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ABSTRACT

This dissertation concerns the design of a programming language
for efficient processing of directed graph data structures and the precise
formal definition of the semantics of the language designed. The design
handles data structures and operations rather than control structures.
This emphasis at the semantics level gives rise to a somewhat different
view of the problem of formal definition.

This research has resulted in the development of a graph processing
language, GROPE, for efficient processing of directed graph structures.
CROPE embodies some major new ideas about representation and processing of
complex data structures. In addition, a new two- level definitional tech-
nique for programming language semantics has been introduced. One level
develops user-oriented semantics and the other develops implementation-
oriented semantics. As an illustration of this technique a major part of

GROPE is formally defined.
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. CHAPTER I

INTRODUCTION AND BACKGROUND

Overview

This dissertation has two main concerns. The first is the design
of a programming language for efficient processing of directed graph data
structures. The second is the precise formal definition of the semantics
of the language designed. 1In the design the concern is entirely with
data structures and operations rather than control structures. This em-
phasis at the semantic level gives rise to a somewhat different view of
the problems of formal definition.

This research has resulted in two major achievements. A programming
language extension, GROPE, for efficient processing of directed graph struc-
tures has been designed and implemented. GROPE embodies some major new
ideas about representation and processing of complex data structures. In
addition, a new two-level definitional technique for programming language
semantics has been introduced. One level develops user-oriented semantics
and the other develops implementation—oriented semantics.

Graph processing is a new area of language design. The next sec-
tion sheds some light on graph processing and discusses its relevant back-
ground. Likewise, formal semantic definition is relatively new, and the

appropriate literature is discussed following the graph processing section.



Graph Data Structures

The term 'graph" used in the previous section requires some explana-
tion. Here, a graph is a data structure composed of nodes (vertices) and
arcs (edges or branches). These graph data structures have labeled nodes
and arcs, and they may be organized into sets, hierarchies, etc. The
reader should not confuse our use of the term "graph" with the subject area
of "computer graphics" which is directly concerned with picture construc-
tion.

Graph data structures are important data representations in many
fields. 1In mathematics graph structures are studied for their static
properties. 1In computer science graph structures are studied for their
dynamic properties. In other fields "graph structures" have various names.
For example, there are bonding structures in chemistry, Feynman Diagrams
in physics, sociograms in sociology, circuit diagrams in electrical engi-
neering, and flow networks in operations research.

Algorithms which process graphs are important. For example, algo-
rithms which determine the maximal flow through a network, shortest path
between two nodes, a Hamiltonian Path or optimal line balance are all
usually formulated as graph processing algorithms. There are graph algo-
rithms for the well-known "Traveling Salesman Problem," for finding a maxi-
mal spanning tree, and for information retrieval. Graph algorithms have
also been applied to the "Four Color Problem," the solution of the "Knight's
Tour," and the determination of transitive closures. Programs which involve
graph processing are clearly an important class of programs.

Graphs are ordinarily represented in a computer in one of two ways.

They are either simulated by using more primitive structures (e.g., arrays



in ALGOL [25] or property lists in LISP [23]) or they are simulated by

using extensible data structures (e.g., programmer-defined data types in
SNOBOL4 [12], '"based variables'" in PL/I [19] or plexes in AED [32]).

"Incidence arrays'" are a well-known representation for graphs
using more primitive data structures. A graph is represented by a two-
dimensional square array A, having one row and one column for each node.
An edge from node i to node j with label v is denoted by the array posi-
tion Ai,j having value v. The main drawback of this representation is
the lack of flexibility for the representation of complex structures. For
example, associating additional values with nodes and arcs or allowing
parallel arcs requires additional storage. A lesser shortcoming of this
representation is the relative inability to do dynamic processing. For
example, if the graph contains k nodes, then it is difficult when using
incidence arrays to let the graph grow to k+l nodes through the creation
of a new node, for few programming languages allow an array to grow by
the addition of a row and column.

Another example of simulating graph structures by using primitive
structures involves property lists (attribute-value pairs). Nodes are re-
presented by "atoms" with attached property lists. If Ai,j is the value
of the arc from node i to node j, then there is an attribute-value pair
(Ai,j’j) in the property list of i. The property list representation
causes graph algorithms to be inefficient in terms of time due to the neces-
sity for property list searching for each arc access. In addition, the
property list representation makes it difficult to traverse arcs in both
directions, a property required in many graph algorithms (e.g., finding a

critical path on a PERT network).



When graphs are simulated by using extensible data structures, the
user defines blocks of core (plexes, records or based variables) as nodes.
Arcs are represented by pointers from one block to another. The specified
fields within a node are used to store the information associated with a
node and with the arcs leaving the node. A number of programming languages
have this ability as a built-in feature, e.g., PASCAL [43], PL/I [19],

AED [32], and L6 [17]. Each of these languages has the major difficulty
that the burden is on the programmer to define a set of logical primitives
for graph processing. 1In addition, the programmer must construct facilities
for the storage management and input/output. In SNOBOL4 [12], using
programmer-defined data types, some of these aspects disappear. For exam-
ple, SNOBOL4 has a garbage collector for storage management, and some basic
accessing and creating primitives are automatically created when a new

data type is defined. Yet the responsibility of defining most of the ap-
propriate graph processing primitives in SNOBOL4 still rests with the pro-
grammer.

