102

b. UNRELATE(*) = * where TYPE(*) is node or arc and x(*) does exist.
1f x(xk(u(*))) is *, then xk(u(*)) and x(*) are removed.
1f TYPE(*) is arc then a+(u(*)) is also removed.
Otherwise, (X& has more than one component) set T==x—l(*).
If xk(u(*)) is * then xk(u(*)) becomes T.
1f TYPE(*) is arc and a+(u(*)) is * then a+(u(*)) becomes T.

In any case, however, x(T) becomes x(*) and x(%*) is removed.
c. ATTACH(*) = * where TYPE (*) is node or arc and y(*) does not exist.

Set T = yk(b(*)) if yk(b(*)) exists. y(*) becomes y(T) and
y(T) becomes *, If yk(b(*)) does not exist then y(*) and
yk(b(*)) become * and if TYPE(*) is arc then a (b(*)) be-

comes *,
d. DETACH(*) = * where TYPE(*) is node or arc and y(%*) does exist.
1f y(yk(b(*j))is*, then yk(b(*)) and y(*) are removed.

1f TYPE(*) is arc then a (b(*)) is also removed.
Otherwise, (Y has more than one component) set T = y-l(*).

If yk(b(*)) is * then yk(b(*)) becomes T.
1f TYPE(*) is arc and a (b(*)) is * then a (b(*)) becomes T.

In any case, however, y(T) becomes y(*) and y(*) is removed.

In order to show how the GDS is changed as a result of these opera-
tions, consider Figure 3.5 as a typical data structure represented by the
GDS of Figure 4.6 given by Figure 4.7. Then the following sequence of opera-

tions generates a new GDS.

163

General Case
where TYPE (%)
is arc

Figure 4.5. Diagram for UNRELATE (*)

”
|

105

ARCS u b X X a' y Yie a TYPE
ey n, element
&1 g graph
=P graph
n, gy ey a, a4 node
nl 81| (1| 3 node
ngl 8y | °p | ™2 o, |35 | s node
i 82| %1 R I | node
a;| 7Ty n, a, arc
) a,| ™y n, aq a; arc
83 nl 1'13 34 ?_._];E
3,4 nl n3 32 a5 arc
as| M | 3 i arc
/ 3.6 I'll n2 é_l:_c_
C]. n4 nl cursorxr
CZ aa a.S cursor

Figure 4.7. Tabular Form of CDS for Semantic Examples

106

RELNTE(a6) makes ag a related-only arc by redefining

ARCS(a,;x) = ag and ARCS(ag,x) = a,-

ATTACH(a6) makes a. a regular arc by redefining

ARCS(nZ,yk), ARCS(nZ,a.), and ARCS(a6,y) = ag.

UNRELATE(aA) makes a, an attached-only arc by redefining
+ ,
ARCS(nl,a) and ARCS(nl,xk) = a,; ARCS(aB,x) = ag; and

ARCS(aa,x) = N,

DETACH(aQ) makes a, an isolated arc by redefining

ARCS (ag,y) = g and ARCS(a,,y) = A.

DETACH(aS) makes ag an isolated arc by redefining

ARCS(aS,y), ARCS(n3,yk), and ARCS(nB,a-) = A,

Notice here that if x-1 is also stored, then removing structures
from the sets is not a function of length. More importantly, a user ought
to be able to state for a particular problem whether his algorithm re-
quires detaching or unrelating. Whenever it is necessary to aestroy the
whole graph, all that must be done is to remove access to the graph, and
the garbage colector gobbles up the whole structure. We would recommend
for a first implementation that all x-l and y-1 arc labels be stored expli-
citly. The reason for this recommendation is that graphs don't normally
grow so large that they can't be stored; on the contrary, the difficult prob-
lems in graph processing are the result of the combinatorial nature of the

graph algorithms.

107

4. Structural changing operations

a.

HANG(*, **) = * where TYPE(*) € T-set and TYPE(**) e¢ T-set or ** is A.

1f *% is A, v(*) is removed. If not, v(#*) becomes *%,

CHANCE- CURRENT-ARC-0QUT (%) = * where TYPE(*) is arc and x(%*) exists.

a+(u(*)) becomes *,

CHANGE- LAST- OF- RELATED- SET(*) = * where TYPE(*) is node or arc and

x(*) exists. xk(u(*)) becomes *,

CHANGE- CURRENT-ARC-IN(*) = * where TYPE(*) is arc and y(*) exists.

a (b(*)) becomes *.

CHANGE- LAST~- OF- ATTACHED-SET(*) = * where TYPE(*) is node or arc

and y(*) exists. yk(b(*)) becomes *%.

CHANGE-ORIGIN(*, ¥%) = * where TYPE(*) is cursor, if TYPE(u(%)) is

TYPE(**) then u(*) becomes *%; if not, b(*) also becomes *%¥.

1f TYPE(*) is node and TYPE(**) is graph or TYPE(*) is arc

and TYPE(**) is node then u(*) becomes ** if x(¥*) does not

exist.

CHANGE-OBJECT (*,**) = * where TYPE(*) is cursor, if TYPE(b(*)) is

TYPE(#*) then b(¥*) becomes *%*; if not, u(*) also becomes *%,

1f TYPE(*) is node and TYPE(*¥*) is element or TYPE(*) is arc

and TYPE(**) is node then b(*) becomes ** if y(*) does not

exist.

Once again, using Figure 4.6, the following sequence of state and

structural changing operations forms a new GDS.

108

CHANGE—ORIGIN(aS,nl) makes ag have the ORIGIN, n, by redefining

ARCS(aS,u) =y and

CHANGE—CURRENT-ARC-OUT(aZ) makes a, the CURRENT—ARC—OUT(nl) by redefining

+
ARCS(nl,a) = a, and

RELATE(aS) makes ag a regular arc by redefining

ARCS(a4,x) = ag and ARCS(aS,x) = a, and

CHANGE—LAST-OF—RELATED-SET(aS) makes a3 the LAST—OF-RELATED—SET(nl) by

redefining ARCS(nl,xk) = a,.

5. Traversing operations (simple)

x(b(*)) if it exists
a. TRAVERSE—RELATED-SUCCESSOR(*) = ’
A otherwise

where TYPE(*) is cursor. If x(b(*)) exists, then b(%)

becomes x(b(*)).

_ x-l(b(*)) if it exists
b. TRAVERSE-RELATED-PREDECESSOR(*) = s
N otherwise
where TYPE(*) is cursor. If x-l(b(*)) exists then b(¥%)

becomes x_l(b(*)).

y(b(*)) if it exists
c. TRAVERSE-ATTACHED- SUCCESSOR (%) =

N otherwise
where TYPE(%*) is cursor. If y(b(*)) exists then b(%)

becomes y(b(*)).

y'l(b(*)) if it exists
d. TRAVERSE-ATTACHED-PREDECESSOR(%) =

A otherwise
where TYPE(*) is cursor. If y-l(b(*)) exists, then b(%)

becomes - L(b(¥)).

Figure 4.8.

Diagram for TRAVERSE- RELATED-SUCCESSOR(*)

109

110

Traversing operations (complex)

u if it exists
e. TRAVERSE~-NODE-OQOUT(*) = P)
A otherwise

where TYPE(*) is cursor, TYPE(b(*)) is node, and a is

x(at(b(*))). If o exists then a (b(*)) becomes o and b(*)

becomes b(a).

a if it exists
f. TRAVERSE-GRAPH-OUT(*) = s
A otherwise

where TYPE(*) is cursor, and TYPE(b(*)) is node. If there
is an arc o such that u(x(a)) = b(¥*) and u(b(a)) = u(b(*))
+ +
with minimum Bathlengthx(a (b(*)),a) then a (b(*)) becomes
o and b(*) becomes b(x). (See note below.)
o if it exists

g. TRAVERSE- NODE-IN(*) = ,
A otherwise

where TYPE(*) is cursor, TYPE(b(*)) is node, and a is

y(a (b(*))). If a exists then a (b(*)) becomes a and b(*)

becomes u(a).

a if it exists
h. TRAVERSE-GRAPH-IN(*) = s
A otherwise

where TYPE(*) is cursor and TYPE(b(*)) is node. If there
is an arc a such that b(y{a)) = b(*) and u(u(®)) = u(b(*))
with minimum Eathlengthy(a-(b(*)),a) then a (b(*)) becomes

o and b(*) becomes u(w).

Note: 1 if ARCS(n,a) = m

Eathlengtha(n,m) =
pathlengtha(ARCS(n,a),m)+l otherwise

111

Figure 4.9. Diagram for TRAVERSE-NODE-OUT(*)

112

Figure 4.10. Diagram for TRAVERSE- GRAPH-OUT (*)

CHAPTER V

CONCLUSIONS

This dissertation has been concerned with two issues: the design
of a graph processing language, and its formal definition. These two
research efforts have resulted in the development of a graph processing
language extenmsion, GROPE, and the macro-semantics and micro-semantics
two-level definitional technique.

GROPE embodies some major new ideas about representation and pro-
cessing of complex structures while maintaining a serious concern with
efficiency. GROPE is like LISP in that everything is dynamic. That is,
the graph structures can grow, shrink, and be modified both dynamically
and irregularly. In addition, GROPE has many support features which enhance
the power of the graph processing primitives and special mechanisms for
searching and processing graph structures. From the standpoint of the
GROPE programming language extension, there is nothing new about embedding
a set of operations in a high-level language. GROPE makes available to the
programmer 154 operations and fifteen data types. Despite this complexity,
trhere have been enough users of GROPE to warrant its development.

Considering the formal definitional technique, we accomplished what
we set out to accomplish. That is, our formal definition is a relatively
readable definition of the operations and structures available to the user
(macro-semantics) and our formal definition provides an implementation de~
sign and an indication of the cost of the operations (micro-semantics).

In both the macro-semantics and the micro-semantics we have used the same

113

114

approach, the abstract system approach. Thus we have shown that the ab-
stract system approach is a viable alternative for programming language
definition. One weakness of our model, however, is the lack of concern
with such issues as control structure and parameter transmission.

Both the design of graph processing languages and the formal defi-
nition of programming languages have generated some interesting research

problems.

Research Problems

The graph processing language GROPE has many interesting features
that may or may not, in the final analysis, be considered useful graph
processing tools. For example, graph readers appear to be clever mechan-

isms for searching graphs when combined with the current-arc-out and

current-arc-in. An interesting problem would be to discover under what

conditions this tool imparts a powerful algorithmic technique. Also, we
introduced the notion of states of arcs and nodes. Recall that arcs and

nodes can be related, attached, neither related nor attached, or both

related and attached. Allowing a single graph to contain any of four types
of nodes and any of four types of arcs could (and has) produced some in-
teresting approaches to graph algorithms and the representation of graphs.
Perhaps these structures could be the seed for some mathematical develop-
ment as an extension of digraph theory. The wide range of flexibility as
discussed in Chapter II could also lead to new schemes for representation.
Finally, if the ideas of graph processing are further explored, a good re-
search area would be to design a graph processing machine.

