ISKEL(NG) IS FALSE, HENCEFORTH
ISREL(NG) 1S TRUE,

RESTRT (RDR) § = RDR, THE RFED(ROR) BECOMES @, (THE READER BECOMES UNMOVED,)

RETURN (ARG) § WHEN CALL RETURN(ARG) 15 THE LASY EXECUTED STATEMENT IN
A FUNCTIONs ALPHA, THEN THE FOLLOWING OCCURSE .
(1) THE LAST VECTOR SAVED BY SAVAR IS NO LONGER
PROTECTED FROM THE GARBAGE COLLECTOR,
(2) ALPHA 3 ARG
RETURN
A TYPICAL FORTRAN=GROPE FUNCTION MIGHT BEs
FUNCTION ALPHA (A,8,C,D)

131

1]
CALL SAVAR(ALPHA,3)
Y = F(A)
ALPHA = F1(B,Y)
Z = F2OC D ALFHA)
- CALL RETURN(Z)
L)
1]

L]
END
NOTE & THE FUNCTION NAME AND THE TWO LOCAL VARIABLES, Y AND 2,
ARE PROTECTED FROM THE CALL SAVAR(ALPHA,3) UNTIL THE
CALL RETHURNMIZ) STATEMENT,
WARNING 3 WHEN RETURN 1S USED, SAVAR MUST PROTECT ALL AND ONLY
THE LOCAL VARIABLES,

REVERT (RDR) 1 = RDR IF 1SDEEP(RDR) = @y ELSEC REVFRT 1 = REVERT(ASEND(RDR)),
{REVERT RETURNS THE LAST READER IN THE STACK RDR,)

REVRC (RC) 3 = RCq THE ARC RC IS REVERSED = THE TOMNONE(RC) BECOMES THE
FRNNDDE(RC), AMD VICE=VERSA, THE ATTACHED RELATIONSHIPS ARE MAINTAINED?
1F ISRCO(RC) WAS TRUF, THEMN 1T 18 STILL TRUE,
1F ISRCI(RC) WAS TRUE, THEN 1T 1S STILL TRUE,

RSETT (N) t RETURNS THE SET OF ARCS INTO NADE N THAT ARE ATTACHED 1IN,
{ISRCI IS TRUE FOR ALL ARCS IN THt RSETI,]

RSETO (N) 1 RETURNS THE SET OF ARCS FROM NODE N THAT ARE ATTACHED 0QUT,
{1SRCO 15 TRUE FOR ALL ARCS IN THE RSETO,)

SAVAR (VECTOR,NUM) 1 = VECTOR, THE FIRST NUM VARIABLES IN VECTOR ARE SAVED =
THAT 1S, <“ONE OF THE GROPE STRUCTURES NAMED BY THESE VARIABLES AT
GARBAGE-COLLECTION TIME WILL BF DESTRNOYED, [SEE SETUP FOR THE
DESCRIPTINN NF THE GARBAGE COLLECTOR,]

SAVAR ZERDES OUT THE FIRST NUM VARIABLES IN VECTOR,

SAVCOM (VECTOR,NUM) t IS THE SAME AS SAVAR, BUT SAVCOM DOES NOT ZERD 0OUT
THE FIRST NUM VARIABLES IN VECTOR,

SERT] (RDR,VAL) 1 = RDR, IF ROR 18 A LIST READER, THEN THE VALUE
VAL 1S INSERTED INTO THE LIST INWARD FROM RDR3 THE NEXT TI(RDR)
WILL PRODUCE VAL,
IF DR 1S A NADE OR GRAPH READER, THFN ThE ARC VAL I3 INSERTED
IM THE RSETI(REED(RDR)) 50 THAT THE NEXT T1(HDR) wILL CRNOSS THE ARC
vaL [SUAJECT To THE RESTRICTION ON THE GRAPH READER) . IN THIS CASE,
1SRCI(VAL) MUST PE FALSE BEFORE SERTL, AMD wILL RE TRUL AFTERWARDS,
ALSOs THE TONODE(VAL) HUST = REED (KDR),

