—

47
m = length(p)
r = creedr(p) r = creedr(p)
t = to(r) t = to(r)
t - t
Figure 2.13. The nth Component of p Figure 2.14. The Last Component
Component (p, n) of p
r = creedr(p)
> t = to(r)
————(:j isatnd(r) ::)
true

Figure 2.15. The Last Component of p Allowing for p to Be Altered

48

(:: length(p) . 9

v = ft(to(r),argz,...,argk)

{:: isatnd(r) ﬁi:>

true

Figure 2.16, mapft(p,ft,argz,...,argk)

49

length(p) }

r = creedr(p)

gii

to(r)

i

<
it

ft(pi,argz,...,argk)

class

isatnd(x)
or true £,s,d

Cam

£,s d or

Figure 2.17. f(p,ft,argz,...,argk)

I

50

Generalizations

In the preceding three sections we have been dealing primarily
with very elementary relationships. In this section we present some of
the more subtle aspects of GROPE. Specifically, we shall discuss the
notion of a one-way arc, complex graph-based structures, sophisticated
graph readers, and the graph modification operations. Most graph pro-
cessing algorithms can exist without these features; howevar, it is these
features of GROPE that make GROPE unique. It is these relationships whnich
make graph processing an exciting, challenging, and rewarding (both con-
ceptually and productively) experience. A prozrammer can master the first
three sections and yet not fully understand what we mean by "graph process-

ing."

One-way Arcs

The removal of restrictions is a very natural way to incorporate
generality. This paradigm is one of the cornerstones of GROPE. In the ex-
ample of one-way arcs we use this paradigm. The restriction is that an
arc joining nodes n and m is necessarily in the rseto(n) (the set of out
pointing arcs leaviug the node n) and in the rseti(m) (the set of incoming
arcs to the node m). Although for many algorithms this restriction causes
no problem, by removing this restriction we obtain a more complete class
of structures. We still maintain that an arc has a frnode (the node from
which the arc emanates), a tonode (the node to which the arc points), an
object and a value. But it is possible to find an arc in the rseto of some
node which is not in the rseti of aiy node, and which thus conceptually can

be traversed oaly in the directioa it points. Thus, pictorially, we denote

51

m:

this type of arc as where rseto(n) = fa) and

S

rscti(m) = {}. A natural use for "one-way-out' arcs would be for inter-
preters of flow graphs or as a simulator of abstract automata represented
by state transition graphs.

More unusual than the "one-way-out' arc is the "one-way-in' arc.

n: .mz2
. a: s .
This type of arc is pictured as ! where rseti(m) - (a}
and rseto(n) = [}. Such arcs are useful when one wishes to traverse an arc

and then make it impossible to traverse the arc again if the graph contains
a loop.

Thus there are one-way-out arcs, one-way-in arcs, and regular arcs
(where a € rseto(n) and a € rseti(m)). It is important to note that one

graph may contain any combination of these arcs.

Complex Graph-based Structures

On the surface, nothing has been presented which directly allows
for any kind of sophisticated data structures. But with the removal of
one more restriction, we can enter the world of complex graph-based struc-
tures. We remove the restriction that objects and values must be atoms
and allow objects and values to be arcs, nodes, and graphs as well, With
this generalization, we can consider Figures 2.18 and 2.20 as typical illus-
trations., In each figure, g and h are graphs; n, m, w, x, y, and z are
nodes, and a, b, ¢, d, and e are arcs. Figure 2.19 and Figure 2.21 present
the associated retrieval information for Figures 2.18 and 2.20, respectively.
These complex graph-based structures have a number of potential uses.

For example, by allowing the values of nodes to be graphs, these structures

wut
N

Figure 2.18. A Complex Graph-based Data Structure

53

sin3onils ®aed peoseq-ydeid xo1dwo) ® 103 STBAPTIIN *61°7 °In31d

———y
™ | O el O 0 P 13951
{p} (=11 O (3| (&3] O o3esa
(m kY | wiER) {u) ja9su
{2 |{ méufu) jospu

(y‘8)| 19818

anieA
€ S K [4 1 S ! S 01 g 0T 01 11 393(qo
Z n w z £ apouol
A w u pd X spouij

g 2 y L& q 8 ydeasd

01 c 2 P o q) w u z A X M Y 3

Figure 2.20.

Another Complex Graph-based Data

Structure

1)

san3oniag BIBQ poseq-ydeid xodwop 19yjouy 103 STEASTIIZA *12°7 °an8Td

{} {} poa) (=) {} {=} 13981

(23] (a3 O (o) ((ep&} (I 07981

ﬁamiu josu
RExm)

HNQ

..,SnEw nunmﬁw

198pU

{y‘8) 19813

p anies

1 1 ! 1 u S S S S S S S S 303fqo

M z y2 Z A apouol
w X L u X apouxj
q 3 8 8 8 q ydeasd

01 S ° P 0 q B W [Z K X [q g

56

simulate hierarchical graphs. Nested finite automata (the Woods machine

[441) can be represented by allowing the value ol arcs to be graphs.

The Graph Reader Mechanism

The graph reader is a new idea in graph processing. This mechanism
allows searching graph structures in a controlled manner., As a graph
reader moves across an arc from one node to another node, it "ages'" the
arc it crosses. By this we mean that the arc which was crossed becomes the
"oldest" arc leaving a node. The arc that the graph reader mechanism had
chosen was the ''youngest' arc.

