75

2) 1If the error cannot be located exactly in 1) then
tracing through the program by hand or by inserting
printouts in the approximate area will be necessary.

2. How can the error be corrected?
a. What exactly is the error?
1) State what the error is.
2) State what type of error it is, e.g., logic.
b. What can be done to correct the error?

1) 1If it is a syntactic or semantic error, change the
statement(s) so that they satisfy the rules of the
language.

2) 1If it is pragmatic, alter the statement(s) so that
they reflect the meaning of the language structures
defined for the language.

3) 1If it is a logic error, reevaluate the work that
has been done, starting with Problem Analysis. Work
through all steps including Program Coding and
Program Testing, being careful to correct all phases

of the work besides the program code.

Step 9 - Documentation
The Documentation step is concerned with the production of
written records which give information about the program and its relationship
to the surrounding environment. This information may be of several
different types depending upon the requirements of the users of the

documentation. Documentation is especially important in the commercial

76

environment where it includes such items as feasibility studies, system
design, detailed program logic, operation procedures for running the
program, user instructions, and management aids [Gray and London, 1969,
pp. 14-16]. This extensive documentation is used for communication not
only between the producer of the program and the user(s) but also between
the programmers who write the program. Because of the importance of this
kind of documentation, standards of various types have been devised in an
effort to provide consistent guides for its production [Gray and London,
1969]. Even when the program is intended for the personal use of the
programmer, certain documentation is a wise investment for use both during
program development, e.g., that which is produced during each step in

the programming process and used in subsequent steps, and afterward
during program utilization; such documentation is the objective of this
step in the transformational process.

Documentation as a step in the transformational process is not
accomplished all at once after the program is completed. Certain
documentation information should be available from work done throughout
the programming process. Once the program is completed a summary of that
work plus a description of the completed program should be made which
can be used both as an aid to using the program and as a basis for program
modification, if it is necessary. The summary documentation should include
the following basic information:

1) Program Definition Description which describes the purpose
of the program, the inputs to the program and how to prepare
them, and the outputs from the program and how they appear.
This should include all the information needed to use the

progranm.

77

2) Program Logic Description which details the logic of the
program. This may be in the form of a systems flowchart,

a more detailed program flowchart and/or decision tables along

with a narrative explanation of the following:

a) the purpose of each variable used

b) the purpose of each subprogram along with its inputs and
its outputs

This should include enough information so that in case of

errors, it can be used for debugging purposes, and in case

of necessary modifications, it can be used for updating the

program.

3) Program Listing which gives the entire program. Included
in this should be some commentary which gives a brief
summary of each part of the program as to its purpose.

The Documentation step takes information from other steps in
the transformational process. It starts with the information about the
purpose of the program and what its inputs and outputs are — this from
the Problem Definition step. It also takes the information about the
explicit form of the inputs and outputs; this may come from either the
Problem Definition step or the Solution Plan step. Detailed flowchart
and narrative information about the program comes from the Solution Plan
and Algorithmic Description steps which has been updated to reflect the
completed program. Of course, the program listing comes from the
completed Program Coding, Program Testing, and Debugging steps. The
commentary in the listing itself may be inserted during Program Coding

or it may be inserted during this Documentation step.

78

Specifications for Documentation

1. What information is necessary so that the program can be

used?

a. List the purpose of the program.

b. List the inputs to the program along with
1) the input media
2) the field specifications for each input
3) the relationships among the inputs, i.e., which ones

are dependent upon others and what is their relative
ordering

c. List the outputs from the program along with
1) the output media
2) the form of each output

d. List any options which may be used, e.g., suppression of
certain outputs, etc.

e. List any other auxiliary information about using the
program on the computer system, e.g., field length,
time limit bounds, etc.

2. What information is necessary for use either in debugging

or modifying the program at some future time?

a. Describe the overall program logic by giving
1) the relationships among the main program and subprograms
2) identifying the purpose of each subprogram
3) identifying the inputs to and outputs from each

subprogram

This may be in the form of a systems flowchart with an
accompanying verbal description
b. Describe the details of the program by giving
1) the inner workings of the main and subprograms
2) identifying each variable used, both as to its
purpose and its data structure and values

This may be in the form of a program flowchart or

decision tables with an accompanying verbal description.

3. What information is needed to provide the total program
description?
a. Provide a complete program listing
b. Include brief comments in the listing which identify
the following:
1) Purpose of each subprogram or other logical segment

2) Purpose of each variable

Step 10 - Re-analysis

The Re-analysis step in the programming process is not really a
step which contributes to the production of the program which has been
completed; however, this step is included in the transformational process
since it contributes to the overall development of the programmer and his
skills. By looking back over not only the completed program and its
documentation but also over the methods used in developing the program,
the programmer may observe new problem solving methods, new program
design methods, and new language structure construction methods which he

can consciously add to his repertoire of programming tools. He may also

79

30

wish to pursue some tangential ideas or try to clarify some uncertainties
about a programming problem which he programmed around at the time. He
may question himself about how the new ideas he has observed or used
during this last programming task can be utilized on other problems, and
he may also ask himself what things he would do differently in the task

he has just completed if he had to do it all over again. Such re-analysis
is, of course, applicable to any problem solving task [Polya, 1957,

pp. 14-16, 61-64]. It can be especially useful in programming where a
better way to do some task may result in less time being spent on producing
a solution plan or in a shorter solution plan, both of which are desirable
goals.

The goal, then, of the Re-analysis step is to evaluate the
program and the methods used to produce it in an effort to increase
programming skills. Two levels of perspective are needed here. First,

a close view of the products of each step in the process and the program
itself is useful in establishing why certain aspects of the products and

the program were constructed the way they were. Second, a broader view

of the entire process used in producing the program is useful in establishing
why certain methods were used instead of others. Therefore, the Re-analysis
step needs the products of all the steps in the transformational process

as a basis for evaluation. The product of this final step in the
transformational process is a summary of new techniques to be added to

the repertoire of the programmer; it may also contain modifications to

already established techniques as well.

81

Specifications for Re-analysis

1.

What new aspects of language structure construction have
become apparent during the programming process?
a. List any new language structure used in the program
which has not been used previously giving
1) the reasons why it was used
2) the applications for which it seems potentially useful
3) its advantages over other language structures
4) its disadvantages
b. List any language structure which was avoided (or was
programmed around) giving
1) the reason why it was avoided
2) the result of attempts to clarify its use, either
as a result of consulting someone else or the
literature or as a result of special programming
tests using that language structure
c. List any language structure which, while not being
available at present, would be convenient to have, giving
1) the reason why it would be useful
2) a possible way to implement it
What new aspects of program design have become apparent
during the programming process?
a. List any new programming concept which was used for the
first time (this may be a type of data structure, a new

way of organizing subprograms, etc.) giving

82

1) the reasons why it was used

2) the applications for which it seems particulary useful

3) its advantages

4) its disadvantages

List any new programming concept which, although it was

not used, was considered as being a potentially useful

one, giving

1) the reason why it would be useful

2) its advantages over presently used programming
concepts

3) its disadvantages

What new aspects of problem solving, especially useful for

programming, have become apparent during the programming

process?

a.

List any new approach consciously used in the programming
task (e.g., a process described in the literature such

as "step-wise refinement') giving

1) how satisfactorily it worked

2) its advantages

3) its disadvantages

Looking over the entire process, describe the kinds of
problem solving processes which were used (e.g., are
search paths depth first or breadth first in establishing
solutions?) and how satisfactorily they worked. How

could they be improved?