SERTO (RDR,VAL) 1 = RODR, IF RDR IS A LIST RELDER, THEN THE VALUE
vaL Is IMSERTED INTO THE LIST OUTWARD FROM HDRy THE HNEXT TN(RDR)
WILL PRODUCE VAL,
1F RDR 1S A NODE nR GRAPH READER, THEN THE ARC VAL I3 INSERTED
In THE RSETOC(REED(RDR)) 80 THAT THE NEXT TO(RDR) WILL CRNSS THE ARC
VAL (SUBJECT To THE RESTRICTION ON THE GRAPH READER) ¢ IN THIS CASEs
ISRCO(VAL)Y MUST BE FALSE BFFORE SERTO, AND AlLL BE TRUFE AFTERWARDS,
ALSO, THE FRNODECVAL) MUST = REED(RDR),

SETUP (VECTOR,NUMI,NUM2,NUM3) 1 = @, THIS SETS UP GROPE, NO OTHER GROPE
FUNCTION MAY BE EXECUTED UNTIL AFTFR SETUPs HNOWEVER, THF SYSTEM MAY RE
REwINITALIZED (FOR EXECUTION OF A DIFFERENT PROGRAM, FOK EXAMPLE] ’
BY CALLING SETUP AGAIN, SETUP USES VECTOR OF SIZE NUML DIMENSIONED

132

BY THE USER, WITH NUMi x NUM2 {@<NUM2<1] WORDS RESERVED FOR FULL WORDS
AND NUM3 WORDS RESERVED FOR THE GARBAGE COLLECTOR STACK, THE FOLLOWING
1S AN EXACT DESCRIPTIOM OF FULL WORD UTILIZATION IN THIS IMPLEMENTATION
OF GROPE, ASSUMING AN ATOM IS ACTUALLY BEING CREATED1
(1) FOR ATOM(BITS,wNUM) = NUM FULL WOKDS WHERE NUM I8 1 OR 2.
(2) FOR ATOM(BITS,@) = 1 FULL WORD IF RITS > 2 1 18 = 1
(3) FOR NUM 2 1, AND MORE THAN 3 CHARACTERS IN BITS =
NUM FULL WORDS,
(4) ALL OTHER CASES REAUIRE NO FULL wORDS,
THE FOLLOWING IS A DESCRIPTION OF WHAT GROPE VALUES ARE NOT DESTROYED
By THE GARBAGE COLLECTOR1
(1) THE GRSET AND THE OBSET,
(2) ALL VALUES NAMED BY THE SAVED VARIABLES, [THE USER SHOULD
NOTE THAT EACH CALL TO SAVAR CONSUMES ONE WORD OF THE
GARBAGE COLLECTOR STACK,.]
(3) IF A LINEAR STRUCTURE 18 SAVED, THEN SO ARE I1TS ELEMENTS,
(4) IF A STRUCTURE X IS SAVED THEN [ASSUMING wELL DEFINED] S0 ARE
THE NDSET(X), HSNSET(X)» RSETO(X) s RSETLI(X), HSPSET(X),
GRAPH(X), TONODE(X), FRNODE(X), OBJECT(X) s VALUE(X),
ORIGIN(X), AND REED(X).
AN EXAMPLE INITIALIZATION IS 3 DIMENSION ARRAY(2040@)
BEGIN = SETUP (ARRAY,2027,3,084,208)
NOTE 1 ANY EXECUTION PARAMETER THE USER CAN ALTER {£,6, = ROFILE,
PRFILE, MODEQ, ECHO, ETC,) 18 NOT KEmINITIALIZED BY SETUP,

SOFY (LS.FUN.ARGZ;ARGS;ARGQ.ARGS) t THE EFFECT AND VALUE 1S LIKE LOFT,
HOWEVER, 1F valL IS ALREADY A MEMBER OF THE NEW LIST, VAL IS NOT
INSERTED, THUS SOFT PRODUCES A LIST WITH NO DUPLICATED ELEMENTS,
NOTE 1 THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO0 6,

STACK (VAL,L) § = L , THE VALUE VAL IS STACKED ONTO THE LIST L,
THE QUEUE-STACK MODE 1S UNAFFECTED BY STACK.