In the preceding section certain shortcomings of using primitive
structures or extensible structures to simulate graph structures and pro-
cesses have been presented. Many of the arguments for choosing a true
graph processing language over one of the simulations of graph structures
mentioned above are reminiscent of the arguments for choosing a high-level
language over assembly language, For example, in both the simulation and
assembly language, input/output requires much software development whereas
graph processing languages and high-level languages have (or should have)

a well developed input/output facility. In addition, programs in assembly
language tend to be error prone and have poor sclf-documentation (that is

p

the programs are difficult to follow). The same is true for many of the



simulation techniques mentioned above. Tn each case much user-supplied

support software is required before considering‘the algorithm that is
actually being programmed. Also, a new task for such a graph simulation
may require a major redesign; however, for a graph processing language,
1ittle or no redesign should be necessary.

GROPE, the subject of this paper, is a general-purpose graph pro-
cessing language in which graphs form the basic data structure. The
general class of graph processing problems for which GROPE is designed
is characterized by two aspects. First, the problems deal with sets of
graph structures which are interrelated in complex ways and which contain
symbolic as well as numeric data. Second, the problem solutions require
the graph structures to grow, shrink, and be modified both dynamically
and irregularly. These complex graph processing problems are precisely
those for which the simple graph simulations described above are most inade-
quate.

CROPE is a graph processing language designed to provide appropriate
structures and primitives for this class of problems. The GROPE design is
based on three major design criteria. First there should be flexibility
of structure for representing a variety of classes of data. There should
be labeled nodes and labeled arcs and provision should be made for the repre-
sentation of multiple arcs between two nodes. It should be possible to
represent, in a natural manner, hierarchical graphs (graphs whose nodes
can have values that are graphs) and other relationships between graphs.
There should be supporting structures, such as simple list and set process-
ing for maintaining information during graph searches. There should be

special mechanisms for searching and processing graph structures.



Second, there must be operations which modify the structures
dynamically. There must be operations which destroy and modify graphs,
nodes, and arcs, e.g. for changing the labels of nodes and arcs.

Finally, the processes and storage management must be handled effi-
ciently. The required efficiency is dictated by the combinatorial nature
of algorithms for graph processing. Storage management must include auto-
matic bookkeeping for the dynamic allocation and recovery of storage,

e.g. using a free space list and garbage collector.

Related Graph Processing Literature

Since directed graphs are often used for informal description and
analysis of structures, and since being able to program directly in terms
of the structures which are natural to an applications area is a well-known
advantage, it is surprising that directed graphs have not been accepted as
a primitive data structure in any major programming language. There are,
however, some minor languages which have included directed graphs.

The graph processing languages of interest are HINT [13], GRASPE
[31,7,8,9], GEA [4], and LINKNET [3]. HINT and GRASPE were designed for
symbolic structure manipulation problems, and each is associated with a
list processing language. HINT is compiled into IPL-V [24]. GRASPE is a
library of LISP functions. GEA and LINKNET were designed to perform numeri-
cal data analysis within a complex, but relatively static graph structure
(problems in operations research, etc.), and each is associated with an
algebraic language. GEA is a syntactic extension to ALGOL which is precom-
piled into ALGOL; LINKNET is a library of FORTRAN functions. Using the

design criteria discussed above for the necessary characteristics of a



graph processing language, let us now compare and contrast these four

languages with GROPE.

In terms of flexibility for representing a variety of structures,
only HINT, GRASPE, and GROPE have provided for list processing as a sup-
porting tool for graph processing. Only GROPE is concerned with more
than one type of node and one type of arc. GEA and LINKNET deal only with
numeric constants as values of nodes and arcs, whereas HINT, GRASPE, and
GROPE provide for symbolic node and arc values as well as hierarchical
structures.

In terms of operations for the dynamic creation of graph components,
only HINT, GRASPE, and GROPE allow for the dynamic creation and destruction
of graphs. Each language except LINKNET provides primitives for the dyna-
mic creation and destruction of nodes and arcs. In LINKNET, these opera-
tions are the responsibility of the programmer, i.e. the programmer must
produce code which correctly affects the appropriate fields to cause the
creation and deletion of nodes and arcs.

In terms of efficiency of processes and storage management, GRASPE
and HINT are tied to their respective hosts for their representation of
graphs. Both use property lists. The efficiency of the processes in GRASPE
and HINT is poor due to their internal representation of graphs as property
1ists and the cost of their primitives (which require property list searches).
GEA uses lists to represent graphs. Little can be said about the effi-
ciency of GEA as the details of the precompiler are unavailable. LINKNET
and GROPE use plex structures for their representation of graphs. LINKNET
does not have any graph processing primitives, only primitives to change

the contents of fields in a plex. GROPE operations are very efficient (see



Chapter IV). GRASPE, GEA, and GROPE have a garbage collector. GRASPE's
is that of its host, LISP. HINT uses the storage manager of IPL-V, and
LINKNET has no storage management.

