FRSCAL MANUARL
b 5

Wilhelm Franz Burser

July 1972 TR-22

TAKT3-22 B

Revigsed December 1973
Revised May 1974

Thic work was supported in rart by the Hational Science Foundation
Grant GJ-36424.

Technical FRerort No. 22
pepartment of Computer Sciences
The University of Texas at Austin
Rustin., Texas TE742

Freface

This PASCAL Manual is an introduction to the eprosramming lansuase PRSCAL
which reauires little or no knowledse of eprosramming. In later charters
some features of the FPASCAL implementation on the CDC 6688 at the

University of Texas at Austin are included. Thus it can also be used as
a Reference Manual.

The FASCAL implementation at the University of Texas at Austin
orisinates from the Eidesenoessische Technische Hochschule, Zurich,
<witzerland, and corresponds +to the Revised Rerport on the Prosrammins
Lansuagse PRASCAL with +the exception of pPacked arravs and class
structures. Facked arravs are not implemented and the class structure
has been retained from the eprevious definition of PASCAL. Some
important prosrammine facilities have been added:

Overlavs, reartial comepilation, limited access to external routines,
symbolic {race and dump features, and more flexible I/0 carabilites.

This PRASCAHL Manual is also available in machine readable form.

Foknowledoement

The author would like to thank Dr. J. EBrowne for support, Dr. D. Musser
for sugsestions and ideas, Dr. R. Bartels and Eileen Josue for readins
the draft, and the Computation Center for providins the eauipment to
rroduce the final coey

Introductiocn .

Fart 1

1. Introduction to the Lansuage .
1.1 Elements of the Lansuase
1.2 Nriting a FHSCHL Froeram

2. Simeple Data Structures., Declaration Part of a

Froogram .
2.4 Introductlon.
2. ¢ Tyres
2.2 Declgratlon Fart .

.4 Statements .
* 2 Expressions
4. Frogram Examples

Fart 11

on

Functions and Frocedures .

% Basitc Structure of a FPASCAL Frosram

&% 41 Function Declaration and Functzon Call :

ul.:;’
. % Forward Declaration
4

5 FHCK and UNFHCK

s

InputsOutrut |
£ 1 FILE ivee

& 2 Frocedures and Functxons for

Labels and GOTO Statements .

Frosram Examples

Fart 111

KA L o

tructured lTyepes .
1 FECORD Tvyre

2 CLHSS Tvyre .

T SET Tvyee |

4 FILE 1vee

R s Ry s BT lﬂ

16, lnput 0uteut, VALUE
16, Frocedure REARD .
19, Frocedure WRITE
18.
16.

Section

(=3

ENETA N

VALUE Section .

Frocedure Declaration and Frocedure Call

In?uf én& bu%Pﬁt.

trocedures INFILE and GUTFILE .

14. Comeiler Options, Debugsing Hids .

11.4 Compiler (eptions
11. 2 Debussing Hids

WA La P DD

e e
U o

o
G-

21
23
24
25

26
26
26

28
29

31
34
34
37
38

39
39
39
42
42
43
4%
44

Table of Contents (continued>

Frogram Examples .

8y

Hdditional Frocedures and Uperations .
Restrictions .

The FHSCHL Svystem

Stpprial Features . .
16, Fartial Compllat1on .
16. FASCHL Overlavs .

16, Low Core .
16, External Routlner)
16. File Buffers

|

[0 N L (4]

Herrendix H

AH. 1
H. 2
H. 3

Character Set . :
Table of c'tandard Ident1f1er
Frinter Control Characters

Herendiyx B

]
B
b

(X N o

Tranelation and Ex ecutian of a FASCHL Froeram
Execution of a Kert FPASCAHL Frogsram

Conirol Cards for a Cross Reference Llstzns of '

a FARSCAHL Frosram .

Feferences

Indeyx

46

Introduction

e e - s — - "

FASCARL is a very easy Programmine lansuagse to learn and vyet rpowerful
enoush to express sophisticated prosrams.

Hhen a progsrammer writes a prooram he must first consider the data he
has to deal with., and then he can formulate alsorithms.

FASCHL sives the erosrammer the rossibility of definines his own data
cstructures, so that he rcan treat his eproblem in a familiar wav. In
order to write algsorithms logically and convincinely, convenient wmeans
for writing the control structure of a Program are nNecessary. These
means are provided by FRSCAL. They are tosether with the rprocedure
concert auite natural to the thinkins of the prosrammer.

Input and outrput are also handled efficiently

This manual is orsanized in four parts:

The first part deals with the elements of the lansuase, simrle
data structures and the basic structure of a prosram. After

reading this part the prosrammer ran already write prosrams to
splve complicated problems.

The second part is dedicated to rprocedures, functions, and
inrutsoutrut

The third part introduces more data structures.

The fourth part treats some sepecial aspects of the lansuase.

AMD WOW GOOD LUCK .

")

FRRT 1

1. Introduction to the Lansuage

e e e . 7 = WOt S e e Swe e S e e e e e A e

- —_——— - o — - o> W% W A ot S - " W -

Gn readings this charter for the first time the sections on identifiers
and numbers are of primary interecst.

FRSCRL eroorams consist of the following elements:

Identifiers

Numbers

Strings

Reserved words

Cererators and delimiters

The character set which is available on this machine is in ApPendix A. 1.

1.42 Identifiers

fi spauence of letters and digite which besins with a letter is
considered an identifier unless it is a reserved word (Section 1. 45).

Example: A12Z3 JOHN
{(4A% is not an identifier, as it starts with a digsit. >

frn identifier can be chosen freely by the programmer for namins
PUFPDEES. Some identifiers with a predefined meaning are provided by

+he lansuasge. They are listed accordine to their catesory in Rependix
H 2.

If an identifier is lonser +than 48 characters, only the first 18
characters are considered, i.e. the identifiers

YERYLONGIDENTIFIER
YERYLONGID

are not distingsuished.

1. 1% Kumbers

Humbers are either of twvee INTEGER or REAL. Iintegers mavy be writtem in

decimal or pctal notation. Real numbers are written with a _decimai
roint andsor a scale factor. All numbers can be preceded by a sisn + or

Integers:

keal

In decimal notation they consist of a seauence of decimal
digits. Pecimal digits are the digits 8 to 9. The masnitude

may not exceed 281474976716655 (2 -41%.

Example: 122

in octal notation. integers consist of at most 28 octal
digits, followed by the letter E (ictal digits are the disits
8 to 7.

Examrle: Fr7izee

numbers:

gt w, v be nonempty seauences of decimal disits, and z be a
nonempts seauence of at most three decimal disgits, which may
be rreceded by a sisn + or -. Then all numbers of tvee RERL
can be expressed in one of these forms:

‘a?

(hY w. vEz {represents x. v times 4186 >
(ch sz
Evamprles:
Tal 1232 =
p122
4
(b 12% ZE+4 (represents 122. 2 times 18 = 1232866, 6>
8. 123E111
gy SQE-54

¢Mpte that . 122 and 123 are not permitted.

& strins consicsts of a nonempty seauence of characters f{rom
character set. The seauence is enclosed in auote svymbols.

Examrle: =HELLOZ

(78

the

If the aucte symbol is part of the strins it must be followed by another
ouote svmbol.

Example: TewaZTenaZ rerresents the strins tHeT -

th
Hi
Hi
1t

rerresents the strins =

The lanvuase FASCAL contains the followins reserved words:

IF 0 70 OF IN

EN[* NIL FOR DIV MOD VAR SET

THEM ELSE GOTO CARSE WITH TYPE FILE

BEGIN UNTIL NHILE ARRAY VALUE CLASS CONST LABEL
REPEART D[OWNTO RECORD FARCKED

FUNCTION PROCEDURE

They mav not be used as identifiers.

1. 16 Orerators and Delimiters

Host of +the epunctuation svymbols are used as operators or delimiters.
The following operators consist of two svymbols:

1.47 Comments

i seauence of characters ¢(not containing ¢ » which starts with » and
finishes with « is a comment.

Example: » THIS IS A COMMENT +

& prosram consists of a proper seauence of the elements of the lansuase
Elanks and comments may be inserted between the elements of the lansuase
to improve readability.

1.% Writing a2 PHRSCARL Frosran

Frosrams ate eunched on cards in the first 72 columns. Coluwns 73-86

are ignored by the compriler. The card boundary is considered to be a
blank, +hus no elements of the lansuase may cross a card boundary
{pxcert commentss,

Control Cards will be discussed in RAeppendix B.

© & Simple Data Structures, Declaration Fart of a Frosram

e o e . — o — - —_ o T —- o S A . We M Ge WS e m M WA W S W A e e A TER MM S e S M M e W o e e T e

——— . — - —— -

Data are treated in a prosram by means of variables. A variable has =a
name and a type. The tyre describec the tvyepe of the value which this

variable may assume.

