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Introduction

Ever since Zadeh introduced the concept of fuzzy set in 1965 [14],
numerous theoretical results and applications of fuzzy sets and relations
have been reported. One of the common weaknesses of literatures on fuzzy
sets, in our opinion, is that most proofs are tedious and long. One of
the purposes of this paper is to provide an algebraic framework for the
manipulation of fuzzy sets and relationms. Furthermore, by investigating
property or structure preserving relations between fuzzy relational systems,
we have initiated the development of a formal tool which seems to be quite
powerful in modeling systems processing soft information.

In section III, algebraic properties of fuzzy relations on a set
are investigated. Our investigation brings out quite naturally the impor-
tant resolution identity due to Zadeh [16].

Our concern in section IV lies in the concepts of structure preserving
relations between systems. Results parallel to the nonfuzzy case are ob-
tained here.

In section V, we consider applications to automata theory, clustering
analysis and Information networks using the results developed in sections

I11 and 1IV.



II.

Preliminaries
We will provide in this section basic terminologies and notations which
are necessary for the understanding of subsequent results.

A fuzzy (binary) relation R from a set X to a set Y is a fuzzy subset of

X % Y characterized by a membership functiom pR: X x Y~ [0,1]. For each

xe X and y e Y, uR(x,y) is referred to as the strength of the relation
between x and y. If X =Y, then we say R 1is a fuzzy relation on X. As

in the case of nonfuzzy binary relations, every fuzzy relation R on X can
be represented by a fuzzy graph consisting of a set of vertices X such that
there is a weighted arc connecting each pair of vertices Xi,Xj and the weight
on the arc (Xi,xj) is uR(xi,xj). Equivalently, R can be represented by

. . . th .
a fuzzy matrix, MR, whose {(i,3j) entry is uR(xi,xj).

In the following definitions, the symbols V and A stand for max and
min, respectively.

Let R and S be two fuzzy relations from X to Y. R is said to
be contained in S, in symbols, R C S, if uR(x,y) j_ps(x,y), for all
(x,y) € X x Y. The union of R and S, denoted by RU S, is defined by

vV lge The intersection of R and S, denoted by R/ S, is

Mrus T MR
defined by Hpag = Hp A Hge The complement of R, denoted by ﬁ, is defined

by Mg = 1i- Mo« The inverse of R, denoted by Rfl, is a fuzzy relation

from Y to X defined by u -1 = Mge
R

1f .R and S are fuzzy relations from X to Y and from Y to Z,
respectively, then the composition of R and S, denoted by R o S (or simply
by RS), is a fuzzy relation from X to Z defined by

B o S(x,Z) = \y/[uR(x,y) A us(y,Z)]., xeX, zelZ
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The n-fold composition R o R o oo OR is denoted by R",
n times

We assume here that basic operations for fuzzy matrices are Max and Min,
respectively., Note that MRS = MﬁMS

We may extend the composition operation to that between a relation and
a subset by creating two relations corresponding to each subset Y of a set
X as follows. Define Y to be a relation from {1} to X such that
(1, if x¢ ¥
u 1dx) =3

¥ 0, otherwise

Similarly, we define ¥ as a relation from X to {1} such that
r1,, if xe ¥

u_ (x1) =1
¥ |0, otherwise

In terms of matrix terminology, bi? is a Boolean row vector whose ith entry is
1 if x;, e Y, and is 0, otherwise. Similarly, My is a Boolean column
vector. It is easily seen that if R 1is a fuzzy relation from X to Y and
X' and Y' are subsets of X and Y, respectively, then X'R and RY' are
defined. |

The following identities and inequality follow directly from these defini-
tions.

) ®Hlor

b) @®S)F =5

¢) R{(SUT) = RS URT

d) (RS)T = R(ST)

-1, 1

e) (RU s)'1 =R U S



£) @®NS) ! =R 1Iinsg’?
g ®71=@DMH
h) R(SNT) < RSN RT

Inequality (h) cannot be written as an identity in general.

Several basic properties of fuzzy relations on a set are listed in

the following:

R is e~determinate iff for each x ¢ X, there exists at most one y € Y

such that uR(x,y) > €.