In the area of formal definition, there are a number of interesting

research problems. The macro-semantics and the micro-semantics are both

-

115

abstract systems. An interesting research area would be to develop some
mathematical results about these two systems. For example, a formal
definition of a garbage collector could be defined, and one might prove
that all and only those nodes which were available to become garbage
would become so. One could show that by making simplifications or addi-
tions to the formal systems, other languages such as SLIP or LISP might
be defined. Furthermore, an interesting result would be to prove that
the micro-semantics and the macro-semantics were equivalent. Let us map
out a strategy for this problem.

Define f as a one-to-one correspondence which shows for any gds
(the formal system of the macro-semantics) how it can be mapped into a
GDS (the formal system of the micro-semantics). For example, part of the
correspondence would contain: " ¢ G if and only if TYPE(f(x)) = graph" .
In addition, we can extend f over the operations such that f(op) = OP where
op is an operation defined over the macro-semantics and OP, similarly
named, is defined over the micro-semantics. Thus we try to prove the fol-

lowing theorem.

THEOREM. The macro-semantics are f-equivalent to the micro-semantics
if and only if for all op defined over the macro-semantics

op(gds,xl,xz,...,xn) = (gds',v) if and only if

f(op)(f(gds),f(xl),f(xz),...,f(xn)) = (f£(gds"'),£(v)).

Similarly, we could prove that the application of op to a gds with legal
parameters leaves the gds "yell defined." The same analysis could be made

on the micro-semantics.

116

It has long been understood that one of the major bottlenecks in
the application of computers to old as well as new problems is the fact
that in general each problem must undergo a number of transformations
(some very complicated) to make it compétible with the language which the
computer scientist decides to use. Languages such as GROPE, in which the
data structures correspond more closely to those used to describe problems
in applications areas, should hopefully lead to the eventual elimination

of this bottleneck.

APPENDIX A

The listing presented here is the GROPE language manual for the
CDC 6600 implementation. Although the manual is self-contained, a few
words of direction are suggested.

The chart on page 120 is a VENN diagram. For example, a list is

a lnsr, a rdsr an object, and a value whereas a node is not a Insr. 1In

addition, the v can be read as '"only contain(s)." For example, the grset
3)

only contains graphs, the rseto and rseti only contain arcs. The chart on

page 121 is also a Venn diagram.

Page 122 is a table of contents which does not give page numbers
and is organized by classification of the function. The *'s are an indi-
cation of how important it is to understand a particular subclass of func-
tions in order to program in GROPE (the more *'s, the more important). Be-
cause there are 154 functions in GROPE, we decided that placing the functions
in alphabetical order was perhaps a reasonable way to organize the functions
since the table of contents classification is available.

Also, the following correspondences hold:

Chapter I1 Appendix A
mapft mapft
orft orft
andft andft
dmapft delft
Imapft loft
smapft soft
crgraph(x) relate(cregr(x))
detgraph(x) unrel(x)
detnode(x) unrel(detnd(x))
detarc detrc

Note that no other mapping functions that appear in Chapter II are in

Appendix A,
117

1138

ARRKARK AR
* GROPE *
KRNRAKKKIRN

THERE ARE CERTAIN CONVENTIONS EMPLOYED IN THIS DESCRIPTION OF
THE GROPE FUNCTIONS? THEY ARE BRIEFLY DEFINED AS FOLLOWS 3

ARGUMENTS TO FUNCTIONS

ARG 1 SOME ARGUMENT == NOT NECESSARILY A GROPE VALUE,

BITS t AN EXTERNAL REFERENCE OR A ONE=DIMENSIONAL ARRAY, POSSIBLY OF
LENGTH | (HENCE A VARIABLE), HWITH USERw»SPECIFIED INFORMATION
10 BE PASSED TO AN ATOM CREATION FUNCTION,

FUN t AN EXTERNAL REFERENCE OR A FUNCTION®ATOM,

G 1 A GRAPH,

Lt A LIST,

LS t A LINEAR STRUCTURE 1A 1,181, SET, OR READER] ,

N t A NODE,

NG 1 A NODE OR A GRAPH,

NUM § A NUMBER,

0pJ t AN OBJECT) THE FUNCTION DEFINITION MAY STIPULATE RESTRICTIONS
ON THE KINDS OF OBJECTS THAT ARE VALID,

P t A PAIR,

PS 1 A PSET,

© 1t A DUMMY ARGUMENTY 1T 1S ALWAYS IGNORED,
RC ¥ AN ARC,

RDR 1 A READER) THE FUNCTION DEFINITION MAY STIPULATE RESTRICTIONS
ON THE KINDS OF READERS THAT ARE VALID,

RS § A READABLE STRUCTURED X I3 A READABLE STRUCTURE IF 17 18 A
LINEAR STRUCTURE OR A NODE OR A GRAPH,

TARENUMBER ¢ AN INTEGER TAPE REFERENCE,
VAL 1 SOME ARGUMENT »o= MECESSARILY A GROPE VALUE,

VECTOR 1. A ONEwDIMENSIONAL ARRAY WITH NO USEReSPECIFIED INFORMATION
WITHIN THE ARRAY,

CONCERNING MNEMONIC FUNCTION NAMES
~aTTe MEAMS ATTACHLED)
CHe OR CHAw MEANS CHANGE
CRe OR CRE= MEANS CREATE
wCURe MEANS CURRENT
DEL» MEANS DELETE
DET» MEANS DETACH
*END MEANS END

wFT MEANS THE SECOND ARGUMENT IS A FUNCTION w= WHETHER AN EXTERNAL
REFERENCE OR A FUNCTION=ATOM,

HS= MEANS HAS
w] MEANS IN

1S= DENODTES A PREDICATE FUNCTION THAT RETURNS ITS ARGUMENT [TRUE]
DR ZERO [FALSE),

»ISw» AEANS ISOLATED [UNATTACHED)
MAw= MEANS MAKE

MOVEw» MEANS MOVE [A READER] DIRECTLY
=0 MEANS QUT

eRCe MEANS ARC

~REL» “EANS RELATEID)

SFRT» MEANS INSERT

«5ETe QR =»STe MEANS SET

»8R MEANS STRUCTYURE

Te MEAYS TRAVERSE [A READER]

GROPE ADDS ELEMENTS TO ([SYSTEM] SETS BY FITHER STACKING [IF IN MODES]
OR AUEUEING [IF IN MODEQYjy THE USER MAY CHANGE THE MODE,

119

120

RELATIONSHIPS AMONG THE GROPE DATA=TYPES

i!lﬂ!%!!iiﬁEé?!allﬂ!iﬂaﬂs!aiil!!ﬂ!!!!!!lE!EEIII!E!B!EE!!I!B!BEIISBEEE!E!IESEIII!

g VALUE E
L]
L] L]
5]
L N
8 s
& []
8 .‘-0.-.-..-----.--y|-—-v.--.--.pu------—---un-o—p-‘------qvgcn ‘
2 L] OBJECT =
-]) - F
L » [ATOM). -]
- - v »]
& - v) B
] " v [PAIR] ™ "
] - v v {ARC] -]
8 - v v v L]]
a 0f0§+++++*#+VQ++*++QV++#¢§*f+*¢++++++++V+*¢+$++++0++*#++#+++++§+++¢#¢++000 []
B - v v v - RDSR + =
8 * - v v v ” + =
B ¢ [] v v v L] + N
g 4 " v v v - ¢ =
B ¢ " v v v [(NODE} = + B
g ¢ - v v v v » ¢ N
a ¢ ” v v v v - + =
2 ¢ » v v {GRAPH] v v - + B
B ¢ - v v v v v . ¢ n
B ¢ - v v v v v » ¢+ 8
E ¢ - v v v v v ™ ¢ B
B ¢ *******ﬁtVt***t**vi***t***vtt**itt**v****t***t*ﬁ**tﬁatVt**t**ﬁttttt* ¢ 8
B ¢ % = ¥ v v v v w _NSR » + @
E % % = v v v v v L * ¢ 0
i ¢ * m v v v v {LisT) v " ® ¢ =
B ¢ % @ v v v v v L] *x ¢ B
g 4+ % w® v v v v v - * ¢ B
8 & * n-----V-----—.V..—-q-.p\'--------»V---.-p----------qV----q ® + R
® ¢ % v v v v v * ¢ B
8 ¢ » v v +»>>>>> {RSETO) v * + 8
a ¢ % v v v v +>>>>>» [NSFTY » ¢ &
B ¢ # v v v v v * ¢ B
g2 ¢ % v (PSET) v v v " % B
8 4 & v v {RSETI) v « ¢ B
8 ¢ = v v INDSET) * ¢ N
2 & = tOBSET) v * ¢ &
8 ¢ % v x ¢ @
E ¢ % v « + &
8 ¢+ % [GRSET) *« & B
2 ¢+ a * ¢ B
C I B [READER) * ¢ &
E ¢+ = " ¢ 8
8 4 % « ¢ &
¢ % « 4+ B
8 ¢+ i*********i****tt**t*tt*it*tt**att**t*t*t*ktttttttttt***tt*t**tt*tﬁi + &
E % ¢+ =
g 9 + =N
B Q#++#f++++++++++f§+++++++++#+0++++0¢+*¢¢++++++§+0¢++0++0&+#++++++++¢+##ﬁf§ =
& []
4]
l!lllal::as:snlllltil!saslnlltllll:lllsl-lll::lslu:llll!!llllzlalulllnllnlllllll

EEENECERBPPERSSARFEERENSEEEED

RELATIONSHIPS AMONG THE GROPE ATOMeTYPES

*********tt***i*****it**tk********t*************k****t***t***

*
*
*®
]
*
*
*
*
®

RAKRAARANRRKRARK

¥*
*
x
*
*
"
]
*
*
®
*
*
*
]
*
*
*
*
*
¥
*
w
*®
*

!ll!il!!ﬁE!i!!ﬁl!!iﬁi!!!llﬁ‘!ﬂ!iﬂﬁiﬂi!!lil&i!!ﬂﬁﬁ!