Actually, every node which has a non-empty rseto, also has one of

these arcs as the current-arc-out. Since the system sets are ordered, it

is possible to retrieve the next arc after the current-arc-out. This next

arc is chosen and it becomes the new current-arc-out, Similarly, when an

arc is crossed in an in direction, the current-arc-in is affected. The

graph traversal operation requires a graph reader. A graph reader is cre-
ated with some node on the graph. The operation r =creedr(v) where v is
some node, creates a graph reader r. The operation to(r) traverses the
reader in an out direction and ti(r) traverses the reader in an in direction.
There is a function, curarc, which has as its value the latest arc
crossed by any graph reader. If a + 1is placed on an arc when it is the

current-arc-out and a - on the current-arc-in, then the algorithm in

Figure 2.22 produces the results shown in Figure 2.23,
At this point very little experience has been gained using the
graph reader, and it would be unreasonable to make any generalizations

about this tool. Suffice it to suggest that the memory used within the

node for the current-arc-out and current-arc-in appears to be a good way

r = creedr(v)

A, = to(r

;= to(®)

B. = curarc
i

C. = ti(r
-t

D. = curarc
i

Figure 2.22.

Traversing with the Graph Reader

57

W X X false false

a b c £ f
false z false false

a c b £ f

Figure 2.23.

Data and Results of Algorithm

15—

59

of automatically keeping a path between nodes on certain types of graphs.
We look forward to some experimentation with graph readers to determine
the relative flexibility of this tool within the context of graph process-

ing.

Graph Modification Functions

The "changing functions' or structural modification functions intro-
duce us to another aspect that makes GROPE very general. One of the ob-
vious changing functions is the function hang. All that hang (x,y) does
is simply hang the value y from the structure x. A more interesting chang-
ing function is the function chafrn, which changes the frnode of an arc.
Here chafrn(x,y) causes y to be the node from which the arc x emanates.
Consider the implication of this operation using mapft(p,chafrn,w) where
p = rseto(n) = {a,b,c}. See Figure 2.24 for an illustration of this trans-
formation.

When we consider that chafrn requires no searching, although possibly
a deletion and an insertion, it is pleasing to note that the cost of this
transformation is a small constant times the length(p). In fact, there
are no searches in any of the changing functions.

Other changing functions change the tonode of an arc, the graph of
a node, and the object of a graph, node, or arc. Consider the function
chagr, which changes the graph upon which a node resides. Any arcs attached
to the node on the original graph remain attached to the node on the new
graph. Thus note that an arc from a node on one graph to a node on another
graph is perfectly acceptable. See Figure 2.95 for an illustration of this

transformation. One of the uses of such structures, as a natural generali-

zation, is the representation of a graph by its subgraph structure with

60

Figure 2.24, mapft(rseto(n),chafrn,w)

Figure 2.25. Changing the Graph of a Node

62

arcs connecting nodes from one subgraph to another. See Figure 2.26 for

an illustration of a graph represented by subgraphs. We believe that, as
graph processing algorithms get more sophisticated, these efficient chang-
ing (requiring no creations, no destructions, and no searches) functions--
as well as all the generalizations mentioned in this section--will play a
major role in reducing some of the combinatorial aspects of graph process-

ing.

CHAPTER IIX

MACRO-SEMANTICS OF GROPE

In this chapter the macro-semantics of GROFE are developed, Recall
that by "macro-semantics’” we mean a formal definition which is designed to
provide user understanding. Just as Chapter Il is a description of GROPE
from a user's point of view, so are the definitions presented in this
chapter. In the next chapter we concern ourselves with the formal imple-
mentation level definitions, the micro-semantics.

As mentioned earlier, the GROPE extension that has been chosen for
formal specification is somewhat different than the actual programming lan-
guage extension, GROPE. For the most part, the formal GROPE is a slightly
simplified version of the actual GROPE. From here on the term HGROPE"
will be used for both GROPEs; however, in Chapters IIT and IV it will
generally refer to the formal GROPE.

At this point we have discussed some of the highlights of GROPE
(Chapter I1) and have given an informal introduction to the "abstract sys-
tem' approach (Chapter I) to formal definition of programming languages,
In this chapter we present the macro-semantics of GROPE as an example of
the “abstract system' approach. This chapter is composed of four sectionms.
Tn the first section a formal statement of the "abstract system' approach
is presented; in the second section a sample abstract system for the macro-
semantics is defined; in the third section the data structures for the
macro-semantics are described; and in the fourth section operations over

these data structures are given.

64

65

The "Abstract System' Approach

Recall from Chapter I that "abstract gystem' definitions of pro-
gramming languages are composed of three basic aspects. First, a total
data space is defined; then data structures are described; and finally,
operations over the data structures are presented., Figure 3.1 defines the
concepts abstractly. Our treatment of the macro-semantics and micro-semantics
follows a similar patterm.

In the macro-semantics the total data space is an abstract system,
gds; the data structures are described by the definition of bodies (ordered
n-tuples); and the fixed set of operations are developed by giving the
transition rule for generating new states (gds's). In the micro-semantics
the total data space is an ''abstract system," GDS. The data structures are
described by the definition of the functions ARCS and TYPE, and the fixed
set of operations once again are developed by giving the transition rule
for generating new states (GDS's). Thus our definitional technique defines
the same fixed set of operations over two different "abstract systems' with
two different conceptual data structures (i.e. one for the users and one

for the implementers).

