MODEL VERIFICATION AND IMPROVEMENT
*
USING DISPROVER

by

L. Sikléssy and J. Roach

July 1973 TR-26

The Department of Computer Sciences

University of Texas at Austin

*
Work partially supported by NSF Grant GJ-34736.



X 1

Abstract

Confidence in the adequacy of a model is increased if tasks that are
impossible in the world are shown to correspond to disprovable tasks in ’
the model. DISPROVER has been used as a tool to test, in worlds of robots,
the impossibility of tasks related to various conservation laws (objects,
position, model consistency, etc.) and time constraints. The adequacy
and sufficiency of operators can be established. Interacting with DIS-

PROVER, the model designer can improve his axiomatization.
The frontier between "acceptable" and "ridiculous" axiomatizations is

shown, in many examples, to be a most tenuous one.



1. Introduction: the Need for Model Verification.

The simulation of mobile robots has been a continuing area of
interest [1-11]. Very early it was noticed [6] that robot simulation
and problem-solving systems for robots were not trivial. In particular,
the experience of other groups, as well as our own, indicates that errors
have an uncanny way of creeping into the models proposed to 'simulate par-
ticular worlds. The purpose of this paper is to describe a technique
--that of disproofs-- implemented in a computer program, DISPROVER (81,
that will help to verify the adequacy of a proposed model for robot-like
worlds. Moreover, DISPROVER can be used to improve the proposed axiomati-
zations for a model.

Our main line of thought, which will be exemplified several times,
is that the frontier between "acceptable” and "ridiculous" axiomatizations
of the world is a very tenuous one. What may appear as "insignificant"
changes in an axiomatization may make it impossible to accomplish a task
that is feasible in the real world, while some‘other "insignificant“
changes may render possible the accomplishment of a task which is impossible
in the world.

Let us assume that someone proposes an axiomatization AX for some
world W. (An appropriate problem-solver is associated with AX.) How
are we to judge of the adequacy of AX? AX will be all the more credible
if a variety of problems can be easily formulated and solved in AX, such that
the solutions obtained correspond to solutions that we expect to obtain
in W. But testing a model by giving it only solvable tasks to solve is

insufficient. Taking an extreme position, let us suppose that all prob-
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lems, meaningful or not, solvable or not, have a solution iﬁ AX. Then
AX would be inacceptable as a model, since it would give solutions to
problems which we know have no solution in W. Hence, to show the ade-
quacy of AX it is necessary to demonstrate that a variety of problems
that are impossible in W can be easily formulated and shown to have
no solution in AX. The model becomes highly credible if:

a) problems that have, or that we expect or suspect to have, solutions
in W can be solved in AX, in such a way that the solution in AX
satisfies our knowledge of or intuition about solutions in W;

b) problems that have, or that we expect or suspect to have, no solution
in W can be disproved in AX, i.e. shown to have no solution.

We can say that AX is a perfect model of W if any problem is
solvable in W if and only if it is selvable in AX, or impossible in
W if and only if it is disprovable in AX. If W 1is the real physical
world, then a perfect model does not appear achievable. At best, we can
increase our confidence in a model by gaining experience with solutions
to solvable or disproofs to impossible tasks.

In the next two sections we review some axiomatizations that have
been used for robot worlds and briefly describe DISPROVER. 1In the sub-
sequent sections we give examples of almost identical axiomatizations which,
in one case lead to acceptable results, while in the other they violate
some conservation law in W, or lead to results that are inacceptable
for other reasons. Finally, we show how DISPROVER can be used to improve

already "adequate' axiomatizations.



2. Axiomatizations of the World.
The set theory cum predicate calculus axiomatization introduced
in [1] has been popular in axiomatizing robot worlds. It is briefly
reviewed here.
The world is described as a set of true facts that bold in the world,
for example: o
(NEXTTO ROBOT BOX2) (STATUS PAIL3 FULL) (CLOSED DOORAB), etc.
Changes in the world are the result of applications of operators
to the world. An operator, for example goto-object(object), is applicable
to a world WORLD1l, if the preconditions of goto-object are satisfied in
WORLD1. One axiomatization of goto—object* would have preconditions:
(ONFLOOR) (INROOM ROBOT place) (INROOM object place), where object is the
Yargument of goto-object, and place a free variable that must be bound.
After applying an operator, the old world is changed into a new world
by use of the add set and delete set of the operator:
new-world:= ((old-world - delete-set-of-op) + add—set—of-opj where "-"
and "+' are set difference and union.
An axiomatization of the add-set and delete-set of goto-object could be:
Delete-set: (ATROBOT $) (NEXTTO ROBOT $);
Add-set: (NEXTTO ROBOT object);
where "$" is a universal variable that will match anything.
A task is specified as a set GOAL of conditions that the world must
satisfy. The goal is achieved if we find a sequence of operators