SUBST (RDRsVAL) t = RDR, THE VALUE VAL 15 SUBSTITUTED FOR THE ELEMENT
In THE LIsT WHICH IS BEING POINTED AT BY RDR, THAT 18, THE
READER DOES NOT CHANGE POSITIONs BUT REED(RDR) BECOMES VAL,

TAB (NUM) t IF NUM > @, THE CURRENT OUTPUT TAB POSITION (AS ON A TYPEWRITER)
BECOMES NUM = THAT IS, PRINFT BEGINS FILLING THE GROPE QUTPUT BUFFER
AT COLUMN NUM, IN ANY EVENT, THE CURRENT TAB IS RETURNED AS THE VALUVE
OF THE FUNCTION,

YERPRI (ARG) t = ARG, TERPRI WRITES THE CONTENTS OF THE GROPE QUTPUT
BUFFER ON THE CURRENT PRFILE, AND EMPTIES THE BUFFER,

T1 (RDR) t = REED(RDR) ONCE THE READER RDR HAS MOVED AS DESCRIBEDS
IF RDR 1S A LIST READER, THEN RDR TRAVEKSES THE LISY INWARD ONE

ELEMENT, (THAT 15, RDR MOVES LEFT ONE POSITION,) LISTS ARE CIKCULAR,
§0 1F THE READER WAS ON THE FIRST ELEMENT KEFORE TI, 17 WILL MOVE
ARQUND TO THE LASY ELEMENT, :
IN THE CASE OF THE UNMUVED GHAPH READER RDP,
11 = REFD(MOVEYO(PDR;VAL“E(D”IG!N(HDW)))) , (NNTE THAT IN THIS cAst
THE VALUE HANGING FROM THE GRAPH MUST HE OWF 0 1718 NODES,]
1¢ RDR 15 & NODE 0DR GRAPH HEADER, LET N2REFD(RUR) [OR ORIGIN(RDR) 1F
THE NODE READER RDR IS UNMOVED) , THEN THE READER CROSSES THE NEXT ARC
IN THE RSETI(N) AFTER THE CURCI(N), AND THF REED BECNMES THE NODE
T0 “HICH THE READER MQVES, (IN THE CASE OF A GRAPH READER, KOR wIith
SFARCH THE ARCS UNTIL 1T FINDS OME WHICH COMES FROM
A NODE ON THE GRAPH WHICH 15 THE ORIGIN OF THE READER, IF NONE
CAN BE FOUND, THE READER DOES NOT MOVE,.} AFTER THE MOVE,
THE FUNCTION CURARC(R) WILL RETURN THE ARC CROSSED 8Y THE READER,
THE ARC CROSSED BECOMES THE CURCI OF 17S TONODE,

IF FOR ANY REASON RDR CANNOT MOVE, T1 t = U

133

TIFY (RDR.FUN,ARGZ,ARG}.ARG&,ARGS) t 15 LIKE TI(RDR) FOR THE NODE OR GRAPH
READLER RDR EXCEPT THATY APPLY (FUN(KC,ARG2 ARG ARGUpARGS) MUST ANSAER
TRUE FOR THE ARC UNDER CONSIDERATION {FOR REING CROSSED], EBELSE THE NEXT
ARC In THE RSETY WILL BE CONSIDEFED. [THAY 18, FUN IS APPLIED TO THE
ARCS IN THE RSETI STARTING AF1ER THE CURCI, UNTIL FUN ANSWERS TRUE
R ELSE IT HAS BEEN UNSUCCESSFULLY APPLIED 10 ALLs IN WHICH CASE
ND “0VE 1S MADE,) IF FUN ANSWERS TRUE, THEM T1 1S EXECUTED ACROSS
THAT ARC, ByUT THE VALUE OF TIFT 15 THAT VALUE RETURNED BY FUN,