Eefore a variable is used it must have been named with an identifier and

a tvee assioned to it This is done in +the declaration rpart of the
Frogtan.

Evample: VAR 1+K
R

INTEGERS
REAL 3

ith <this declaration the X wvariables with the names I, K, R are
introduced, their tyre is INTEGER, INTEGER, and REAL resrectivelv.

®y SO0

Later we shall see that the declaration part is not only used +to nawme
variables, but also to name types, ronstants and even alsorithms.

A tvee mavy be thousht of as a set of values, such as the set of
intesers. 1f the values of the set are structured, we have structured
tvres, otherwise we talk of simple tyres.

g cimple tvpe is made up by a set of values on which an orderins
relation is defined. The set contains a2 smallest and a larsest value.

2.2 41 Predefined Tvees

INTEGER This is the set of integers in the ranse
4€ 48
-2 =4y .. (2 -1
+32¢ -294 -294 +322
FEAL -18 ... =18 , B, 18 o 18
BEOOLEAN This set contains two values, FRALSE and TRUE

The orderins is FALSE <{ TRUE.

CHAR The values of this set are the strinss with one
character and the value EOL C(End Of Line» The set
is ordered accordins to the octal representation of
the characters. EOL corresponds to 0.

ALFA The values of this set are all seauences of 10
characters of the character set which includes EOL.

The values are ordered accordins +to their octal
representation

HOTE - Mhen a strine is used as a constant of tvepe ALFA then it is
adjusted to 18 characters either by wusins the first i6
characters or by filling in blanks (S55B) on the risht

P
)
[N
)
LN

calar Trres

Sometimes it is desirable to order thines by attribute rather than by
numnber. The programmer can define a new trre by specifyins a set of
attributes, e. 9.

(RED, GREEN, BLUE, WHITE, ORANGE>
The set is ordered according to the order of writing, i.e

RED ¢ GREEN < ELUE < WHITE < ORANGE

{The values of the set are actually represented durins prosram execution
by the intesers 8,1,2, 3,4 2 ’

He mavy declare a variable of this type as in the followins example:

Example: VAR PAINT : (REDs GREENs BLUEs WHITEs ORANGE) S

The variable FHRINT will assume values of the tvpe for which it was
gefined, ©. 9.

PAINT := GREENS

fe we will see later it is often uceful to have a name for a pProgrammer
doefined tyre:

Exanrle: TYPE COLOR = (REDs GREENs BLUEs WHITEs ORANGE) 3

& variable rcan be declared with the tvpe name rather than with the
exrlicit specification of the trre:

Example: VAR PAINT : COLORS

-

2 2. 1% Subrange Tvees

Since the set of a simrle tvpe is ordered we can specify a subrangse Dby
indicatins a lowest and a hishest value. This subranse mavy then be
taken as the =zet for a new tvre:

Evamrle: VAR SHORTINTEGER : 0,033
UT ¢ WHITE..ORANGES

0f course, we can name this progsrammer defined tvpe:

Evample: TYPE SHORT 0eol3s
FIRST WHITE . .ORANGES
VAR SHORTINTEGER : SHORTS
UT : FIRSTS

1" H

HOTE Hhen we talk about simple tvpes in the remainder of the manual
the epredefined tvees REAL and ALFA are not included. They will
be epspecially mentioned if necessary.

~,

.2 2 Structured Tyres

e ——— — o — - -~ W o~ " 4o oo

Structured tvees are introduced by the Pprogsrammer by specifyring the
structure and the +tvepes of its components. In this section we only
treat arravs and records

2.2.71 Brrav Tvpe

fin arravy consists of a fixed number of components, all of which have the
same tvre fin orderins of the comronents is induced by mapping them
pnio a simele tvee. Then each component can be indewed throush a value
of that simple tvre. Thus we have to sepecify the tvee of the index and
the tvere of the components

Example: VAR A: ARRAY{l..101 OF INTEGER S

The array B has 46 components, each is of tyee INTEGER. In order to
celect o component the index must be a value of the set 1..18:

Alll := 10

H 03
AL XeY) = 53

where we assume that the exeression ¥+¢ will vield a value in the ranse
1. .16
Euample: TYPE COLOR = (REDs GREENy BLUEs WHITEs ORANGE)S

VAR X : ARRAY (BLUE..ORANGE] OF BOOLEANS

We rcan assign a value to a component by

XKIWHITE] := TRUES

. Sp far we have discussed only 1 dimensional arravs. A multi-dimensional

array is defined bv sepecifyins n index tyres:
Example: VAR THREE ¢ ARRAY ([1,.1091..,200BOOLEAN] OF ALFAS

When we use a component of this array we need three index expressions as
shown in the followins assignment:

THREEI3+5¢F>G1 t= =ABCDEFZ=3
HOTE The number of components of an array cannot be varied
dvnamically by the rrosram.

2 2. 22 RECORD Trre

A record differs from an array in that it can have comronents of
different +tvrpes. For indexins purroses we create a name for each
comronent, the so-called field name. Further we must specify the tree
of each component.

Example: TYPE DATUM = RECORD DAY: leo31s
MONTH: 1..123
YEAR: 0ee2000%
END3S
VAR V: DATUM;
The component with name DAY of the variable V is selected as follows:
VDAY t= 8%
NOTE The record structure definition is enclosed in

RECGRD

END;
Mow we can also create arravs of records:
Examprle: ABC : ARRAY (=3..201 OF DATUMS
fin assignment could be of the form
ABCIl-1].YEAR := 20003

if several components have +the same type, then we can use a list of
names and indicate the tvee only once:

Example: VAR X ¢ RECORD LENGTHeHEIGHT: REALS

NUMBER: INTEGER}
END3

Fecords will be discussed asain in Part III.

- - - - — - o o

o far we know how to name variables angd types. There is also the
possibility of naming constants. The identifier used for the name is a
svnonym for the constant

Example: CONST K = 3% BLANK = = =3%

This feature is esepecially helpful when we do not want fo think in

numbers, as in this example:
CONST LIMIT = 53
VAR X ¢ ARRAY{1l..LIMIT) OF INTEGERS

Finally we rCan name a seauence of statements which then is ca

erocedure or function They are treated in Part Il

The "namine" is done in the order

Constants ‘ CONET
Tvres TYFE
Yariables VAR
¢{Procedures and Functions?

Each section starts with a Levword as indicated above in the

column.

HOTE The constant declarations are separated by semic
Yariables which are serarated by commas are assigned the
tvpe.

Evample of a declaration epart of a program:

CONST
MIN=3% MAX=10% LIMIT=1003%
TYPE
MATRIX = ARRAY[loeMAXsleoLIMIT] OF REALS
SHORT = loeeMINS
CHOICE = (NOs YESs MAYBE)S
VAR
KelLoM 3 INTEGERS
S ¢ REAL:S
FleF2 ¢ SHORTS
B ¢ CHOICES
AsX 3 MATRIXS
R ¢ RECORD TRY: CHOICES
MONFY: SHORTS
ENDS
NOTE A11 names must be declared before they are used.

iled a

risht

plons.
sane

16

=z Basic Structure of a FRSCAL Progsram

e e - o " o " s Yo e S Swe M W W WS N e o M S M Der mee S T S T

The prparam rart of a PASCAL rrosram consists of a seauence of
ctatements serarated by semicolons. This seauence is enclosed in

BEGIN

END

NOTE: f period follows the EHND.
fi semicolon may be written before the END.

In +the following we describe most of the statements which the lansuase

offers. Statements which in turn may contain statements are called
structured statements; thevy all start with a kevword. Most of them are

named after their kevword and thus easy to remember. The other
statements are simple statements. Here we treat the assisnment
statement and the procedure statement. Ctatements in a seauence of

ctatements are alwavs separated by semicolons.

T 1 4 Assignment Statement

bMe have already seen examples of the assisnment statement. It is of the
form
VARIARBLE = EXPRESSION

The value which 1is obtained throush the evaluation of the expression
iwhich may involve some arithmetic operations) must be in the set for
which the variable is defined. {The assismnment of a value of trepe
INTEGER +o a variable of tvyre REAL is allowed. ¥

wample: F iz (A+B)y % 3%

™

1.2 Frocedure Statement, REARD, HWRITE

The procedure statement consists of an identifier which desisnates the
procedure. This identifier mavy be followed by a list of parameters.

Example: DIFFER{A+BCI $
In thic section we treat only the built-in procedures REARD and WRITE

FERD is used 1o read values of tyepe INTEGER, RERL and CHRR from the
input medium

i1

. Examele: VAR AsB: INTEGERS R: REAL3$ CH: CHARS
BEGIN READ(AsBsCH) END.

Only variables of +tvee INTEGER, REAL or CHAR are allowed in the
parameter list of the procedure RERD

HOTE - The character seauences on the input medium denotins intesers
and real numbers must be followed by at least one blank. Octal
numbers are not permitted.