OPys OPys ++v 5 P> which transform the initial state of the world into

*
A restriction of goto2 in [1], called goto2a in [6].
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a world that contains GOAL as a subset,

The above type of axiomatization is far from perfect. For the
purposes of this work, we have extended the axiomatization in the follow-
ing directions:

a) conditional statements and functions are allowed in the precondition,
add and delete sets.

b) the bindings of free variables can be forced, or can result from
computation.

However, the world is still a set of true facts.

Hendrix [10] has proposed an axiomatization that incorporates expli-
cit time references and spontaneous activities (such as the growing of
grass), while Sikldssy and Dreussi [11] allow negative facts --such as:
BOX2 is not in ROOMl-- to be present in the description of worlds, pre-
conditions and goals.

The robot problem-solver used in this study is a modification of
IAWALY [7] that incorporates the extensions a) and b) above to the
axiomatization. It will not be discussed here, since our main emphasis is

on DISPROVER, which will be briefly sketched in the next section.



3. Sketch of DISPROVER.

DISPROVER is an implementation of the technique of hereditary parti-
tions [8] to disprove statements about robot-like worlds. DISPROVER can
be applied to find disproofs in any system which describes successive
states by a set of true and false conditions, independently of the form
of the operators that transform one state into another.

An example will help to illustrate the working of DISPROVER. We
take the world of Figure 1 (as used in [1,6,7]) and change it so that if
the robot goes through the door to the room containing the location G,
then the light turns off. To turn the LIGHTSWITCHl on, the robot must
be (ON ROBOT BOX1) and the BOX1 must be (NEXTTO BOX1 LIGHTSWITCH1l). We
wish to show that the task:

‘(STATUS LIGHTSWITCHI ON) (ATROBOT G), is impossible, i.e. we wish a dis-
proof of this task.

DISPROVER uses two sets of predicates for disproofs:

a) anchor predicates, which are always the predicates (made positive

if necessary) in the statement of the problem to be disproved. Here
the anchor predicates are P1 = (STATUS LIGHTSWITCHL ON); P2 = (AT ROBOT G).

b) refinement predicates, which are additional predicates used in the

disproof. 1In a particular disproof (see section 9), the following refine-
ment predicates were usedf

P3 = (INROOM ROBOT ROOMD); P4 = (INROOM ROBOT ROOMA); P5 = (ON ROBOT BOX1);
P6 = (ONFLOOR); P7 = (NEXTTO ROBOT BOX1).

The union of anchor and refinement predicates is the set of relevant predi-

cates.



We are developing automatic ways of generating refinement predi-
cates. For the purposes of this work, it will be assumed that the
refinement predicates are furnished by the model designer.

The partitions generated by DISPROVER are described by the presence
or absence of each relevant predicate in the partition. The initial
partition is obtained by intersecting the set of relevant(pfedicates
and their negatives with the initial state of the world. In our example,
the initial partition is: -P1 -P2 -P3 P4 -P5 P6 -P7.

From the initial partition, all relevant operators to the problem
--that is, which can modify one of the relevant predicates-- are applied
to generate new partitions. The disproof terminates if either:

a) the goal set is a subset of one of the partitions; or

’b) no new partitions can be generated.

In case a), the disproof fails; while in case b) the disproof succeeds:
the goal is not achievable, since the partitions are closed under all
legal operators, and the goal is not a subset of any partition.

It should be noted that DISPROVER allows initial, intermediary and
final states to be specified using the negation of predicates. For exam-
ple, we could have tried to disprovef
(STATUS LIGHTSWITCH1 ON) — (AT ROBOT G); however the disproof would have
failed (case a) above), and indeed the goal state thus specified is
achievable. 1In general, though, the failure of a disproof does not imply
that the goal state represents a solvable problem. DISPROVER always
terminates, since the maximum number of partitions that can be generated is:

- 2(number of relevant predicates)

N In successful disproofs, the number

of partitions generated is at most (N—l),wénd in actuéirpractice, whether

DISPROVER succeeds or not, it usually generates far fewer partitions than
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N. The disproof of the above example was obtained using only 7 partitions.
We now turn our attention to applications of DISPROVER to the veri-

fication of the adequacy of models.