In THE CASE oF THE UNMOVED GRAPH READER RODRy

TIFT = REED(MOVETO(RDRpVALUE(OQIGIN(RDR))))

[IN THE GrRAPH READER CASE, FUN IS ONLY APPLIFD T0 THOSE ARCS WHICH
COME FROM A NODE ON THE GRAPH,)

NnTE t THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

Y0 (RDR) ¢ = REED(RDR) ONCE THE READER ROR HAS MOVED AS DESCRIBED?
1F RDR 15 A LINEAR STRUCTURE READER, KDR TRAVERSFS THE STRUCTURE
QUT4ARD ONE ELEMENT, [THAT 1S, RDR MOVES RIGHT ONE POSITION,)
SUCH STRUCTURES ARE CIRCULAR [WITH THE EXCEPTION OF THE READER],
sO 1F THE READER wAS ON THE LAST ELEMENT BEFORE T0O, IT wILL MOVE

~ ARQUND TD THE FIRST ELEMENT [WITH THE EXCEPTION OF THE READER

STRUCTURE, IN wWHICH CASE NO MOVE 18 MADE},
In THE CASE OF THE UNMOVED GRAPH READER RDR ¢
To = REFD(HOVETU(QDR,VALUE(ORIGIN(RDR))J) . [NOTE THAT IN THIS CASE
THE VALUE HANGING FROM THE GRAPH MUST BE OME OF 17S NODES,]
1F RDR 1S A NNDE nNR GRAPH KEADFR, LET N=REED(RDR) {OR ORIGIN(ROR)
IF THE NOpE REANER RDR 18 UNMOVED), TREN THE READER CROSSES THE
NEXT ARC IN THE RSETO(N) AFTER THE CURCOCN), AND THE RERD
BECOMES THE NDDF TO WHICH THE READER MOVES, [IN THE CASE OF A GRAPH
READER, RDR WILL SEARCH THE ARCS UMTIL 17 FINDS ONE WHICH GOES TO
A NGDE ON THE GRAPH WHICH 15 THE ORIGIN OF THE REANDER, I1F NONE
CAN BE Founn, THE READER DOES NOT MOVE,) AFTER THE MOVE,
THE FUNCTION CURARC(@) WILL RETURN THE ARC CROSSED BY THE READER,
THE ARC CROSSED BECOMES THE CURCO OF ITS FRNODE,
IF FOR ANY REASOUN RDR CANNOT MOVE, TO 3 = @,

TOFT (RDR, FUN,ARG2, ARG3, ARGG, ARGS) 3 1S LIKE TOCRDR) FOR THE NODE OR GRAPH
REAGER RDR EXCEPT THAT APPLY (FUN,RC,ARG2, ARG3, ARGU 4 ARGS) MUST ANSWER
TRUE FOR THE ARC UNDER CONSIDERATION (FOF KREING CROSSED], ELSE THE NEXT
ARC IN THE RSETN wWILL BE CONSIDERED, [THAT 18, Fun IS APPLIED TOQ THE
ARCS IN THE RSETO STARTING AFTER THE CURCO, UNTIL FUN ANSWERS TRUE
OR ELSE 1T HAS BEEN UNSUCCESSFULLY APPLIED TO ALL, INV WHICH CASE
NG A0VE 1S MADE.) 1F FUN ANSWERS TRULE, THEN 10 18 EXECUTED ACROSS
THAT ARC, BUT THE VALUE OF TOFY 18 THAT VALUE RETURNED BY FPUN,

In THE CASE nF THE UNMOVED GRAPH READER RDK,

T0FT = REED(MOVETO(RDR-VALUE(ORIGIN(RDR))))