HOLLERITH

(e w0) e e O R R O D TR G Y GR TR e s e
" FUNCTION =
- -
L] -

.-.--vu--q---------—---.--q-q’--—-------q

****t********t**ti***i**tt****ﬂ*****ti*******it*tt**t**ﬁﬁ**

P--.Qp---o---—.-n—---------nqv--o--.--—--

- REAL =
-]
- -

.-,--_QQC-.F--O-----.----.-a--qp---.-.—---ﬂ

- T Y O e P e W e e P 0 e e R

- INTEGER =
- -
[-
- EtrtEEEEIEE L L L L AL L E LS -
- + QUOTED ¢+ d
» +* +* L
- [+ -
L R N RS2SR R A .
-)
] »
» -

q--q-._-----.-------n------—y-——------.

****t****ﬁ*i****i****iﬂk*iiﬁ*ﬁtk***ttkﬂ*iniﬁﬁt**‘*tt**ﬁitkt*ﬂ

*®

*
*
]
*
]
*
*
"
*

t*ti******i*******t*k**i***t****itt*tiiit*

*
L]
]
*
*
*
L]
L]
|]
L]
*
L]
]

*
*
*
*
*
*
*
*
*
]
]
*

ESCARENENEREEERRSRERLNNQERNR

121

El!!EEEEEESBiEEEiEEEEE5EEEEHE‘BiEBEiHEE!E!!EE!!!EBI!B

&
B
]
]
[|
=
=
a
]
a
]
|
L
u
L
L
o
L
L
=
3
|
2
L
e
n
®
|]
]
B
]
|
|
-]
|
.
|]

THE RELATIVE IMPORTARCE OF FUNCTION=GROUPS

AYOM AND LIST PROCESSING FUNCTIONS

SETUP/SAVAR/SAVCOM/RETURN
ATOM/QUOTE
IMAGE/LENATM
CREL/LIST/QUEUE/STACK/CONCAT/POP
IDENT/ZEQUAL

APPLY/EQULFT/COMPOS

GRAPH PROCESSING FUNCTIONS

CREGR

ANODE/CRNODE/CRISN

GrRAPH/CHAGR

RELATE/UNREL
CRARC/CRAHCI/CRARCO/CRISR
FRNODE/CHAFRN/TDNODE/CHATOM/REVRC
ATTRC/DFTRC/ATTRCI/DETRCI/ATTRCO/DETRCO
ATTND/DETND
CLRCI/MACUYRI/CURCO/MACURD
OBJECT/CHOBY
VALUE/HANG/UNHANG/BUMP

PROPERTY=SET FUNCTIONS

PUT/GET
PSET/CREPS/HSPSETY
CRISP

ATTPR/DETPR
AFFIX/APPEND

LINEAR STRUCTURE FUNCTIONS

FIRST/LAST

LENGTH

MEMBER

ANDF T/ORFT/MAPFT/LOFT/SOFT/DELFY
GRSET/NDSET/NSET/HSNSET
RSETI/RSETO

OBSET

READER PROCESSING FUNCTIONS

INPUT /

CREEDR/ORIGIN/CHORIG/REED/RESTRT/CDPYRD
T0/71

DStND/DSNDTOIASEND/PtVERT/CONECT
SERTO/SERTI/SUBST/DELETE/MERGE
CREXD/MOVEND/MOVETO

TIFT/TOFT/CURARC

OUTPUT AND MISCELLANEOUS FUNCTIONS

RDFILE/RDEXP/ECHD
PRFILE/PRXPFT/PRINFT/TERPRI/MARGIN/TAB
MODEG/MODES

INYGER/REALE/TRUE

MAXERR/MESAGE

ISATOM/ISHOL/ISINT/ISREAL/ISFUN/ISQINT/ISNUM

ISLIST

ISGRAF
ISNODE

ISREL
I13ARC

ISRCI/I8RCO
1SATTN

1808J
ISVAL

1SPSET
ISPAIR
ISATTP

ISLNSR

1SGRET/ISNDSET/ISNSBET
ISRSTI/ISRSTO
150887

JSRDR/1ISRDSR

ISDEEP

ISATND/ISATBG

15M0DS

ANRRTRRK
Kk NAKkKK
Ak hhkkhk
KERKKRAFR
AAKRRNKRAN
kRARRKAK

kkkhkKR
LEE LR
o xk kK
AkkrAk
* Kk &k kK
KR kR kK
£ 3.2 2.1

* &

L3]

KRR ARKN
*k AR

KR KkARARKX
LA L]

L3

w &

L 4]

hARRERKK
ARkRkANRKRR
ARkRAKKRR
kRNAKARAKX
AEREAR
EE R T A0
Lad

KRRk RRRK
AARAARAAR
ARKRERR
KA RKKK
LEE 1]
RKkE

ARARAKAR
L2288 2 ¢
RARW
KARh kR
"R

123

AFFIX (DBJ,PS) ¢t = 0BJ, THE PSET PS IS AFFIXED Tn 0HJ UIN ADDITION TO ANY
OTHER OBJECTS TO WHICLH IT MAY kb AFFIXED), HENCFFORTH HMSPSET(OBJ) =& PS,
[ONLY ONE PSET MAY BY AFFIXED TO ANY GIVEN UOBJECT,)

ANDFT (LS, FUN,ARGZ,ARGD,)ARGH,ARGS) 1 = LS, PROVIDED THAT APPLY(FUN,ELEMENT,
ARGZ2, ARG, ARGG, ARGS) RETURHS TRUE (#@]1 FOR EACH SUCCESSIVE ELE™MENT 1IN
THE LINEAR STRUCTURE LS3 IF FUN RETURNS FALSE [=2), THE PROCESS I8
TER4INATLD AND ZERD 18 RETURNED,
NOTE 3§ THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP T0O 6,

ANODE (0B8J,G) 1 IF THERE IS A NODE N IM THE NSET(0OBJ) WITH GRAPH(MN) = G
THEN THAT NODE IS THF VALUE, ELSE ANNDE 1t = CRNODE(OBJ,6),

APPEND (08J,RS) 1 = OBJ, THE ELEMENTS OF THE PSET PS ARE QUEUED INTO
THE PSET(OBJ)Y AND PS BECOMES EMPTY.

APPLY (FUN,ARG1,ARG2,ARG3,ARGA,ARGS) ¢ = BITSCARG1,ARG2,ARGS,ARGY, ARGS)
WHERE FUN = ATOM(BITS,=3) FOR SOME EXTERNAL REFERENCE BITSs OR IF FUN
5 AN EXTERNAL REFERENCE APPLY 1 = FUN(ARG1»ARG2,ARG3, ARG4,ARGS) ,
NOTE 1 THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP T0 6,

ASEND (RDR) 1 THE VALUE IS THE READER PASSED IN THE CALL TO THE DESCEND
FUNCTION WHICH RETURNMED THE VALUE RDRg TKIS CORRFSPONDS TO THE SECOND
READER IN THE STACK TO WHICH RDR REFERS. RDR 1S NOT SIDE=AFFECTED,

ATOM (BITS,NUM) t RETURNS AN ATOMIC ORJECT ATM13

(1) IF NUM > @ THEN ISHOL(ATM) 15 TRUE AND NUM 18 TAKEN TO BE AN
INTEGER INDICATING THE MAXIMUM NUMBER 0F CONTIGUOUS WORDS OF BITS
CONTAINING THE DISPLAY=CODE PRINT=IMAGE OF THE ATOM, LEFT=
JUSTIFIED, ZERO FILL. IF BLANK FILL 1S GIVFN, ZERO FILL wILL BE
SUBSTITUTED, THE VECTOR BITS IS SCANNED FROM RIGHT TO LEFT
FAR THE FIRST NONwBLANK, MON=ZERQ CHARACTER.

(2) IF NUM = @ THEN ISINTC(ATM) AND ISNUMCATM) ARE BOTH TRUE

(3) IF wUM IS5 =1 (OpR =2} THEN BI18 1S SINGLE [0OR DOUBLE] PRECISIONS
ISREAL (ATM) AND I1SNUM(CATM) ARE BOTH TRUL,

€4) IF NUM 1S5 =3 THEN ATM IS A FUNCTION=ATOM, TH1S IS A REFERENCE TO
THE EXTERNAL FUNCTION BITS WHICH mAY BE STORED IN LISTS, ETC. AND
MAY BE EXECUTED BY CALLING APPLY WITH ATM AS THE FIRST ARGUMENT,
ISFUNCATHM) AND ISHOL(ATH) ARE BOTH TRUE,

{(5) IN ALL CASES, ISATOM(ATM) IS TRUE,
[ONLY ONE ATOM HWILL FXIST FOR ANY GIVEN BITS AND NUM,)

ATIND (N) t = N, IF ISATTN(N) I8 TRUE, THERE 1S NO EFFECTy ELSE THE NODE
N Is STACKED OR QUEUED INTO THE NSET(OBJECT(N)I,

ATTPR (P,P3) t = P, TIF ISATTP(P) IS TRUE, THERE 1S NO EFFECTy ELSE
THE PAIR P 15 STACKED OR QUEUED INTO THE pSET PS,

ATTRC (RC) t = ATTRCO(ATTRCI(RC)).

ATTRCI (RC} 3 = RC, IF ISRCI(RC) IS TRUE, THERE 1S NO EFFECTy ELSE THE
ARC RC 18 STACKED OR QUEUED INTO THE RSETI(TONODE(RC)),
{IT CAN BE SAID THAT THE ARC IS ATTACHED INe}

ATTRCO (RC) § = RC, IF ISRCO(RC) 13 TRUE, THERE IS ND EFFECT) ELSE THE
ARC RC 1S5 STACKED OR QUEUED INTO THE RSETO(FRNODE(RC)) .
(1T CAN BE SAID THAT THE ARC IS ATTACHED QuUT,]

BUMP (0BJ,NUM) & = 0BJ, THE [GUOTED INTEGER) VALUE(0BJ) IS INCREMENTED BY NUM,
1F VALUE(OBJ) RETURNS ZERO [NO HANGINGY, THEN GQUOTE(NUM) 185 HUNG,

124

CHAFRN (RC,N) § = RC, THE FRNODE (RC) BECOMES. N3 THE ATTACHED RELATIONSHIP
[1SRCOY RETWEEN THE OLD FRNODE AND THE ARC 18 MAINTAINED BETWEEN
THE NEW FRNODE AND THE ARC,

CHAGR (N,G) t = N, THE GRAPH(N) BECOMES G, AND THE RELATED CONDITION ({ISREL}
OF THE NODE N IS MAINTAINED, {IT MAY BE SAID THAT THE NODE N NOW
RESIDES ON THE GRAPH Gl

CHATON (RC,N) ¢ = RC, THE TONODE (RC) RECOMES Ni THE ATTACHED RELATIONSHIP
{1SRCI) BETWEEN THE OLD TONODE AND THE ARC 18 MAINTAINED BETWEEN
THE NEW TONODE AND THE ARC,