R is e-productive iff for each x ¢ X there exists at least one y ¢ Y

such that uR(x,y) > e,
R is an e-function iff it is both e-determinate and e-productive.

R is g-onto or e-subjective iff for each y € Y, there exists an x ¢ X

such that uR(x,y) > €.
R is g-injective (or e-into) iff it is an e~function and R ! is
e~-determinate.

R is e-one-to-one iff R and R ! are both e-functions. In the case

e =1, we‘will simply drop the prefix 1~ in the definition. Thus, a
1-function is simply a function.

We note that R is e~subjective if and only if R ! is e-productive.

Let R be a fuzzy relation on a set X. We define the following notions:

1. R is e-reflexive iff (Vx e X) {uR(x,x) > e]. A l-reflexive rela-
tion will simply be referred to as a reflexive relationm.

2. R is symmetric iff uR(x,y) = Mg (y,x) for all x, y in X.

3. R is weakly reflexive iff for all x, y in X,

uR(x,y) =g > uR(x,X) > €.

4. R is transitive iff R D R o R.
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III. An Algebra of fuzzy Relations
In this section we will show that the concept of similarity relation
introduced by Zadeh [16 ] is derivable in much the same way as equivalence
relation. Furthermore, through this derivation, the resolution identity
[ 16] is brought out quite naturally.
Lemma 1 If R is a fuzzy relation from X to Y, then the relatiom

RR is weakly reflexive, symmetric, and transitive.

Proof: 1) uRR—l(x,x')= \/[HR(X,Y) A UR—l(Yai)]
¥y

< \}{ [ (55 A up (%, ¥9) ] = pp-1(x,%)

Hence, RR ! is weakly reflexive.

ii) @R 17! = RR"!. Hence, RR ! is symmetric.

1) W ppm1y2(xx") Vo Tupe=1G6x") A tpp=1 (2", x")]
X"

158

\/;‘ \V lug (F3) A up=1(3-x") A up (y) A
x' y

VR_I(Y’X')]

IA

Vo [ug (5,3 A up (x',¥)1 = upp-10x,%")
_ y
Hence, RR lis transitive. ||

Let R now be a weakly reflexive, symmetric and transitive relation on
X, Define a fimily of non-fuzzy sets FRas follows:

= (K< X | G0<e<DI¥xeXxeRST (& e BOuxx") >ell} ()
We note that if we let

= (ReX | WxeXNlxe kT ¢x e BupGxx") > el (2)

then we see that g, <

e, =>FN - ® , where "=" denotes covering relation
1 2 € €

2 1
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i.e. every element in Fg is a subset of an element in Fg .
2 1

A subset J of X is called e-complete with respect to R iff
x,x' ¢ J){uR(x,x') > e]. A maximal e-complete set is one which is not
properly contained in any other e-complete set.

Lemma 2. FR is the family of all maximal g¢-complete sets with respect
to R for 0<e <1,

Proof: Let Ke FX and x e K. Then there exists 0 < € < 1 such
that x' ¢ K, uR(x,x') > e by (1). Hence K 1is complete. Next, consider
an e-complete set J which is not maximal. This means that there exists
a maximal e-complete set J' such that J< J', which implies that there
exists x' € J' - J. But since J' is e-complete, we conclude that for each x in J,
uR(x',x) > e. Hence, by (i) we must conclude that x' ¢ J, a contradiction.

Hence, J must also be maximal. ”

Lemma 3. Whenever uR(x,x') > 0, there is some e-complete set
K ¢ F* such that {x,x'} C K.

Proof: If x = x', then {x} is certainly e-complete for ¢ = uR(x,x).
Otherwise, if x # x', then since uR(x,x') = pR(x',x) by symmetry, and
uR(x,x) 3_uR(x,x') and uR(x',x') 3_uR(x,x') by weak reflexivity, we see
that {x,x'} is e-complete, where ¢ = uR(x,x'). Thus, {x,x'} is contained
in some e~complete set C. Denote by Ce the family of all e-complete sets
C' which include C. Then € is partially ordered under set inclusion and

hence satisfies the condition of Zorn's lemma. Therefore we conclude from

Zorn's lemma that Cs has a maximal element K. This element is also maximal



in the family of all e-complete sets since any sets including K must also
include C. Hence, K ¢ bey lemma 2, and the proof is completed. H

1t should be remarked here that sometimeszasubclassof'FR, satisfying con-
dition of lemma 3, will cover the set X. For example, let R be the fuzzy

relation on X = {a,b,c,d,e,f} given by the following matrix.