Evpressions are eprinted with +the rprocedure MWRITE. The value of an
evrression must be of tvee INTEGER, RERL, BOOLEAN, CHAR. or ALFA.

Examele: WRITE(X+3sAe=MILES=9EOL) S

HOTE The character EOL ¢(End Of Line) finishes a line and starts a new
one. The first character written on the new line is interrreted
as printer control and thus not eprinted. For the erinter

control characters see fependix A 2.

c4rings with more than 416 and less +than 78 characters mavy also be
parameters of the procedure WRITE

Examrle: WRITE(= PROBLEM 1 JOHN DOEZ=) 3

Mow we are in the position to fermulate our first complete PRSCAL
prosram:

VAR X @ INTEGERS

BEGIN A VERY SIMPLE PROGRAM¥
X ¢= 13
X $= 3#(X+1)3
WRITE(Z zoXsEOL) S

END.

& cpauence of statements can be made into one statement by enclosins the
sgauence 1in

BEGIN . . . END
¥ 4. 4 Reretitive Statements

I+ is in +the nature of most alsorithms to execute certain seauences
repeoatedly. e ran distinsuish three kinds of repetitions:

{a) We rerpeat accordine to a condition. This condition is tested each
time
{aid at the besinning of the seauence
{a2y at the end of the seauence

by We know the exact number of reretitions.

i2

FRSCAL provides a statement for each kind of reeetition:

The WHILE statement for (ai>
The REFEART statement for (ag»
The FOR statement for (b>

Z.4. 44 WHILE Statement

1t has the form
WHILE condition DO statement

The condition is an expression which must vield a value of tvre BODLERN.

Esample: A = 13
WHILE A < 3 DC A 3= A+1l3
WRITE(A) S

The condition is evaluated If it is false then the statement is not

executed, otherwise the statement 1is executed repeatedly until the
condition becomes false. .

The example above would print the value 3

% 1. 42 REFPEAT Statement

o o - —— o — o —— o — T " T e St S e o

It has the form
REPEAT ctatement-seauence UNTIL condition

The condition is an expression which must vield a value of tvepe BOOLERN.

Evxamrle: A = 1%
REPEAT Ai= Aels
WRITE (A} S
UNTIL A > 33

The ctatement-seauence is executed repeatedly until the condition
hecomes true. fis the condition is tested at the end, the statement-
spauence is executed at least once.

The example above would print the values 2 T 4

% 4.4% FOR Statement

1+ has one of the two forms:

{a FOR control-variable = initial-expression
T0 final-expression DO statement

(b FOr control-variable = initial-expression
DOMMTO final-exepression DO statement

Exanmprle: FOR A := 1 TO 3 DO S := S+X[Al}
FOR A := 3 DOWNTO 1 DO S := SeX[A]}3

FOR C := RED TO BLUE DO
BEGIN WRITE(ARTICLE(C1.COST)3

S 1= S+QUANTITY[CI®#ARTICLEI(C].COSTS
END3

The control-variable must be of simple tvpe. The initial-expression and

the final-expression must vield a value of +the set for which the
control-variable is defined. The initial value and the final value

cpecify a subranse on the set. The values assioned to the control-
variable are taken from the subranse starting with +the initial value.

kemember that the set of a simple type is ordered. In case (aJ) the
values are taken in increasing order, in pase (b)Y in decreasins order.
The rereated statement 1is not executed in case (a) if imnitial value >
final value., in case (b} if initial value ¢ final value.

HOTE : The repeated statement mavy not chanse the value of the control-

variable nor the values used to evaluate the final-expression.
The control-variable should be resarded as having unknown value
after completion of a FOR statement.

* 41 5 Conditional Statements

e . o — - - — - . oy e

- o - - . - Vo~ . W T s e . e

1t has one of the two forms:

{ad IF condition THEN statementl ELSE statement2
(b IF rondition THEN statementi
Example: IF A > 3 THEN B ¢= 5%

IF BOOL THEN B $= 1 ELSE B = 53

The condition must be an expression which vields a value af +trre
BOOLERHN. If +he condition is +true then statementli is executed,

otherwise in case (a> statement? it executed, in case (b)> no statement
is executed.

OTE - Ho semicolon is allowed before FLSE.
The construction

IF % THEM IF ¥ THEN A := 3 ELSE B := 3;
ig alwarys interereted as:

IF ¥ THEN
BEGIN IF ¥ THEN A := Z ELSE B := 3 END;

i4

. 1. 52 CASE Statement

I1 is of the form:

CASE selector-exeression OF

constantli : statementi;
ronstant? : statementd;
END;
The constants constanti, constantz, ... are used to label the statements

in the CASE statement. The constants are all of the same (simple) tvpe.
No constant mavy be used twice for a label in a case statement. If the
value from the selector-expression is eaual tp a constant with which a
ctatement 1is labeled then this statement is executed, otherwise no
statement is executed.

Example: I 2= 2%
CASE 1 OF
1: x 3= 13
22 X &= 9%
38 X = 43
ENDS
WRITE(X)S

The value printed would be =

g statement of the CASE statement can also be labeled with a list of
constants. :

Example: CASE COLOR OF
REDeGREEN: X 3= Xel13
BLUE: X 3= 03

ENDS
CaASE I OF

192s3% 3

495: X ¢= Y3$

ENDS

The last examrle also shows the use of an enpty statement.

fn expression is formed with orerands and orerators. Orerands are
variables, constants, function calls, and expressions in round brackets.
Musi of the operators reauire two operands (dvadic operators), some only
one prerand (monadic orperators).

Evample: «F{X)+3#(A+S)

zZ.2. 4 Orerators

Orerators are applied in the order which corresponds to their
precedence. Orerators with hisher precedence are applied first.
frerators which have the same precedence are applied from left to risht.

Frecedence Operator
4 -
3 # s DIV MOD A <>
2 + - v
1 = ¢ < <€ > > 1IN

The tvpe of the value of an expression derends on the orerands and the
operator involved, e . s. comparison of two numbers results in a value of
tvpe BOGLERM, whereas the addition of two intesers will result in a
value of type IHTEGER.

The followine table describes the orperation, the trvepe of the operands
ant the ivee of the result. (The tvrpe of the prerands may also be a

-

cubranse of the indicated tyres. s

Tvee pof Results

Boolean

Inteser
Eeal
Real
Real
Feal
Real

Inteser

Inteser

Inteser
Real
Feal
Inteser
Real
Feal
Boolean
Eoolean
Boolean

Boolean

Urevrator Oreration Tyre of Orerands
- Logical Epolean
Mesation
* Multirlication Inteser Inteser
Real Feal
Inteser Feal
iivision Integer Inteser
Real Feal
Integer Eeal
LIy Intecser Inteser Intesger
Division
MOD Remainder of Inteser Intesger
Int. Division
+ Addition Inteser Inteser
Feal Real
Inteser FEeal
- Subtraction Inteser Integer
Real Real
Inteser Feal
A Logical AND Boolean Boclean
v Logiczal OF BEoolean Eoolean
= # CompParison Any Tvre
<O Comparison Simple Tyre
< 2

For comparisons both operands must be of the same tvre (or subransel.

Example: X 2= 14 DIV 33 ARESULT IS 49
Y = 14 MOD 33 PRESULT IS 2v
Z = (AvB)A«(AvVB)§ »RESULT IS FALSEs
B ¢= S > 3% »RESULT IS TRUE+
The orperators +,- mavy be used as monadic operators.

rreceded by another orerator.

Some of the orerators above and
anpther tvyre. This

the orerator 1IN
is treated in Part III.

are

ié

They cannot be

also

used

for

-..-...—-........._......_......-...-..——-.——-—_—.-...—_.-_-.—.—_-..-...—...—....—_.———

Using +the name of a function in an expression results in a function
call. The name of the function may be followed by a list of rparameters
as reauired by the function. Functions alwarvs return values; the trre
of the value is defined by the function.

The FPASCAL svstem has several built-in functions. All +these standard
functions have one rarameter.

Exanple: A = COS(X) + (SIN(X) +1)3

The erosrammer can define his own functions. This is treated in
Fart I1.

In the followins we describe the built-in functions, the trre of their
parameter and the +tyepe of the value they return (The tvyee of the
parameter may also be a subranse of the indicated trre. >

3 2 24 Arithmetic Functions

e e . —_— - > ot S e T St M T N S T e

CINCXY, COSe¥y, EXP(XY, LN(X), SERT(HM, ARCTANCK

¥ is of tvee INTEGER or REAL. The tvre of the result is alwavs RERL.
ERHF(¥>

v ig pf tvee INTEGER or RERL. The result is a random number in the
interval ¢@&, 1) and of tvre REAL. 1t is influenced by the value of X:

i. For ¥=f the next random number is senerated and returned.
2. For %<@ the last previously generated random number is returned.
kS For %38 a new seed (start of a random number seauence) is created
from % and returned.
AESCHD

The result 1is the absolute value of . The tvee is the same as the
tyre of X ¥ is of tvepe INTEGER or RERL.