The Total Data Space of the Macro-semantics

The first phase of the formal definition of programming languages
is to describe the total data space. The gds (graph data structure) defined
below is the total data space of the macro-semantics.

A gds is a pair (L,body) where

| i, L is a countably infinite set of location points. L is

partitioned into two sets, L0 (the unused locations) and

[5R8)

Let H = <81’SZ’°°°’Sj’F1’EZ’”‘°’Fk> be an abstact
system where

1. For all i such that 1 < 1 < j, Si is a set.

2. For all i such that 1 < i <Kk, Fi is a function.
An operation £ defined over H with parameters S EL T ERRPL W
is given by f(H,xl,xz,saﬁjxn) = (H',v) where
V,%, € S1 U 82 U... U S;,5 and H'= {Si, é,e‘ﬂ;S%fFj,Fi,.,ngFi)
For notational convenience and naturalness, H and H' are
considered implicitly., Hence the operation, f, becomes
the familiar £(X,,X.,...;%)} = V.,

172 n
Figure 3.,1. Formal Specification of the "Abstract System” Approach

67

a finite set V. V is further partitioned into sets
E, G, N, A, C, and (A\}. 1Initially, V contains A, the
null value.

ii. body is a function such that

E - {x:x is an element-body}

c-»{x:xis a graph—bodx}

(Y3

body : N-{x:xis a node-body }

A - {x:x is an arc-body}

| C—o({x:xis a cursor-body}

Elements of the sets E, G, N, A, and C are termed elements,
graphs, nodes, arcs, and cursors, respectively. Note that
if x, x' e v with x # x', then it is still possible for
body (x) = body(x'). For example, two arcs may have equi-

valent arc-bodies and still be different arcs.

The Data Structures of the Macro-semantics

The second phase of the formal definition of programming languages
is the description of the data structures, The data structures of the
macro-semantics of GROPE are bodies (ordered n-tuples). For each data
type (elementl, graph, node, arc, and cursorz) there is a body type defined
which contains the necessary components for describing the macro-semantics
of GROPE. When a body contains an ordered k-tuple as a component, then
the ordered k-tuple is a system set (Chapter II). The nset is denoted by
N, the ndset is denoted by N+, the rseti is denoted by A and the rseto

is denoted by A+.

1Element is synonymous with atom in the actual GROPE.

2Cursor is synonymous with reader in the actual GROFE.

68

The Bodies

An element-body is a pair (V,N-) where

v € V, the value

N e (A} U {(yl,...,yk) :y; €N for all 1 <i <k}, the

attached set of nodes., For i # j, then i # ¥y and
for an element, e, if y ¢ N;, then by is e (where

by is the b-component of the node-body of y).
A graph-body is a pair (V,N+) where
v €V, the value

N e (A} U ((%,-+->%) 1%, € N for all 1 <1 <k}, the

k

related set of nodes. For i £ j, then x; # x, and

for a graph, g, if x € N;, then u is g (where u

is the u-component of the node~body of x).
A node-body is a septuple (v,u,b,A+,a+;A—,a-) where

v € V, the value
u € G, the origin (the graph of residence)
b € E, the object

AT e (MY U {((x,..05%) 1%, €A for all 1 <1 <kJ, the

related set of arcs. For i £ j then X, # xj and for
a node, n, if x € A;, then u is n (where u is the
u-component of the arc-body of x).

+ +
a e (A} UA', the current-arc-out

A e (A} U ((yy7+-,9) 2 y; € A for all 1 < i <k}, the

attached set of arcs. For i # j then ' # Y5 and for

69

a node, n, if y € A;, then by is n (where by is

the b-component of the arc-body of y).

a e {A} UA", the current-arc-in.

An arc-body is a triple (v,u,b) where
v € V, the value
u € N, the origin (the node from which an arc emanates)

b € N, the object (the node at which an arc temminates).

A cursor-body is a triple (v,u,b) where
v € V, the value
u e N UA, the origin
b e N UA, the object.

If b € N, then u € N; and if b € A, then u e A,

In order to illustrate a simple gds consider a graph composed of
two nodes and one arc. Figure 3.3 is a formal statement of the gds of

Figure 3.2,

Operations in the Macro-sgemantics

The GROPE primitive operations are partitioned into five classes.
The first class contains all of the creation operations along with their
associated predicates which determine whether or not a value is of a cer-
tain type. The second class is composed of the basic retrieval operations,
The third class contains the "state" changing operations., The fourth class
contains the structural changing operations, and the fifth class is the cursor

- (reader) traversal operations.

70

Figure 3.2.

A Simple Graph (or gds

)

1}

il

1f

(LOlJV,bodz) where V = EUGUNUAUCU{A}, C = ¢

{ei,ez}

il

bOdz (el) (7\: (nl))

il

body (e,) (A, (@y))

(gl}

it

body (gl) (A, (nl’nz))

{nl’ nz}

I

bodz(nl) (K,gl,el,(al),al,%,%)

il

Mi(nz) (7\,81,82,7\, A, (al)’al)
{al}

body(al) = (K,nl,nz)

Figure 3.3. H = gds of a Simple Graph

71

Creation operations and associated predicates

{(Recall that each function definition has a gds, H, as an implicit

argument and a modified gds, H', as an implicit result.)

a. create-element() = r where r € L. Let r ¢ LO. Place r € E, remove

r from LO and define body(r) = (A,A).