83

Describe how the given problem could have been approached
differently and how the subsequent program could have
been alternatively produced considering the results of

this re-analysis.

CHAPTER 3

APPLICATION OF THE METHOD TO AN INTRODUCTORY COURSE

3.1 1Introduction

This section describes how the proposed method for designing
programs can be incorporated into an introductory computer science course.
The incorporation of this method takes place in two different contexts.

The first context is that of including the method in the content of the
course. This is, of course, the most obvious. The second context is

that of using the method itself as the basis for the entire course

structure; that is, all course content is presented within the framework

of the proposed method. This latter use of the method alters the orientation
of the course from that which normally exists. Before proceeding to the
specific aspects of utilizing the method, a brief description of the course

is given.

3.2 The Introductory Course

The introductory computer science course used for the basis of
further discussion is patterned after Course Bl — Introduction to Computing
as described in "Curriculum 68" [ACM, 1968, p. 156]. The course is
normally encountered at the freshman level and it is the prerequisite for
all subsequent computer science courses. Students taking the course
should have had three units of high school mathematics (recommended by

"Curriculum 68") or at least high school algebra.

Course objectives

The purpose of this course, as stated in "Curriculum 68," is to

84

85

"provide the student with the basic knowledge and experience necessary to

use computers effectively in the solution of problems' [ACM, 1968, p. 156].

A student finishing the course, in light of the above goal, should be

able to meet the following objectives:

1)

2)

3)

4)

He should be able to write computer programs of moderate

difficulty, in at least one higher level language, which

are

a. solutions to given programming problems

b. correct, i.e., produce correct output

¢c. well-designed

d. tested

e. debugged

f. documented

He should be able to analyze programs well enough to

a. explain the mechanics of the program, i.e., trace through
the statements, giving values generated, paths followed, etc.

b. state if it is correct, how efficient it is, how well
organized it is, and how it can be improved.

He should be able to discuss the various aspects of the

programming task, especially the steps involved in the task.

He should also be able to discuss how the steps relate to

each other and to the design of the program and how the

program characteristics relate to program design.

He should be able to discuss

a. the organization of a computer and of a computer system

b. the general history of computers

c. some applications of computers

86

Course content

1f the student is to meet these objectives, he must be presented
adequate course content and he must gain experience in working with the
information presented. The course content required to support the objectives
can be classified roughly into four categories. These are
1) background information — this includes the historical
background of computers, the organization of computers and
computer systems, the applications of computers, and any
other information needed for the student to interact with
the specific system being used
2) programming concepts — this includes those concepts commonly
used in the programming task which transcend the specific
language being used; for example, the concepts of data,
instruction, and iteration are applicable to the programming
task whether LISP, COBOL, or MIX is used
3) language concepts — this includes all elements of the
specific language being used and how the elements can be
legally combined to produce concrete applications of the
programming concepts
4) a method for designing programs — this is a method which
encompasses the entire programming task and which incorporates
general problem solving techniques in the designing of
progranms
The course content outlined in "Curriculum 68" is adequate for the first
three categories listed; however, no method for designing programs is

suggested. The proposed method for designing programs is, therefore,

87

to be included in the course content outlined in "Curriculum 68" to give
the introductory course a content which will support the objectives.

TIn order for the student to gain a working knowledge of the
course content, he needs practice, especially on those aspects which require
working skills on his part — namely, writing and analyzing programs.
Practice will be, then, of two forms. There will be exercises over new
concepts. There will also be the application of the method for designing
programs to various programming assignments. Specific discussion is given

later concerning these exercises and assignments.

Course structure

The course structure commonly used for introductory courses is
centered around the presentation of a new programming concept and its
transformation into a concrete language representation. For example, if
the new concept of iteration is introduced then emphasis is typically
placed on the comstruction of iterative structures in the language being
used. Naturally this is an important part of the programming task;
however, it is also important to establish how the new concept fits into
the programming task as a whole. Questions such as the following should
not be overlooked:

1) what characteristics in a given problem may indicate the

use of this concept?

2) what characteristics in a solution plan may require the

use of this concept?

3) what ways can this concept be represented algorithmically?

4) what ways can this concept be represented in the language

being used?

88

5) what special characteristics does this concept possess
which should be tested for?
6) what are common errors when this concept is used in a
program?
7) What characteristics will the program possess as a result
of this concept?
1f the student is to learn to construct programs which are well-designed,
he must see how new concepts fit into the overall programming task and
how they affect the characteristics of the resulting program. Therefore,
the course structure of the introductory course is based on the proposed
method for designing programs so that, rather than emphasizing the language
representation of specific programming concepts, the emphasis is on the
entire programming task, of which the language representation of specific
programming concepts is one of several aspects.
The advantages of using the proposed method as the framework
of the course structure are twofold. First, it broadens the emphasis of
the course to include the entire programming task. Secondly, while the
student is exposed to the proposed method explicitly as part of the course
content, he is also exposed to it implicitly as new concepts are related
to all parts of the method. Thus, repetition of the method occurs throughout
the course as new material is presented, giving the student the opportunity

to see the application of the method under various conditions.

3.3 Presenting the Method for Designing Programs to the Student

The proposed method for designing programs should be introduced

to the student as early as possible in the course so that it can be used

89

as the framework within which the core of the course content is presented.
Initial presentation of the method will necessarily be at an abstract level
where an overview of the entire method is presented along with an outline
of its ten steps. This establishes the framework of the method. Details
are filled into this framework through the introduction of new concepts
as the course progresses until at the end of the course the student will
have acquired a working knowledge of the proposed method for designing
programs in tandem with the necessary programming and language concepts.
The discussion below gives one approach to the presentation of
the method to the student. It suggests an organization for the course
and an order for content presentation along with coordinated exercises
and assignments.
One important aspect of this approach is that the ordering of
concepts differs significantly from that found in a typical course.
Because the proposed method for designing programs is concerned with the
characteristics of a well-designed program, program structure is a central
concept. Subprograms are an integral part of program structure and are
directly related to the subproblems of any given problem. 1In order to take
advantage of the overall unity found in the proposed method, especially
with respect to the relationship between parts of a given problem
(subproblems) and parts of the corresponding program (subprograms), program
structure including subprograms is presented in the course as soon as
possible after the necessary introductory material. 1In essence, instead
of building up program structure slowly through a detailed presentation
of the elementary concepts until subprograms are reached, program structure

is built up as rapidly as possible to include the concept of subprograms.

This means that only the simplest form of the essential concepts, such

as variable, constant, assignment, expression and process control, will
be introduced before the concept of subprogram is introduced. Once the
simplest form of a subprogram is introduced, all other concepts including
the various data types, data structures, data manipulation techniques

and more complex subprogram structures can be introduced in relation to
program structure and the desired program characteristics. This kind of
approach can be categorized as a "top-down" approach, since it starts with
the more general concept of program structure with subprograms and uses
it as the basis for the introduction of new concepts, as opposed to the
"bottom-up" approach typically used in which the more basic elements

are used to build up a program structure which will eventually include
subprograms.

Another aspect of this approach is that the myriad of details
which can be taught about any language are of less importance than the
conceptualization of the overall task of programming. This is not to say
that details of the language being taught are unnecessary, since the
student must actually use the language in order to appreciate the task
of programming; however, to take the time to teach specialized language
details at the expense of teaching about the total programming task is
undesirable. Once the student has the basic programming concepts, he
should be able to learn the more specialized features of the language
with little trouble.