In the previous discussion of the graph processing languages, we
noted what appeared as deficiencies in some of the languages. It should
be pointed out that these were deficiencies in terms of our design cri-
teria and not necessarily shortcomings of each language. On the contrary,
each language appears to be a good model for the class of problems with
which it is concerned, although in most instances the efficiency is very

poor,

GROPE

GROPE is a successfully implemented graph processing extension to
FORTRAN. 1In this sense, since it is a library of functions, GROPE parallels
SLIP [40]. GROPE not only provides primitives for graph processing but also
includes a number of other data structures and primitives which enhance
and support graph processing.

There are a number of major new ideas embodied in the GROPE data
structures and operations which are directly associated with graph process-
ing. GROPE provides a set of building blocks (atoms, arcs, nodes, and
graphs) and operations for putting these blocks together. The building
blocks are used not only to form simple graphs but also complex graph-based
structures (see Figures 2.18 and 2.20). 1In addition, because of the flexi-
bility of the GROPE data structures, there are a number of graph modifica-
tion primitives which perform unusual operations (for example, an operation

to move a node from one graph to another). Arcs and nodes are partitioned



into four classes. Each class provides for a different level of struc-

tural information. For example, an arc between two nodes n and m may be
accessible from n only, from m only, from both, or from neither. Although
the structures a programmer can create are likely to be very complex,
experience has shown the usage of the accessing primitives to be straight~
forward.

It is unreasonable, for our purposes, to consider a graph process-
ing language as just a set of graph processing operations. The support
operations are equally important to the development of efficient graph
algorithms. Some of the support features are list, set, and array process-
ing, and a large class of mapping functions which build or destroy struc-
tures by sequentially accessing elements in a set or list. In addition,
there is an extensive input/output facility and a garbage collector.
Throughout the design of GROPE, there has been a fanatical concern with
efficiency and a serious endeavor to maintain generality.

GROPE has been a useful tool in many applications. Slocum [34],
Hendrix [14,16], and Thompson [38] used GROPE in the area of natural lan-
guage processing. In the area of programming language semantics, an ALGOL
interpreter (see, for example, Wilson [42] or Wesson [41]), written using
H-graphs [30], is being tested in GROPE. The Linguistics Research Center
at The University of Texas at Austin has used GROPE to develop a central
portion of its machine translation system [21,36,37]. Work in the analysis
of programs (Griggs [11]), optimal overlay structures for LISP and FORTRAN
programs (Greenawalt [10]), and robotics (Hendrix [15]) are further illus-

trations of the scope of GROPE usage.



GROPE has fostered the development of GROPE 2.0 (Slocum [35]).
GROPE 2.0 is a complete, modular programming language with block structure
which has a somewhat ALGOL-like syntax. The GROPE 2.0 compiler (written
in GROPE) generates GROPE-FORTRAN code and thus serves as a very sophisti-
cated FORTRAN preprocessor. GROPE has been implemented on the CDC 6600
and IBM 360 (Baron [1]).

For a complete description of GROPE, see Appendix A.

Programming Language Semantics

Techniques for formally defining programming languages generally
follow a common pattern. First a translation is necessary which maps the
program strings into some "internal form." This internal form is then con-
sidered as the 'initial state'" of an abstract machine. The abstract ma-
chine moves from state to state as a result of applying a primitive operation
of the machine with a transition rule to the current state. A “final state'
is encountered if the program terminates. This scheme is used in Landin's
[18] definition of ALGOL, Lucas' [22] definition of PL/I, and Pratt's [30]
definition of ALGOL.

This paper is also concerned with the formal definition of program-
ming languages, in this case the definition of GROPE. However, because
GROPE is defined as a language extension (a set of data structures and pri-
mitives operations), its formal definition presents somewhat different
problems from those encountered in a definition of a language such as ALGOL
or PL/I. Where our approach differs is in two aspects. First, because
we are not concerned with syntax (i.e. with program strings), there is no

concern with translation from strings into an internal form. Second,
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because we are not concerned with control structure we simplify our problem
at the "abstract machine'" level. We need only be concerned with "'states"
composed of constants and data structures and "transition rules' defining
operations on constants and operations on data structures.

By restricting our concern to the definition of data structures
and operations we avoid many of the complexities of other definitional
techniques. This allows us freedom to attack some problems which have as
yet received scant attention in the literature. Stated informally, the con-
cern here is with formal definitions which satisfy two particular criteria.
First the formal definition should be such that a reader of the definition
can obtain a conceptual understanding of the data structures and operations
involved. Second, a reader should be able to understand how the data
structures and operations can be implemented and to determine the relative
efficiency‘of processing.

These criteria are of fundamental importance if formal definitions
of languages are to be of practical value to language users and implementers.
Existing definitional techniques tend to be either unintelligible to the
programmer, impractical as the basis for an implementation, or both. 1In
fact, we usually find that an implementation definition is too detailed
for the development of a conceptual understanding of the data structures
and operations and that on the other hand a conceptual definition is too
simple for the development of an implementation which utilizes the struc-
tural subtleties that we find in a well-thought-out model. In point of
fact, there really are two problems, and generally any approach which treats
the definition of data structures and operations as only one problem has

the shortcomings noted above.
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The problem of finding a single definitional technique to display
the external (conceptual) and internal (implementation) structure and
hence satisfy both criteria is resolved in this paper by defining formally
the same operations over two conceptually different formal systems. The
two levels of definition are termed the "macro-semantics' and the 'micro-

' The macro-semantics is the user-level semantics. Both a

semantics.'
formal system to describe the data structures and the formal definitions

of the set of operations over the data structures are included in the
macro-semantics. Similarly, the micro-semantics is the implementer-level
semantics. The micro-semantics is composed of a formal system to describe
the data structures and a set of formal definitions of the operations over
the data structures (storage structures).