[#1r%cs
b, is-element(*) =

1 A otherwise

¢, create-graph() = r where r ¢ L., Let r € LO. Place r € G, remove

r from LO and define body(r) = (A,A).

* 1if * € G

d. is-graph(¥) = .

A otherwise

e, create-node(¥*,*¥%) = r where ¥ € G, *%* ¢ E, and r € L. Let r ¢ LO.

Place r ¢ N, remove r from L., and define body(r) =

07
(}\’ e Kk 7\’ ?\’ ?\, ?\) .

J* if % e N
is-node(¥) =

h

L% otherwise

1o

z create-arc(¥*,%%) = r where *,** ¢ Nand r ¢ L. Let r ¢ LO' Place

r € A, remove r from L_, and define body(r) = (A, %*,%%},

O}
* if ¥ e A

h., ds-arc(¥) = .
A otherwise

i. create-cursor{(®*) = r where * ¢ N UA and r ¢ L. Let r ¢ LO' Place

r € C, remove r from L., and define body(r) = (A,*,%),

O’

73

* if * € C
j. is-cursor(¥*) = .
A otherwise

2. Retrieval operations

The group of operations referred to as the retrieval operations can,
for the most part, be discerned directly from the data structures of the
gds., There are, however, aspects that at this point could bear clarifica-
tion.

The operation value is primarily to allow for the development of
hierarchical structures, For example, a node whose value is a graph might
very well be a representation of a list structure. The value of a cursor
may be another cursor, thus allowing for the construction of a stack of
cursors simulating a SLIP [40] reader, The operation, value, is also,
of course, a natural mechanism for retrieving constants associated with
nodes and arcs,

The operation object is of a more specialized nature than that of
value. The object of a node must be an element and the object of an arc
must be a node. The operation attach (in class 3) ties together those nodes
and arcs with the same object.

Much that can be said about object is true also for origin with
slight variations, The origin of a node must be a graph and the origin of
an arc must be a node., The operation relate (in class 3) ties together
those nodes and arcs with the same origin. A more complex situation exists

for the origin and object of a cursor., When the origin of a cursor is a

node, then the object of that cursor must be a node. Similarly, when the

origin is an arc, then the object must be an arc.

74

The current-arc-oul (in) represents the arc most recently crossed

by a traverse-node (graph) -out (in) operation (see Class 53).

The last-of-related (attached) -set represents the fact that there

+ - + -
is direct access to the last structure in the sets N (N) and A (A).

These structures being circular and with related (attached) -successor and

related (attached) -predecessor, one can access all the structures in the

sets NT () and AT (A7),

o, - ‘ e -
a. wvalue(*) = v where ¥ ¢ V {A} and Vbody (*) e V.

b. origin(¥) = u where * e N UA U C and Upody (%) © G UN.

¢. object(*) = b where * € N UA UC and bbod () ¢ E UN.

A |
- -) - Y € -
d. current-arc-out(*) = a where * ¢ N and A ody (%) c AU (A}

In order to proceed we introduce some

notational conventions

(1 X: is N: if s € G and X: is AZ if s € N; similarly
v is N_ if s ¢ E and v~ is A if s e N.
s s s s

(2) Shod) is abbreviated to s for s being v, u, b, X+, a+, Y, or a .

3) i®j=1+ jmod k
i@ j=1i- 3 +kmodk
However, when we consider arithmetic of subscripts, the ordered k-tuple
is renumbered (XO’Xl’Xz""’Xk-l)' Recall that k is the number of com-

_+ -
ponents in the tuple (system set) N, A*, N, or A . Defining @ and

© this way should make the structure appear circular.

75

Continuing with class 2 (retrieval operatioms),
?xkex+ifx+¢?\
e. last-of-related-set(¥) = i , where * € GUN,

A otherwise

[Xiel < X +
f. related-successor(¥) = , where ¥ eNUA and *=x, eXu.
A otherwise 1

]Xi@l € X,
g. related-predecessor(¥*) = ’ , where *e¢ NUA and
17\ otherwise * = X €x .

h. current-arc-in(¥*) = a where * ¢ N and a e AU},

Yy € Y if Y #A
i. last-of-attached-set(¥*) = , where ¥ ¢ G U N,
A otherwise
!'y. eY, _
i@l b , where *e NUA and *=y, eY,.
17\ otherwise :

j. attached-successor (*) =

y. eY
k. attached-predecessor(¥*) = iol b , where *e NUA and _
A otherwise * = s eYb.

3. State changing operations

There are four possible states that a node or arc can be in:

isolated, related-only, attached-only, or regular., Figure 3.4 shows the

notation for the possible states of nodes and arcs. Regular structures

are both attached and related; isolated structures are neither attached

nor related. Freshly created nodes and arcs are obviously isolated. When

a structure is related (attached) it is placed into a set, the elements of

which share the same origin (object). When a structure is unrelated

(detached) it is removed from the set; however, it maintains the same origin

76

states nodes arcs

™
/ \
isolated (——’""“} -
N /
S

related-only Q Q
_z/

TN
/ \
attached-only

regular @

Figure 3.4. The States of Nodes and Arcs

77

(object) for perhaps a later insertion. If a structure has been unrelated

(detached), then at worst it is isolated and at best it is attached-only

(related-only).