The course is divided into n sections. The first four sections
are concerned with the presentation of introductory material and the

initial presentation of the method for designing programs. Each section

thereafter is concerned with the introduction of a set of new concepts
which culminate in a programming assignment.
A diagram of the course organization is given in Figure 1.
It summarizes the course by giving for each section
1) the topic
2) the steps in the method for designing programs that are
supported by the section
3) the type of exercises and assignments for the section
4) the development of concepts in support of program structure
5) the specific language concepts introduced in support of
subprograms
The diagram also shows where each of the five characteristics of a well-
designed program can be introduced.
The philosophy of this approach is that since problem solving
is a major activity in the course, motivation should be given from a
problem solving point of view, and, in fact, conscious application of

problem solving techniques, independent of computers, is encouraged

initially as an orientation to that point of view. The course organization

is intended to support this philosophy as well as focus attention on the

method for designing programs.

Section I — Introductory Material : Problem Solving in General

The history of computers as well as general information about

their applications is one way to begin the course and to build student

interest. This information may be, optionally, spread out over the course.

Whether or not this material is used in the introduction of the course,

91

92

T 90014

Fzeqnduwon 3o uoyseolTddy
exeqndwon jo AIO3sTH

sysATBUg-ay

sweTqoad adis] watqoad Jo ejred
Jeyndmoouou FUTATOAUT Futatog' wBTq UOTANTOS TeTIe3Ry AJojonpodyui
waTqoad TeIous? Ul 698YOI8XY uetd uoysntos sTgATRUY waiqQoldd

UOTATULFA] WRTqoXy TRISURY Ul

FutaTos WeTQoad

TR T

WD TQOX -
aayndEnouou I0F SWUTIOITE Jo| uotsdiaoseq oTwyy1L0FTY BUOT4d T I088(f ITaUD I
Tyt omos Buyeny ERIIOTT STRTAOBTY JO IUAUIRTTAZIST pue_swu3T302TY s
UGT3BIZD oYY 10T SEFTOINXB m
<
ueT3BITINEmOS UOTIeZTURIIQ
aeanduwod fumumy
sxedaxd 03 En.uwwwwnwmﬁwaﬁ ms.sm .ENMM (uotseaediesd Teorsfud) werdoad Futpos meaBoad 11T
aayndwod I\—
#3deouco meu =7
»uwww we.m;«o.»w“ owmmwﬂ» paptacad suoissexdxe | suemIisge |— g8
w B SURYEUOD andgno /anduy wexdoxd yo sjaed §3UR49UCD sndano) wexFoad aders 1T® AL a4 “
sydaduco 38¥487 Fugem pue 3 w eTduts saTqRTIRA andut o
JuBIUFTerY FUTHREIFO, Tefeguy ‘Teex L g =
8
supad wwm 2
gydeouce mou TTe! 5 peal y jndgno/ynduy 4
TqeTTeA H
ka>o*mwuuonm§u atduts pauredxs sweaFoadqns suUTT-ul Iwmaog 4 °
PUB JUBLFUOD andgne /andut 5% 0308~ sdeas TIe s =4
umwmuhumwuumww.ww.wwwﬂn«vwm I9¥83UT ‘TeeX s7dmyE SuGTSTATPQNS TeaTFOT mmaw‘ﬁnpawm Tox3uon 2
gYacel m‘
Q
e
sydeouco meu TT¥ L
SRR T e w3z orarmmos B s
PUB JUBISUOD sweadoadans szeaedes z8sawered sme@ordans sdags 1T STeI8014ane 14 2
sydoouos 382487 Sursn sndyno/sndut ¢ v h =3
Juewudtsge Furumwexdoad. 8Fe3uy ‘Twed U3 ROIQNE , i g
: . } g
. -
sydasuos meu 1TV | 2
J8A0 §3810J3X8 . mw“muc ﬁ
s3de0u00 vnwvaa Fupsn : ; : . sdais TT® * sBenduEn pur Furiweadold _ u
JuseuRTesn FujuwsaPord. L
S8R OTILE s3daouon uotases fq $0T35733308T8YUD
srusRuITRSY DUB BIBTOIOXY BRI PUR andyng/andul samonay g weiFodd eFendue] vajaoddng atder ucT1oes 3o
vouzaw uy sdosg UeF3INPeIJUL

gaddy 380

93

a section on problem solving in general should be included here. The
emphasis at this point is on
1) Problem Definition — what things to look for in understanding
a given problem
2) Problem Analysis ~—— how to break a problem apart for analysis
3) Problem Solution — how to apply previously acquired knowledge
to augment problem solution in order to get a solution plan
and an answer
4) Re-analysis — how to evaluate the problem solution itself
and the way in which it was found
Included here may be broad rules, such as those given by Hyman and
Anderson [1965], which can be applied to various problem solving situations.
The purpose of this section is to orient student thinking toward
the solving of problems without any reference to computers and introduce
the concept of efficiency. In order to promote the conscious application
of general problem solving methods, suitable exercises should be given
to the student. These exercises need to include problems which require
the student to
1) identify, in the problem statement,
a. the given
b. the unknown, i.e., what is the answer to the problem to
be and what is its form
¢. the conditions linking the given and the unknown
2) develop a breakdown of the problem into its subproblems
3) develop a solution plan for the subproblems and thus for

the problem itself; the solution to the problem may be a

specific answer or the solution plan itself, the latter of
which should be emphasized in anticipation of the solution
plans used in programming
4) evaluate the solution and the way in which it was found in
an effort to find a "better'" (more efficient, less costly)
solution
5) find alternative problem representations, problem breakdowns,
and problem solutions
Any problem given should be solvable without special background knowledge
so that the student is not burdened by extra material. The problem, in
itself, is unimportant so long as the attempt at its solution can give
practice in the conscious application of techniques for solving problems.
The average student should be able to solve most, if not all, of these
problems so that he does not become discouraged; however, even if a student
is unable to solve a problem after a concerted effort, that effort will
still be of benefit to him in giving him problem solving practice and
should not be seen as a failure on his part.
Suggested problem types along with points to emphasize are

given below. Each type is illustrated by specific examples.

Suggested Problems for Section I

1) Simple algebra word problems expressable in single variable
equations:

These can be used to give practice in the identification of the
given, the unknown, and the conditions linking the given and the unknown.

The analysis of some of these problems may involve diagrams to clarify

94

parts of the problem before the conditions linking the given and unknown
can be expressed in equation form. The subproblem breakdown in this type
of problem is straightforward and can be easily used to develop a solution
plan which, when carried out, will produce the answer to the problem. In
this case, the solution plan is an aid to finding an answer to the problem.
Alternate ways of finding an answer can be explored. In problems of this
type this usually means that the relationship of the variables involved
can be expressed in terms of one of the other variables. There can be an
advantage if the variable being solved for is the unknown in the problem,

By giving a small set of this type of problem it can be pointed
out that there are certain similarities in the solution plan for each
problem. These similarities can be expanded into a general purposek
procedure that can be applied to any problem of this type.