4. Adequacy Verification: Conservation Tests.
DISPROVER makes it possible to attempt to verify that a goal is impossible.

We shall concentrate on negative tests of a model, that is, on interesting

problems that should not be solvable in the model. By contrast, positive
tests would be (hard) problems that should be solvable in the model. Positive
tests will be ignored here.

’A large class of interesting negative tests can be categorized under

the label of conservation tests. Similarly, in physics, many conservation

laws hold: conservation of energy, of momentum, of parity, of charge, etc.
(at least in many physical systems.)
4.1 Conservation of Objects.

Unless specifically permitted, objects cannot appear or disappear in
the world.* For example, in the worlds of [1, 6, 7], we can disprove
(NEXTTO ROBOT BOX5), where BOX5 is not in the world. The disproof took

2.3 seconds in interpreted LISP on the CDC 6600.

Returning to the axiomatization of goto-object (section 2), one could
have argued cleverly as follows: the boxes cannot move out of ROOMA, hence
the test (INROOM object place) is superfluous. Furthermore, since the only
case when the robot can go next to an object is when she is in ROOMA, we
could replace the precondition (INROOM ROBOT place) by (INROOM ROBOT ROOMA).
The precondition set of goto-object would become:

(ONFLOOR) (INROOM ROBOT ROOMA).

However, the task (NEXTTO ROBOT BOX5) is nmow solvable by LAWALY [71 in

0.3 seconds (interpreted LISP on the CDC 6600). For that matter she could

also be (NEXTTO ROBOT RAQUEL-WELCH), whether RAQUEL-WELCH is a box or not.

#We assume the world fully known to the robot.
-8 -



4.2 Conservation of Position,

The robot and objects in its world cannot be simultaneously in two posi-
tions at the same time., We give two examples of models where in fact the
conservation of position could not be proved --since it could be violated--
and how minimal changes in the axiomatization permitted the conservation to
be verified using DISPROVER.

4.2.1 Robot next to two boxes at the same time,

In {1], a box could be pushed next to another box by means of the operator:
push(objectl object2);

Preconditions: (PUSHABLE objectl) (ONFLOOR) (NEXTTO ROBOT objectl)
(INROOM objectl place) (INROOM object2 place);

Delete set: (AT ROBOT $) (AT objectl $§) (NEXTTO ROBOT $)

(NEXTTO objectl $) (NEXTTO $ objectl);

Add set: (NEXTTO objectl object2) (NEXTTO object2 objectl)

(NEXTTO ROBOT objectl),

The goal (NEXTTO ROBOT BOX1) (NEXTTO BOX2 ROBOT) --where BOX1 and BOX2
need not be next to each other-- is achievable, and is solved by LAWALY in
3.1 seconds [7]. The same goal becomes impossible if (NEXTTO $ ROBOT) is
added to the delete sets of goto-object and push(objectl object2). The dis-
proof took 3.4 seconds.

4,2.2 Box blocking two different doofs at the same time,
In [2], a block operator was introduced. Its axiomatization was:

block (door room box);

Preconditions: (INROOM ROBOT room) (INROOM box room)
(PUSHABLE box) (UNBLOCKED door room)
(JOINSROOM door room room2);
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Delete set: (AT ROBOT $) (AT BOX $)

(UNBLOCKED door room) (NEXTTO ROBOT $)

(NEXTTO box $) (NEXTTO $ box);

Add set: (BLOCKED door room box) (NEXTTO ROBOT box).

It is then possible to block two (and more) doors with the same box.
Blocking two doors took 6.9 seconds [7]. If the axiomatization of block is
changed, and we add (BLOCKED $ $ box) to its delete set, the same task is dis-
proved in 0,7 seconds.

4,2.3 Box in two different places at the same time.