SEROMY

The result is ¥#*¥. The tvpe of ¥ is INTEGER or RERL. The trepe of
the result is the tvepe of X

ig

3.8, 22 Predicates

QLD i

The +tvepe of ¥ is INTEGER. The result is BOOLEAN and indicates if ¥
is odd. ;

2. 2% Transfer Functions

i e e e . ————— 1 - = . W - — -

TRUNCCH?

¥ is of tvee REAL. The result is the inteser part of ¥ and of tvee
INTEGEE.

ORDCHY or IHTCED

¥ ig a simple tvype Cincludine the tvee ALFAL. The result is the
octal rerpresentation of ¥ exeressed as an inteser.

CHREOKY

v ig of tvee INTEGER. The result is of tvype CHAR It is the
charzcter which corresponds to the octal reepresentation of the
inteser. The value of the inteser should be sreater than or eaual to
& and less than or eaual to 77E.

HLF CK2

¥ ig pf tvee INTEGER. The result 1is of +tvyrpe ALFA. The octal
representation of ¥ is interereted as a character seauence.

T 2 24 Other Standard Functions

SUCCORD

¥ ig of simple fvre. The result is of the same trpe. Its value is
the value followins ¥ in the ordered set of the simple trre.

FREDCH

¥ ig of simple tvre. The result is of the same tvype. Its value is
the value previous to ¥ in the ordered set of the simeple trvre.

WARNING: No check 1is made if the limits of the set of the simple tvre
are reached.

18

- —— "

TYPE COLOR = (REDJGREEN.BLUE) 3
VAR X: COLOR3 C: CHAR3 IsK: INTEGERS3
A: ALFA3 B: BOOLEANS

BEGIN X = RED}$
I := ORD(X)3 pRESULT IS 0+
X = SUCC(X)3 »RESULT IS GREEN+
K := ORD(ZE=)}$ PRESULT IS S5+
B := ODD(K)3 PRESULT IS TRUEWV
K := PRED(K) S PRESULT IS 4v¥
K $= SQR(K)?$ PRESULT IS 16+
I := TRUNC(3.,027)3% »RESULT IS 3+
C i= CHR(5)3 »RESULT IS ZE=+
A = ALF(01020355555555555555) 3

»RESULT IS =ABC =+
END.

4 Frpooram Examples

CONST LIMIT=103
VAR V: ARRAY[1le.LIMIT) OF INTEGERS
IsKelLobLLoMeQs INTEGERS

BEGIN FOR I
FOR M

: TO LIMIT DO READ(VIIN) 3
BEGIN K
F

1

1 TO LIMIT-1 DO
= VIMI$ LL = 03

L ¢= M+1 TO LIMIT DO

IF VIL) < K THEN

BEGIN K ¢= VIL]$ LL := L ENDJ

IF LL#0 THEN
BEGIN Q := VILL}$ VILL) &= VIMI$ V(M]} := Q END3

o
X oo

END3
FOR I := 1 TO LIMIT DO WRITE(VII])S
END.

4 2 Computation of the Firest 188 Frime Numbers

.._._......._...._..__._...._...—-...__...n.,.._....__.....-....—.--...—.....—...--—..——--.—.—..—»_--

VAR P: ARRAY[1..100) OF INTEGERS
IsJoKebL: INTEGERS
B: BOOLEANS$

BEGIN := 33 PI1) 3= 23 P(2]) 3= 33
FOR K $= 3 TO 100 DO

BEGIN
REPEAY B := TRUE:
J = Je2s #GET NEXT NUMBER+
i1 ¢= 1%
»TRY ALL PRIME NUMBERS P{1}] SO FAR FOUND
UNTIL J DIV PLI! <€ PLI}V
REPEAT 1 := I+1%
L o:= J DIV PL1]3
B = J & L®¥PIII3
UNTIL =B v (L < P13}
UNTIL B3
PIK] = J3
END3S

FOR K 3= 1 TO 100 DO WRITE(Z ZsPIKI,EOL)S
ENDe.

28

FART 11

v —— -

Functions are alsorithms which vield a value. A function can be called
from different parts of the prosram. This makes it necessary to have an
algprithm in which certain names and values can be adarted to the
various situations. When the function is declared so-called formal
carameters keep the place for these names and values. Formal parameters
ate identifiers which are listed in a parameter list. When the function
¢ called +the correspondine actual names and values are listed in a
rarameler list. These parameters then are called actual parameters.

d function declaration consists of the function head, the declaration
part and the prosram part.

The function head consists of the word FUNCTION, the name of the
function: a parameter list with at least one parameter and the tvee of
the result. The type must be a simple tyre or a rointer. {(Pointers are
trpated in FPart III». When the parameters are specified the kind of the
parameter must be known, its name and, if applicable, its tvyee. There
are four kinds of parameters:

Values

Yariables VAR
Functions FUNCTION
Frocedures FROCEDURE

The Lind of a parameter ig qgfined by precedine it with the arpropriate
Leyword indicated in the right column above. (FParameters of kind value
are not ereceded by a kewvword).

Example: FUNCTION ABC(X: INTEGEKS
VAR F: REALS
FUNCTION G: REALS
PROCEDURE P) ¢ INTEGERS

Hames of the same kind and tvepe can be serarated by commas.

Example: FUNCTION XYZ(KoL:INTEGERS VAR PsQ: REAL):REALS

the rrosram rart of a function declaration is a compound statement,
i e, a seauence of stztements enclosed in
BEGIN . . . END;

ithin the prosram part there must be at least one assigsnment statement
which assisns a value to the function identifier

“he identifiers introduced in the function head are local +to the
function declaration and not known putside. Other local identifiers may
be introduced with the declaration part of the function.

™y
[pe]

The declaration part has the same form as described in 2. 3. (Hote that

function and.Procedure declaratione mavy appear in the declaration rart
of the function. > '

s a function is part of a declaration rart, all the identifiers
introduced before in the declaration rpart can be used <(with their
assoriated meaning) in the function declaration. They are considered to
be <elobal identifiers with resrect +to this function declaration. 2]
alpbal identifier is redefined when declared agsain as local identifier.
The scope of this "redefinition" 1is the score of local identifiers,
i . the function declaration to which the identifier is local.

f function is called when the name of the function is wused in an
CHPIESS 10N, The name is followed by the actual rarameter list.
fccordine to the kind of formal parameter the corresponding actual
parameter must be as follows:

Formal Actual

value expression

variable variable

function function identifier
Cwith no parameter list?

procedure rrocedure identifier

{with no parameter list?

The tvre of the actual rarameter and of the formal parameter must be the
same (or eventually a subrangse thereof).

Farameters of kind value are treated like local variables. The local
variable is initialized with <+he wvalue of the expression when the
erocedure is called. Remember, an expression may also be a constant: a
variable or a function call, i.e. a function identifier followed by an
actual parameter list. If the formal parameter is of tyepe arravy or
rerord the initialization consists of copvineg the arrav or record which
is actual parawmeter to the local array or record. The values of the
iorsl variables which were introduced by the declaration part of the
runction are undefined when the erosram part of the function is entered.

There must be the same number of actual rarameters in a function call as
there are formal parameters in the function declaration.

HOTE: The index of an indexed variable on actual rarameter position is
pvaluatec when the function is called.

Bn imrortant difference exists between the assignment to a formal
parameter of kind variable and a formal parameter of kind value within
the prosram part of the function In the first case the value is
assisned to the variable which is actual parameter of the function call.
In the second case the value is assigned to the local variable of the

function. and the variable which was used as actual parameter is not
afflicted.

The following is an example for a function declaration. 1+ computes the
rowers of a real number:

trample: »FUNCTION HEADY
FUNCTION POWER(WSREALS I1:INTEGER): REALS3

»DECLARATION PARTY
VAR Z: REAL?

PPROGRAM PARTY
BEGIN Z = 13
»I MUST BE > 0O+
WHILE 1 # 0 DO
BEGIN IF ODD(I) THEN Z = Z%#W3
I ¢= 1 DIV 23
W = SQR(W) 3
ENDS
POWER = Z3%
»ASSIGNMENT TO THE FUNCTION IDENTIFIERY
ENDS

The function identifier can arpear 1n an expression of the prosram rpart
of 4he function declzration Thiz causes a recursive call to the
function when the function is executed

The following ic an czanrle for the recursive appearance of the function
aane FAC in the function declaration of t+he function FAC. It computes
‘e factorial of an inteeer sreater than or eaual to 8.

Erample: FUNCTION FAC(N: INTEGER): INTEGERS
BEGIN
IF N = 0 THEN FAC := 1 ELSE FAC := N#FAC(N-1)
END3S
HOTE Functions are intended to return only one value, the value which
was assioned to the function identifier. However, values can be
roturned from 3 function in an indirect wavy by assisnins values
ty olpbsl variables and rarameters of kind variable. Rs
runctione are used in expressions, this “side effect" should be
avoided

- +
[P i

oy oepdure Declaration and Procedure Call

trocedures are alsorithmse which do not puwplicitly return a value
troucedures are cxlled from procecure statements.