At this juncture we introduce a final

notational convention

(4) When body(z) = (pl,pz,...,pm) and we want to redefine the body(z) =
(ql,qz,...,qm) then for all i such that p; = 4; ve denote q; as ﬁi.
Using this definitional notation allows us to emphasize what concep-
tually stays constant and what conceptually varies during an operation.
a. relate(*) = * where * ¢ N UA and * ¢ XI. Define

body(u) = (¥, (*)) if * e N and N, = A or
(¥, (%5 ek) if % € N and N:; 4\ or
(v,8,B, (%), %,A7a7) 1f * e A and A = A or
,4,b, (*,;zl,...,;zk>,é+,A‘,é‘) if % c A and A_ 4 A,

b. unrelate(*) = * where * ¢ N UA and * = X, € Xz, Define

body(u) = (v,A) if * ¢ N and NZ = (*) or
(v, (}.cl,...,fciel,)'{i@l,...,ﬁk)) if * ¢ N and N: 4 (¥) or
(v,8,b,\,\,A,47) if % ¢ A and A = (¥) or
SRR S S S R G

) +
if ¥ ¢ A and a £ * or

(v,u,b, (Xl, SRR 1v¥aq1r "Xk)’xigl’A ;8)

. + \
if ¥ ¢ A and au = %,

c. attach(¥) = * where * ¢ N UA and * £ Yg- Define
body(b) = (¥,(¥)) if * e N and Ng = A or

(v, (*,&1,...,§k)) if *# ¢ N and N,; /N or

(ﬁ,ﬁ,E,A ,a ,(¥),%) if * € A and A = A or
+s e o *F+ o4 , . . .- ., - -
(v’u’b’A ,a ’(‘A"yl,.,.’yk)’a)y if * € A and A.b % A.

d. detach(*) = * where * ¢ N U A and * = vy ¢ Y;. Define

P_O.gﬂb) = (\.’)7\) if * e N and N;) e (’k) or
(\}) (}'71)'0')}.7@1;}.7@1;-..,5’1()) 1f * ¢ N and N;) / (‘«'C) or
(\',’ "’1) E)A.’+) é'+) 7\) 7\) if * € A and A]; B (7'() or

e e ot e e-
(v,u,b,A ,a, (yl’”"yial’yi@l"”’yk)’a)

if * € A and ay £ * or

(;’;ﬁ:B)A ,a ’(yl’ ”"yi*@l’}"i@l’ '“’:;Ik)’yi@l)

if ¥ € A and ab = %,

In order to show how the gds is changed as a result of these operations,
consider Figure 3.5 as a typical data structure represented by the gds of
Figure 3.6, Then the following sequence of operations generates a new gdsg

depicted by Figure 3.7.

relate(a6) makes a, a related-only arc by redefining

body(nl) = (K,gl,el,(a6,a2,a3,a4),a4,K,K) and

attach(a6) makes ac a regular arc by redefining

bodz(nz) = (%,gl,el,h,K,(a6),a6) and

Figure 3.5.

Graph Structure for Semantic Examples

79

80

H = ubumgg&)wmxev==EUGUNUAUCU{A}
E = {el}

body(g;) = (s (m,5m5))

bOdY(gz) = (?\:7\)

N = {nl,nz,n3,n4}

Egiz(nl) = (K,gl,el,(az,aB,aq),aA,K,%)
Egéz(nz) = (%,gl,el,K;%,K,%)

Eggx(n3) = (%,gl,el,K,%,(ah,a5),a5)
Qggz(nq) = (K,gz,el,K,%,(al,az),al)

A= {al,az,aB,aA,aS,a6}

body(a;) = (A,ng,m,)
body(a,) = (Any5m,)
body(ay) = (Amny,ng) = body(a,)
body(az) = (A;n,,ny)
body(a,) = (%,nl,nz)
C = {cl,cz}
body(e) = (Aymy,m))
body(c,) = (A,a,,a5)

Figure 3.6. H = gds of Graph Structure for Semantic Examples

81

Figure 3.7. gds After State Changing Operations

82

unrelate(aa) makes a, an attached-only arc by redefining

body(nl) = (%,gl,el,(a6,a2,a3),a3,%,%) and
detach(aa) makes a, an isolated arc by redefining
body(nB) = (A,gl,el,K,%,(aS),as) and

detach(as) makes as an isolated arc by redefining

.13.9.@1(“3) = (A 81° el:'}\ﬂ\: NN

4. Structural changing operations

The next operations are the structural changing operations. In-
cluded in these operations is the operation hang, which gives structures

values. The operation change-current-arc-out (in) simply makes the arc

which is its argument the current-arc-out (in) of the appropriate node,

For change-last-of-related (attached) -set, the argument passed becomes

the last structure in the set. Its related (attached) -successor becomes

the first structure in the set, etc. In both change operations the argu-

ment must be related (attached). The operation change-origin (object) re-

gquiires that its first argument not be related (attached) if it is a node

or an arc. If it is a node, the node is moved to a new graph; if it is an
arc, the arc emanates from a new node. If it is a cursor, then the opera-
tion effectively reinitializes the cursor. In the event that the origin

of the cursor is the same type as the second argument, then only the origin
(object) is changed.

a. hang(*,*%) = * where * ¢ V- {A} and ** e V. Define

body(*) = (*¥*,N) if * ¢ E or

(##,§) if * € G or

83

e e e et s em
(*¥*,u,b,A ,a ,A ,a) if * € N ox
(*%,0,b) if * € A or

(**%,4,b) if * e C.