CHEND (RDR) t = RDR, THE SET DR LIST BEING READ BY RDR 1S ALTERED SO THAT
ISATNDCROR) BECOMES TRUE, THAT 1S, THE WDR POINTS TO THE NEW END
OF THE SET OR LIST,

CHOBJ (OBJ1,0BJ2) 1 = 0BJ1. THE OBJECT(0BJY) BECOMES 0BJZ2, AND ALL
ATTACHED AND RELATED RELATIONSHIPS ARE MAINTAINED FOR 0BJ1,
NOTE §.0BJ1 MUST NOT BE AN ATOM,

CHORIG (RDR,RS) 3 = ROR, FIRST THE READER I8 RESTARTED {SEE RESTRTl» AND
THEN 1TSS ORIGIN IS CHANGED 70 THE READABLE STRUCTURE RS,

COMPOS (VAL/FUNI,FUN2,ARG2,ARG3) 1 = APPLY(FUNI,AFPLY(FUNZ:VAL,ARGS),
ARG2,ARG3),

CONCAT (L1,L2) 1 = L1+ THE LISTS L1 AND L2 ARE CONCATENATED, AND L2 BECOMES
EMPTY, THE LENGTH OF L1 BECOMES THE SUM OF THE FORMER LENGTHS DF L1
AND L2, LAST(LI) BECOMES THE FORMER LAST(L2),

CONECT (RDRL,RDR2) 1 = RDR1, ESSENTIALLY, ROR! AND RDR2 ARE CONCATENATED,
RDR2 18 UNAFFECTED, BUT RORY 18 ENLARGED BY THE ADDITION OF THE
ELEMENTS OF RDR2 AT THE END OF THE READER [STACK) ROR1,
1SDEEP (RDRY) IS ALSO GUARANTEED TRUE,

COPYRD (RDR) 1 CREATES AND RETURNS A READER X SUCH THATH
(1) ORIGIN(X) = ORIGIN(RDR)
(2) REED(X) = REED(RDR)
(3) ISDEEP(X) = @,

CRARC (N1,0BJ,N2) ¢ = ATTRCC(CRISR(NS,08J,N2)),

CRARCI (n1,0BJ,N2) 1 ATTRCICCRISR(NE,0BJ,N2)),

CRARCO (N1.0BJ,N2) 1 ATTRCOCCRISR(N1,0BJ,N2)),

CREEDR (RS) 1 CREATES AND RETURNS A READER X OF THE STRUCTURE RS}
RS “AY BE A NQDE, GRAPH. LIST, SET OR READER,
ORIGIN(X) = RS REED(X) = @ ISDEEP(X) = ¥

CREGR (QRJ) & CREATES AND RETURNS A NEW, EMPTY, UNRELATED GRAPH WITH OBJECY
0BJ

CREL (0BJ) t CREATES AND RETURNS A NEW EMPTY LIST WITH OBJECT 08J.
CREPS (G) t CRFATES AND RETURNS A NEW, EMPTY, NONmAFFIXED PSET,
CRISN (0BJ,G) 1 CREATES AND RETURNS A NEW ISOLATED NODE N 1

OBJECT(N) = 0B8J, GRAPH(N) = Gy ISREL(N) = @4
AND ISATTN(N) = @,

125

CRISP (0nJ,VAL) ¢ CRUATES AND RETURNS A NEW TSOLATED PAIR P 1
OEJECTIP) & 0RJ AND VALUE(P) = VAL,

CRISR (N1,0BJ,n2) 1 CREATES AND RETURNS A NEW ISOLATED &RC RCH
FRNQDF(RC) = NI OuJECT(RC) = 0OBJ TOMDDE (RCY = N2

CRNODE (1BJ,6) ¢ = RELATECATTHND(CRISN(URT G),

CURARC (Q) ¢ RETURHS THE MOUST RECENT ARC [CURRENT ARC] CROSSED BY A
NODE QR GRAPH READER,

CURCT (N) t RETURNS THE CURRENT ARC INCOMING TO NODE N3 ELSE @ IF THERE 1S
NONE » THE EXISTENCE OF ONLY OME ARC IN THF RSETI(N) CAUSES IT TO0 BE
THE CUKRENT ARC INCOMING BY DEFAULT,.

CURCO (N) 8 RETURNS THFE CURKENT ARC DUTGOING FROM NODE Ny ELSE % IF THERE IS
MONEe THE EXISTENCE 0OF ONLY ONE AKRC IN THF RSETO{(N) CAUSES 17 TO BE
THE CURRENT ARC puUTGOING BY DEFAULT,

DELETE (RDR) 't = RDR, VHE LISI READER RDR IS MODVED IN ONF POSITION [SEE T1l},
AND THE ELEMENT WHICH IT WAS PREVIDUSLY RFADING [SEE REED) IS
REMOVED FROM THE (IS8T, IF THE FINAL REMAINING ELEMENT IS DELETED
IN THIS MANNER LTHE LENGTH(ORIGIN(RDR)) BFCUMES 4. THEN THE
READER 1S RESTARTED [SEF RESTRT],. AFTER DFLETE HAS BEEN EXECUTED,
TH(RDOR) wWILL MOVE RDR 7O THE ELEMENT PREVIOUSLY JUST QUT FROM
THE DELETED ELEMENT,

DELFTY (LS, FUN, ARG2) ARGZ (ARG, ARGS) 1 = LS, THE ELEMENTS NF THE LINEAR
STRUCTURE LS FOR WHICH APPLY(FUN;&LEMEHT,AR&Z,ARGSpARGM,ARGS)
1§ TRUE ARE DELETED FROM THE STHUCTURE, WHILE IN DELFT, THE USER MAY
NOT CHAMGE THE STRUCTURE LS IN ANY WAY: ANY OTHER STRUCTURES MAY BE
ARBITRARILY AFFECTED,
NOTE 1 THIS FUNCTION ACCEPTS A VARIABLF NUMBER OF ARGUMENTS UP 10 6,

DETND (N) 1 = N, THE NODE N IS DETACHED FROM THE NSET(OBJECT(N)),
DETPR (P,PS) t = P, THE PAIR P 15 DETACHED FROM THE PSET P8,
DETRC (Rc) t = DETRCOCDETRCI(RE)).

DETRCI (RC) t = RC, THE ARC RC 1S DETACHED FROM THE RSETI(TONODE(RC)),
{17 MAY BE SAID THAT THE ARC IS NO LOMGER VISIBLE AT THE TONODE,)
NOTE § IF THE ARC RC WaS THE CURCI(TONODE (kCY) THEN THE ARC
IMMEDIATELY PPECEDING RC IN THE RSETI BECOMES THE NEW
CURCI(TONODE(RCY),

DETRCO (RCY & = RC, THE ARC RC 1S DETACHED FROM THE RSETO(FRNODE(RC)),
{17 MAY BE SAID THAT THE ARC IS NO LNNGER VISIBLE AT THE FRNODE .1
NOTE t IF THE ARC RC WAS THE CURCO{FRNODE (KC)) THEN THE ARC
{MMEDIATELY PRECEDING RC N THE RSETO BECOMES THE NEW
CURCOCFRNODE(RC)),

DSEND (RCR) 1 = DSNOTOC(RDR,REED(RDR)),
DSNDTO (RDR,RS8) t = CONECT(CREEDR(RS),RDR),
ECHO (TAPENUMBER) 1 = TAPENUMBER, THE DATA RFAD BY RDEXP [SEE ROFILF)
1S ECHO=FRINTED, & LOGICAL RECORD AT A TIMF, ON FILE TAPENUMHER IF

TEPENUMBER IS PNSITIVER OTHERWISE THE PRINTING 1S5 SUPPRESSED,
INITIALLY ¢ ECHN(B),

126

ENUAL (OBJ1,0BJ2) 1 = 0BJ1 IF OBJ1 AND OBJ?2 ARE IDENTICAL, OR IF OBJ1 AND
DBJ2 ARE LISTS SUCH THAT THEIR ELEMENTS ARE EQUAL,

EGULFT C(ARG1,FUN,ARG2) 1 = ARGL IF IDENT(APPLY(FUN/,ARGL),ARG2) IS TRUEy
ELSE EGULFT 3 = 8,

FIRST (LS) § RETURNS THE FIRST ELEMENT OF THE LINEAR STRUCTURE L8,

FRNODE (RC) 1 IN THE ARC <N1,0BJ,N2> , N1 IS THE FROM=NODE,

GET (08J1,08J2) 1 GENERALLY SPEAKING, GET g = VAL WHERE PUT (OBJ1,0BJ2,VAL)
WAS LAST EXECUTED, MORE ACCURATELY, GET 1t = VALUE(P), WHERE P 15 THE
FIRST PAIR IN THE PSFT AFFIXED 70 0BJ1 SUCH THAT OBJECT(P) = osJ2, IF
NO SUCH PAIR OR PSET EXISTS, THE VALUE I8 @,

GRAPH (N) § RETURNS THE GRAPH ON WHICH NODE N RESIDES,

GRSEY () 1 RETURNS THE SET OF ALL RELATED GRAPHS,

HANG (0BJ,VAL) 1 = 0BJ, THE VALUE(OBJ) BECOMES VAL,

HSNSET (0BJ) 3 RETURNS THE SET [NSET] OF ATTACHED NODES WITH OBJECT = 0BJ,
IF NONE HAVE BEEN ATTACHED, HSNSET 3 3 ¥,

HSPSET (0BJ) t RETURNS THE PSET AFFIXED TO OBJ3 IF NONE, HSPSET 1 = @,

IDENT (ARG1,ARG2) § = ARG IF ARG)1 AND ARG2 ARE IDENTICALj ELSE 1DENT 1 = o0,
SINCE IDENT 13 A BITWISE COMPARISON, ARG1 AND ARG2 NEED NOT BE
GROPE VALUES,

IMAGE (ATM,VECTOR,NuMt) t RETURNS THE [FIRST WORD OF THE)] BITS PASSED IN THE
CALL ATM = QUOTE(BITS) OR ATM = ATOM(BITS,NUM2) == UNLESS NUM2 1S =3,
IN HICH CASE THE (HOLLERITH) NAME OF THAT EXTERNAL REFERENCE 18
RETURNED. IF MORE THAN ONE WORD 1S REQUIRFD TO CONTAIN THE IMAGE
OF ATM, THEN (AT MOST) THE FIRST NUM1 WORDS OF BITS 18 STORED
INTO VECTOR,

INTGER (ARG) 1 = ARG, THE MOTIVATION FOR THIS FUNCTION I8 AS FOLLOWSS
M = ARG CAUSES MODE CONVERSION, AND THE EFFECY I8 A CATASTROPHE
IF 4 18 70 BE USED AS A GROPE VALUE) HENCE M = INTGER(ARG).