——

1 .3 .4 0 .4 .3
3 1 .2 .3 0 .3
4.2 1 .3 .5 0
0 .3 .3 1 0 0
4 0 .5 0 1 0
.3 .4 0 0 0 1

We see that the family three maximal complete sets {a,b,f}, {b,c,d} and
{a,c,e} satisfy the condition of lemma 3 but it does not contain the maximal
complete set {a,b,cl.

Let O and I denote two special relations on a set X such that for all
x,x' in X,

1y = Ty
uo(x,x y=0, uI(x,x ) = 1.

Lemma 4. If R # O is a weakly reflexive and symmetric relation on X,
then there exists a set Y and a fuzzy relation S from X to Y such that
R =SS L.

Proof: Denote by Y the set {K* [ K e FR},We define a fuzzy relation

S from X to Y as follows:

(x,K*) = o, if x € K and o is the largest number for which K ¢ F§.
Hg s 0 otherwise. (3

R
if uR(x,x') = o > 0, then by lemma 3, there is an a—complete set K ¢ F such
that {x,x'} ¢ K. Since

uSSﬂ(ng') = \K/* [us(x,K*) A Mg x",K*¥)] > o = uR(x,X'),
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we conclude that R < ss L,

Suppose now that uss—l(x,x') = B, Then there exists a K* ¢ FB such
that us(x,K*) = ps(x',K*). This means that {x,x'} < K and hence uR(x,x‘) > B.
Therefore, SS ! < R. ||

Combining lemmas 1 and 4, we have the following result.

Theorem 1. A fuzzy relation R # O on a set X is weakly reflexive and
symmetric iff there is a set Y and a fuzzy relation S from X to Y such that
R =SS L.

In the sequel, we shall use the notation &R to denote the relation S
defined in (3).

Definition 1. A cover C on a set X is a family of subsets Xi’ ie 1,

of X such that kj Xi = X.
iel

Lemma 5. If R is an e-reflexive relation on X then @R is e-productive
and for each &' < g, Fg' is a cover of X.

Proof: Since for each x € X, uR(x,x)_i e, and because {x} is
g-complete, there is some K in Fi,(e' < €) such that x € K. Hence, FS, is
a cover. Also, by definition of mR’ x € K implies that “qk(X,K*)'z; which
implies that 4R is e-productive. H

In the sequel, we shall use the term productive for 1-productive etc.

Corollary 1. If R is reflexive, then Pr is productive and each Fi
(0 < & <1) is a cover of X.

The following result is a consequence of lemma 4 and corollary 1.

Corollary 2. R is reflexive and symmetric relation on X iff there is

1

a set Y and a productive fuzzy relation S from X to Y such that R = ss 1.

Lemma 6. Let R be a weakly reflexive, symmetric and transitive rela-



tion on X, and let (p; denote the relation ?R whose range is restricted to
FE, Then for each 0 < e <1, t?i is e-determinate and elements of FE are
pairwise disjoint.

Proof: Let K and K' be two not necessarily distinct elements of Fi
and assume that KN K¥ # §. TFor any q; € K ONK', we have pR(q,ql) >g,
for all q in K and uR(ql,q') > e, for all q' din K'. Since R is
transitive, we see that uR(q,q') >¢e, for qe XK, and q' ¢ K'. Since R
is weakly reflexive and symmetric, we conclude that K J K' is e-complete.

However, since K and K' are maximal e-complete, we must conclude that K = K.

Hence, K # K' > KN K' = . Now since u €(x,K*) = g, and since x cannot

%
belong to any other sets in FR, @g.is determinate. ”

Definition 2. A similarity relation R on X is a fuzzy relation on X

which is reflexive, symmetric and transitive. R 1is called an g-similarity

relation if it is e-reflexive for some 0 < e < 1.

Since clearly reflexivity implies weak reflexivity, we have the follow-
ing consequence of lemmas 5 and 6.