+
change-current-arc-out (¥) = * where * ¢ Au' Define

body(u) = ({I,G,E,A+,*,A ,a).

change-last-of-related-set (%) = * where * = x; € X:. Define
body(u) = (v, (xiﬂal"””xk’xl""’xi)) if * ¢ N or

o e e e . . . e oam e
(v,u,b,(xi@l,...,xk,xl,...,xi),a ,A ,a) if * e AL

change-current-arc-in(¥*) = * where * e Ab Define

body(b) = (v,u,b,4 ,a ,A7,%).

change-1ast-of—attached—set(*) = % wyhere * = Y [Y'];. Define

_@,Qd_z(b) = (".7: (}.7]»_@1)'-'53}1()3.’13'-“)5’1)) if * € N or
. e c+ O »- .
(v,u,b,A ,a ’(y:i_@l’“"yk’yl"“’yi)’a) if * e A,

change-origin(*,*%) = * where * ¢ N U A U C and **% ¢ GUNUA,

Define

. P T
body(*) = (v,**,b,A ,a ,A ,a) if * e N, ** ¢ G and * ¢ N: or

(v,%%,B) if * c A, % ¢ N and * ¢ A ot

(v,%%,b) if * € C and ** ¢ NJA with b and ** in the
m@ set or

(v, %k, %%) if * ¢ C and ** € N JA with b and ** in

different sets.

change-object (*,%%) = * where * ¢ NUAUC and *% ¢ EUNUA,

Define

84

. . R -
body(*) = (v,u,*%,A ,a ,A ;a) if * e N, ** ¢ E and * ¢ N, or
(v,0,%k) if * ¢ A, ¥* ¢ N and *éA; or
(v,u,**%) if * € C and ** ¢ NUA with u and *% in the
same set or
(v, %%,%%) if * € C and ** ¢ NUA with u and *%* in

different sets.

'Once again, using the gds of Figure 3.5, the following sequence of
state and structure changing operations forms a new gds depicted in Figure

3.8.

change—origin(as,nl) makes a5 have the origin, ny, by redefining

body(as) = (K,nl,nB) and

change—current—arc—out(az) makes a, the current-arc-ougﬁnl) by redefining
bodz(nl) = (%,gl,el,(az,as,aA),az,%,K) and
relate(as) makes a5 a regular arc by redefining

Eﬂéi(nl) = (%,gl,el,(as,az,aB,aA),az,K,%) and

change-last-of-related-set(aB) makes a, the 1ast-of-re1ated-set(n1)

by redefining bodz(nl) = (?\,gl,el,(34,a5,a2,a3),a2,7\,7\)°

5. Traversing operations

The traversing operations are partitioned into two types of opera-
tions. The simple traversing operations move around on the sets and the
complex operations move around on the graph structures. The simplicity of
the definitions for the simple traversals might cause the reader to over-

look a powerful capability of this model. As an illustration, consider

Figure 3.8.

gds After State and Structural Changing Operations

85

86

a, Five execu-

]

Figure 3.9 with a cursor 8 where object(s) = origin(s)

i

tions of traverse-related-successor(s) makes object(s) f by stopping at

b', ¢', d', and e'. One more execution of traverse-related-successor(s)

makes the object(s) = a once again. This is a simple linear structure
+ . a
search--we looked at all the arcs in the system set, Au where u = origin(a).

Now consider three executions of the operation sequence (traverse-attached-

successor(s), traverse-related successor(s)). Here, once again, object(s)

becomes a, but this time by stopping at b, c, d, e, and f.
: +
%01 if b = x;, € Xub

a. traverse-related-successor(¥) = R
A otherwise

where * € C and define body(¥*) = (G,ﬁ,x.)y if b e X+ .
idl uy

+
xi()l if b = xi € Xub

b. traverse-related-predecessor(*) = R
A otherwise

where * € C and define body(¥*) = (G,ﬁ,x Y if b e X",
i®l uy

c. traverse-attached-successor(¥*) = 5
A otherwise

where * ¢ C and define body(¥*) = (G,G,yieyl) if b evY; .
b

inﬂl if b = v, € Ybb
d. traverse-attached-predecessor(¥) = R
A otherwise

where * € C and define body(*) = (0,&,yi<>l) if b e Yb .
b

The more sophisticated cursor operations each require a cursor

which has as its origin some node. These operations allow the cursor

87

Figure 3.9. Graph for Illustrating "Subtle" Simple Traversal

88

to bounce from node to node so long as there exists an arc related (attached)
to the node which is the object of the cursor. The value of these opera-
tions is the arc which is crossed or A if none can be crossed. There are

operations--traverse-graph-out or traverse-graph-in--which cross only

those arcs which lead to nodes with the same origin (i.e., which are on the
same graph) as the object of the cursor.

As arcs are crossed they become either the current-arc-out (if

crossed in an outward direction) or current-arc-in (if crossed in an in-

ward direction). TFor notational convenience we place a + (recall

Figure 3.2) on the tail of a current-arc-out and a - on the head of a

current-arc-in,

For a cursor whose origin and object is the node x (see Figure 3.10)

the execution of 16 traverse-node-out operations stops at the nodes in this

order (a, e, £, x, b, e, f, x, ¢, d, £, x, a, d, £, and x) while producing

the after diagram of Figure 3.10. The current-arc-out(x) has been changed.

It should be noted that the current-arc-out (in) is not crossed unless it

is the only related (attached) arc leaving (entering) a particular node.