The concern of the macro-semantics is to present the whole picture
of the language model from the standpoint of the potential user who needs
the answer to the following question: Notwithstanding storage and execution
time requirements, are the structures and operations suited to my particu-
lar problem? The micro~-semantics deals with the formalization of the
implementation-level concepts. From these definitions an implementer can

ferret out the "bits and pieces."

In addition, for the potential user,
the micro-semantics yields some approximation to the storage and execution

time requirements to execute algorithms,

Formal Definition of Programming Language Semantics

Formal definition of programming language semantics is a relatively
new area. Debakker [5] provides a good (although dated) survey of research

in the formal study of programming language semantics. Since the concern
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here is with objects and operations on objects, the discussion is limited
to the treatment of this limited area of semantics. For each approach we
are concerned with three basic questions. First, how is the total data
space or ''overall state'" of the abstract machine conceived? Second, how
are data structures represented? Third, how are primitive operations
defined? The approaches of interest are the Vienna Definition Language
[22,39,20], the H-graph approach [26,27,28,29,30], the axiomatic approach
[2], and the author's "abstract system" approach [31,7,8].

The most well-known definitional technique is the Vienna Defini-
tional Language (VDL). 1In VDL, the total data space is represented by a
set of trees with labeled arcs. The overall "state of all data structures
at any point in a computation is represented by a single ''state tree"
which also contains components concerned with control structures.

VDL has the facility for handling data structures and operations
over data structures. Consider the representation of a LISP list in VDL.
Recall that two lists may have the same sublist and thus the simple tree
representation of lists is inappropriate. The representation of a multi-
field cell (plex) in VDL (see Figure 1.1) can be defined as a one-level
tree where each si (si # sj for i # j) are the fields in the cell, and ni
(the leaves of the VDL tree) are integers (indices) or data constants. A
LISP list (car,cdr) is a LISP-like list (head,tail), c = (Cl’CZ""’ck)
where each ¢, is a 2-field cell. We define a function elem(i,c) which maps
to . The VDL tree of Figure 1.3 is the representation of the LISP list
of Figure 1.2.

Operations in VDL are presented using conditional expressions. As

an example of the definitiom of a VDL operation, consider the LISP function



Figure 1.1.

1 a data constant or elem(nl,c)

2 a data constant or elem(nz,c)

K a data constant or elem(nk,c)

n, may be a data constant or an integer

A Multi-field Cell (plex) and 1lts Representation
As a VDL Trec
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c2 c3
+ a b
1 2 3
Figure 1.2. A LISP List
Cc o=
head tail
cy=
car cdr head tail
EI CZ=1'|II|'b
car cdr head
lIIIl “lill’ CB:
car cdr

Figure 1.3. VDL Representation of a LISP List
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member (see Figure 1.4) over the LISP lists defined above. Note that in
the VDL member, i is initialized, in this case as 1.

Pratt [26,27,28,29,30] suggests a definitional technique based on
"H-graphs" (see Figure 1.5 for its definition). The value of each node
in an H-graph is a terminal or a graph, thus allowing the graphs to be
organized into hierarchies. The total data space or the overall state of
the "abstract machine'" is an H-graph.

Data structures can be modeled as H-graphs. Consider Pratt's [30]
representation of a stack. A stack is defined recursively to be a graph
composed of two nodes. The first node is an arbitrary data node and the
second is either null or a stack. (See Figure 1.6 for sample stack and
Figure 1.7 for its representation as an H-graph.)

There are ways of defining operations using H-graphs which change
the overall state. An operation in the H-graph approach is a transformation
which maps an H-graph into an H-graph. Pratt [30] introduces a formal
diagramatic approach to define the operations. Figure 1.8 illustrates the
formal diagramatic approach for the operations--push and pop--over the stack
defined above. 1In the figure, the push node and the pop node represent
function references. An arc pointing into a function reference node implies
that the node from which the arc emanates contains a parameter to the func-
tion and similarly an arc pointing out of a reference node implies that the
node at which the arc terminates may have its contents altered.

Burstall [2] develops an axiomatic approach to programming language
definition. This approach is based on the first-order predicate calculus;

the axioms for a simplified ALGOL-like language are presented.



LISP definition

member[ajc] = [
null[c] - NIL;
eqlajcarfc]] » T;

T — member[a;cdrc]] ]

VDL definition

member(a,i,c) =

is-nil(i) - nil

car(elem(i,c)) = a —» t

t — member(a,cdr(elem(i,c)),c)
elem(i,c) =

i =1 - head(c)

t —» elem(i-1,tail(c))

Figure 1.4, The LISP and VDL Function member
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An H-graph is a finite set of directed graphs over a
common set of nodes, organized into a hierarchy. Assume a

set A of basic data "atoms' and a set N of nodes.