4 erovedure declaration consists of the rrocedure nhead, the declaration
rart and the prosram rart

The procedure hesd consists of the word PROCEDURE, the name of the
vrocedure and eventually of & rarameter list Evaervythings mentioned
sbout rarameters for furctions also holds for procedures. {(fis no value
is returned. we do not have to seecify 2 tryepes and there is no

.

secignment to the rrocedure identifics.

Evamrle: PROCEDURE XXX (KsL: INTEGERS VAR XsY: REAL)S

The rroosram part is a compound statement, i.e. a seauence of statements
enclosed in BEGIN . . . END;

The declaration eart has the same form as described in 2. 3. fis

procedures are rart of a derlaration prart evervthins mentioned about
glpbal and local identifiers also aprlies to procedures.

i rrocecdure returns values only by "side effect", i.e. by assisning
~zlues 1o slobal variables and parameters of kind variable in the
erparam rart of the rrocedure

The rrocedure identifier czn be uced in a procedure statement in the
erparam part of the procedure declaration This causes a recursive call
1y 1he rrocedure when the procedure ic executed.

HUTE : When the prosram rart of the rrocedure is entered. the values of
local variables introduced by the declaration part of the
procedure are undefined.

The followine is an example for a rrocedure declaration. it erints the
~zlueps of a matrix, where the tvre METRIY is defined by:

TYFE MATFIY = ARRAYLL. M, 1. N1 OF REAL;

s

sample: PROCEDURE PRINT(VAR A: MATRIX$ N: INTEGER)S
VAR T.K: INTEGER}

BEGIN FOR I := 1 TO N DO
BEGIN FOR K := 1 TO N DO WRITE(A[IsK])3
WRITE(EOL)$
ENDS
END3

= Fourward Declaration of Functions and FProcedures

............-.._.4‘..._.._...._......-._.—-...——....—_-....__._—_-._...-__....-.....¢...—._._—_.—....—.—.—-—

{3lls 1o functions or procedures may DE necessary before they can be
declared, o 9. two procedures call cach pther. Then only the procedure
icad ¢function head» of these eprocedures (functions) must be declared
iullowed by the word FORMARD. Later. when it is possible to declare the
rvst of the rprocedure (function? only a shortened procedure head

cfunction hegad» 1s necessary. I+ consists of the word FPROCEDURE
CEUNCTIONY and the identifier used to name the procedure (function?

Example: FUNCTION F(X: REAL):REAL3 FORWARDS

#»OTHER PROCEDURES OR FUNCTIONS MAY FOLLOW
HERE CALLING THE FUNCTION F+

FUNCTION F3

»DECLARATION OF FUNCTION F FOLLOWSY
BEGIN F := X END3

25

% 4 Siandard FProcedures: FACK, UNPACK

e e e et ot o W ame n e e S e S o S AR e e e e e Sws S

The erocedures FACK and UNFPRCK are built-in procedures. They are used

to cvonvert values of tvre ALFA into arravs of type CHRAR and vice versa.
Let

A be an arravy of tyee CHAR,
z he a variable of tvee ALFA,
I be an exrression of tvee INTEGER.
FRACKORH, 1. 23 takes ’19 consecutive characters of array A, besinnins
with the component RLIJ and packs them into the variable
UNFRCKCZ, R, T2 unracks the value Z of type ALFA into 48 consecutive

comronents of array A besinning with AII

& Inputs/Outrput

- - - —— - -

Files consist of a seauence of components which are all of the same
tvpe. The lensth of the seauence is unknown C(and only a part of the
file is kept in core). A file is read or written seauentially and only
that comeponent ic accessible which is under the "file head"®.

For the declaration of a file variable we must sepecify the trrpe of 1its
components:

Examele: ABC: FILE OF CHAR:
XYZ: FILE OF INTEGERS

The tvype TEXT is another epredefined tyee in PASCAL. it is defined by
TYFPE TEXT = FILE OF CHAR;
Example: ABC: TEXT:

The wo files IMPUT and OQUTPUT are also predefined. They are of tvee
TERT. (A component of a file of type TEXT is of tyre CHRR).

The comronent under the "file head" is reached by the so-called buffer
variable. 1t consists of the file name followed by 2 .

Examnrle: ABCHr 1= ZA=;

I

More on file tvyepe declaration is to be found in Part III.

€ 2 Prucedures and Functions for Input and Output

e o v - — . T - W SO s Wiee WA R Ve AR S G W e e S e e e S Ge S DWW UM TR Wee e A A e W S GG e S S A e

EGF (RBCH is a function which returns the value TRUE if the file
AEC is in end-of-file status.

GET(RECS moves the "file head" to the next component of <the file
and assigns the value of the component to ABCH | if

there is no next component EOFC(ABCY becomes TRUE, and the
value of aBc+ is not defined.

FUTCRBC writes the component under the "file head" +to file ABC
and the wvalue of ABCH becomes undefined. (Now a new
value can be assigned to the "file head". »

HEQRCHREBLC writes an end-of-record on file AEBC.

RESETCRBCY rewinds the file REC.

The followine program copies the file AAR to file 222,
elemnent

boatr e VAR AAA: FILE OF INTECERS
2ZZ2: FILE OF INTEGERS

BEGIN RESET(AAA)S RESET(Z2Z7Z)%
GET(AAA)Y3 pPREAD FIRST COMPONENTY
WHILE =EOQOF (AAA) DO
BEGIN ZZZ4 := AAA4;
PUT(Z22)3 PWRITE AN ELEMENTY
GET(AAA) S oGET NEXT COMPONENTY
ENDS
WEOR(Z2Z2)3%
ENDe

™3
~4

elewent by

7. Labels and GOTO Statements

TS T S W MR e e st e W e Wttt WS WO e e wae ot e e e st g mn G dae v
e s ol b el Jave S rograsndh el ntedpc o i gl il S g g

A label is defined by labelineg a statement with an inteser consistins of
at most 5 decimal digite

Examele: 10 ¢ A = 33

H label is used with a GOTO statement to indicate that the execution of
the prosram will continue with the labeled statement. The GOTO
statement is a simeple statement.

Examprle: GOTO 103

The <cscore of a label is the program part of the erocedure (function.
progsram? in which the label is defined. This score can be extended by
declaring the label in the corresronding declaration rart. Then this
label can be used together with a modified GOTO statement in the
rrocedures and functions which are declared in this declaration part.
The modified GOTO statement makes exrlicit that +the procedure is not
left in the normal wav. It has the form:

Example: GOTO EXIT 123

The label declaration rprecedes all other sections of the declaration
rart. It starts with the kevword LREEL which is followed by a list of
labels:

Example: LABEL 104200303

HOTE : All labels which are declared in the label declaration must be
defined in the corresponding prosram part.

It is a sisn of sood FASCAL prosrammins to avoid labels. The only need
for labels arises when a procedure must be left with an E¥IT jump.

Ctherwise the programmer is urged to use the FOR, WHILE, REPERT and CRSE
statements. The program in the next section shows the use of a label.

HARNING: Jumps into structured statements mavy be hazardous +to the
programmer’ s health.

g FProsram Examples

e
pueneripeegpemipuegpergi-y

. Ao o 2~ -
pofiungioordio gl rami o=y

& 14 Matrix Inversion (GAUSS-JORDAN, Hith Max. Pivot)

————

LABEL
CONST

TYPE

VAR

- - o o ba W Sate Wi e WA e A Wt e s i W G e S e S G R GO W S R GG G S T e A e e

103

N=43N1=53}

MATRIX = ARRAY{l..NsleeNl1l OF REALS
DIM = leaN$

I+K: INTEGERS
A: MATRIX3

PROCEDURE INVERT(VAR A: MATRIX$ N: DIM)3

VAR JoeKelLoJd: INTEGERS
SBH: REALS

BEGIN »PRESET ROW COUNTERV

FOR L =1 TO N DO AlLsN*1] := L3

FOR L 2= 1 TO N DO
BEGIN ~FIND LARGEST ELEMENT IN THIS COLUMNY
H $= ABS(A[{L+L))S U = 03
FOR K i= L+]1 TO N DO
IF ABS(A(KsL})>H THEN
. BEGIN H := ABS(AIKsL1)3 J := K ENDS