Also note that the related (attached) -successor of the current-arc-out (in)

is the arc chosen to cross each time,

Traversing operations (complex)

+ +
xiGBl if ab = xi € Ab

a. traverse-node-out(%*) = P)
A otherwise

where * ¢ C and b € N and define body(b) = (G,G,B,A+,xi€91,A-,a

and define body(*) = (v,u,b).
X,
il

Before 16 traverse-node-out operations with the cursor residing on node, x

) After 16 traverse-node-out operations

Figure 3.10. The Complex Reader Mechanism

90

;. . + + ..
if a, = x; € Ab, where j is the

% 0j b
smallest integer such that
b. traverse-graph-out(*) = % 0<j<kand uy - u;
*10j
A otherwise,

where * ¢ C and b ¢ N and define body(b) = (§,G,B,A+,xiGBj,A ,a)

and define body(¥*) = (v,u,b).
X s
i®j

Y o1 if a, =y; € Ab

c. traverse-node-in(%*) = ,
A otherwise

where * ¢ C and b ¢ N and define body (b) = (v,u,b,A",a",A",y, o1

and define body(*) = (V,u,u)
Yiol

4 - -
inBj if a = s € Ab, where j is the

smallest integer such that

d. traverse-graph-in(¥*) = < 0<j<kandu = U3
= u
Ti®j

A otherwise,

where * ¢ C and b ¢ N and define body(b) = (;,ﬁ,b,A+,;+;A ’yiégj)

and define body(*) = (v,u,u).
Ii®j

CHAPTER IV

MICRO-SEMANIICS OF GROPE

In this chapter we present the micro-semantics. The micro-semantics
is the formal definition of GROPE from the implementation point of view
(see, for example, Earley [6] or Shneiderman [33]). In the preceding chap-
ter the macro-semantics were presented. One of the shortcomings of the
macro-semantics is that no indication is given as to the execution time
or storage cost of any of the data structures or primitive operations. A
second more important weakness is that the macro-semantics does not dis-
play any notion of how GROPE might be implemented.

The micro-semantics of GROPE resolves both of these waaknesses.
1t can be correctly argued that the micro-semantics suffice and that the
macro-semantics are superfluous. However, one need only coasider the de-
tailed descriptions of the micro-semantics (see Figure 4.6) to understand
why we believe that the macro-semantics are important.

In the preceding chapter on macro-semantics, we introduced the no-
tion of the "abstract system'" approach using the gds as an illustration.
Very little new need be presented here because direct parallels can be
drawn for the micro-semantics from the macro-semantics. Once again we note
that the "abstract system" follows the pattern of programning language defi-
nition by defining a total data space, data structures, and operations over
the data structures. The total data space is the GDS; the data structures
are defined by the functions ARCS and TYPE; and the operations are given

as the transition rule from one state (GDS) to another state (GDS').

91

92

The Total Data Space and Data Structures of the Micro-semantics

The first and second phase of the formal definition of programming

languages is to describe the total data space and the data structures.

The GDS is the total data space, and the functions ARC8 and TYPE present

the data structures.

A GDS is a quintuple (L,T-set,A-set,TYPE,ARCS) where

ii.

iii.

iv.

I, is an infinite set of nodes partitioned into two sets,
iO (the unused nodes) and a finite set V. 1Initially v

contains A, the null node.

T-set is the finite set of types.

T-set = {element,graph,node,arc,cursor}.

A-set is the finite set of arc labels.

+ -
A-set = {u,b,v,a ;x-k’xya ,Yk;}’}-

TYPE is a partial function mapping V - T-set.
As a point (node) in 10 is placed into V, then its TYPE

becomes defined.

ARCS is a partial function mapping V X A-set —» V. More

specifically,
- n
{n : TYPE(n) = element]} X {v,yk} U
{n : TYPE(n) = graph} X {v,xk} U
ARCS : | {n : TYPE(n) = node} X A-set U -V
{n : TYPE(n) = arc} X {u,b,v,x,y} U
{n : TYPE(n) = cursor} X {u,b,v}

93

I £ Aggg(n,a) = m then therc is said to be an arc from node n
to node m with label, a. Note that there may not be two

arcs leaving a node with the same label.

To illustrate the micro-semantics of GROPE, let us consider, once
more, a graph composed of two nodes and one arc (see Figure 3.2). Figure 4.1
shows the arc labels as kinds of arrowheads for the purpose of clarity,
and Figure 4.2 is the GDS for that structure using the arc label conven-
tions.

Let us focus our attention on the major differences in Figure 3.2
and Figure 4.2. Although the gds (macro-semantics) and GDS (micro-semantics)
represent the same information, it appears that the simplicity of the gds
for describing an arc is more natural for a user of a language than the
complexity of the GDS for describing the same information (see also Figure
3.5 and Figure 4.6). On the other hand, if we consider the arc-labels
as fields of a multi-word cell (plex), then the storage structure of GROPE
is readily apparent, whereas it is possible (very likely) that an imple-
mentation developed from the gds (macro-semantics) would prove to be very

inefficient in terms of storage and/or execution time.

Notational Coaventions

T1f we choose an arc label a out of the A-set then

(1) if a(n) exists is the same as ARCS(n,a) is defined. 1In other words,

if a(n) = m there is an arc with label a from node n to node m.

(2) a(n) becomes m means that an arc is created from node n to node m with

label a. This means that an existing arc with label a from node n, if

any, is removed.