Corollary 3. If R is a similarity relation on X, then for each 0 < g < 1,
Fs is a partition on X.

Note that corollary 3 says that every similarity relation R admits a
resolution (viaRa, where R is the equivalence relation induced by the parti-

a
tion Fi. Indeed, it was pointed out by Zadeh [16] that if the Ra’ 0 <ac<l,

are a nested sequence of distinct equivalence relations on X, with

o, > o, <>R C. R , R, is nonempty and domain of R, is equal to domain
1 2 a; T oo, 1 1

of Rz, then R = \,) Ra is a similarity relation on X.
a
The following result, which is a straight forward consequence of theorem

1 and corollary 3, offers another characterization of similarity relation.
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Theorem 2. A relation R is a e-similarity (0 < € < 1) relation
on a set X d1ff there is another set Y and an e-function f from X to

Y such that R = ff T,

Fuzzy Relational Systems

It was pointed out in the introduction that it is our contention here
that specific structural properties of a system are expressible in terms of
a family of fuzzy relations of finite ranks on a set. The purpose of this
section is to investigate properties of information or structure preserving
relations between systems having similar structures.

Definition 3. A fuzzy relation System (FRS) A is a triple [X,:,f],

where X 1is a set, I dis a finite alphabet, and f maps I to the family
of fuzzy relations on X. The image of a ¢ I under f will be denoted by
fa.

Two FRS A = [X,5,f] and B = [Y,0,g] are said to be similar systems
iff ¥ = Q.

The concepts of a structural preserving relation is familiar such as the
councepts of homomorphism in algebra and logic, homeomorphism in topology and
continuity in analysis. We shall extend a few of these familiar notions in
the following.

Let A= [X,5,f] and B = [Y¥,T,g] be two similar FRS. A fuzzy rela-

tion ¢ from X to Y is called a structural preserving relation between

A and B 1if, for each a e ¥ , it satisfies any of the following properties:

- 10 -



-1 »
a) fa Oga <O

-1 3 =1
b) g fa < gaU
¢c) oOg < £ O

-1 .
d) o faG < ga
e) faU < Gga

< -
£) og ¥ < £.X

-1 <= i <=
g) © faXc_:gaY.

Usually, depending on specific applications, a combination of the above
mentioned properties are selected to define the concepts of homomorphism,
continuity gtc. For our purpose, we shall only investigate the properties of
a relation satisfying three of the properties listed above.

Definition 4. Let A = [X,IZ,f] and B = [Y,I,g] be two similar FRS.

A fuzzy relation o from X to Y is called a generalized congruence (GC) be-

tween A and B iffVa e I, 0 satisfies properties (a), (£) and (g) given above.
Two special cases of GC are now listed.

1. o0 is called a e-congruence relation if A and B are identical and

o is an e-similarity relation.

2. o is called an e-homomorphism if it is an €-function.

Theorem 3. If O and 6 are GC between A = [X,I,f] and A' = [X',Z2,£"]
and between A' and A" = [X",I,f"], respectively, then o8 is a GC between
A and A".
Proof: For arbitrary x € X and x" € X", we have
Py - v [ 1]
ufglgﬁfg.;x,x ) = Vo [egm1g(x') A uﬁf;(x »x")]

x¥eX’? a



Since y _; (x,x') =3
q

-1 ¢+ i
(x",x) and the fact that o £ X ¢ f'X',
£ -1 a ~ ' a

g £
a a

we conclude that \/I uo_g x',x) < \v/ ﬁf:CX',Y) .
xeX o "f yeX' Ta

Hence, p _; (5x") <u _; (Hhx) A \/ ugo (x',y) we have
£

t
2 © o fa yeX a

el on(x,x") < \/ \/ [u (x",%) A g (X'HY) A Heen(x',x")]
f OSf 1 18 11] _l f Gf
a a x'eX" yeX o] fa a a

N/
< Y w4

,y) Auéfn(X',X")] . (4)
yox'eX' fa ! a

a

of

By a similar argument, we see that

u w(x',%) < U "(Xr’xn) A \/ va (X'sY)
6fa afa yeX' Ta

Hence,

(4) = \\/ [u -1 (x,y) A u -1 (Y:X")] = \/ [UG(X,Y) N US(BUX")] = uO‘(S(X’X") .
yeX fa cf; £ TSEY yeX'