Example Ia: The sum of three consecutive numbers is 99. Find

the numbers.
Identify:

Given: sum is 99; sum is formed by three consecutive
numbers

Unknown: three numbers - say x, y and z
Conditions: x+y+2z=99, where X, v and z are consecutive
Subproblems:
(1 express equation in one variable
(2) find relation among variables that can be used for (1)
Solution plan:
(1) express two of the three numbers in terms of the third

(2) substitute that relation into the equation that links
the known and unknown

95

96

(3) solve for the unknown value of the one variable

(4) wuse value from (3) to find the other two numbers
Solution:

(1) x+l=y and vy+l=z therefore y=x+l and z=x+2

(2) =x+y+2z=99 therefore x+(x+1)+(x+2)=99

(3) 3x=96 therefore x=32

(4) x=32 therefore y=x+1=33 and z=x+2=34
Re-analysis:

(1) Testing the result: Since 32+33+34=99 and since X,
vy and z are consecutive, the problem is solved.

(2) Alternate solution analysis: There are two other ways
of finding an answer to this problem. One involves
expressing the relationship of x, y and z in terms of
y instead of x and the other involves expressing that
relationship in terms of z. In this problem, all three
work equally well.

Comment: This problem can be used as the basis of an assignment
in which the student is to develop a general purpose procedure for this
type of problem.

Example Ib: Develop a solution plan for the following problem

statement:
The sum of three consecutive numbers is n.
Find the numbers.
Are there any conditions for which your solution
plan will not work? If so, what are they?

This is good practice for the generalization of solution plans needed

in programming.

2) Organizational problems related to the everyday environment:
These can be useful in showing that solving a problem does not

necessarily require that there must be some mathematical equation involved.

97

Introductory students often try to find a single equation for the basis

of their programs. Since many programs are based on a process rather than
on single equation, the introduction of an acceptable answer being based
on something other than an equation is desirable. The "answer" to a
problem may be some form of a solution plan; this type of problem gives
practice in devising such plans as the desired answer form.

While this type of problem can give practice on the identification
of the given, etc., it can also be used to explore alternative ways of
solving problems and used to introduce the idea of efficiency.

Example Ib: The Smith family has four sons - ages 5, 6, 7 and 8.

As the older boys outgrow their jeans, the younger
boys get them. On wash day, all the jeans are washed
together. Sorting becomes a problem since without
being measured the jeans are hard to tell apart.
Devise a scheme for marking the jeans on the inside
of the waistband so that they can be easily sorted.
Set up your marking scheme so that when a pair of
jeans is handed down, it can be remarked with the
minimum amount of trouble.

Comment: This problem can be used to point out that a mathematical
equation as such is not necessary for solving certain kinds of problems.

The idea of efficiency can also be demonstrated by comparing the different
solutions to the problem. For example, writing each boy's name on his
jeans will work; however, it is not as efficient a solution as marking the
oldest boy's jeans with a single mark, the next oldest's with two marks,

and so forth. Then, when a pair of jeans is outgrown, it can be remarked

simply by adding another mark to the existing one(s). For example,

Oldest Second Third Youngest
Oldest Oldest
Solution; / /] /1] /117

Solution2 / A !/ [7

Example Ic: There are four people in the Jones family. Each
week a different person is responsible for sorting,
folding and distributing the clean laundry. This
week is Bill's turn and he must finish the clothes
before he can go to the football game. He knows
that sock sorting takes him the longest since all
the clean socks are put unsorted into a big basket.
Devise a sorting scheme to help Bill so he can make
the kickoff. There are 6 colors, 4 sizes (one for
each family member) and 2 knit patterns which must
be paired.

Comment: This problem can be used to demonstrate that a solution
plan rather than a specific answer can be a solution to a problem. It

can also be used to expand the idea of efficiency. For example, different

solution plans can be compared on the basis of how many times the socks

will be looked at before sorting is complete. For example,

Solutionl: Pick a sock. Look for its pair by matching color, size and
pattern so that each sock is looked at only once during each
pass through the basket.

Solutionzz Sort into piles according to color. Sort each color pile into

piles according to pattern. Finally sort each color-pattern
pile into piles according to size.

Section IT — Extension of Section I to Include Algorithms and Their
Descriptions

In Section I, the concept of a solution plan was introduced.
From this concept of an informal plan comes the natural extension to the
formalized process — the algorithm. The purpose of Section II is to
establish the need for algorithms, to define the set of rules necessary
for a process to meet in order to be an algorithm, and to introduce a
representation, such as the flowchart, that can be used to describe an
algorithm in order that the student can create and evaluate algorithms

himself.

98

Suitable exercises should be given which require the student to
1) wuse some form of algorithmic description
2) express a solution process as an algorithm; this solution
process may be one given to him or one which he has created
himself
3) determine whether a process is an algorithm by deciding if
the process meets the necessary rules
4) follow an algorithm through its actions
As with the problems in Section I, the problems in this section may be
independent of computers and should be of a familiar content. Also, they
should require a nontrivial process for their solution, although they
may be easily solved. Having the student (1) develop a set of rules for
a problem, (2) express those rules as an algorithm and (3) evaluate a
fellow student's algorithm for the same problem can be a useful exercise

in both algorithm creation and algorithm evaluation.

Suggested Problems for Section 11

1) Problems which require the creation of a set of instructions
for “"how to'" do something in the physical environment:
This type of problem may require a simple physical prop that
can be used by the students so that they can learn for themselves how
to put the prop together and then develop a set of instructions from their
own experiences. The prop may be a model car, plane, etc.
Example IIa: Devise a set of instructions for putting together
a model car. The instructions should make the
process of putting the car together as clear as

possible. Remember, someone is going to use them
to assemble the car.

99

100

Comment: This type of problem serves to point out two things.
First, it points out the importance of being able to develop a set of
precise rules that will be used by someone else and, especially, that
the rules should be unambiguous and clearly expressed in an appropriate
form such as a verbal outline or even a flow diagram. Secondly, it points
out the importance of the rules being adequate to describe the entire
task so that when they are followed by someone, he can do the task

completely by the rules alone.

2) Problems which require the creation of an algorithm that

describes some mental task:

Example IIb: Your roommate is never able to balance his checkbook
so you have been doing it for him. This time you
have decided that instead of doing it for him, you
will provide him a set of instructions (and loan
him your calculator). What instructions do you
give him, assuming he can use the calculator by
himself?

Fxample IIc: You have been hired by the Schnapps Company as an
apprentice accountant. Your first job is to process
the payroll. Although this is the computer age,
the head of the company, Ms. Schnapps, does not
believe in computers. Anyway there are only ten
employees. Before she will allow you to handle
the payroll and write the checks, you must first
write up how you are going to process the payroll
and let her approve your plan. Remember, Ms.
Schnapps likes efficient people working for her.
Things you need to know:

1) There are 10 employees (including Ms. Schnapps)
who each work 40 hours per week
2) Each person receives a weekly check based on
length of employment according to the
following pay scale:
a) Less than 6 months: $1.50/hour
b) More than 6 months but less than one
year: $2.00/hour
c¢) TFor each year over 1 year but less than
10 years: add $.25/hour

101

d) For more than 10 years but less than 50
years: weekly salary is $200/week
e) For 50 years or more: salary is $500/week
(guess who?)
3) Each employvee has the following deducted
from his check:
a) income tax: 10% of gross salary
b) social security: 5% of gross salary up
to $10,500/year; gross salary in excess
of $10,500/year is not subject to social
security deductions.
Comment : Both IIb and IIc require the student to produce a
more formalized process than does Ila. Simple iteration and simple
decisions can be introduced at this time. Description of the processes
may be a precise verbal outline or flowchart; the latter is probably
better in anticipation of its use later in the course. The student may
be required to trace through at least two algorithms that are supposed
to accomplish the same task in order to establish
1) if each is an algorithm
2) if each accomplishes the task
3) which one is the more efficient based on the number of
steps involved, etc.