‘Extending the above axiomatizations to allow boxes to be pushed to
locations, we disproved the statement: (AT BOX1 LOCl) (AT BOX1 LOC2) in
0.5 seconds,

It should be noticed that a variety of predicates are used to indicate
the position of the robot. She can be AT a location, ON a box, NEXTTO a door,
IN a room, ON the FLOOR, Similarly, boxes could be AT a location, BLOCKing a
door, NEXTTO another box, etc. The variety of these predicates makes it diffi-
cult to check the conservation of position in the model. Hence, other axio-
matizations should be investigated. Although we shall come back to this point,

we can already draw a lesson from the above examples: the axiomatization should

make it easy to disprove negative tests.

4.3 Conservation of model consistency.

When the world includes mutually exclusive predicates, interesting nega-
tive tests are immediate. For example, a door must be open or closed [12], a
light must be on or off (but not both), ete. In the world of [1, 6, 7], a
disproof to the second statement is found in 0.6 seconds.
4,4 Conservation of asymmetry.

Certain properties of the world are asymmetric., TFor example, (ON BOX1 BOX2)
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and (ON BOX2 BOX1l) cannot be true at the same time. We have not experimented
with this type of conservation, although it might be a good negative test in
some worlds,
4,5 Conservation of identity.

A box cannot become a door, and a certain door may not initially conmnect
ROOMA and ROOMB, and later ROOMC and ROOMD. This conservation of identity

appears difficult to violate in our experience.

5. Deadlock Conditions.

Besides conservation tests, interesting negative tests for models of the
world include tests of deadlocks, of the necessity of operators and of time
constraints,

A deadlock arises when resources are needed to continue a task, but none
of these resources are available. When deadlock occurs, a task cannot be
achieved, so one might be able to disprove the task. Sometimes a small change
in resources makes it possible to break the deadlock. An example will illus-
trate the problem.

Suppose that a book is on a bookshelf, and the robot needs to climb on a
ladder to reach the book. One ladder, LADDER1, is complicated and the book is
needed for instructions to climb LADDER1. The task given to the robot is to
have climbed LADDERL.

If LADDER] is the only ladder in the world, the task is disproved in 0.6
seconds., If a second ladder exists in the world, a solution is found in 4.8
seconds. The solution is time-consuming since first the robot planned to
carry LADDER] to the bookshelf. However, she could not climb LADDERL, missing
the book; so she jumped back in the past of the plan, and planned to carry the

second ladder to the bookcase. From then on no difficulties are encountered.

- 11 -



The set axiomatization used for robot worlds is weak in arithmetic capa-
bilities, and impossible tasks based on a more accurate count of resources --such

as those described by Simon [13]-- are not presently within its capabilities.

6. Necessity of Operators.
In armodel, operators are sometimes introduced to accomplish certain subgoals.
To test the adequacy of an operator, we wish to:
a) accomplish examples of the subgoals with the help of the operator;
b) disprove examples of the subgoals if the operator is removed from the set of
operators available to DISPROVER.
For example, in LAWALY's world [7] a dirty room cannot be made clean unless

it is swept.

7. Time Comstraints.

Although time is not explicitly represented in the representation of the
world used, it is represented implicitly. If WORLDJ is obtained from WORLDI
by the application of one or more operators, them WORLDJ has an implicit time
label greater than WORLDI. A number of interesting negative tests can be built
around requirements for time sequences. One example occurred to us when
axiomatizing a robot which carried boxes. After she went through a door from
ROOMA to ROOMB, the box she was carrying was still in ROOMA!

Let us assume that, by the use of DISPROVER described in section 6, we
have assured ourselves that the operator putdown(object) is necessary to put down
an object held by the robot. It now suffices to disprove the goal:

(INROOM ROBOT ROOMB) (INROOM BOX ROOMA), from the initial world:

(INROOM ROBOT ROOMA) (INROOM BOX ROOMA) (HOLDING BOX), where DISPROVER is not

given putdown as an operator.
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8. Local Actions.

Many actions by the robot are possible only if the robot is in close
proximity to the objects upon which she is going to act. For example, she
cannot push a box unless she is close to it; she cannot turn a light on unless
she is near the corresponding lightswitch. The border which separates apparently
correct axiomatizations from faulty ones, in which actionsare performed from a
distance, is very thin. Let us illustrate by an example.

In [1, 6, 7] the turnonlight(lightswitch) operator is axiomatized as:
Preconditions: (TYPE lightswitch LIGHTSWITCH) (ON ROBOT BOX1)

(NEXTTO BOX1 lightswitch);
Delete set: (STATUS lightswitch OFF);
Add set: (STATUS lightswitch ON).