Hence f~106f"<: oS.
a a—
Now oof"%" ¢ oE'%' £ X, and & Yo YfXc iR < £% .
at = "Ta5 = Ta’? a - a© = Ta
Therefore, o6 is indeed a GC between A and A" . ||
Let A = [X,2,f] be a FRS. Let Z+ denote the set of all finite

sequences of elements of I. We extend the notation by defining fw’ for

W e Z+ by the following rule: for 1lg(w) > 0, i.e. w = a,85...2 5 then

+ . . .
Let F' be the set of fuzzy relations which can be represented in the form

fw’ W e Z+. We have extended f to a mapping from Z+ to F+.
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Theorem 4. If o is a GC between A = [X,Z,f] and A' = [X',I,f'],
then for each we L ,
i) f—lof' C o,
w oW
i1) of'X' ¢ £X, and
W= W

e ""'1 % . '+'
iii) o wa g:fWX .

Proof: The theorem clearly holds in case w ¢ L. Now use induction
on the length of w. Assuming that (i), (ii), and (iii) hold for some

+
we L and let a ¢ ZI.

1) f£lgf = lf 1cf £, Cf] df C o.

wa wa

P / %
ii) gf £ X.(x 1) = \}/(' [ucf;](x,x ) A pfﬁ' (x,1)]

Now, since Uféﬁ‘g; fwﬁ by inductive hypothesis,

B (x,x") < / b &x'y < Vo (x,x") (5)
f y of 1 £
x'eX W x eX w
Hence, 1 o@D <V IV [V g (oxn Voo o 6x) 1T A wpg 1]
of '£'X ' w oy s of f
w a X xeX x X xeX W a

V Vo ole 4

x'eX' x"eX f f?(x sX') N }Jf;i' (X'a]—)]

i A

\/ V4 [y x",x") A uf.§, (x,1)]

x" x"eX

= Vo & < Vo & 6)
a x'eX Ta '

x'eX

By (5) and (6), we conclude that

V ne (%, X")) /\( \ Mg §(X")>

x"eX Tw x"eX Ta

Ucfv §1 (X’l) = ugf'f’ (Xal) __<_<
wa a

IA

pe g 1) = ng $(x,1)
w a wa
Hence (ii) holds. Similarly, (iii) holds. H
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Let A = [X,Z,f] be a fuzzy relational system. We define an operator
on the set of fuzzy relations as follows:

M@ = ) £ lof,
aclk

We will also use the notation XO(U} = g, and for k > 0,

@) = 5 o)), and 2@ = U aF@).
k>0

Lemma 8. Let A = [X,Z,f] be a fuzzy relational system, and let R, R,

ol

and S be fuzzy relations on X. Then

1 25U r) = U ACHE

iel iel
i) RS S+ A @R S A (S).
111) AT ®) = AT@®).

iv) A*(R) is the minimum of all fuzzy relations S on X such that
RC S and A(S) CS.

Proof: We will only prove statement (iv) here since statements (i), (ii)
and (iii) are quite straight forward.

To prove (iv), it is quite clear that A*(R) satisfies the two given
conditions, i.e. R.grk*(R) and k(k*(R)) g:x*(R). Let S be another rela-
tion satisfying these two conditioms, then A(R) C A(S) € S. Using induction,
it is clear that for any n > O, An(R)gg 2™ (s) C S. Hence, A*(R) < S and
this shows the minimality of A*(R).

Theorem 5. Let A = [X,IZ,f] and A' = [X',Z,f'] be two similar fuzzy
relational systems, and o0 a fuzzy relation between X and X'. Then
there is a unique minimum fuzzy relation m(o) between X and X' such

that (i) oC M(o) and (ii) U f;lm(c)f;g; m{o). Turthermore, if there is
ack
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o' between A and A' such that o< ', then

a generalized congruence

m(c) 1is the minimum such generalized congruence.
*
Proof: Let m(o) = A (o), then the first part of the theorem follows

directly from lemma 8.
Assume now that o' 1is a generalized congruence such that o C o',