DEFINITION: A graph over A and N is a triple (M,E,S) where M
is a finite non-empty subset of N, the node set, E is a finite
set of triples of the form (n,a,m) where n,m ¢ M and a € A, the

arc set, and S € M, the entry point node.

DEFINITION: An H-graph over A and N is a pair (M,V) where M, the
node set, is a finite non-empty subset of N, and V, the value

or contents function, is a function mapping M into A U {X|X is

a graph over A and Mj}.

Figure 1.5. Definition of H-graph



Figure 1.6. A Sample Stack

Figure 1.7,

H-graph Representation of the Sample Stack

19



290

push - B

stk
Tval

push —EEE’ ol » P
lval
o

pop dfuﬂi a ~—-—;[}€::

=
: —

‘ stk
pop P B
lval
a

Figure 1.8. H-graph Representation of Stack Operations
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The overall state of the abstract machine in the axiomatic approach
is represented by a sentence of the predicate calculus and a '"state vector."
A state vector, S, is an association of variables with their values. As
a program is executed, the values in the state vector get altered (actually
a new state vector, s*, is generated with perhaps some of the old values
carried over as new values), and new sentences are concatenated (by the
conjunctive connector, &) onto the old sentence.

Data structures can be represented using the axiomatic approach.

In this technique each cell in a data structure is represented by the con-
junction of the appropriate relational primitives (see Figure 1.9 for the
representation of a LISP list).

Operations are defined in the axiomatic approach by showing what
new axioms need to be added to the logical sentences which have thus far
been built in order to describe how the state vector is to be altered. 1In
order to give the reader the flavor of this approach, let us suppose that
we want to add the LISP operation cons to an existing system, Figure 1.10
presents a possible axiom with a loose translation of its meaning for the
operation cons.

The author [7,8,31] introduces the technique which employs an ab-
stract system. The particular abstract system referred to is termed a
"hypergraph'" (see Figure 1.11). 1In this paper we define two other abstract
systems: a gds for the definition of the macro-semantics and a GDS for the
definition of the micro-semantics.

We can characterize the author's abstract system approach in the
following fashion. An abstract system, call it H (hypergraph, gds, or GDS),

is defined to represent the total data space. Each operation op (note that
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(+ ab)

equal (fcar(i,s),+) & equal(fedr(i,s),j) &

equal(fcar(j,s),a) & equal(fedr(j,s),k) &

equal(fcar(k,s),b) & equal(fcdr(k,s),nil)

Figure 1.9.

Representation of a LISP List in the
Axiomatic Approach
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ii.

iiis

iv.

ii.

iii.

iv.

equal (freespace(s),n) -
equal(freespace(s¥*),next(n)) &

equal(fcar(n,s*),value(x,s)) &
equal(fcdr(n,s*),value(y,s)) &

for all m such that not equal(m,n) -
equal(fcar(m,s*),fcar(m,s)) &
equal (fcdr (m,s*), fcdr(m,s))

-

1f while processing we encounter a statement cons(x,y)
and if we denote n as the first available cell in the

freespace stack, then

n will be popped off the freespace stack, and

the car and cdr of n will become the current binding (value)

of x and the current binding of y respectively, and

all other cells (different from n) will remain unaffected.

Figure 1.10. Axiom for cons(x,y)
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A hypergraph is a quintuple (G,N,A,s,f) where

G is a finite set (of graphs)
N is a finite set (of nodes)
A is a finite set (of arc labels)

st G = ZN, s defines the nodes which occur in each graph

f: ¢ - ZNXAXN, and for each g € G, £(g) € s(g) XAXs(g)

1f (n,a,m) e £(g), then there is said to be an arc
from node n to node m with label a in graph g.
Note that any single graph is completely defined
by the value of s(g) (giving its nodes) and £(g)

(giving its arcs).

Figure 1.11. An Example of the "Abstract System' Approach:
The Definition of a Hypergraph




op is defined over the total data space, yet op is not part of the total

data space) is described in the following manner. Given op, its arguments
XpsEyrer s Xy and H, then some entity from H, call it v, is the value of the
operation, and H is transformed into a new abstract system H'. Mathematically,
QE(H’xl’x2’°'°’Xn) = (H',v). For purposes of convenience and naturalness,

H and H' are considered implicitly as the underlying (overall) data space

and the relatioqship becomes the familiar 22(X1’XZ’°"’xn) = v, and the
implicit argument H is now transformed into H'.

From the viewpoint of a state transition in an abstract machine,

H is the structure of the state. Thus applying op to XisXyyeenr X is equi~-
valent to making transitions from state to state in an abstract machine
where the states (H's) are generated.

The hypergraph (see Figure 1.11) is an illustration of an abstract
system where the total data space or overall state is any hypergraph
(G,N,A,s,f). In the GRASPE description, the legal GRASPE data structures
are presented. Figure 1.12 illustrates the definition of the GRASPE func-
tion cop which creates an arc. One important attribute of the definition
of cop (which is true for all operations) is that only set operations
(union, intersection, set difference, etc.) are required to specify the
condition of the generated abstract system.