IF H < 1E~13 THEN
BEGIN WRITE(= MATRIX IS SINGULARZ)$ GOTO EXIT 10 END3

IF J#0 THEN ~EXCHANGE ROWSv
FOR K := 1 TO N+1 DO
BEGIN H = A[LIKI3 AlLeKI] 3= A{JeK13 A(JeK] 3= H END3J

*NORMALIZE PIVOT ROWY
H $= 1/A[L+L1]3
FOR I t= 1 TO N DO AfL+I) = AfLeIl®HS
*ELIMINATE AND DEVELOP INVERSEV
AlLoLY = K3
FOR I =1 TO N DO
IF I#L THEN
BEGIN S = A{I.L1])3
A{IsL) = «S+H3
FOR K 2= 1 TO N DO
IF K2L THEN ALIsK] 3= A[IleK]=S®AILKIS
END3
END s

28

FOR L =1 TO N-1 DO
IF A(L9eN+112L THEN rEXCHANGE THE COLUMNS¢
BEGIN K = L3 ‘

REPEAT K := K¢l UNTIL A[KsN+¢1ll=L3
ALKoeN+11 2= A[L4N+1)3

FOR I :=1 TO N DO

BEGIN H := A[{IsK]I3 ALIsK]) = ALIsL]S

END3
END3S

PROCEDURE PRINT3 »PRINT THE MATRIXv
VAR TsK: INTEGERS
BEGIN FOR I 3= 1 TO N DO
BEGIN FOR K t= 1 TO N DO WRITE(A[IsKI1)}
WRITE(EOL)
ENDS
WRITE(EOL) 3
ENDS

sMAIN PROGRAMY
BEGIN »READ A MATRIX+
FOR I =1 TO N DO
FOR K t= 1 TO N DO READ(A[I+K])3

WRITE(Z INPUTZsEOL)
PRINT 3

INVERT (AsN) 3
WRITE(Z INVERTED MATRIXZEOL)S3
PRINTS

INVERT (AsN) 3 ;
WRITE(S CONTROL: MATRIX RE-INVERTED=Z,EOL)3
PRINTS

10:
END

AlIsL]

L&
& -

H END3

31

e e o o e o s o oo e fme e e i e o e e e S g T owR DRI O DTN IND
e N R NN NN N N D I D N N R NN T R s e e e S s s S -

4 1 Record Twpe

zome rroblems make it desirable to have data structures which differ
only in some comronents, but are otherwise alike, e.s. records of peorle
where some additional entries are reauired if they are married.

1, FASCAL the tvee RECORE has & variant part which is useful for these
LU PDSES. The variant part follows the fixed rart which was described

S e
IV &2 &

“he variznt part starts with a component called “"tas field". Its value
describes the instance of the variant rart. The tvee of the tas field
ie a simple tyre. 1ts name and tvyre are defined by the prosrammer. The
instances of the variant part follow next in the record declaration.
Esch instance is labeled with a constant of the tvre used for the tas

field. fin instance is the continuation of the fixed rpart of the record
and thue has the form of a record However, it is enclosed in
parenthesis. ¢The different instances are separated by semicolons. ?

The vatriant rart besins with
CRSE tasofieldname : tyepe OF

Evemple: TYPE C
' R

{YESeNOsMAYBE) 3
RECORD XsY: INTEGERS

CASE KIND: C OF

YES: (NAME : ALFAS
AGE: 140100)3

NO: (NEXT: INTEGER) 3

MAYBE: (COND: BOOLEAN)

END$
VAR PsQ: R3

©11 ihe comronents of a record are accessed in the usual warv:

Examrle: P.KIND := NO3
PNEXT = 33
PeX tz 27%
Q.KIND = YESS
Q.NAME = =SMITHZ=S
Q.AGE = 5%

1ed
et

The structure of a value of tvee RECORD is represented by onivy one of
the instances of *he record declaration (f variable of tyepe RECORD mavy
ascume values which are structured in all the different wavys which the
vecord declaration allows. o

e can assigon a value to the tas field so +that we know what instance we
used to structure the variant part. The value for the tas field is the
constant which labels the appropriate instance in the record
declaration.

MERNIHG: Before assignins or retrievineg a component of the variant part
of a record the programmer should make sure he knows the
structure of the variant rart. This is done by means of the

tas field 1+ is +he responsibility of the prosrammer 1o
assisn the correct value to the tas field and o test it when
necessary. The use of the wrons structure will vield

unexpected results.

An instance of a variant part is considered fo be a record, thus it mavy
consist of a fixed eart and a variant rart.

Example: TYPE RV = RECORD

CASE Bl : BOOLEAN OF

TRUE ¢ {a: INTEGER) S

FALSE: {(CASE B2: SOOLEAN OF
TRUE ¢ {(8+C: INTEGER)S
FALSE: {(D: REAL)
)3

END3s

tufficient memory is allocated to & variable of tvyepe RECORD to take care
of 311 comeponents for the worst combination of the variant rarts.

1

i

e valupz of many simple tyees do not reauire a full wmewory word. A
cord structure which is preceded by the word PACKED takes advantase of
s+ and racks several consecutive components tosether in one word. if
is is possible.

%_

[

by
H

b s
T

1
i

B

o

mELE: TYPE RR = PACKED RECORD
AQS: 10033
C: CHARS

DsE: BOOLEANS
END?

& yariable of this tvpe occuries only one word, whereas norwmally 8§ words
would be needed.

HOTE ; & romponent of & packed record is denoted as usual. However, it

cannot be wused as actual rarameter for a rarameter of kind
variable.

G 1.2 WITH Statement

It has the form

WITH record-variable D0 statement

The WITH statement simplifies the notation for components of the record-

variable mentioned in the WITH statement. The field names of this

recorg-variable can be used directly as variables.

NOTE : The scope of +the field names (in their use as variable
identifiers) is the statement rart. The field names

considered to be declared locally to the statement part,

pther variable identifiers with the same nawme appPear
global and are not acressible.

The record variable ¥ in the followine example is defined as in &.

Evample: WITH V DO
IF MONTH = 12 THEN
BEGIN MONTH := 13 YEAR := YEAR+l END
ELSE MONTH := MONTH+13

This progsram part is eauivalent to:
IF V.MONTH = 12 THEN

BEGIN V.MONTH := 13 V.YEAR := V.YEAR+1l END
ELSE VeMONTH := V.,MONTH+13}

HOTE : The ronstruction WITH ¥ DO
HITH & DO

WITH 2 ©O

can be shortened to: WITH XK. %, 2 DO .

DS
£

4. 2 CLASS Tvyre

% 2.1 Class Declaration:. Pointer Declaration

f rclass is a structure which consists of a variable number of
components. All components have the same tvee. The components. are
created durine execution of the prosram. When the class is declared we
cpecify the tyepe of the comeponents and the maximum number of components:

Example: VAR STRUCT: CLASS 100 OF RECORD Xx: ALFA3
Y: INTEGERS
ENDS

g we do not have names for the components of the class we must access
them in a different wav. f class has a POINTER tvpe alwavs associated
with it. This is a set of valuee which are pointers to the components
of the class. The set includes the constant NIL., a pointer which pPoints
tp no element. A name for the POINTER tvepe is defined in the followins
way .

Example: TYPE POINTER = #STRUCTS

‘This is the only exception where we can use an identifier, i.e. the
name of the class. before it is declared. ? '

Variables of a FOINTER tvepe are declared in the usual wavy:

Example: VAR PlsP2: POINTERS

HOTE : Each variable of tvre CLASS has its own pointer tyepe associated
with it. The erosrammer must define a name for each tree.
Further, variables of these tvrpes are necessary.

& rcomponent of a class is reached with a epointer variable followed

by # . The vaiue of the pointer variable must be the pointer to the

comeponent.

txamrle: Pl*eX 1= =SMITH=Z=S

HOTE: A run-time error occurs, if the value of PL1 in the example above
is the HIL rointer.

The ucefulness of the class structure becomes obvious when we have
romponents of tvre RECORD which have fields with POINTER tyres.

Erample: TYPE PTR
VAR LIST

it

ALISTS

CLASS 100 OF

RECORD NEXT: PTRs
VAL INTEGERS

*a

ENDS
PTi1.PT2+PT3 ¢ PTRS

33

With this class as declared above we can create a linked list. Each
gelement of +the list consists of two components. The first component
contains a rointer which points to the next element of the list, or the
value HNIL +to indicate it is the last element of the list. The second

comronent containsg the value of the list element. The construction of
the list is described in the next section.

Mith the arpropriate definition of the rclass component usine pointers we
can create other structured obiects, like trees and sraphs.

G 2 2 Allocation of Class CompPonents

. - —— T ho " _— e i A o

Srace for the component of a class is allocated with the procedure NEMW.
The rlass ic thereby treated as stack. fin internal rpointer points <o
the stack tor. Space is allocated for a comrponent by setting the
internal rointer to a new stack tor. Its previous value is taken as the
rointer to the rcomponent and returned as value of the pointer variable
with which the rprocedure NEW was called.

HOTE - The value MIL is ascsisned to the pointer variable when the srace

which wae reserved by the class declaration is exhausted.

The followins prosram part uses the class definition of the previous
example. It creates a linked list of & elements.