Since m{g) is minimum over conditions (i) and (ii), we see that m{c) < o'.
Therefore,
aen 1ot <
m{o)E'X' C o"f'X' < T X.
at = a’ = "a

- ' &
Similarly, m{g) 1faX g;f;X'. Finally, it follows from the definition of

% -
A (o) that falm(o)f;‘grm(c), for each a e . Hence m{o) is the minimum

generalized congruence containing o. ||
Lemma 9. If ¢ is a generalized congruence on a fuzzy relational
system A = [X,3,f] which is symmetric and weakly reflexive, then fc is

such that for each a ¢ I, the relation

a GC between A and A' = [FO,5,f']
f; is defined by

fa fg fafg ﬁj iaqg '

We need to show that %% has the three properties

Proof:
1) £ fCy
a 'gha — g’
5 o £150
ii) ygtaF O and

aﬁ’
111) ¢ r X F.
To prove (i), we first note that

RS T

is a generalized congruence on A, by theorem 3, we see

PO 5 R
30-%@0 :Q?o

- 15 -

Since ¢ = Q0§;

f~1({ £' c £ iof
a

that !
g a— a a



To prove (ii), we have

X
a »

50 1,5 L 9 S .
$GfaF S Py T HGE : Gfa4qF ¢ af X < f

again utilizing the fact that o = Qd¢;l is a generalized congruence on A.

Yo

To prove {(iii), let £ §(K’1) = ¢, for some K ¢ ¥,

Let C={xeX |y -1 (K,x) = €}.

o °f
a

Clearly, for any two elements x, x' in C, we have

iuf'lq) -1 Gx') < ow o _GE") = u ")
a O’L‘?O' a g g

Therefore, € is an e~complete set with respect to the generalized congruence

o on A. By Zorn's lemma, C is contained in a maximal e-complete set K'

G

in F°. Hence, for each element x in K', we see that u, (x,K') > «e.

95

It is easily seen that u (K,K') > ¢ and p——— (X,K') > «.
97 e g B T B
g a'c g a'c
;e gl X £° s
Hence, | (XK,1) < K,1); d.e. ¢ °f c f . This completes
e SR o et = Ca
g "a a

the proof of the theorem.]l

The following result is a comsequence of theorem 2 and lemma 9.

Theorem 7. A fuzzy relation ¢ is an e-congruence (0 < ¢ <1l) ona
fuzzy relational system A if there is a similar fuzzy relational system Al
and an e-function 40 such that ¢c is a generalized congruence between A

~1

?5%6 )

it

and A' and o
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V. Applications

We will now give several specific applications of the concepts and
results introduced in the previous sections. The first application is to
automata theory in which we generalize the notions of structural and be-
havioral equivalence of nondeterministic automata discussed by Yeh [13] to
the more general fuzzy automata. The second application concerns with
pattern classification which arises naturally in the framework of fuzzy
relations. Finally, we discuss briefly the possibility of modeling infor-
mation networks using fuzzy graphs.

A. Application to Automata Theory

Definition 5. A fuzzy automaton M 1is a quadruple [Q,I,f,F], where

[Q,Z,f] is a fuzzy relational system in which Q is referred to as a set

of states, and F C Q is called the set of final states of M. Two fuzzy

automata M = [Q,Z,f,F] and N = [Q',I,f',F'] are said to be behaviorally

equivalent with respect to states q, € Q@ and q; € Q', denoted by

M N, , 1iff
q qo
(9x e z%)[q £ F = q'e1F"] 7

M and N are called structurally equivalent, denoted by M zc N, d1iff there

exists a generalized congruence ¢ from [Q,Z,f] to [Q',%,f'] such that
¥o - P and F'oTt C F.