In this dissertation we present the formal semantics of GROPE using
the abstract system approach. The technique of defining both levels--con-
ceptual and implementation--in a single coordinated manner is a novel idea.
None of the existing techniques has as yet been applied to more than one

level.
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It

cop(n,a,m,g) = true with the side effect of setting

G=06U {g]}
N=NU {n,m}

s(g)

il

s(g) U {nym}

i

f(g) f(g) U {(n,a,m)}

Figure 1.12. The Definition of the GRASPE Function cop
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Chapters III and IV present the two-level formal definition of
GROPE. Our formal definitions differ from the actual programming language
GROPE. In particular, the formal definitions do not include the supporting
constructs such as set and list processing. Because each of the graph
processing constructs in GROPE are not independent of the supporting con-
structs, we found it necessary to use terms that have a slightly different
meaning in the actual programming language. Also, certain definitions
were changed to bring out the essence of graph processing. Perhaps the
clearest statement that c#ﬁ be made about the differences in the two lan-
guages is that the graph processing primitives in the abstract system are
somewhat simplified versions of their equivalent in the actual programming
language GROPE. For a complete description of the actual programming
language, see Appendix A.

In the next chapter, the reader is introduced to the GROPE approach
to graph processing. In Chapter I1I, there is a description of the GROPE
model from the user's point of view (macro-semantics) and in Chapter IV,
there is a description of the GROPE model from the implementer's point of

view (micro-semantics).



CHAPTER II

THE GROPE APPROACH TO GRAPH PROCESSING

In this chapter most of the GROPE programming language is intro-
duced. A complete description of GROPE is given in Appendix A, This
chapter is composed of four sections. The first covers the elementary
Structures and operations. The second introduces the notion of "system
set'" as a constrained collection of elementary structures; the third sec-
tion presents two natural mechanisms (mapping operations and system set
readers) for searching and processing system sets; and in the final section
there is an introduction to some of the generality and flexibility of
GROPE's approach to graph processing.

As mentioned earlier, we believe that it is absolutely crucial that
a graph processing language have a large class of support features, Be-
sides the various supporting features described in this chapter, GROPE has
a complete list and set processing facility including input/output and a

garbage collector. The details are given in Appendix A.

Elementary Ideas

In this section the elementary data structures and constants are
introduced. 1In addition, operations are presented for creating, detaching,
and accessing information that has been associated with these structures,
The elementary data items are atoms, arcs, nodes, and graphs; and the opera-
tions are crgraph, crnode, and crarc as the creation functions, detgraph,
detnode, and detarc as the detaching functions and graph, frnode (from node),

tonode (to node), object and value as the accessing functions.

28
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Atoms are the legal constants in GROPE. In the FORTRAN implemen-
tation of GROPE, atoms are any integer or real numbers which are valid in
FORTRAN, any arbitrary string of characters, one, two, and three dimen-
sional arrays and functions created from FORTRAN externals. For purposes

of this explaunation, GROPE atoms may be considered similar to LISP atoms.

Elementary Graph Data Structures

The elementary data structures in GROPE, as might be expected in
a graph processing language, are graphs, nodes, and arcs. In Figure 2.1,

g is a graph, x, ¥, and z are nodes, and a, b, c, and d are arcs. The
graph g is really only a graph skeleton as there are no data constants
associated with any of the structures. In order to get a useful structure
out of this graph skeleton, it is necessary to introduce constructs for
associating constants with the individual structures.

There are operations for creating and detaching the elementary graph
structures. The creation of a graph requires only an atom as a parameter.
For nodes, the parameters for creation are an atom and a graph; and for
arcs, an atom and two nodes are necessary. During the processing of graphs,
it is often the case that we find an arc, node, or graph which we would
like to detach. The philosophy used in GROPE is that an arc or node is de-
stroyed when it has been detached (it is no longer accessible) from the
structure.

There are operations for accessing information from the structures.
Given a node, it is possible to determine upon which graph the node resides.
Given an arc, there are operations for accessing the node from which the
arc emanates and the node to which it points. All the data atoms are re-

trievable given a node, arc, oOr graph. Figure 2.3 presents the operations



Figure 2.1,

A Graph Skelaeton

g: EUROPE
b: NORTH
1
]

12
CROSSED

VISITED

Figure 2.2,

A Graph Data Structure
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Operation Arguments Result
cr graph EUROPE g
cr node LONDON g X
cr node PARIS g v
cr node ROME g z
cr arc Z SOUTH a
cr arc p:d NORTH b
cr arc y NORTH c
cr arc z SOUTH d
hang b CROSSED b
hang y VISITED b

Figure 2.3. Creation of a Graph Data Structure



and arguments to the operations for the creation of Figure 2.2, and

Figure 2.4 presents its accessing functions.

System Sets

In this section the ''system sets' are introduced. A system set is
an ordered collection of elementary structures which satisfy some pre-
determined specifications, These are called system sets because they dif-
fer from ''user'" sets and because no system set may contain more than one
occurrence of the same elementary structure.

At this point all of the information has not been gleaned from the
structures, There is an alternate way of viewing the structures of Fig-
ure 2.2. This perspective introduces us to the notion of a system set.

The system sets with which we are concerned are the rseto (the set
of all arcs emanating from a node), the rseti (the set of all arcs termin-
ating at a node), the ndset (the set of all nodes oa a graph), the nset
(the set of all nodes with the same object), and the grset (the set of all
graphs).