94

>

Figure 4.1.

D> > >>

Arc Label Conventions

Figure 4.2,

GDS of a Simple Graph

95

06

(3) a(n) is removed means that ARCS(n,a) is undefined.

Operation-diagram Conventions

These diagrams are before/after diagrams where

‘(1) Double thickness arrows are to attract attentiom.
(2) All darkened nodes are the same node.
(3) In the before diagram, darkened arrows do not exist.

(4) In the after diagram, dashed arrows do not exist.

QOperations in the Micro-semantics

The GROPE primitive operations are partitioned into five classes
as in Chapter III. The first class contains all of the creation operations
along with their associated predicates which determine whether or not a
value is of a certain type. The second class is composed of basic re-
trieval operations. The third class contains the '"state' changing opera-
tions. The fourth class contains the structural changing operations and

the fifth class is the cursor (reader) traversal operations.

1. Creation operations and associated predicates

a. CREATE-ELEMENT() = R where R € L. There is a free1 node R € L

O’
define TYPE(R) = element. (Recall that if R is in the domain

of TYPE, then R is placed in v.)

From the implementation point of view, CREATE-ELEMENT() requires

some explanation. In the definition of the operation CREATE-ELEMENT()

there is no data constant (print image) associated with the created element.

1A node is free if it is not A and if it is not in the domain of the
function TYPE.

97

This is not quite the case. We actually would expect that CREATE- ELEMENT()

would build a LISP-like atom from the host's simple structures. We would
want to place this element into a bucket-sorted hash list (OBSET). Thus

we might have the operation

PUT-ON-OBSET(*) = * where TYPE(*) is element.

There should also be an operation which removes elements from the OBSET.
Hence

TAKE-OFF-OBSET (%) = * where TYPE(%*) is element.

Finally, there should be a predicate which determines if an element is on
the OBSET:
* if * is on the OBSET

15-0ON-OBSET(*) = , where TYPE(¥*) is element.
A otherwise

As in LISP, any element that is on the OBSET must be protected from the

garbage collector.

(Continuing with creation operations and associated predicates)

* if TYPE(*) is element
b. IS-ELEMENT(*) =
A otherwise

¢. CREATE-GRAPH() = R where R ¢ 1. There is a free node R € L

O?
define TYPE(R) = graph.
* if TYPE(*) is graph

d. IS-GRAPH(¥*) =
A otherwise

e. CREATE-NODE(*,*%) = R where TYPE(*) is graph, TYPE(**) is element
and R € L. There is a free node R ¢ iO’ u(R) becomes %,
b(R) becomes **, and define TYPE(R) = node.

98

Figure 4.3, Diagram for CREATE- NODE (*, %*%)

99

* if TYPE(*) is node
£. 15-NODE(*) = .
A otherwise

g. CREATE-ARG(*, **) = R where TYPE(*) and TYPE(**) is node and R € L.
There is a free node R ¢ 10’ u(R) becomes *, b(R) becomes *¥%,

and define TYPE(R) = arc.

* if TYPE(*) is arc
h. IS-ARC(¥*) =
A otherwise

i. CREATE-CURSOR(*) = R where TYPE(*) is node or arc and R € L. There

is a free node R € 10’ u(R), and b(R) become * and define

TYPE(R) = cursor.

% if TYPE(*) is cursor
j. I1S-CURSOR(¥*) =
A otherwise

Retrieval operations

v(*) if v(*) exists
a. VALUE(*) = , where TYPE(*) e T-set.
A otherwise

b. ORIGIN(*)

u(*) where TYPE(*) is node, arc, or cursor.

c. OBJECT(%*)

il

b(*) where TYPE(*) is node, arc, or cursor.

a+(*) if a+(*) exists
d. CURRENT-ARC-OUT(%*) = , where TYPE(*) is node.
A otherwise

xk(*) if xk(*) exists
e. LAST-OF-RELATED-SET(*) = ’
» otherwise

where TYPE(*) is graph or node.

100

x(*) if x(*) exists
f. RELATED-SUCCESSOR(*) = ’
A otherwise

where TYPE(*%*) is node or arc.

x_l(*) if x_l(*) exists
g. RELATED- PREDECESSOR (*) ,
A otherwise

]

where TYPE(*) is node or arc. (See note below.)

a (%) if a (¥*) exists
h. CURRENT-ARC-IN(*) = , where TYPE(*) is node.
A otherwise

yk(*) if yk(*) exists
i. TLAST-OF-ATTACHED-SET(¥*) =)
A otherwise

where TYPE(*) is element or node.

y(*) if y(*) exists
i. ATTACHED-SUCCESSOR(*) =)
A otherwise

where TYPE(*) is node or arc.

yrl(*) if y-l(*) exists
k. ATTACHED-PREDECESSOR(*) = s
A otherwise

where TYPE(*) is node or arc. (See note below.)

3. State changing operations

a. RELATE(*) = * where TYPE(*) is node or arc and x(*) does not exist.
Set T = xk(u(*)) if xk(u(*)) exists. x(%*) becomes x(T) and
x(T) becomes *, If xk(u(*)) does not exist, then x(*) and

x, (u(*)) become * and if TYPE(*) is arc then at(u(*)) becomes *.

Note: x "(¥) = *' such that x(*') = * and g L(%) = *' such that y(*') = %,

101

General Case

Trivial Case where
TYPE(*) 1is arc

Figure 4.4. Diagrams for RELATE (*)