Lemma 10. Let A = [X,I,f] and B = [Y,Z,g] be two similar fuzzy rela-
tional systems. If o is a generalized congruence from A to B, then

-1 -1
o £ 8,0 and og, g;fac.
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Proof: O 1is a GC implies that for each a e I, 0‘1fé§<; gé?, which

in turn implies that for each y e Y, there exists a y*¥ in Y such that

Ho_g +(%])§_ug (¥, 7%)
o] faX a

Hence,

(y e DEy* e DIExe D _;  G,x) S u, §59)] (9)

g °f a
a

G is a GC ¢=> (Na ¢ Z){f;lcga c ol

1 1

<> (Ya e Z)[gglc_ £.< o 7] o)
Let v be an arbitrary element of Y and y* be the corresponding element such

that y and y¥% satisfies ( 9), then from (0), we have

By g %3 = \v/ [ _G%sy") A w @D A (&xLx)]
g o fa x'eX g g fa :
a y'eY a
since oy Gex) <u (y%) by ( 9)
c °f g
a a
Thus,
\\/’
v ;% y)nw s A w &L = g (y,x%)
x’ g o £ g °f
a a a
. \ /
Since Viooln L G%y) Au L) A u &'Hhx)l<w ;g GFx,
¥
X g o f o °f
a a a a
we conclude that
vy GEm v g g (y%,x) <1 _;(5%,%) (11)
o L c 7f o]
a & a

By (9) and (11), we see that for each y e ¥

b, G < Gy A 50 2V I Gy A n G0
g

o Tf g, o y' 8

a
=u 6.0,

8,9
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Hence, for each a e I, o—lf gzgaa—l. Similarly, we can prove that

og, & £0. ||

Theorem 8. Let M = [Q,I,f,F}] and M' = [Q',Z,f',F'] be two fuzzy

automata over the same input alphabet I. Then M =0N implies M TN,
H Ty
for any q, and q, such that uc(qo,qo) 1.

Proof: We need to show that for each x e I¥, 3 £F = E
0 X

- . -> %
If x is the empty sequence A, then qofAF = 1 dif q, € F and is equal to
0, otherwise. Since ug(qo,qé) = 1 and To - f', we see that
- +V !+i
quI\F - qofAF .

Let now X = a,a R L%, we have

12
- % > <
qf¥ = qf £ .,.f F
0% o a;"a, a
c E'c"lfa £, ... f, ¥
© 172 n
>, -1
c aq'g o £ ...f F , by lemma 11
= *o®a a
1 2 n
>, -1« . .
< 9,8, < °8, g ¥ , by repeated application of lemma 11
1 n
c aggxﬁ' , since ¥o C P oes o IF o T,
.. > < > % -
Similarly, we can prove that q;gXF' < quXF , for each x ¢ I*, Hence, M ™ N.

B. Application to Pattern Classification
Utilization of fuzzy relations to pattern classification and cluster
construction has been discussed by several authors [1,3]. We will look at the

clustering problem from the viewpoint of fuzzy graph.
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Definition 6. A fuzzy graph G is a pair [V,R], where V is a set of

vertices, and R is a fuzzy relation on V. A vertex v 1is said to be

g-reachable from another vertex u, for some O < ¢ <1, iff there exists a

positive integer k such that uRk(u,v) > e. G is called strongly e-connected
iff every pair of vertices are mutually e-reachable. G 1is said to be initial
g~connected iff there exists v ¢ V such that every vertex u in G 1is
g~-reachable from v.

Following the usual convention between binary relations and boolean matrices,
we denote by MG the corresponding fuzzy matrix of a fuzzy graph G. In other

words, (MG)ij = uR(vi,vj).

The first part of the following result is due to Tamura, Higucchi and
Tanaka [8]. The second part is quite straightforward and hence is given with-
out proof.

Théorem 8. Let G = [V,R] be a given finite fuzzy graph, consisting of
n vertices.

(i) If R is reflexive, then there exists k < n such that

2. kK k+L
MG<MG<...<MG-ME

(ii) If entries of the main diagonal of MG are all zeros, then the sequence

{Mg} is eventually periodic.
i>1

The previous result is now applied to clustering analysis. We assume that
a data graph G = [V,R] is given, where V 1is a set of data and pR(u,v) is
a quantitive measure of the similarity of the two data items u and v. For
0 <e <1, an ege-cluster in V is a maximal subset W of V such that each
pair of elements in W is mutually e-reachable. Therefore, the comstruction

of e-clusters of V is tantamount of finding all maximal strongly e€-commnected
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subgraphs of G. An algorithm for the construction of e~clusters is now given.

i) computer R,Rz,...,Rk, where k is the smallest integer such

that Rk = Rk+1;

k .
ii) Let S =} R'. Note that S is a similarity relation;
i=1

iii) construct F€ of S.
Then, each element in FE is an e-cluster.