ISARC (VAL) 1 = VAL IF VAL IS AN ARCy B OTHERWISE,

1SATBG (RDR) § ® RDR IF ROR 18§ POINTING AT THE FIRST ELEMENT OF ITS
(SET, L1ST, OR READER) ORIGIN; @ OTHERWISE,

1SATND (ROR) t = RDR IF RDR IS POINTING AT THE LAST ELEMENT OF 178
{SET, LIST, OR READER] ORIGINM; © OTHERWISE,

1SATOM (VALY 1 = VAL IF VAL 13 AN ATOMg @ OTHERWISE, VAL 1S AN ATOM IF
1T #4AS GENERATED BY A CALL TO ATOM OR QUOTF

ISATTN (N) § = N IF THE NODE N IS ATTACHED T0 THE NSET(OBJECT(N)),
ISATTP (P) & ® P IF THE PAIR P 1§ ATTACHED TO BOME PSET,
1SDEEP (RDR) t = RDR IF THE READER ROR MAY BE ASCENDEDs @ OTHERWISE,

1SFUN (VAL) § = VAL IF VAL 18 THE RESULT OF SOME VAL = ATOM(BITS,=3))
© OTHERWISE,

ISGRAF (VAL) 8§ = VAL IF VAL IS A GRAPH3 © OTHERWISE,

127

1SGRST (VAL) & = VAL IF VAL 18 THE GRAPHSET ([GRSET] 9 OTHERWISE,

ISHOL (VAL) t = VAL IF VAL 1S AN ATOM WITH A HOLLERITH [D1SPLAY=CODE]
IMAGE (THAT 1S, IT WAS CREATED BY A CALL TO ATOM(BITS,NUM) #1TH
MM 2 1 OR NUM = =3]y @ OTHERWISE,

I1SINT (VAL) 1 = VAL IF VAL 15 AN ATOM HWITH AN INTEGER [BINARYI]
IMAGE [THAT IS, 1T WAS CREATED BY A CaLL 10 ATOM(BITS,8) OR BY
A CALL TO QUDTELlS 2 OTHERWISE

ISLIST (VALY 8

11

vaL IF VAL I8 A L1ST; © DTHERWISE .

ISLNSR (VAL) 8 = VAL IF VAL IS5 A LINEAR STRUCTURE {THE GRSET, THE OBSET,
A LIST, PSET, RSETI, RSETO, NSET, NDSET OR READER] 1 & OTHERWISE,

18H40ODS (@) ¢ = =1 IF GROPE IS IN THE STACK MODES @ OTHERWISE,

ISNDST (VAL) 8

”n

VAL IF VAL IS A MODESET ([NDSET) OF SOME GRAPH) © OTHERWISE,

{SNODE (VAL) § = VAL IF VAL IS A NODEy P OTHERWISE

i

ISNSET (VALY t = VAL IF VAL 18 AN NSET (OF SOME ORJECT}y © OTHERWISE,

ISNUM (VaL) 1 = VAL IF VAL 1S A NUMERIC ATOM [FIXED® OR FLOATING=POINT])
@ OTHERWISE,

180BJ (vAL) ¢ = VAL IF VAL IS5 A GROPE OBJECT (ATOMs, PAIR. ARC, NOOE,
GRAPH OR LIST)) © OTHERWISE,

1s0BsT (vAL) ¢ = vaL IF VAL 1S THE OBSETy @ OTHERWISE,

VAL IF VAL 1S A PAIRy @ OTHERWISE o

"

1SPAIR (VAL) 1t
1SPSET (VALY t = VAL IF vAL IS A PSETy @ OTHERWISE,
1SQINT (vAL) 1 = VAL IF VAL IS THE RESULT OF SOME VAL 3 QUOTE(RITS))

@ OTHERWISE, IF 1SOIMT(YAL) 18 TRUE, THEN SO ARE ISINT(VAL)

AnD ISATOM(VAL) .
ISRCI (RC) t = RC IF THE ARC RC IS IN THE RSETI(TONODE(RC))y @ OTHERWISE,
{SRCO (RC} & = RC IF THE ARC RC I8 IN THE RSETO(FRNODE(RCI)y @ OTHERWISE,
1SRDR (VAL) & = VAL IF VAL 1S A READERy © OTHER¥ISE,

ISRDSR (VALY § = VAL IF VAL 1S A READABLE STRUCTURE [A LINEAR STRUCTURE,
NODE QR GRAPH) ¢ 2 OTHERWISE ,

ISREAL (VALY 1 = VAL IF VAL 1S AN ATOM WITH A FLOATINGwPOINT (REAL]
IvAGE) @ OTHERWISE.

{SREL (NG) 1 = NG IF THE NODE OR GRAPH NG 18 RELATED} 2 OTHERWISE,
ISRST1 (VALY 1 = VAL IF VAL 1S AN RSETI (OF SOME NODE]) @ OTHERWISE,
ISRSTO (VAL) 1 = VAL IF VAL 1S AN RSETO [OF SOME NODE)j © OTHERWISE,

1SYAL (ARG) ¢ = ARG IF ARG IS A LEGAL GRUPE VALUE 1 AN OBJECT, A BET,
Or A READER3 ¥ OTHERWISE,

LAST (L.5) 3 RETURNS THE LAST ELEMENT OF THE LINEAR STRUCTURE LS,

128

LENATM (ATM) § = THE NUMBER OF WORDS CONTAINING THE IMAGE OF THE ATOM ATM,

LENGTH (LS) 1 RETURNS THE LINTEGER] NUMBER DF TOP=LEVEL ELEMENTS IN THE
LINEAR STRUCTURE LS. IF ANY OTHER TYPE OF ARGUMENT 1S PASSED,
LENGTH ¢t = =1, FOR SETS AND LISTS, THE LENGTH 18 IMMEDIATELY
AVAILABLE [STORED],

LISY (ARGl.ARGE,&RG},ARGQ,ARGS) y RETURNS A NEW LIST L WITH
OHJECT(L) = QUOTE(A), IF 5 ARGUMENTS [GROPE VALUES] ARE PASSED T0
LIST, THE NEW LIST WILL CONTAIN THOSE S FLEMENTS, OTHERWISE THE
LIST IS CoMpPNSED OF Kei ELEMENTS WHERE ARGK IS THE FIRST
ARGUMENT WHICH IS NOT A GROPE VALUE, {2 1S NOT A GROPE VALUE,)
NOTE § THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO Se

LOFY (LS,FUN,ARG2,ARG3,ARGU,ARGS) 1 RETURNS A NEW LIST L WITH
OBJECT(L) 3 QUOTE(A), FUNCTINN FUN IS APPLIED TO THE SUCCES3SSIVE
ELEMENTS IN THE LINEAR STRUCTUKE LS, IF FUN RETURNS A GROPE
VALUE, VAL, THEN VAL IS GUEUED INTO THE NEw LIST,
NOTE t THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

MACURI (RC) 1 = RC, CURCIC(TONODE(RC)) BECOMES RC, [THAT 1S, RC BECOMES THE
CURRENT ARC INTO THE TONODE(RC),)

MACURO (RC) t = RC, CURCOCFRNODE (RC)) BFCOMES RC, (THAT 1S, RC BECOMES THFE
CURRENT ARC OUT FROM THE FRNODE(RC) .1

MAPFTY (Ls,FUN,ARGZ,ARGS,ARGa,ARGS) 1 = LS, MAPFT APPLIES FUN T0 EACH
ELEMENT IN THE LINEAR STRUCTURE LS, IX = APPLY(FUN.ELEMENT,ARGZ.ARGS,
ARGUY,)ARGS) IS CALLED N TIMES WHERE N = LENGTH(LS))
NOTE t THIS FUNCTION ACCEPTS A VARIABLE HWUMBER OF ARGUMENTS UP TO 6,

MARGIN (NUM) 1 THE MARGIN, INITYIALLY SET YO 1, IS THE NUMBER OF
COLUMNS ON THE LEFT OF THE GROPE OUTPUT HUFFER WHICH PRINFT WILL
NOT FILL, 1F NUM I8 NONNEGATIVE, THEN THE MARGIN BECOMES
NUMs IN ANY EVENT THE MARGIN 1S RETURNED AS THE VALUE of
THE FUNCTION,

MAXERR (nNuUM) ¢ = NUM, HENCEFORTH GROPE WILL ABORY THE PROGRAM AFTER
NuM ERRORS,
INITIALLY 3 MAXERR(10)

MEMBER (VAL,L8) t = VAL PROVIDED THAT VAL 1S ONE OF THE ELEMENTS IN THE LINEAR
STRUCTURE LSy ELSE @4 IN MANY CASES MEMBFRSHIP IN SETS {GRSET, NOSET,
NSET, RSETI, RSETO, £7C.) MAY BE TESTED MORE EFFICIENTLY WITH AN
APPROPRIATE 18=FUNCTION {ISREL, ISATIN, ISRCI, ISRCOs ETCY,

MERGE (RDR,L) 1 2 RDR, THE FLEMENTS IN THE LIST L ARE INSERTED 1IN
OPDER T0 THE RIGHT OF [OUT FROM] THE LIST READER RDR,
L BECOMES EMPTY, AS IN CONCAT, THE EFFECT 15 THAT THE NEXT
TO(RDR) WILL RETURN THE VALUE WHICH WAS PORMERLY FIRST(L),

MESAGE (TAPENUMBER) 1 = TAPENUMBER, 1F TAPENUMBFR S @ THEN ERROR MESSAGES
WiLL NOT APPEAR, ELSE THEY WILL BE WRITTEN ON FILE TAPENUMBER,
INITALLY 1 MESAGE(6)

MODEQ (B8) 1 = @3 HENCEFORTH GROPE I8 IN THE GUEUE MODE,.

MODES (Q) & = =13 HENCEFORTH GROPE IS IN THE STACK MODE,
INITIALLY t MODES(®)

MOVEND (RDR) t = RDR, THE LINEAR STRUCTURE READFR RODR 18 MOVED DIRECTLY TO THE
LAST ELEMENT 1IN 17TS ORIGIN, IF LENGTH(ORIGINCRDR)) = 9, THEN RDR 18

RESTARTED,

129

MOVETO (ROR,VAL) ¢ = RDR, THE READER RDR MOVES DIRECTLY TO THE VALUE
VAL WITHIN ITS ORIGIN, [(FOR A L1ST READER, RDR IS RESTARTYED,
THEN MOVED TO THE FIRST OCCURENCE OF VAL.] REED(RDR) BECOMES VAL,

NDSET (G) 1 RETURNS THE SET OF NODES ON GRAPH G THAT ARE RELATED,

NSET (0BJ) 1 RETURNS THE SET OF ATTACHED NODES WITH QBJECT = 0BJ, {THE EMPTY
WSET 1§ CREATED IF NECESSARY,!