Examrle: NEW(PT1)3
PT3 := PT13 »SAVE THE POINTER TO THE FIRST ELEMENTY
FOR K = 1 TO0 4 DO
BEGIN NEW(PTZ2)3
PT11NEXT := PT23
PTl = PT23
END3s
PT1+.NEXT = NILS »STORE NIL IN THE LAST ELEMENTY

- e - — - -~ ——— - 7o - " W —— am+ s o~ o v S . e (i W SW= e T mh W Ame Ge S W S YER WAL G M G M W W W St e b G S NS G DR UMe e e e W -

The various instances of records with variant part have different srace

reauvirements. If thev are components of a class then the procedure NEMW
used in the above wav will allocate srace for the worst possible case

7 we want to be more economical then we allocate only that much space
which a certain instance of the record reauires. The parameters for the
procedure MNEW are, besides the rointer variable, the values with which
the inetances of the variant parts used for this component are labeled.

36

o

sample: TYPE CLVP +CLVS
CR {REDYGREEN) 3
VAR CLV : CLASS 10 OF
RECORD X: INTEGER3S

CASE VR: CR OF

RED: (Y: INTEGERS
YI:ALFAS
Y2:CLVP) 3

GREEN: (Z: INTEGER)

I}

END S

CP : CLVP3
NEW(CPSRED) 3
WITH CP» DO

BEGIN VR := RED}

Y = 13

Y1l = ZALFAZ=S
ENDs

WARNING: The rrocedure NEW only allocates the srace and does not assisn

a value to the tas field. (ince srace is assisned for a
comronent with a certain variant structure only comronents

with the same srace reauirement can be stored at that eplace.
This must be observed by the prosrammer.

(<R

S 2.2% The Frocedure RESET Used with Fointers

Comronents of a class are de-allocated when the internal stack pointer
is set to a previous stack toe. This is done by

Exanrle: RESET(P) s
F is a pointer variable whose value defines the new stack toe.

HARMING: It is the progsrammer’s responsibility not to use rpointers to
components which are already released.

vy

P
1o
3

rerations with Ppinters

Mt e e e . . - o o . S - -~ V. -

Fopinters of the same type can be compared with the orerators = #2 < >
< > Fointers with smaller values point to components closer to the
stack bottom. All pointers are smaller than the NIL pointer.

The internal value of a pointer is obtained when a pointer variable is
uzed as rarameter of the function GRD. Fointers are absolute addresses.
The value of the NIL pointer is ZBOEBGE (E65532¢).

LPAJ
-3

9. 3.4 Set Declaration, Set VYalues

- - - — o — o - s " ot o W W A S ——

The SET tvee is a structured tvepe whose values are subsets of simple
tvpes, The simple trvpe must be a subranse ¢(in what follows called base
tvped, so that in the decimal reepresentation the lower bound is greater
than or eaual to & and the upper bound less than 59 A SET tvee value
ie represented by one word. The corresponding bit is set in this word
when the value is present in the set. ¢(The sign bit is not used.

Examprle: TYPE C = (RED.GREENSBLUE)
VAR SET1 SET OF 0eo583
SETY2 SET OF =AZ..=Z%3
SET3 SET OF C3

2% o3 e

Yalues of variables of SET trvre are sets whose elements are values of
the base tryre of the SET tvyre. fi set can be empty. SET tvype values are
created by a list of exeressions enclosed in brackets. The expressions
must evaluate to a value of the base tvre.

Example: SET1 = [13 PEMPTY SETe
SET2 = [SAS+SBSeZXZ9=Y¥Z1s
SET3 = (GREENI]S

9 3.2 Operations with VYalues of Tyepe SET

lhe followine orerations are defined for values of tvee SET:

Grerator freration Tvre of orerands Trre of result

v Union SET SET SET

A Intersection CET SET SET

- Set difference SET SET SET

+ (Exclusive orx SET SET SET
< 2 Set inclusion GSET SET BOOLERN

IH Membershirp Base SET BEQOLERN

tvre

The sets involved in the operations must be of the same trre.

The set difference a-b is defined as:
{%: ¥ element of A and ¥ not element of B}

The oreration HA+E is defined as {(AVB)=(AAB) ,

Exanple: VAR SET11+SET12+SETI3: SET NF 0s.5%
B: BOOLEANS

SET12 = (0916213

SET13 = SETI2 v (0sls4als P0olololv
SET11 3= SETi2 A~ SET13s plelocy

B 3= 5 IN SET113 »FALSEV

B := SET11 < SET13:% »TRUEY

B ¢= SETI1 > SET13% »FALSEY
SET11 = SETI3=-SET1IS Pl

SET11 $= SETI3+(1+213 sy

g 4 FILE Tyre

{n addition to the tvee of the file components we can specify the kind
of file and the lensth of the buffer which keeps part of +the file 1in

Core. There are three kinds of files: InFut files, Output files and
coratoh files

Erxamplo: AAALIND ¢ FILE OF INTEGER: eKIND INPUTY
ZZZ{0UT1: FILE OF INTEOGERS PKIND OQUTPUT
$SS : FILE OF INTEGER: ~KIND SCRATCHY

the predefined file INPUT is of kind Tnrut, +he file OUTPUT of kind
pguteut.

Files defined in the declaration part of procedures or functions must be
of kind Scratch

Files are "orpened” when the program part in which thev are defined is
entered, +they are ‘“closed” when this prosram part is left. f file of
Lind Input is rewound when opened. g file of kind Outeput is closed bv
emptyins the file buffer and writins an end-of-record. The action taken
for a Seratch file when closed derends on the last oeeration eerformed
with this file. ¢ it was a write operation then it is treated l1like a
#i1e of kind Outeut. Files are also closed before they are rewound with
<he standard erocedure RESET.

‘he cize of the file buffer mav be specified by the so-called blockins

factor. 7+ indicates the number of €d-word blocks to be held in the
file buffer. The value & is taken if no blocking factor is seecified.
Ewamprle: §8S: FILE B OF CHARS3

HOTE nly +the firset 7 characters of +he file nawme are used to

identify the local file which is attached to the iob. The names
IHPUT and OUTFUT wav be considered as formal pavameters of the
FASCHRL rrogram. The actual names are specified by the v+ ang R
carameter of the PRSCRL Control Card (see Arrendix B,

33

16, InputA/Output. Value Section

e v o — s 4 A s s A S0 W b Wt M et e W W e

The procedure READCCHY ic defined for CH of tyepe CHAR by

CH := INPUT*3§ GETU(INPUT) S

and accordinely for parameters of the other possible tryres. The
character immediately followins the item read is then under the
"file head".

In order to obtain a defined value for the first call of READ a call to
the erocedure GET is necessary. However, in the case that the first
call to RERD never was preceded by a call to GET, RERD(CH> is defined by

GET(INPUT)3 CH := INPUT#+§ GET(INPUT) S

The funciion EOF becomee true when an end-of-file is encountered. The
value returned 1is Indefinite when a number was read, and EOL when a
character was read.

The followine is an example how to read intesers until an end-of-file is
encountered.

Example: VAR I: INTEGERS
BEGIN READ(I) S
WHILE =EQF (INPUT) DO
BEGIN o o o o ¢ § READ(I) ENDS
END

e S s e o -t e . WA WA e e A —

B rarameter of the standard erocedure HWRITE may be followed by a
"format seecification®. A format rconsistes of one or two Parts. The
first part is alwavs an expression of tyee INTEGER. It srpecifies the
number of characters, the so-called fieldwidth, with which the parameter

valug is written. The second part is used for special cases and
discuseed later.

Examrle: WRITE(A:Ss X3229¢ Z:3%K) $

Farameler values are converted to character strinss accordins to their
type.

First we treat values of +vpe ALFA, CHAR, INTEGER and BOOLERN. The
character stiring lensth of each of these tyrpes derends upon the vailue
involved. The rcharacter strinse is adiusted to the 1lensth of the
fieldwidth. If the character strins is smaller, it is risht adiusted
and preceded with blanks. If it is larser, the character strins is for

40

values of tvyre

EOOLERN T or F risht adiusted, if the fieldwidth is < &,
HLFA the leftmost characters,
INTEGER asterisks

If no format is srecified the fieldwidth used is for tvee

BOOLERN 18,
ALFA 16,
INTEGER 18,
CHAE 1.

‘Mote that the character strins of an integer may consist of up to 15
disits and possibly a signy.

Examprle: B ¢= TRUE: BB := FALSES
I 2= 1233 tz TX=3 A = =HELLO=:
WRITE(Bs Bi2y BB:8y 19 =~1:4e A2y Cidse A212)3

The character seauence written is as follows, colons represent blanks:
S TRUE:T:::FALSE::: -« :403-123HE:: :¥: HELLO: ::::

Yalues of tyepe REABL can be written as floating point numbers or fixed
point numbers. The maximum accuracy is 14 disgits. If no format or only
a format with fieldwidth specification is used the number is written as
a flpating point number., 1i.e. with decimal rpoint and scale factor,
1 digit is before and at least 1 digit after the decimal point.