A system set is a collection of elementary structures which have
certain properties in common. For example, using Figure 2.2, the components
of the set {a,d} have the followingz properties in common:

1. a and d are both arcs

2. a and d both emanate from the node z (have the same [rnode).
Similarly, the components of the set [b,d} sharc the properties that:

1. b and d are both arcs

2. b aad d both terminate at node y (have the same tonode).

These, in fact, are the criteria for membership in the rseto and rsecti



graph

frnode

tonode

g X y z a b c d
g g g

z X y z

X y z y

object | EUROPE | LONDON | PARIS ROME SOUTH | NORTH | NORTH | SOUTH
value VISITED CROSSED
Figure 2.4. Accesses from a Graph Data Structure
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respectively. Thus for some node n the rseto(n) is the set of all arecs
emanating from the node n and the rseti(n) 18 the set of all arcs ter-
minating at the node n.

In addition, the components of the set {x,y,z)} share similar pro-
perties:

1. x, y, and z are nodes

2. %, y, and z reside on the same graph (have the same graph).
Thus for some graph g, the ndset(g) is the set of all nodes on graph g.
See Figure 2.5 for the system sets of the structure depicted by Figure 2.2.

There are two other system sets; however, the structure of Figure 2.2
is inadequate for displaying the relationships associated with these sets
(see Figure 2.6). These system sets are the nset (the set of all nodes
with the same object) and the grset (the set of all graphs).

In the structure represented by Figure 2.6, we are now dealing
with two graphs, g and h, as the entire structure. The system set, grset,
is the set {g,h}. The final relationship which can be noticed from Fig-
ure 2.6 is the notion of two or more nodes having been created from the
same atom. The nset(a) for some atom a is a system set which is the set
of all nodes with the object a. Figure 2.7 illustrates all the system
sets of this structure.

There appears to be little necessity to give motivation for the

existence of the system sets rseto, rseti, ndset, and grset. However, the

system set which is composed of all the nodes with the same object, the
nset, requires some explanation. Consider once again Figure 2.2 and sup-
pose we would like to find the node y given the graph g, and the atom PARIS.

There are obviously two alternatives for finding the node y. One way is
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g x y z
ndset {%,y,2}
rseto {b} (c} (a,d}
| rseti (a} (b,d) {c}

Figure 2.5. System Set Retrievals for a Graph Data Structure
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Figure 2.6.

g: KUROPK

CROSSED

VISITED

h: AMERICA

A Structure Which Emphasizes the nset and grset
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to search all the nodes on graph g [ndsct(g)], until we find one with
object PARIS. The other way would be to search all the nodes with object
PARIS [nset(PARIS)], until we find one on graph g. Since most graph struc-
tures contain many nodes, the search down the ndset (set of all nodes on

a graph) is in general likely to be more expensive than the search down
the nset (set of all nodes with the same object). It should be pointed
out that there are diabolical structures where the reverse is true, but
experience has shown that these diabolical structures rarely occur.

One motivating aspect of the system sets that cannot be overlooked
is that the structures are woven into one another to form all the system
sets and do not require any storage beyond that required for graphs, nodes,
and arcs. Thus once the creations (crgraph, crnode, and crarc) have been
accomplished, no new sets need be created in order to process the system

sets. Details of this storage structure are presented in Chapter 1IV.

Processing Graphs

The primary mechanism for processing graphs is by accessing system
sets and searching these system sets. There are two searching techniques
in GROPE. The first is the utilization of the mapping functions and the

second is the system set readers with their associated operations.

Mapping Functions

The mapping functions allow the user to selectively search a systoem
set and sequentially process each individual element of the set. The mapping
functions are distinguished by their class and by their type. There are
four classes of mapping functioas. First there is a class of mapping func-

tions which simply process the elements of a set; second, there are those
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that detach specified clements from the system scts; thied, there arce
those which build a new list composecd of specified values; and finally
those which build a new set (user's set) composed of specified values.

There are three types of mapping functions. The three types are
those that process every element of a set (map type), those that process
until a value is false (and type) and those that process until a value is
not false (or type). Every mapping function is in one class and is of one
type. Thus we can describe the set of all mapping functions using a chart
(see Figure 2.8).

A mapping function requires a system set p as its first parameter,

a fuaction ft as its second parameter, and zero or more additional para-
meters. Consider the following example of a mapping function which re-
moves all of the arcs emanating from a particular node as a typical mapping
operation. The transformation of Figure 2.9 would be accomplished by
dmapft(p,true) where p = rseto(w) = {a,b,c} and true(x) = x for all x.

What actually happens with dmapft is that for each P; € P, true(pi) is pro-
cessed and if true(pi) # false (as it always is) then 1 is removed from p.
Note that had the function been dorft(p,true) then just the first arc would
be removed (ses Figure 2.10).