OBJECT €0BJ) ¢ IF OBJ IS A PAIR, THEN OBJECT 1t = X WHERE 0BJ = CRISP(X,V),
1F OBJ IS AN ARC, THEN OBJECT 1 = X WHERE 0BJ = CRISRIN,X,M),
IF OBJ 15 A NODE, THEN ORJECT 1 = X WHERF nNBJ = CRISN(X,6),
IF nBJ 1S A GRAPH, THEN ORJECT t = X WHERE OBJ = CREGR(X),
IF OBJ IS A LIST, THEN OBJECT 3 = X WHERE 0BJ = CREL(X) 4
NOTE ¢ 0BJ CANNOT BE AN ATOM,

OBSET (@) 1 RETURNS THE ORSET, THE OBSET 1S THE SET OF ATOMS CREATED BY
ATOM (B1TS,HUM), THE SET IS MOT ORDERED, AND THE USER MAY NOT
DIRECTLY AFFECT 17 [ISUCH AS WITH DELFT, SERTO, ETC), BUT IT
MAY BE SEARGCHED WITH THE READER MECHANISM (USING YO, LOFT, ETCI,

QRFTY (LS,FUN,ARG?,ARG3, ARGH, ARGD) ¢ = ¥ 1F APPLY(FUN,ELEMENT,ARG2,ARG3,
ARGU,ARGS) RETURNS FALSE (=9] FOR EACH SUCCESSIVE ELEMENT 1IN
THE LINEAR STRUCTURE LS IF FUN RETURNS TRUE [2v]}, THE PROCFSS I8
TERMINATED AND THAT VALUE (#@] 18 RETURNED,
NOTE § THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

ORIGIN (RDR) 1 THE ORIGIN OF THE READER RHR 1S THE READABLE STRUCTURE RS USED
in RDR = CREEDR(RS), WHETHER CALLED DIRECTLY [BY THE USER) OR BY
DSNDTO, [THAT 1S, THE ORIGIN IS LOCAL TO THE CURRENT LEVEL OF
THE READER, AND [NORMALLY] CHANGES WHEN ASEND OR DSNDTO IS EXECUTED]

pOP (L) t REMOVES THE FIRSY ELEMENT OF THF LI8T L AND RETURNS THAT ELEMENT,

ARFILE (TAPENUMBER,NUM) t = TAPENUMBER, TERPRI wILL WRITE THE CONTENTS OF
THE GRQPE DUTPUT BUFFER ON FILE TAPENUMBER OF COLUMN LENGTH NUM,
INITALLY ¢ PRFILE(b6,136),

PRINFT (VAL:FUN,AGR?-ARGSpARGQ,AQGS) t = VAL, THE FOLLOWING ALGORITHM
DETERMINES WHAT 1S WRITTEN INTO THE GROPE OQUTPUT BUFFER ==
SET X = VALY
(1) IF X 1S AN ATOM, WRITE ITS IMAGE INTO THE BUFFFR,
OR (2) IF X 1s A PAIR, ARC, NODE, GRAPH, OR REAUER, THEN SET X &
APPLY(FUNpXrARGZ:APGS,ARGQ,ARGS)1 IF ISVAL(X) IS TRUE.
GO 10 STEP (1), ELSE DO NOT WRITE X,
ELSE (3) X MUST BE A LINEAR STRUCTURE [NOT & READERI 1
WRITE THE CHARACTER (, IF X IS A LIST, WRITE ITS
OBJECT [AS ABOVE], DELIMITED BY THE CHARACTER i,
PROVIDED 1TS QRJECT IS NOT A LISY OR QUOTE(Q),
AND (4) SET X [SUCCESSIVFLY] 10 EACH ELEMENT IN THE
LINEAR STRUCTURE AND PROCLED AS (1) ABOVEy THEN
WRITE THE CHARACTER) AND EXIT, THE GROPE
pUTPUT BUFFER IS PRIMTED AND EMPTIFD (TERPRID
ONLY AS NECESSARY TO PREVENT BUFFER OVERFLONW,
BE CAREFUL TO NOTE THAT THERE ARE MANY WAYS TO GENERATE
INFINITE LOOPS, A RECOMMENDED CALL 1S PRIMFTC(VAL,OBJECT) WHICH
WORKS SUCESSFULLY IN MOST CASES,
NOTE § THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

PRXPFT (VAL FUN,ARG2,ARG3,ARGUARGS) ¢ = TERPRI(PRINFT(VALFUN,ARGZ,ARG3,
ARGY s ARGS)),

NQTE t THIS FUNCTIGN ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP T0 6,

130

PSET (0BJ) § RETURNS THE PSFT AFFIXED T0 08J. TF NONE EXISTS, ONE 1S CREATED,
AFFIXED TO DBJ AND RETURNED,
To THE EXTENT TO WHICH OBJECTS SHARE THE SAME PSET, THEY
SHARE THE SAME VALUE,

PUT (OBJY,08J2,vAL) ¢ = DBJL, GET(ORJ1,0BJ2) BECOMES VAL, PUT STACKS
OR GQUEUES THE CRISP(OBJ2,VAL) ON THE PSET(0BJ1), UNLESS THERE
ALREADY IS A PAIR P DN THE PSET(NRJL) WITH THE OBJECT(P) = 0BJ2,
IN AHICH CASE HANG(P,VAL) 18 EXECUTED,

QUEUE (VaL,L) 1 = L , THE VALUE VAL IS QUEUED ONTO THE LIST L.
THE QUEUESTACK MODE 15 UNAFFECTED BY QUEUE

QUOTE (BI713) t RETURNS A QUOTED INTEGER Xt ISINT(X), ISQINT(X),
AND ISATOM(X) ARE TRUE, THE ABSOLUTE VALUE OF THE INTEGER BITS MUST
BE s 131,871, X DOES NOT APPEAR IN THE GROPE SPACE (VECTORI,
NOTE 1 EQUAL(ATOM(BITS;@)pQUDTE(BITS)) 18 FALSE,

RDEXP (G) & RETURNS THE NEXT ATOM OR LIST {A BALAMCED SET OF PARENTHESES AND
ATOMS) IN THE INPUT BUFFER, READING LDGICAL RECORDS [CARDS) INTQ
THE BUFFER FROM THE CURRENT RDFILE AS NECFSSARY T0 COMPLETE THE
OPERATION, NOTE 1 1F THE USER WISHES TO USF READ AND RDEXP ON THE SAME
FILE, WHEN CHANGING THE READING MODE FROM READ TO RDEXP OR RDEXP TO
READ ALWAYS START THE DATA ON A NEW LOGICAL RECORD {(CARD), WHEN
RDEXP ENCOUNTERS AN END=OF=FILE, RDEXP 3§ = ©, THE OBJECT OF ANY NEW
LIST 18 GUOTE(®),

ROFILE (TAPENUMBER NUM) 1 = TAPENUMBER, THE FUNCTION RDEXP WwlLL READ
FrROM FILE TAPENUMBER OF (COLUMNY LENGTH NUM,
INITIALLY ¢ ROFILE(S,88)

REALE (IARG) t = 1ARG, THE MOTIVATION FOR THIS FUNCTION 1S AS FOLLOWSY
X = 1ARG CAUSES MODE CONVERSION, AND THE EFFECT IS A CATASTROPHE
1F X 1S TO BE USED AS A GROPE VALUES MENCE X = REALE(IARG),

REED (RDR) § RETURNS THE VALUE AT WHICH THE READER RDR 1S POINTING, IF THE
KEADER 1S UNMOVED [NOT READING AMYTHING) , REED & 3 @,
1IF RDR IS AN ORSET READER, AN ATOM 1S5 RETURNED,
1F RDR IS A PSET READER, A PAIR 1S RETURNED.,
1F RDR 15 AN RSETI DR RSETO READFR, AN ARC 15 RETURNED,)
1F RDR 15 A NODE, GRAPH, NSET OR NDSET READER, A NODE 18 RETURNED,
1F RDR 1S A GRSET READER, A GRAPH 15 RETURNED,
IF RDR IS A READER READER, A READER 18 RETURNED,
IF RDR 1S A L1ST READER, THEN A GROPE VALUE 1S RETURNED,

RELATE (NG) t = NG, THE NODE {OR GRAPH] NG IS STACKED OR QUEUED INTO THE
ApPROPRIATE NODESET (OR THE GRAPHSET) IF ISKEL(NG) IS FALSE, HENCEFORTH
ISREL(NG) 1S TRUE,

RESTRT (RDR) § = RDR, THE RFED(ROR) BECOMES @, (THE READER BECOMES UNMOVED,)

RETURN (ARG) § WHEN CALL RETURN(ARG) 15 THE LASY EXECUTED STATEMENT IN
A FUNCTIONs ALPHA, THEN THE FOLLOWING OCCURSE .
(1) THE LAST VECTOR SAVED BY SAVAR IS NO LONGER
PROTECTED FROM THE GARBAGE COLLECTOR,
(2) ALPHA 3 ARG
RETURN
A TYPICAL FORTRAN=GROPE FUNCTION MIGHT BEs
FUNCTION ALPHA (A,8,C,D)

131

1]
CALL SAVAR(ALPHA,3)
Y = F(A)
ALPHA = F1(B,Y)
Z = F2OC D ALFHA)
- CALL RETURN(Z)
L)
1]

L]
END
NOTE & THE FUNCTION NAME AND THE TWO LOCAL VARIABLES, Y AND 2,
ARE PROTECTED FROM THE CALL SAVAR(ALPHA,3) UNTIL THE
CALL RETHURNMIZ) STATEMENT,
WARNING 3 WHEN RETURN 1S USED, SAVAR MUST PROTECT ALL AND ONLY
THE LOCAL VARIABLES,

REVERT (RDR) 1 = RDR IF 1SDEEP(RDR) = @y ELSEC REVFRT 1 = REVERT(ASEND(RDR)),
{REVERT RETURNS THE LAST READER IN THE STACK RDR,)

REVRC (RC) 3 = RCq THE ARC RC IS REVERSED = THE TOMNONE(RC) BECOMES THE
FRNNDDE(RC), AMD VICE=VERSA, THE ATTACHED RELATIONSHIPS ARE MAINTAINED?
1F ISRCO(RC) WAS TRUF, THEMN 1T 18 STILL TRUE,
1F ISRCI(RC) WAS TRUE, THEN 1T 1S STILL TRUE,