The lensth of the character strineg is computed as follows:

for blanks or blank and sign

for first digit

for decimal point

for each followins disit ¢at most 433
for the exronentiation part.

+ o+
e =)

The character strineg is adiusted to the fieldwidth either with leading
blanks or by omitting the least significant disits of the mantissa. if
the fieldwidth is ¢ 9 asterisks are written. If no format is specified,
a fieldwidth of 28 is used.

Examprle: R %= 1239103 S := 1E~1003
WRITE(Ry =S:229 R:10)

The character seauence written is as follows, colons represent blanks:
L 229000060GAABE+LS: (-1, OODOBBBHNOGOH-1080: ;1. 24E+42

H value of +tvype REAL is written as fixed point number when the second
rart of the format srecification is an expression of tvee INTEGER. its
value, the sp-called fraction width, srecifies the number of digits
which follow the decimal ppint. The fraction width must be sreater than
or eaual to 4. The lenoth of the character string is computed as
follows:

44

2 for blanks or blank and sien
+ 41 for each leadins digit

+ 4 for decimal point if the fraction width is not eaual to 8
+ fraction width

If the leneth is smaller than the fieldwidth asterisks are written.
They are also written if the value is larger than can be expressed with
14 lpading digits. The character strings is adiusted to the fieldwidth
with leading blanks or, as at most 14 digits rcan be written, with
trailineg blanks if the fraction width is iarser.

Exampie: X = 123.3463%
WRITE(X210233s X:1030e =-X##}F=5210:5)3

The character seauence written is as follows:, colons represent blanks:
coA22 346 423 -0 8BL23

The octal representation of values of tvyee BOOLEAM, RLFAR, CHAR, INTEGER,
and REAL can be written if the fieldwidth srecification is followed by
the word 0OCT. The character string consists of 28 octal digits, it is
adiusted to the fieldwidth with leading blanks or by discardins the most
significant digits

Example: WRITE(123B:2 OCTs =ABC=: 22 0OCT)3s
The character seauence written is as follows, colons rerresent blanks:
2% pLBZBEIE55G008555585855

HOTE ! Formats can be variable since the fieldwidth is an expression.
The fieldwidth value must be sreater than or eaual to 8 and less
than or eaual to 1Z6. If the fieldwidth is 8 no character 1is
rrinted.

A string with a lensth sreater than 18 and less than or eaual to 78 (a

sp-ralled loneg strins) may be also a parameter of the procedure KWRITE.

It may be followed by a format srpecification. The lensth of a lons

strineg is used as fieldwidtih. If the fieldwidth is specified in the

format sreecification the resultine value must be the same or larser as
the lengsth of the lons strins. The strins then is preceded by the
appropriate number of blanks.

Example: WRITE(z THIS IS A VERY LONG STRING=: 35)3
The character seauence written is as follows, colons represent blanks:

s THIS IS R VERYLONG:STRING

42

168. 2 The Frocedures INFILE and QUTFILE

The procedure READ uses the standard file INPUT. the procedure WRITE the

standard file QUTPRUT. If we want to read from a file XRX of tvee TERT
with the standard procedure RERD we switch over to this file by:

Examele: INFILE(XXX) 3

Henceforth RERD reads from file ¥¥Y until another eall +to INFILE 1is
pncountered. The file INFUT is used asain after INFILECIMPUTX.

The rrocedure DUTFILE is used in a similar way for the procedure WRITE.
OQUTFILECYYY Y makes the file YYY (of tvee TEXT) to the file which is used
by WRITE until another call to OUTFILE is encountered. The file QUTPUT
is used asain after OQUTFILECOUTPRUT).

16. 4 Varizsble Initialization

Yariables of the main program can be initialized. The initialization is
done in & section which starts with the kevword VALUE. This section
follows immediately after the variable declaration section.

Yariables can be initialized with constants of simeple treres (this
includes real numbers and ALFA values). Variables must be initialized
in the same seauence as thev are declared. An initialization has the
form '

Yariable name = Initial value;
or Variable name = (Initial value list);

The second form is used to initialize arravs. R value in the initial
value list can be preceded by a rerpetition factor which must be an
inteser, e.9. ZI#123 . This initializes % consecutive components of the
array with the value 123 .

Examprle: VAR X: REAL
A2 ARRAY[1..5] OF CHARS
Y: (REDJGREEN) 3
VALUE 3.21E=273
{TXSe2HZAZ2%#Z72) 3

X
A
Y REDz3

iou

WARHING: HNo check is made if the tvee of the value and of the variable
are the same nor if the number of values in the initialization
iist corresponds to the array size.

HOTE Yariables which set initialized should appear last in the
variable declaration part.

11, Compiler Ortivns, Debusgins HRids

e e e - o - — o — Y e e o o e A g s e o W W i v A et s

114 41 Cowriler OGetions

Compiler options mayvy be selected by the Control Card (see frpendix B) or
within a program by comments of a sepecial form:

Evamplo: PEA*IR* g X~

A comment starting with a § sign is considered to be an instruction to

the rcompiler. A letter designates the option, The orption is activated
rwhen the letter is followed by a + si=sn, it is de-activated when the
letter is followed by a - sign. Most of +the instructions to the

compiler result in additional code seneration, e. 9. code for run-time
checks.

The ortione are:
A check HBssignments.
fdditional code 1is senerated to check if a value lies within

the subrange of the variable to which it should be assisned.
{(This arrlies also to the standard procedure RERD.)

print gsenerated code in COMPASS form

After varh procedure the instructions sgsenerated by the
compiler are eprinted in the form of COMPRSS assewmbler code.

b check [Division by zero

Additional code is senerated for divisions to check if the
divisor is zero.

L List source program

0 check for stack Jverflow
fdditional code is generated to cherck at procedure entry if
enoush srpace is available on the stack for the local variables
of the procedure.

E generate code for true Eoundins

fidditional code is generated for real arithmetiec operations to
rerform true roundins instead of CDC-rounding.

check for inde¥ values and values of CRSE statements

Additional code is generated to check if the index value lies
within the seecified arravy bounds, or if the value of the
selector exrression has a correspondis label in the CRSE
statement.

44

The expeansion of code and +the desradation in execution sreed mavy be
considerable for the ortions A and ¥; thevy are small for the ortions D,
G, and R.

If no ortions are selected with the Control Card the default conventions
aFe:
PPA-9CogDmsl +90=9sR= 9 X~¢

HOTE : The ortions B and ¥ should be used for debussing purrposes.

11. 2 Debugsing Rids

11. 21 PRSCAL Dume

B dumep is a snarshot of the eprosram. It can be reauested by the
rrogrammer with the standard procedure DUMP. If the arprorriate ortion
is used on the Control Card a PRSCAL dume is also siven automatically
after a run-time error occured

The FARSCAL dump chows the contents of the variables for each active
rrosram part at the time when +the dume was taken. In the case of
rrocedures and functions the values of the parameters come first. Then
follow the values of the variables in the same seauence as the variables
were declared in the correspondineg declaration part. The PRSCAL dume
further shows what procedures are active and from where they were
ralled. '

Two forms of +the dumep are possible: svmbolic and petal. A symbolic
dumr can only be sziven if the names of the variables are saved durins
compilation. Thic is done when the ortion & is used on the Control Card
or a »$S+e rrecedes the prosram part whose variable names of the
correspounding declaration part should be saved. The option is in effect
until a »$5~v is encountered. Only the variable names of siwmple tvees
and rointers are saved.

The dume aiven by the rrocedure DUMP is in symbolic form (pProvided the
necessatry information was saved during compilation). The octal form is
pblained when the ortion T is used on the Control Card.

The dume siven by the PRSCAL svstem in case of a run-time error is
svmbolic if oetion P is used on the Control Card and octal if oetion T
18 used.

The values of variables defired in the declaration part of procedures or
functions are rlaced on a stack, whereas the values of variables of the
nmaln rrosvam are assisned to fixed places. The programmer can reauest a
dump of stack or main prosram or both with the procedure DUMP:

GlMPCa dume stack and main rrogsram
DUMPOL dump stack onlvy
DUMPC2 gumpPp main Prosram only

45

Stack and main program are dumped when the dumep is caused by the PRSCAL
svetem. The dump is alwavs written to the standard file QUTPUT.

11,22 TRACE

Frocedure and function calls can be traced. The progsram part of the

rrocedure or function which should be traced must be preceded by P$Te+e .
The ortion is in effect until P$T-v is encountered.

Tracing is enabled or disabled by a rall +to +the standard procedure
TRRCE:

TRECECHS end tracing

TRERCECAL start tracine
The name of +the procedure or function called is
rrinted. If the svymbolic dume information is

available the values of the actual rarameters are also
rrinted.

TRACECZ D start tracins

Onlv the name of the procedure or function called is
rrinted.