{1n THE GRAPH READER CASE, FUN IS ONLY APPLIED TO THOSE ARCS WHICH
LEAD TO A NODE ON THE GRAPH,)

NOTE § THIS FUNCTION ACCEPTS A VARIABLE MUMHBER OF ARGUMENTS UP T0D &,

TONODE (RC) t IN THE ARC <N1,0BJ,N2» , N2 15 THE TO=NODE,
TRUE (ARG) t = ARG, ([THUS IF ARGZ8, THEN ARG IS TRUE,!
UNHANG (08J) t = 0BJ, THE VALUE (0BJ) BECOMES @, [THE HANGING 18 REMOVED,)

UNREL (NG) & = NG, THE NODE [OR GRAPH} NG 1S REMOVED FROM THE APPROPRIATE
NNDESET {OR THE GRAPHSETI« AND I1SREL{(NG) BFCOMES FALSE,

VALUE (08J) 1t RETURNS THF MOST RECENT VALUE, VAL, SUCH THAT HANG (OBJ,VAL) WAS
EXECUTED) IF NONE, VALUE § = 0,

10.

11.

12.

13.

14.

REFERENCES

Baron, R., L. Shapiro, D. P. Friedman, and J. Slocum, "Graph process-
ing using GROPE/360," University of lowa Computer Science Technical
Report (in preparation).

Burstall, R. M., "Formal description of program structure and semantics
in first-order logic," in Machine Intelligence 5 (B. Meltzer and
D. Michie, eds.), American Elsevier Publishing Co., New York (1970).

Cashin, P. M., M. R. Mayson, and R. Podmore, "LINKNET--A structure
for computer representation and solution of network problems," Australian
Computer Journal 3 (August 1971).

Crespi-reghizzi, 8., and R. Morpurgo, '"'A language for treating graphs,"
Comm. ACM 13 (1970), 319-323.

deBakker, J. W., "'Semantics of programming languages,' in Advances in
Information System Science (3. Tou, ed.), Vol. 2, Plenum Press, New York
(1969).

Earley, J., 'Toward an understanding of data structures,' Comm. ACM 14,
10 (Oct. 1971), 617-627.

Friedman, D. P., D. Dickson, J. Fraser, and T. W. Pratt, GRASPE 1.5:
a graph processor and its application," Department of Computer Science
Report RS1-69, University of Houston, Houston, Texas, 1969.

, "GRASPE: graph processing a LISP extension,' Computation Center
Report TNN-84, University of Texas, Austin, Texas 1968,

, "Use of the intersection rules in the development of new models
within GRASPE 1.5,'" University of Texas, April, 1970 (unpublished manu-
script).

Greenawalt, E. M., private communication.

Griggs, Eric R., "Automatic Data Flow Analysis of Computer Programs,"
unpublished Master's thesis, University of Texas at Austin, May 1973.

Griswold, R. E., J. F. Poage, and I. P. Polonsky, The SNOBOL4 Programming
Language, Englewood Cliffs, New Jersey: Prentice-Hall, Imc., 1968.

Hart, R., "HINT: a graph processing language, ' Institute for Social
Science Research Technical Report, Michigan State University, East
Lansing, Michigan, 1969.

Hendrix, G. G., ''Question answering via canonical verbs and semantic
models: a model of textual meaning,' Technical Report NL12, January 1973,
Department of Computer Science, The University of Texas at Austin.

134

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

135

, "™Modeling simultaneous actions and continuous processes,' to
appear in Artificial Intelligence Journal.

, C. W. Thompson, and J. Slocum, "Language processing via

canonical verbs and semantic models," in Proceedings of the Third Annual
Joint Conference on Artificial Intelligence, August 1973.

6
Knowlton, K. C., "A programmer's description of L, Bell Telephone
Laboratories low-level linked list language,' Comm. ACM 9, 8 (August
1966).

Landin, P. J., "Correspondence between ALGOL-60 and Church's lambda
notation, Part I and II," Comm. ACM 8, 2 (February 1965), and Comm. ACM
8, 3 (March 1965).