RSETT (N) t RETURNS THE SET OF ARCS INTO NADE N THAT ARE ATTACHED 1IN,
{ISRCI IS TRUE FOR ALL ARCS IN THt RSETI,]

RSETO (N) 1 RETURNS THE SET OF ARCS FROM NODE N THAT ARE ATTACHED 0QUT,
{1SRCO 15 TRUE FOR ALL ARCS IN THE RSETO,)

SAVAR (VECTOR,NUM) 1 = VECTOR, THE FIRST NUM VARIABLES IN VECTOR ARE SAVED =
THAT 1S, <“ONE OF THE GROPE STRUCTURES NAMED BY THESE VARIABLES AT
GARBAGE-COLLECTION TIME WILL BF DESTRNOYED, [SEE SETUP FOR THE
DESCRIPTINN NF THE GARBAGE COLLECTOR,]

SAVAR ZERDES OUT THE FIRST NUM VARIABLES IN VECTOR,

SAVCOM (VECTOR,NUM) t IS THE SAME AS SAVAR, BUT SAVCOM DOES NOT ZERD 0OUT
THE FIRST NUM VARIABLES IN VECTOR,

SERT] (RDR,VAL) 1 = RDR, IF ROR 18 A LIST READER, THEN THE VALUE
VAL 1S INSERTED INTO THE LIST INWARD FROM RDR3 THE NEXT TI(RDR)
WILL PRODUCE VAL,
IF DR 1S A NADE OR GRAPH READER, THFN ThE ARC VAL I3 INSERTED
IM THE RSETI(REED(RDR)) 50 THAT THE NEXT T1(HDR) wILL CRNOSS THE ARC
vaL [SUAJECT To THE RESTRICTION ON THE GRAPH READER) . IN THIS CASE,
1SRCI(VAL) MUST PE FALSE BEFORE SERTL, AMD wILL RE TRUL AFTERWARDS,
ALSOs THE TONODE(VAL) HUST = REED (KDR),

SERTO (RDR,VAL) 1 = RODR, IF RDR IS A LIST RELDER, THEN THE VALUE
vaL Is IMSERTED INTO THE LIST OUTWARD FROM HDRy THE HNEXT TN(RDR)
WILL PRODUCE VAL,
1F RDR 1S A NODE nR GRAPH READER, THEN THE ARC VAL I3 INSERTED
In THE RSETOC(REED(RDR)) 80 THAT THE NEXT TO(RDR) WILL CRNSS THE ARC
VAL (SUBJECT To THE RESTRICTION ON THE GRAPH READER) ¢ IN THIS CASEs
ISRCO(VAL)Y MUST BE FALSE BFFORE SERTO, AND AlLL BE TRUFE AFTERWARDS,
ALSO, THE FRNODECVAL) MUST = REED(RDR),

SETUP (VECTOR,NUMI,NUM2,NUM3) 1 = @, THIS SETS UP GROPE, NO OTHER GROPE
FUNCTION MAY BE EXECUTED UNTIL AFTFR SETUPs HNOWEVER, THF SYSTEM MAY RE
REwINITALIZED (FOR EXECUTION OF A DIFFERENT PROGRAM, FOK EXAMPLE] ’
BY CALLING SETUP AGAIN, SETUP USES VECTOR OF SIZE NUML DIMENSIONED

132

BY THE USER, WITH NUMi x NUM2 {@<NUM2<1] WORDS RESERVED FOR FULL WORDS
AND NUM3 WORDS RESERVED FOR THE GARBAGE COLLECTOR STACK, THE FOLLOWING
1S AN EXACT DESCRIPTIOM OF FULL WORD UTILIZATION IN THIS IMPLEMENTATION
OF GROPE, ASSUMING AN ATOM IS ACTUALLY BEING CREATED1
(1) FOR ATOM(BITS,wNUM) = NUM FULL WOKDS WHERE NUM I8 1 OR 2.
(2) FOR ATOM(BITS,@) = 1 FULL WORD IF RITS > 2 1 18 = 1
(3) FOR NUM 2 1, AND MORE THAN 3 CHARACTERS IN BITS =
NUM FULL WORDS,
(4) ALL OTHER CASES REAUIRE NO FULL wORDS,
THE FOLLOWING IS A DESCRIPTION OF WHAT GROPE VALUES ARE NOT DESTROYED
By THE GARBAGE COLLECTOR1
(1) THE GRSET AND THE OBSET,
(2) ALL VALUES NAMED BY THE SAVED VARIABLES, [THE USER SHOULD
NOTE THAT EACH CALL TO SAVAR CONSUMES ONE WORD OF THE
GARBAGE COLLECTOR STACK,.]
(3) IF A LINEAR STRUCTURE 18 SAVED, THEN SO ARE I1TS ELEMENTS,
(4) IF A STRUCTURE X IS SAVED THEN [ASSUMING wELL DEFINED] S0 ARE
THE NDSET(X), HSNSET(X)» RSETO(X) s RSETLI(X), HSPSET(X),
GRAPH(X), TONODE(X), FRNODE(X), OBJECT(X) s VALUE(X),
ORIGIN(X), AND REED(X).
AN EXAMPLE INITIALIZATION IS 3 DIMENSION ARRAY(2040@)
BEGIN = SETUP (ARRAY,2027,3,084,208)
NOTE 1 ANY EXECUTION PARAMETER THE USER CAN ALTER {£,6, = ROFILE,
PRFILE, MODEQ, ECHO, ETC,) 18 NOT KEmINITIALIZED BY SETUP,

SOFY (LS.FUN.ARGZ;ARGS;ARGQ.ARGS) t THE EFFECT AND VALUE 1S LIKE LOFT,
HOWEVER, 1F valL IS ALREADY A MEMBER OF THE NEW LIST, VAL IS NOT
INSERTED, THUS SOFT PRODUCES A LIST WITH NO DUPLICATED ELEMENTS,
NOTE 1 THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO0 6,

STACK (VAL,L) § = L , THE VALUE VAL IS STACKED ONTO THE LIST L,
THE QUEUE-STACK MODE 1S UNAFFECTED BY STACK.

SUBST (RDRsVAL) t = RDR, THE VALUE VAL 15 SUBSTITUTED FOR THE ELEMENT
In THE LIsT WHICH IS BEING POINTED AT BY RDR, THAT 18, THE
READER DOES NOT CHANGE POSITIONs BUT REED(RDR) BECOMES VAL,

TAB (NUM) t IF NUM > @, THE CURRENT OUTPUT TAB POSITION (AS ON A TYPEWRITER)
BECOMES NUM = THAT IS, PRINFT BEGINS FILLING THE GROPE QUTPUT BUFFER
AT COLUMN NUM, IN ANY EVENT, THE CURRENT TAB IS RETURNED AS THE VALUVE
OF THE FUNCTION,

YERPRI (ARG) t = ARG, TERPRI WRITES THE CONTENTS OF THE GROPE QUTPUT
BUFFER ON THE CURRENT PRFILE, AND EMPTIES THE BUFFER,

T1 (RDR) t = REED(RDR) ONCE THE READER RDR HAS MOVED AS DESCRIBEDS
IF RDR 1S A LIST READER, THEN RDR TRAVEKSES THE LISY INWARD ONE

ELEMENT, (THAT 15, RDR MOVES LEFT ONE POSITION,) LISTS ARE CIKCULAR,
§0 1F THE READER WAS ON THE FIRST ELEMENT KEFORE TI, 17 WILL MOVE
ARQUND TO THE LASY ELEMENT, :
IN THE CASE OF THE UNMUVED GHAPH READER RDP,
11 = REFD(MOVEYO(PDR;VAL“E(D”IG!N(HDW)))) , (NNTE THAT IN THIS cAst
THE VALUE HANGING FROM THE GRAPH MUST HE OWF 0 1718 NODES,]
1¢ RDR 15 & NODE 0DR GRAPH HEADER, LET N2REFD(RUR) [OR ORIGIN(RDR) 1F
THE NODE READER RDR IS UNMOVED) , THEN THE READER CROSSES THE NEXT ARC
IN THE RSETI(N) AFTER THE CURCI(N), AND THF REED BECNMES THE NODE
T0 “HICH THE READER MQVES, (IN THE CASE OF A GRAPH READER, KOR wIith
SFARCH THE ARCS UNTIL 1T FINDS OME WHICH COMES FROM
A NODE ON THE GRAPH WHICH 15 THE ORIGIN OF THE READER, IF NONE
CAN BE FOUND, THE READER DOES NOT MOVE,.} AFTER THE MOVE,
THE FUNCTION CURARC(R) WILL RETURN THE ARC CROSSED 8Y THE READER,
THE ARC CROSSED BECOMES THE CURCI OF 17S TONODE,

IF FOR ANY REASON RDR CANNOT MOVE, T1 t = U

133

TIFY (RDR.FUN,ARGZ,ARG}.ARG&,ARGS) t 15 LIKE TI(RDR) FOR THE NODE OR GRAPH
READLER RDR EXCEPT THATY APPLY (FUN(KC,ARG2 ARG ARGUpARGS) MUST ANSAER
TRUE FOR THE ARC UNDER CONSIDERATION {FOR REING CROSSED], EBELSE THE NEXT
ARC In THE RSETY WILL BE CONSIDEFED. [THAY 18, FUN IS APPLIED TO THE
ARCS IN THE RSETI STARTING AF1ER THE CURCI, UNTIL FUN ANSWERS TRUE
R ELSE IT HAS BEEN UNSUCCESSFULLY APPLIED 10 ALLs IN WHICH CASE
ND “0VE 1S MADE,) IF FUN ANSWERS TRUE, THEM T1 1S EXECUTED ACROSS
THAT ARC, ByUT THE VALUE OF TIFT 15 THAT VALUE RETURNED BY FUN,

In THE CASE oF THE UNMOVED GRAPH READER RODRy

TIFT = REED(MOVETO(RDRpVALUE(OQIGIN(RDR))))

[IN THE GrRAPH READER CASE, FUN IS ONLY APPLIFD T0 THOSE ARCS WHICH
COME FROM A NODE ON THE GRAPH,)

NnTE t THIS FUNCTION ACCEPTS A VARIABLE NUMBER OF ARGUMENTS UP TO 6,

Y0 (RDR) ¢ = REED(RDR) ONCE THE READER ROR HAS MOVED AS DESCRIBED?
1F RDR 15 A LINEAR STRUCTURE READER, KDR TRAVERSFS THE STRUCTURE
QUT4ARD ONE ELEMENT, [THAT 1S, RDR MOVES RIGHT ONE POSITION,)
SUCH STRUCTURES ARE CIRCULAR [WITH THE EXCEPTION OF THE READER],
sO 1F THE READER wAS ON THE LAST ELEMENT BEFORE T0O, IT wILL MOVE