Figure 2.11 presents a definition of all the mapping functions, and
Figure 2.12 shows some of the versatility of the mapping functions by
illustrating each with six different functions. In Figure 2.12, the con-
tents of each position is the value of f(p,ft) unless that position contains
"p = " which means that p, the rseto of w, has perhaps been side-effected.
The examples (dmapft,true) [dmapft(p,true)] and (dorft,true) [dorft(p,true)]

from Figure 2.12 are illustrated by Figures 2.9 and 2.10. Note that the
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type
class
map and or
mapft andft orft
d dmapft dandft dorft
£ fmapft fandft forft
s smapft sandft sorft

Figure 2.8. Table of Mapping Functions by class and type



Figure 2.9. dmapft(rseto(w), true)
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Figure 2.10. dorft(rseto(w),true)
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v
£ false not false q
control action i control
|
i
mapft - no action ! - vorpifp= (]}
i
!
dmapft - P=7P- [Pi} ; - P
|
ﬁ,mapft1 - t =t . (V) i - t
smapftl - t =1t U (v} E - t
|
]
andft stop no action : - vorpif p= (}
I
I
dandft stop P=P - (pi} : - P
H
zandftl stop t=t . (v) i - t
i
sandft’ stop t=1tU (v} } - t
; !
| i
orft - no action : stop v or false if p = (}
i
dorft - Pp=pP - (pi} ' stop )
i
,Zorft1 - t=t . (v) ! stop t
1
sorft1 - t=tU {v} ' stop t
i

Figure 2.11. Definition of the Mapping Functions

Each mapping function, f, has the same calling sequence, q = f(p,ft,argz,
.eny argk) where p is a system—set2 (pl,...,pm}. The elements of p are

sequentially processed and return the value v = ft(pi,argz,...,argk).

- means that if all the elements of the system-set have been processed then
stop, otherwise process the next element.

1 t is a newly created list or set depending upon the class.

Actually p can also be a list or set.

. is concatenation of two lists - (vl,vz,...,vk) . (ul,uz,...,uj) forms the

1iSt (V]_’VZ’ .o O)Vk’ul’uz.’ . "uj)‘
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ft

£
frode tonode object value true false
mapft W z 3 XED c false
dmapft |p={} p=1{] p={} p= (b} p={]} p={a,b,c}
fmapft (www) (xyz) (233) (XED XED) (abc) O
smapft {w} (xyz) {23} (XED} {abc} (]
andft W z 3 false c false
dandft | p={) p=(} p={} p=(b,c} p={} [|p=(a,b,c]}
Landft (Wwww) (xyz) (233) (XED) (abe) @)
sandft {w} (xyz) {23} {XED} fabc} (]
orft w X 2 XED a false
dorft | p=(b,c}| p=(b,c}|p=(b,c} | p=(b,c] | p=(b,ec) p={a,b,c}
Lorft (w) =) (2) (XED) (a) O
sorft {w} {x} {2} (XED} {a} {}
true(p,) = 1
false(pi) = false

Figure 2.12.

Versatility of the Mapping Functions
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user of GROPE may pass any function as the second paramecter to any mapping
function including those that the programmer writes himself.

Experience has shown that the mapping functions of GROPE are suffi-
cient for most graph problems. There are two aspects wnich need to be
emphasized about mapping functions. First, there is the aspect that
graph processing 1is enhanced by the mapping functions and that in fact
the mapping functions are merely support routines. Second, the mapping
functions are built-in control structures represented functionally. It is
this second fact which allows a programmer to use mapping functions and
avoid numerous logical errors.

In the remainder of this section we discuss some aspects of the
reader mechanism of GROPE. As an illustration of the reader mechanism we

present an algorithm for the definition of all the mapping functions.

System Set Readers

In the event that the mapping functions are insufficient, there
are mechanisms which allow for a step-by-step processing of structures.
These mechanisms, called linear readers, exist for the purpose of search-
ing system sets. Every system set has a finite number of components and
the reader mechanism allows for their processing, one element at a time,
in the analysis of aﬁ algorithm.

There is an operation which creates a reader of a system set. Thus
r = creedr(p) where p is a system set causes T to be a reader of that system
set., Next, given any reader of any system set, the operation traverse out
(to), has two separate responsibilities. First, to advances the reader to
the next component in p, and second the value returned by to is that com-

ponent. For example, using t = to(r), the first execution causes t to be
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the sceond causes t to be Py> etc. Thus we can write an algorithm to find

th

the n component of any system set. Let p be a system set; then Figure 2.13

represents an algorithm which terminates with t as the nth component of p.

There are two ways to determine when a reader has read the mth
(recall that p = {pl,pz,...,pm}) component in a system set. The first way
is to note that there is a function which, given a system set p, determines
the number of components in p. The function is called length. The second
mechanism is a predicate that determines whether or not a reader has just
read the last component in a system set. The predicate is termed isatnd
(which asks if the reader is at the end of the system set). Thus two ways
of searching for every element in a non-empty system set p are given by the
algorithms depicted by Figure 2.14 and Figure 2.15. Note that Figure 2.13
and Figure 2.14 are effectively the same.

In the definition of the mapping function, mapft, the algorithm
using isatnd is employed because, for example, creations (with the ft)
might increase the length of the system sets. Recall that x = mapft(p, ft,
arg25...,argk) is the standard parameter sequence of the function mapft.
Figure 2.16 gives the definition of mapft. Note that in this definition,
length is used as a predicate to determine whether or not the system set p
is non-empty. Figure 2.17 is the definition of all the mapping functions
(recall Figure 2.8 for the definition of type and class predicates).

It is expected that for most problems, the mapping functions suffice
and the user of GROPE should make every effort to become familiar with the

mapping functions and to relegate the reader creation and to operations to

secondary consideration.