We may also define an e~cluster in V as a maximal subset W of V
such that every element of W 1is e-reachable from a special element v in
W. Imn this case, the construction of e-clusters is equivalent to finding all
maximal initial e-connected subgraphs of G. Note, however, that the relation
induced by initial e-connected subgraphs is not in general a similarity rela-
tion.

C. Application to Information Network.

A model of information network was proposed by Nance, Karfhage and Bhat
[5] utilizing the concepts of directed graph. The most significant result of
their work is the establishment of a measure of flexibility of a network. More
specifically, let N be a network with m edges and n mnodes, then the mea-

sure of flexibility of N, denoted by Z(N), is defined as follows:

m - n

z) = n{n-2)

12)

While equation (12) is quite useful in classifying certain graph struc-
tures related to information network, it also has some drawbacks in that it
is insensitive to certain classes of graphs. Also, it seems that the use of
fuzzy graphs is a more desirablie model for information network. The weights
in each arc could be used as parameters such as number of channels between
stations, costs for sending messages, etc. Thus, we propose here the use of a
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fuzzy graph to model an information network. Let N have wu nodes; we define

two measures (due to Y. Bang) of N: flexibility and balancedness, denoted

by Z{N) and B(N) respectively, in the following:

n

) Vou (v, ,v.)
z) = =1 4 5 b3 (13)
n(n-1)
Yol ) - ) w(v,v.)
B(N) = iij R k R K (14)

n{n-1)
It is readily seen that the proposed two measures given in (13) and (14)

are much more sensitive to the structure of graphs than the one given in (12).

VI. Concluding Remarks

We have investigated certain algebraic properties of fuzzy relations and
fuzzy relational systems in the previous sections. One of the main advantages
resulted in the development of such an algebra is that it greatly simplifies
the manipulation of fuzzy relation. Such a formal tool, it is hoped, will
readily lend itself to aid in exploring the wide spectrum of potential appli-
cations of fuzzy relational systems some of which have already been touched
upon in the previous sectiom.

Let us remark here that the main motivation for the investigation of
fuzzy logic and fuzzy relational systems came from the emergence of problems
involving decisions upon ill-defined classes of events in the general area of
artificial intelligence. Natural applications of fuzzy relational systems to
problems of pattern classification and system approximation have been mentioned
in the previous section as well as many other authors [2,6,9,15]. To conclude

this section, we would like to propose here a machine model for further in-
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vestigations, based on fuzzy relational system, which can perform computation

on soft-information, i.e. information pertinent to the classes of events which

cannot be defined precisely. In particular, the machine should have the capa-
bility of recognizing quantitive semantics. The machine model is developed
based on the following rétionales: (i) the machine can perform computation
when provided with soft data. However, the machine must make "hard" decisions
depending upon the global confidence value of the input words which is deter-
mined in terms of some internal interpretative scheme of the machine; (ii) the
machine must have the capability of trying out different alternatives. With
the above premises in mind, a description of the proposed machine model, which
is a generalization of the usual Turing machine with a reference table [1] is
given in the following: The machines consist of an input tape, a finite control
and a reference table. The input alphabet belongs to some finite soft algebra
[7]1. (It should be noted that, in general, some restriction should be placed
upon the algebra. For example, the natural restriction for the soft algebra
of fuzzy functions is that the grade of membership should only range over the
rationals). Upon receiving an input symbol, the machine will evaluate the
giobal confidence, initially set to zero, of that part of the input word re-
ceived so far based on the input symbol, current state, and the value of the
current reference table entry. A decision is made by the machine depending
upon the final confidence value of the input word relative to some pre-deter-
mined threshold value, and the terminal state of the machine. However, during
the course of computation, the machine will reset itself to some initial con-
figuration whenever the global confidence value of the input word at that
particular time fell below a given value.

We observe that the manner in which the proposed machine operates is
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similar to the sequential decoding algorithm (with backtracking) of recurrent
codes as are encountered in the communication engineering [10]. Therefore, we
believe that the machine being proposed can execute nondeterministic algorithms

discussed by Floyd [2], and perhaps fuzzy algorithms discussed by Zadeh [15].
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