~ ARQUND TD THE FIRST ELEMENT [WITH THE EXCEPTION OF THE READER

STRUCTURE, IN wWHICH CASE NO MOVE 18 MADE},
In THE CASE OF THE UNMOVED GRAPH READER RDR ¢
To = REFD(HOVETU(QDR,VALUE(ORIGIN(RDR))J) . [NOTE THAT IN THIS CASE
THE VALUE HANGING FROM THE GRAPH MUST BE OME OF 17S NODES,]
1F RDR 1S A NNDE nNR GRAPH KEADFR, LET N=REED(RDR) {OR ORIGIN(ROR)
IF THE NOpE REANER RDR 18 UNMOVED), TREN THE READER CROSSES THE
NEXT ARC IN THE RSETO(N) AFTER THE CURCOCN), AND THE RERD
BECOMES THE NDDF TO WHICH THE READER MOVES, [IN THE CASE OF A GRAPH
READER, RDR WILL SEARCH THE ARCS UMTIL 17 FINDS ONE WHICH GOES TO
A NGDE ON THE GRAPH WHICH 15 THE ORIGIN OF THE REANDER, I1F NONE
CAN BE Founn, THE READER DOES NOT MOVE,) AFTER THE MOVE,
THE FUNCTION CURARC(@) WILL RETURN THE ARC CROSSED BY THE READER,
THE ARC CROSSED BECOMES THE CURCO OF ITS FRNODE,
IF FOR ANY REASOUN RDR CANNOT MOVE, TO 3 = @,

TOFT (RDR, FUN,ARG2, ARG3, ARGG, ARGS) 3 1S LIKE TOCRDR) FOR THE NODE OR GRAPH
REAGER RDR EXCEPT THAT APPLY (FUN,RC,ARG2, ARG3, ARGU 4 ARGS) MUST ANSWER
TRUE FOR THE ARC UNDER CONSIDERATION (FOF KREING CROSSED], ELSE THE NEXT
ARC IN THE RSETN wWILL BE CONSIDERED, [THAT 18, Fun IS APPLIED TOQ THE
ARCS IN THE RSETO STARTING AFTER THE CURCO, UNTIL FUN ANSWERS TRUE
OR ELSE 1T HAS BEEN UNSUCCESSFULLY APPLIED TO ALL, INV WHICH CASE
NG A0VE 1S MADE.) 1F FUN ANSWERS TRULE, THEN 10 18 EXECUTED ACROSS
THAT ARC, BUT THE VALUE OF TOFY 18 THAT VALUE RETURNED BY FPUN,

In THE CASE nF THE UNMOVED GRAPH READER RDK,

T0FT = REED(MOVETO(RDR-VALUE(ORIGIN(RDR))))

{1n THE GRAPH READER CASE, FUN IS ONLY APPLIED TO THOSE ARCS WHICH
LEAD TO A NODE ON THE GRAPH,)

NOTE § THIS FUNCTION ACCEPTS A VARIABLE MUMHBER OF ARGUMENTS UP T0D &,

TONODE (RC) t IN THE ARC <N1,0BJ,N2» , N2 15 THE TO=NODE,
TRUE (ARG) t = ARG, ([THUS IF ARGZ8, THEN ARG IS TRUE,!
UNHANG (08J) t = 0BJ, THE VALUE (0BJ) BECOMES @, [THE HANGING 18 REMOVED,)

UNREL (NG) & = NG, THE NODE [OR GRAPH} NG 1S REMOVED FROM THE APPROPRIATE
NNDESET {OR THE GRAPHSETI« AND I1SREL{(NG) BFCOMES FALSE,

VALUE (08J) 1t RETURNS THF MOST RECENT VALUE, VAL, SUCH THAT HANG (OBJ,VAL) WAS
EXECUTED) IF NONE, VALUE § = 0,

10.

11.

12.

13.

14.

REFERENCES

Baron, R., L. Shapiro, D. P. Friedman, and J. Slocum, "Graph process-
ing using GROPE/360," University of lowa Computer Science Technical
Report (in preparation).

Burstall, R. M., "Formal description of program structure and semantics
in first-order logic," in Machine Intelligence 5 (B. Meltzer and
D. Michie, eds.), American Elsevier Publishing Co., New York (1970).

Cashin, P. M., M. R. Mayson, and R. Podmore, "LINKNET--A structure
for computer representation and solution of network problems," Australian
Computer Journal 3 (August 1971).

Crespi-reghizzi, 8., and R. Morpurgo, '"'A language for treating graphs,"
Comm. ACM 13 (1970), 319-323.

deBakker, J. W., "'Semantics of programming languages,' in Advances in
Information System Science (3. Tou, ed.), Vol. 2, Plenum Press, New York
(1969).

Earley, J., 'Toward an understanding of data structures,' Comm. ACM 14,
10 (Oct. 1971), 617-627.

Friedman, D. P., D. Dickson, J. Fraser, and T. W. Pratt, GRASPE 1.5:
a graph processor and its application," Department of Computer Science
Report RS1-69, University of Houston, Houston, Texas, 1969.

, "GRASPE: graph processing a LISP extension,' Computation Center
Report TNN-84, University of Texas, Austin, Texas 1968,

, "Use of the intersection rules in the development of new models
within GRASPE 1.5,'" University of Texas, April, 1970 (unpublished manu-
script).

Greenawalt, E. M., private communication.

Griggs, Eric R., "Automatic Data Flow Analysis of Computer Programs,"
unpublished Master's thesis, University of Texas at Austin, May 1973.

Griswold, R. E., J. F. Poage, and I. P. Polonsky, The SNOBOL4 Programming
Language, Englewood Cliffs, New Jersey: Prentice-Hall, Imc., 1968.

Hart, R., "HINT: a graph processing language, ' Institute for Social
Science Research Technical Report, Michigan State University, East
Lansing, Michigan, 1969.

Hendrix, G. G., ''Question answering via canonical verbs and semantic
models: a model of textual meaning,' Technical Report NL12, January 1973,
Department of Computer Science, The University of Texas at Austin.

134

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

135

, "™Modeling simultaneous actions and continuous processes,' to
appear in Artificial Intelligence Journal.

, C. W. Thompson, and J. Slocum, "Language processing via

canonical verbs and semantic models," in Proceedings of the Third Annual
Joint Conference on Artificial Intelligence, August 1973.

6
Knowlton, K. C., "A programmer's description of L, Bell Telephone
Laboratories low-level linked list language,' Comm. ACM 9, 8 (August
1966).

Landin, P. J., "Correspondence between ALGOL-60 and Church's lambda
notation, Part I and II," Comm. ACM 8, 2 (February 1965), and Comm. ACM
8, 3 (March 1965).

Lawsen, Harold W., Jr., "pL/1 list processing,' Comm. ACM 6 (June 1967)
385-367.

Lee, J., Computer Semantics, Van Nostrand-Reinhold, 1972.

Lehmann, W. P., R. Stachowitz, and Bary Allan Gold, "German-English
translation system," Technical Report of the Linguistics Research Center,
The University of Texas at Austin (in preparation), 1973,

lucas, P., and K. Walk, "On the formal description of PL/I," in Annual
Review in Automatic Programming (L. Bolliet, et al., eds.), Vol. 6,
Part 3, Pergamon Press,New York (1969).

McCarthy, J., et al., LISP 1.5 Programmer's Manual, MIT Press, Cambridge,
Massachusetts, 1962.

Newell, Allen (ed.), Information Processing Language-V Manual, Prentice-
Hall, Englewood Cliffs, New Jersey, 1961.

Pohl, Ira, "A method for finding Hamilton paths and Knight's tours,'
Comm. ACM 7 (July 1967).

Pratt, T. W., "A hierarchical graph model of the semantics of programs,"
Proceedings of AFIPS SJCC (1969), 813-825.

, "Introduction to a theory of programming language semantics,"
Report TSN-4, University of Texas Computation Center, 1969, 10 pp.

, "Semantic modeling by hierarchical graphs,' ACM SIGPLAN Sympo-
sium on Programming Language Definition, San Francisco, Calif., August
1969.

, "Pair grammars, graph languages, and string~to-graph transla-
tions," J. of Comp. Sys. Sci., 5, 6 Dec. 1971, 560-595.

136

30.

31.

32.

33,

34.

35.

36.

37.

38.

39.

40.

41,

47.

43.

44 .

, "A formal definition of ALGOL 60 using hierarchical graphs
and pair grammars,' Report TSN-33, University of Texas Computation
Center, 1973, 82 pp. :

, and D. P. Friedman, ''A language extension for graph process=-
ing and its formal semantics,' Comm. ACM 14 (1971), 460-467.

Ross, Douglas T., 'The AED free storage package,' Comm. ACM 8 (August
1967), 481-492.

Shneiderman, B., '"Data Structures: Description, Manipulation, and
Evaluation,' unpublished Ph.D. dissertation, State University of New
York at Stonybrook, 1973.

Slocum, J., "Question answering via canonical verbs and semantic
models: generating English for the model," Technical Report NL13,
January 1973, Department of Computer Science, The University of Texas
at Austin.

"The Graph Processing Language GROPE 2.0," Master's thesis
in preparation, The University of Texas at Austin.

Stachowitz, Rolf, Voraussetzungen fur maschinelle bersetzung: Probleme,
Losungen, Aussichten, Athendum Verlag, Frankfurt/M, 1973. "

, Ein Modell linguistischer Performanz, Athenaum Verlag,
Frankfurt/M. (in vorbereitung).

Thompson, C. W., '"Question answering via canonical verbs and semantic
models: Parsing to canonical verb forms,' Technical Report NL13,
January 1973, Department of Computer Science, The University of Texas
at Austin.

Wegner, P., "The Vienna definition language,’’ Computing Surveys 4, 1
(1972), 5"64.

Weizenbaum, J., ''Symmetric list processor,' Comm. ACM 6, 9 {Sept. 1963).

Wesson, Robert B., "A pair grammar based string to graph translator
writing system," Master's thesis in preparation, The University of
Texas at Austin.

Wilson, James Y., "Graphical representation of semantic structure,"”
unpublished Master's thesis, The University of Texas at Austin, August
1972.

Wirth, N., "The programming language, PASCAL," Acta Informtica 1 (1971),
35-63,

Woods, W. A., "Tramsition network grammars for natural language analysis, "
Comm. ACM 13, 10 (October 1970), 591-606.

N e