Section IIT — The Introduction of the Computer; the Relationship of
Algorithms, Programs, and Programming Languages

The purpose of Section III is to introduce

1) the basic concepts of computer organization, such as the
parts of the computer and how they interact

2) the ways humans and computers interact through
a. programs
b. 1languages

c. devices

3) the relationship between algorithms, programs, and
programming languages
4) the practical aspects of computing such as
a. the physical representation of a program
b. the submission procedures
5) the particular programming language being used, to the
extent that the student can run a sample program
These are introduced in order to establish the necessary groundwork for
the introduction of the method for designing programs. The only exercise

required of the student is to prepare a sample program and to run it so

that he will become familiar with the physical tasks involved. The program

itself should be a solution to a simple problem so that both the problem
and the program can be used in Section IV to illustrate the method for

designing programs.

Suggested Programming Assignment for Section III

The sample program used for Sections III and IV should regquire
only the language concepts of program, assignment statement, simple
variable (real and integer), constant (real and integer) and simple
expressions. Input and output should be of the simplest forms. These
restrictions limit the sample program to being strictly linear, i.e., no
jumps. One type of problem that can be used at this point is one which
requires the application of a straightforward mathematical formula on a
limited amount of data.

Example IITa: Write a program to read in the weights of five

people to the nearest hundredth of a pound. Find
the average weight to the nearest tenth of a

pound. Output the five weights and their average.

102

103

Section IV — Presentation of the Method for Designing Programs : Basic
Concepts

The purpose of this section is to orient student thinking
toward problem solving using computers by expanding the four steps from
Section I to accommodate the special tasks which characterize the designing
of computer programs. The method for designing programs is presented in
its entirety, that is all ten steps are described, in as much detail as
can be given in light of the material presented to the student up to this
point. The details omitted during this presentation will be presented in
later sections of the course as supporting concepts are introduced which
allow natural expansion of the method. For example, subprograms and their
expansive effect on the method will normally be encountered after more
basic concepts such as variable, constant and assignment have been learned
by the student.

The sample program from Section III may be used at this time to
illustrate the ten steps in the method. The statement of the problem,
for which the program is a solution, should be given as the starting point
so that each step in the method can be individually explained in sequence
in order that the student can see the natural progression from Problem
Definition through Re-analysis. Special care should be taken to show how
the parts of the given problem (i.e., the input, the output, and the
relationship between the input and output) are reflected in the program
itself. This is important in order to establish the idea that different
parts of the program are responsible for certain logical functions which

are directly related to the problem and its definition.

104

The sample program can also be used to introduce the characteristics
of correctness and readability. Correctness can be motivated by showing
how the function described by the program will give the desired outputs
for legal inputs. Readability can be motiviated by the use of variable
names which describe themselves and by the use of spacing and commentary
in the program body.

Specific language concepts needed for this section include the
following:

1) program

2) assignment statements

3) simple variables (integer and real)

4) constants (integer and real)

5) expressions

6) simple input and output, where these are given to the student

to use without detailed explanation.

It should be emphasized to the student that this method for
designing programs will

1) be expanded as the course progresses

2) provide the framework for the introduction of the rest of

the course content

3) be the pattern he will be using in his own programming

assignments

This section is the first to include exercises over new concepts
and a programming assignment for the student to write himself so that he
can practice the method for designing programs in its present stage and
apply the new concepts of this section. Suggested exercises and programming

assignments are given below.

105

Suggested Fxercises for Section IV

D)

Problems which require identification and interpretation of

the new concepts:

Ela)

Elb)

Elc)

2)
E2a)

E2b)

Problems to identify the correct syntactic forms of
variables and constants (real and integer)

Problems to evaluate expressions (real and integer)

Problems to evaluate assignment statements, singly and
in sets

Problems which require creation of the new concepts:

Problems to create expressions, given algebraic equations

Problems to create a series of assignment statements,
given a verbal statement or flow diagram of some process

Suggested Programming Assignment for Section IV

Due to the limited number of language concepts available to the

student at this time, the programming assignment is limited to those programs

which are linear, i.e., do not contain control statements. Input and

output should be provided for the problem.

One type of problem that requires only the available language

concepts is a conversion problem in which a value is converted from one

system to another. Two examples are given below.

IVa:

Time Conversion [Maurer and Williams, 1972, p. 7]

‘Write a program that will read a five digit positive

integer representing an amount of time in seconds.
Convert this to hours, minutes and seconds. Output
should be of the form

seconds = hours minutes seconds

where the program fills in the blanks in the form.
Use the following statements for input and output:
(input statement)
(output statement)
(data card)

106

IVb: Time Difference [McCracken, 1972, p. 50]

Write a program that will accept two integer numbers,
each of which represents the time in hours on a 24 hour
system. Express the difference between the two numbers
in hours and minutes. Assume that the first number is
always earlier than the second number. Output should be
of the form

The difference between timej and time, is

hours and minutes

where the program fills in timeq, time,, and the blanks.
Use the following for input and output:

(input statement)

(output statement)

(data card)

Example:
The difference between 1130 and 2200 is

10 hours and 30 minutes
Tt is expected that the assignment will require the student to use the
method for designing programs; therefore, there should be some evidence
other than the completed program which indicates his work. Simple
documentation as well as the program being efficient, readable and correct

should be required.

Section V — Program Control Constructs and Simple Input/Output

This section is used to build up the student's knowledge of
basic language concepts and to expand the idea that parts of a program
reflect the logical subdivisions of a given problem. The characteristic,
ease of debugging, is introduced in this section.

Basic language concepts needed at this time center around the
programming concept of process control. The simpler forms of control

statements, such as if-then-else or if-goto, are necessary. This type

107

of statement allows for a more complex program structure which can be used
to demonstrate how the conditions and subproblems in a given prcblem can
require that decisions be made within the program itself in order to
regulate the execution of the logical divisions, (or in-line subprograms),
of the program. Rather than having a strictly linear execution of the
parts Qf the program, execution is typically nonlinear, and this type of
program structure is to be reflected in the physical representation of
the program,

The other language concepts explained in this section are simple
input and output statements such as those used in Section III and Section IV.
Details for input and output should be only enough for the student to
input his own data and output the program results with simple headings.
The data types for input and output should be restricted to those with
which the student is already familiar.

Ease of debugging can be motivated in this section through the
use of output of both test values (such as echo print of input) and error
messages.

The types of errors that are normally encountered when using
the language concepts of this section are to be explained, and all new
concepts are to be related to the characteristics of efficiency, readability,

correctness and ease of debugging.

Suggested Exercises for Section V

1) Problems which require interpretation of the new concepts:

Ela) Problems to determine the flow of control through a series
of statements which include control statements; these can
ask the student to determine values for certain variables at
the end of a series of statements or ask the student to
create a flowchart that reflects the code of the statements

108

Problems requiring the student to evaluate the efficiency
of a set of statements which include control statements;
e.g., determine number of statements executed, etc.