Lawsen, Harold W., Jr., "pL/1 list processing,' Comm. ACM 6 (June 1967)
385-367.

Lee, J., Computer Semantics, Van Nostrand-Reinhold, 1972.

Lehmann, W. P., R. Stachowitz, and Bary Allan Gold, "German-English
translation system," Technical Report of the Linguistics Research Center,
The University of Texas at Austin (in preparation), 1973,

lucas, P., and K. Walk, "On the formal description of PL/I," in Annual
Review in Automatic Programming (L. Bolliet, et al., eds.), Vol. 6,
Part 3, Pergamon Press,New York (1969).

McCarthy, J., et al., LISP 1.5 Programmer's Manual, MIT Press, Cambridge,
Massachusetts, 1962.

Newell, Allen (ed.), Information Processing Language-V Manual, Prentice-
Hall, Englewood Cliffs, New Jersey, 1961.

Pohl, Ira, "A method for finding Hamilton paths and Knight's tours,'
Comm. ACM 7 (July 1967).

Pratt, T. W., "A hierarchical graph model of the semantics of programs,"
Proceedings of AFIPS SJCC (1969), 813-825.

, "Introduction to a theory of programming language semantics,"
Report TSN-4, University of Texas Computation Center, 1969, 10 pp.

, "Semantic modeling by hierarchical graphs,' ACM SIGPLAN Sympo-
sium on Programming Language Definition, San Francisco, Calif., August
1969.

, "Pair grammars, graph languages, and string~to-graph transla-
tions," J. of Comp. Sys. Sci., 5, 6 Dec. 1971, 560-595.

136

30.

31.

32.

33,

34.

35.

36.

37.

38.

39.

40.

41,

47.

43.

44 .

, "A formal definition of ALGOL 60 using hierarchical graphs
and pair grammars,' Report TSN-33, University of Texas Computation
Center, 1973, 82 pp. :

, and D. P. Friedman, ''A language extension for graph process=-
ing and its formal semantics,' Comm. ACM 14 (1971), 460-467.

Ross, Douglas T., 'The AED free storage package,' Comm. ACM 8 (August
1967), 481-492.

Shneiderman, B., '"Data Structures: Description, Manipulation, and
Evaluation,' unpublished Ph.D. dissertation, State University of New
York at Stonybrook, 1973.

Slocum, J., "Question answering via canonical verbs and semantic
models: generating English for the model," Technical Report NL13,
January 1973, Department of Computer Science, The University of Texas
at Austin.

"The Graph Processing Language GROPE 2.0," Master's thesis
in preparation, The University of Texas at Austin.

Stachowitz, Rolf, Voraussetzungen fur maschinelle bersetzung: Probleme,
Losungen, Aussichten, Athendum Verlag, Frankfurt/M, 1973. "

, Ein Modell linguistischer Performanz, Athenaum Verlag,
Frankfurt/M. (in vorbereitung).

Thompson, C. W., '"Question answering via canonical verbs and semantic
models: Parsing to canonical verb forms,' Technical Report NL13,
January 1973, Department of Computer Science, The University of Texas
at Austin.

Wegner, P., "The Vienna definition language,’’ Computing Surveys 4, 1
(1972), 5"64.

Weizenbaum, J., ''Symmetric list processor,' Comm. ACM 6, 9 {Sept. 1963).

Wesson, Robert B., "A pair grammar based string to graph translator
writing system," Master's thesis in preparation, The University of
Texas at Austin.

Wilson, James Y., "Graphical representation of semantic structure,"”
unpublished Master's thesis, The University of Texas at Austin, August
1972.

Wirth, N., "The programming language, PASCAL," Acta Informtica 1 (1971),
35-63,

Woods, W. A., "Tramsition network grammars for natural language analysis, "
Comm. ACM 13, 10 (October 1970), 591-606.

N e

	tr73-20a
	tr73-20b
	tr73-20c