Let us assume that the lightswitch is triggered as soon as the robot is
high enough, that is after it has climbed on BOXl.* 1In this way, the precon-
dition (NEXTTO BOX1 lightswitch) is no longer necessary. But then, if BOX1
happens to be in another room, for instance ROOMD, nothing prevents the robot

from turning the light on from that ROOMD!

9. Modelling Criteria and Local Adequacy.

Even though a particular model appears adequate in the sense that appro-

priate negative tests have been disproved, a consideration of the disproofs

may lead the designer to further improve the axiomatization. Let us consider
an example.

The impossible task described in section 3:
(STATUS LIGHTSWITCH1 ON) (AT ROBOT G), cannot be disproved using only the two

anchor predicates. Let us demonstrate how the disproof fails: from the initial

*Devices using photoelectric cells could make this arrangement quite feasible.
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partition -P1 -P2, the goto operator permits a transition to the partition

-P1 P2. The fact that the robot is at G does not violate the preconditions of
the operator turnonlight; hence we pass to the partition P1 P2, which contains
the goal that we are trying to disprove. Hence the disproof fails.

With the axiomatization of [1, 6, 7], the refinement predicates P3, P4,

P5 and P7 appear necessary for a disproof. Intuitively though, we feel that

the reason that the two tasks cannot be achieved simultaneoﬁsiy is that the
robot must be in ROOMD to go to G, and as soon as she enters ROOMD the light

is off, and cannot be turned on without leaving ROOMD. The disproof should

have nothing to do with the robot's being on BOX1 or not, etc! Hence, what
appears crucial is information about the two rooms, ROOMA and ROOMD. Indeed, a
shorter disproof can be obtained using only the refinement predicates

(INROOM ROBOT ROOMD) (INROOM ROBOT ROOMA) if the axiomatization of turnonlight
is changed: the preconditions set of turnonlight must be augmented with (INROOM
lightswitch room) (INROOM ROBOT room).

The above example shows an improvement in the axiomatization resulting
from a successful, yet intuitively unsatisfactory, disproof. Unsuccessful
disproofs can also help the model designer. When a disproof fails, he is given
indications of the weaknesses of his axiomatization. Returning to the above
unsuccessful disproof without refinement predicates, the designer can see that
the disproof fails because in a world reduced to a description in terms of only
Pl and P2, nothing prevents the robot from turning the light on from G. His
knowledge of the physical world shows the fallacy of such an action, and he
may be led to add the refinement predicate P3 = (INROOM ROBOT ROOMD), and
require turnonlight to include the two added preconditions we have just men-
tioned. As DISPROVER is re-entered, the disproof fails again: from

the partition 4Pl P2 P3, she can turn the light on. Indeed, the preconditions
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to turnonlight are not contradicted by the partition, since the precondition
(INROOM ROBOT ROOMA) is not contradicted by P3 = (INROOM ROBOT ROOMD); it could
only be contradicted by —(INROOM ROBOT ROOMA), which is not known in the parti-
tion. As before, the designer would be led to add the refinement predicate

(INROOM ROBOT ROOMA).

10. Conclusions.

To increase our confidence in the adequacy of a model, a variety of
problems solvable in the world should be solvable in the model, and a variety
of impossible goals in the world should be disprovable in the model. DISPROVER
is a tool that can be used to verify that impossible goals in the world do
indeed correspond to disprovable goals in the model.

Among the many impossible goals that should be disproved in a model of a
mobile robot, we have given examples of tests involving conservations --of
objects, position, model consistency, asymmetry and identity--, cases of dead-
lock, and time constraints. DISPROVER can also help verify that operators
really do what they are supposed to do, and no more,

As DISPROVER generates, or fails to generate, disproofs, the designer of
the model may be led to modify his axiomatization. When DISPROVER fails, it
indicates the possibility of transitions (between states) which, although
undesiragle, have been overlooked. Even a successful disproof may be intui-
tively unsatisfactory if it requires details peripheral to the designer's
intuition of the situation.

The use of DISPROVER was exemplified with the help of a variety of very
simple examples. Even in such simple examples, the designer's intuition
was often found at fault, Perhaps he is not to be blamed, since the divid-
ing line is most thin between 'correct'" axiomatizations and 'ridiculous"

axiomatizations that permit the accomplishment of forbidden tasks,
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