Problems requiring the student to interpret input and output
statements; e.g., given a set of input statements and data
cards, indicate the values for each variable in the input
list; given a set of output statements and values for the
variables in the output list, show how the output will look

Problems which require the creation of the new concepts:

Problems requiring the student to create a series of
statements including control statements that will reflect

Problems requiring the student to create a series of
statements including control statements that will be the

Problems requiring the student to create input and output
statements to meet specific conditions; e.g., given that
the data cards are of a certain form, create the proper

Problems requiring the student to create the input and
output for a given problem; e.g., the student makes his
own decisions as to the layout of data cards and output
listing and creates the necessary input and output
statements; the student determines a series of output
statements that are useful in testing and debugging a

Elb)
Elc)
2)
E2a)
a given flow diagram
E2b)
solution to a given problem
E2¢)
input statement
E2d)
program
Suggested Programming Assignment for Section V

things:

The programming assignment for this section should require two

a)

the program should require generalization of input, i.e.,

it should process multiple sets of data or it should provide for the input

of initial values

b)

the program should require the use of conditionals so decision

making and iteration in the program is done other than for looping to

input more data.

109

1) Problems involving the application of a mathematical formula:

Va: Quadratic Equation [Maurer and Williams, 1972, p. 18]

Given a set of three numbers a, b and c, determine the
solutions to the equation ax’+bx+c=0 as follows:

If b%-4ac is less than 0, then the equation has no solution
and an appropriate message should be given; if b2-4ac=0, the
only solution is -b/2a; if b2-4ac is greater than 0 then

there are two solutions, (-b+vbZ=4ac)/2a and (-b-vbZ-4ac)Y/2a.
The program should process n sets of a, b and c.

Comment: The introduction of library routines can be motivated
by this problem, explicitly, the square root function. Also, this problem
statement, like most others, is ambiguous; for example, what if a = 0?

The student should find such ambiguities during problem analysis and develop
a satisfactory resolution for them; for example, testing for a = 0 in his

program.

Vb: Triangles [Maurer and Williams, 1972, p. 17]

Write a program that will read three numbers (representing
the lengths of the sides of a triangle) and print out one
of the following four words:

NONE if the three lengths do not represent the
sides of a triangle (i.e., if the sum of the
lengths of any two sides is not greater than
the third side)

GENERAL if the lengths specify a general triangle (i.e.,
one whose sides are all of different lengths)

ISOSCELES 4if any two sides are of equal length

EQUILATERAL if all three sides of the triangle are of
equal length

Write a program so that it will print out the lengths of

the three sides along with the type of triangle they represent.
The program should process an arbitrary number of sets of
three numbers and will terminate upon reading a set of

three numbers all of which are zero.

110

Comment: The type of data used for this program should be

carefully considered. Integer values for the lengths of the sides present

no problem.

However, if the values represent physical measurements and

contain fractional parts, i.e., are decimal values, then some decisions

must be made as to when two values are considered equal. For example,

is 4.325 to be considered equal to 4.337

2)

Ve

Problems involving the output of tabular information:

Mortgage Table [Maurer and Williams, 1972, p. 9]

Given the amount of a mortgage, the rate of interest being
charged, the monthly payment, and the amount of tax due on
the property (per year), produce a table of the principal,
interest, tax, payment, and the principal left for each
month of the mortgage's existence. For example, if the
principal is $20,000.00 the interest is 6%, the tax per
vear is $700.00, and the payment is $300.00 per month, then
the output should be

Month Principal($) Interest($) Tax($) Payment($) New

Principal($)
1 20,000.00 100.00 58.33 300.00 19,858.33

2 19,858.33 99.29 58.33 300.00 19,715.95

Note: The last payment on the mortgage may be less than $300.00.

Comment: Calculations for this type of problem require that

the interest rate be expressed in terms of the period of payment. Therefore,

the interest rate used should be on a per-month basis, i.e., interest per

month = interest per year/12.

vd:

Conversion Tables [Maurer and Williams, 1972, p. 21]

Prepare a table with two columns, the first representing
miles and the second kilometers, using the relation
1 mile = 1.61 kilometers. The table should contain for

111

1,2,3,...,100 kilometers the corresponding number of miles,
and for 1,2,3,4,5,...,65 miles the corresponding number

of kilometers. Both the first and second columns must
contain numbers in ascending order.

Notes and Explanations: The table should start as follows:

Miles Kilometers
0.62 1.00
1.00 1.61
1.24 2.00
1.86 3.00
2.00 3.22

.

Set up the program so that the range for miles and kilometers
is flexible. Provide for these ranges to be input to the
program,

Comment: The accuracy of the table depends upon the accuracy

of the conversion relation. The accuracy of this table can be improved by

using 1 mile = 1.609344 kilometers.

§§E£igg_y£‘—~'Subgrograms

This section introduces the concept of a stand-alone subprogram.
The characteristic of adaptability is introduced with the emphasis on
program modularity. With the inclusion of subprograms, program structure
has been built up to the point where the major force of the method for
designing programs, i.e., the creation of subprograms for a program based
on the breakdown of the given problem into subproblems and their relation
to the characteristics of a well-designed program, can become effective
in developing well-designed programs.

The language concepts needed for this section include the simplest
form of subprogram found in the specific language being used. It is

desirable to minimize the complexities of parameter communication as much

112

as possible. This can be done by giving the student a set form to use
with parameters (if they are used), such as the parameters in the call
and in the subprogram list must be the same. Or, he can be given a form
without parameters, such as a common block form where the COMMON statement
must appear exactly the same in both the main and subprograms. This allows
emphasis to be placed on program structure rather than on specific details
which are elaborated on in later sections.

Adaptability of a program is the last characteristic to be
introduced. From this section on all new concepts should be related to

all five of the characteristics for a well-designed program.

Suggested Exercises for Section VI

1) Problems which require the interpretation of the new
concepts:

Ela) Problems which require the student to identify legal
subprogram communication; e.g., given a call and a sub-
program, determine if the communication is set up correctly

Elb) Problems which require the student to trace through a
program containing subprograms; e.g., given a program and
its subprograms, require the student to determine the values
sent to and returned from the subprogram

Elc) Problems which require the student to determine if a program
with subprograms is a solution to a given problem; e.g.,
given a problem statement and a description of a program
and its subprograms which outlines their purpose and their
inputs and outputs, determine whether the program contains
all of the parts needed to be a solution to the given
problem and also determine if there is a better program/
subprogram structure for the problem.

2) Problems which require the creation of the new concepts:

E2a) Problems which require the student to create the syntax
needed for communication between calling program and its
subprograms; e.g., given a set of parameters, develop the
necessary program statements for both main and subprograms

113

E2b) Problems which require the student to write a main program
and its subprograms given a verbal description or a flow
diagram

E2c) Problems which require the student to write a main program
and its subprograms for a given problem

Suggested Programming Assignment for Section VI

Since this assignment is intended to focus on the use of
subprograms, the problem should contain several obvious subproblems. The
problem should not require any language concepts other than those already
introduced. One type of problem that can be used here is that which
requires the computation of several formulae for tabular output.

VIa: Monthly Payments [Federighi and Reilly, 1971, p. 21]

The exact formula for calculating the monthly payment R

required to pay off a loan of P dollars in N years when
an interest rate i is charged is:

(; 12N

R=f___ ll+—l—2‘
12 i 12N
(14—1—2"} -1

Two approximations which a prospective borrower could
compute on a slide rule are:

al 12 |1l-exp(~iN) “a2 12 |1l-exp(-iNx)
R
where x = 1 24

The borrower, however, wants to know how accurate these
approximate formulas are.

Write subprograms to compute each of these as functions

of P, i, N. rite a main program to read in P, N, i.,
Ai, i, and printout a table of each of the three R's ¥s. i
from I, to i, in steps of Ai. Print the input values of

P and & in t%e heading of the table (see sample table
below).

114

MONTHLY PAYMENT FOR XXX.XX DOLLARS AND XX YEARS

INTEREST EXACT 1sT 2ND
RATE PAYMENT APPROXIMATION APPROXIMATION
.01 XX.XX YY.YY ZZ.72Z
.02 . .
.03 . .
Comment : It may be desirable to change the wording of the

problem so that the student is to decide what parts of the problem should

be subprograms rather than stating it explicitly for him.

Sections VII - n — Expansion of the Method for Designing Programs Through

the Introduction of New Programming and Language Concepts

At the end of Section VI, the majority of the groundwork needed

for further expansion of the method for designing programs has been laid.

This groundwork includes

1) program structure with subprograms

2) the five characteristics for a well-designed program

3) the method for designing programs to the point where subproblems

can be related to subprograms

The remaining sections of the course are concerned with the expansion of

the method for designing programs through the introduction of new programming

and language concepts. These concepts include various data types and

data structures, detailed aspects of subprograms and program structure,

and various techniques for data manipulation including the complexities

of input and output.

The pattern of each section is as follows:

115

1) a set of concepts is presented within the framework of the
method, i.e., each concept is explained in relation to
the method and in relation to its affect on the desired
program characteristics
2) a set of exercises over the concepts is given to the student
for practice before he actually tries to write a program
using them
3) the set of concepts presented is the basis for a programming
assignment given to the student so that he may practice the
method for designing programs (this assignment is given after
he has performed satisfactorily on the exercises.)
The purpose of these sections, then, is to fill the details
into the framework of the method for designing programs and to allow the
student to use the method in conjunction with the latest concepts. In
this way the student is required to use the concepts he has learned as
well as to use the method for designing programs in its latest expanded

form.

3.4 Presenting New Concepts to the Student

In order to utilize the framework of the course structure to
full advantage, it is necessary that new concepts be presented to the
student within that framework. TFirst, a new concept is defined and
related to previously introduced concepts that are prerequisite to it.
Once the student has mastered the basics of the concept, the relationship
of the concept to the method for designing programs can then be discussed

This discussion does two things. One, it relates the new concept to each

116

step in the method to which it is applicable. Two, it describes the
effect of the new concept on the characteristics of a well-designed
program. This discussion is to provide relevant information for the
student to utilize during the subsequent programming assignment, which
is given at the end of the section containing the new concept, and for
future use as well.

Concept presentation can be approached from the point of view
that each new concept is a new tool for the student to add to his programming
repertoire and that it will be useful to him in one of two ways:

1) it allows him to do something he was unable to do previously

2) it allows him to do something in an alternative although

not necessarily equivalent or equally applicable, way from
the way he can already do it.

The introduction of the concept of subprogram provides an
example of the first way. Before the student knew about subprograms,
he could only produce a program whose structure was an undivided whole
into which all parts of a problem fit. With the introduction of subprograms
the student can construct a program with a modular structure reflecting
the subproblems of the given problem more directly.

An example of the second way comes from the presentation of
specific types of subprograms. Suppose that the language being used allows
for two kinds of subprograms — subroutines and functions. Either can be
used in a program as a subprogram; however, the choice between them is
based on decisions concerning the required logical function of the subprogram
and its communication with the rest of the program. The new concepts

of subroutine and function can be presented to the student, then, as

being two different ways of creating a subprogram, each one having its

own particular characteristics and effects in a program.

3.5 Requiring the Student to Demonstrate his Knowledge of Concepts

As previously stated, before the student is given a programming
assignment in which several new concepts are to be used, he should
demonstrate how well he understands the individual concepts. This
demonstration is in the form of exercises which should require two
things:

1) that the student be able to interpret the mechanics of the
concepts, i.e., when given examples he can identify the
concept, he can determine whether the example is correct
as well as tell what is being done in the example; for
example, evaluation of expressions, output of arrays, the
division of a problem into logical subproblems, etec.

2) that the student be able to use the concept, e.g., create
language constructs representing the concept

The rationale for requiring the student to work these exercises is that a
program is in itself a complex problem for the student, especially if it
is in the programming assignment where he is first required to use new
concepts. This is, to a degree, learning by trial-and-error about the
new concepts. It is advisable that the student understands the concepts
before he tries to combine them; otherwise, any misconceptions on his
part may cause him to waste a great deal of time and effort, to ignore
the concept if he can program around it, or to use it incorrectly and

not know it. Only when the student has demonstrated that he understands

117

118

and can use the concepts is he given a programming assignment which requires
him to combine the latest concepts (plus those previously learned) to

produce a program,

3.6 Requiring the Student to Demonstrate the Method for Designing Programs

There are two kinds of programming assignments that are useful
for the practice of programming skills. The first type is the traditional
one in which the student is required to write and run a program. The
second type is one in which the student is required to produce a detailed
solution plan in lieu of writing the complete program. The applicability
of the two types of assignments within the course and the kinds of

programming problems for each type are discussed below.

Construction of a complete program

The traditional type of programming assignment is applicable in
any section of the course. In order to gain practical experience using
programming and language concepts and to practice the method for designing
programs, the student must write and run programs. The programming
problems for this type of assignment should meet the following criteria:

1) the problem should make use of all new concepts presented

so that the student will have practical experience working

with them either as

a. programming or language concepts to be used in writing
the program (e.g., control statements, parameter
communication, etc.), or

b. the subject (application) of the problem (e.g., Polish

notation, expression evaluation for an interpreter, etc.)

119

2) the problem should have as its subject (application) one

of the following:

a. some topic which is familiar to the student (such as
payrolls, games, lexical analysis) or is of interest
to him (such as problems from his major field). Unless
students are known to possess adequate mathematical
background, problems of numerical applications, other
than those which are straightforward, should be avoided.
Any other subject which cannot be easily taught should
be avoided as well; otherwise, valuable time must be
spent supporting an unfamiliar topic sufficiently for it
to be programmable by the student. Many game~oriented
problems are complex enough to provide good programming
practice while being familiar to the student [Ralston,
1971, p. 459].

b. some topic which is computer science oriented, e.g.,
Polish notation, expression evaluatidn for interpretation,
etc.; this kind of topic can be used after the student
has become familiar with basic concepts

3) the problem should require nontrivial application of the
method for designing programs so that the student works
through all the steps in the method

This type of programming assignment should require evidence

that the student has worked through all of the steps in the method. It
would be desirable to monitor the student's progress by having him submit

the following for approval for each assignment:

120

1) an outline of his solution plan(s)
2) the algorithmic development of his solution plan
3) the coded program along with the tentative test data and
procedures to be used in running the program
4) the tested and debugged program with
a) internal and external documentation
b) record of errors made giving type of error, reason for
error, and the structure associated with it
c) re-analysis of program, errors and new concepts
Unfortunately, the typical course environment does not allow
for constant monitoring of the student's progress so some compromises must
be made. The first three items listed above can be omitted and compensated
for by assigning them in the shorter exercises so that the student will
get practice in these three important parts of the programming task. An
exercise covering one of the following can be assigned in the various
sections of the course for problems less complex than those in the
programming assignment:
a) the creation of a solution plan
b) algorithmic development
¢) construction of test data and procedures
The tested and debugged program must, however, be required along with some
kind of documentation. If the re-analysis step is to be useful, either the
student must hand in something for instructor commentary or re-analysis
must be discussed in class after each programming assignment. The former
is preferable; otherwise, the student will not be motivated to do it. The

record of errors can be useful in focusing the student's attention on his

121

programming habits and can play an important part in the re-analysis
step.

There is a limitation on the size and complexity of the programming
problem that can be assigned to the introductory student due to his lack
of knowledge of programming and language concepts and to the short length
of time that can be allowed for programming assignments, The programs,
therefore, tend to be rather simple ones and do not reflect the problems
that are encountered during the construction of large programs. These
simple programs fail to motivate the student to use all the tools, such
as flowcharting and debugging aids, that he has at hand since he can often
hold much of the program in his head. It is not unusual for a student
to complete a program, even a relatively lengthy one, and then flowchart
it. If the student is to be prepared for the kinds of programming tasks
that he will encounter either in a future course or in a job, he should
be able to apply the method for designing programs to large programs as

well as to small ones.

Construction of the top level design for a program

In order to bridge the gap between what the student can do with
the limited tools he has and what he should be prepared to do, the programming
assignment that requires him to produce a detailed solution plan for a
program is proposed. In essence, the student is required to design the
top levels of a large program. The assignment should require that
1) inputs and outputs be adequately defined for the program
2) program and subprogram structure be such that all parts of

the problem are included

122

3) inputs and outputs for subprograms be adequately defined

4) program structure contribute favorably to the desired

program characteristics

5) program testing procedures be outlined with descriptions

of both test procedures and test data
While the student is not working through all of the steps in the method
for designing programs, he is having to use most of them in order to
construct such a top level design. Especially important in this type of
assignment is the necessity for the student to analyze the given problem
adequately. The removal of the coding, testing and debugging elements
frees the student from the constraints of his limited knowledge of
specific language concepts and allows him to spend more time on the analysis
of the problem and on the construction of a solution plan.

Problems suitable for this type of programming assignment
should have topics similar to those for the traditional programming
assignment; however, the complexity of the problem should be such that
the student is unable to keep its whole organization in his head at
one time.

This type of assignment has a special nature. It should be
given after the student has acquired a working knowledge of subprograms
and the more complex control structures, a basic understanding of the
characteristics which affect the design of a program, and some practical
programming experience. This type of assignment is ideal as the programming
assignment for a section on program structure which contains an analysis
of the affects of the method for designing programs on program structure

and the relationship of the desired program characteristics to program

structure.

123

This kind of section, encountered in the latter part of the

course, can reestablish the overall picture of the programming task for

the student, as he is being drawn into the details of program coding,

while providing the necessary support for the task of designing a large

program.

are given below.

Two examples of problems suitable for this kind of an assignment

The general instructions for this type of problem

should require the student to define a main program and associated

subprograms, giving for each one

1) the general function performed

2) the input data required

3) the outputs required

4) the subprograms called

The specific details of data representation are not required; however,

the overall program structure should be given a suitable representation,

e.g.,

a module chart.

Example 3.6a:

Monthly Account Statement [Maurer and Williams,
1972, p. 79]

Each entry ("record") of the file of a department
store for customers with charge accounts contains

a) An account number: a six-digit positive integer

b) Name and address of customer: a sequence of up
to 50 characters.

¢c) Present balance: a positive number for debits
(i.e., if customer owes money to the store),
a negative number for credits.

Assume that this file is available on punched

cards, one card per customer. Assume further that
the file is in no particular order (unsorted").

For each purchase made by a customer a ''charge

card" is punched containing (a) the account number,
(b) the word CHARGE, and (c) the amount of purchase,
a positive number. For each payment made by a

Example 3.6b:

124

customer a "payment card" is punched containing
(a) the account number, (b) the word PAYMENT, and
(c) the amount paid, a positive number.

Using the charge cards, the payment cards, and the
customer file as input, write a program that will
(a) print a monthly statement for each customer and
(b) print the updated customer file.

Note that for each customer no charge card or
payment card can be present or that one or more
charge cards or payment cards can be present. The
monthly statement for each customer should show

(a) the account number, (b) the name and address

of the customer, (c) all payments, (d) all charges,
(e) previous balance, and (f) new balance. Include
in the charges a 1.5% interest and handling fee
based on the balance in the customer file, if that
balance is positive.

You may assume that the number of customers does not
exceed 30 and that the number of charge cards and
payment cards does not exceed 100 each.

High Card

Write a program which will play the card game of
High Card. High Card is played according to the
following rules:

1) A shuffled deck of cards is dealt to four
players.

2) The dealer (one of the four players) begins
the game by playing any card in his hand.

3) Each player in turn plays a card in the same
suit if possible.

4) 1If a player has no cards in the proper suit
then he may play any card in his hand; however,
he cannot win the "trick."

5) When each player has played one card, the
winner of the trick is determined as being the
player who played the highest card in the
proper suit, i.e., that of the first card
played in the "trick."

6) The four cards played are set aside.

7) Play continues as outlined above until all
13 "tricks" (all 52 cards are played) with
the winner of each trick playing first on the
next one.

8) The game is won by the player who wins the
most tricks.

125

Comment: Any ambiguities should be resolved by the student,

and he should record the assumptions that he makes.

CHAPTER 4

CONCLUSION

Tt has been the intent of this paper to present an organizational
framework for the programming task which can be taught to the introductory
student and utilized by him at the elementary and advanced levels of
programming. Such a framework is embodied in the proposed method for
designing programs. The introduction of the method at the introductory
level of a computer science curriculum has positive implications for the
student; these were discussed previously. Besides affecting the student,
the method for designing programs can have a positive affect on the
remainder of the curriculum. A brief summary of the advantages for the
student is given below. This summary is followed by a more detailed
discussion of how the proposed method can be used in the more advanced

courses in the curriculum.

4,1 Advantages for the Student

The student who has the method for designing programs available
to him during the introductory course has several advantages. Among them
are the following:

1) he does not have to create such a method for himself

2) he has an approach that he can use for future programming

projects

3) he should be able to produce a better quality program

4) he has a working framework in which to assimilate the new

programming techniques and computer concepts that he will

encounter

126

127

5) he can add to or alter the basic method consciously through
re—analysis of his own programming experiences so that the

method suits his particular situation

4.2 Using the Method for Designing Programs in Advanced Courses

All courses which follow the introductory course can assume that
the student has a conscious awareness of the overall programming task and
that he is familiar with the characteristics that are desirable in programs.
The method for designing programs can bhe especially useful in courses in
which programming is a major part of the course or in which programming
is used as a vehicle to demonstrate parts of the course content. These
courses can use the method as a framework for the structuring of the course
content or as the basis for an explicit method to be used for special
classes of programs.

Two types of courses are given below as examples of how the method
for designing programs can be used in the more advanced courses. In the
first example, the method is used primarily to structure the course
content. In the second example it is focused on one specific class of programs.

The first type of course is one in which a specific aspect of
programming is explored in detail and various classes of programs are used
as programming assignments in the exploration of that aspect; such courses
as Course Il -— Data Structures, Course 12 — Programming Languages and
Course B4 — Numerical Calculus as described in "Curriculum 68" [ACM, 1968],
fall into this type of course.

For a specific example, the method for designing programs is

applied to a data structures course which explores in depth various kinds

128

of data structures that are used to represent information in programming
problems. By using the method for designing programs as the framework
for the course content, each new data structure and the associated techniques
for manipulating it can be related to the entire programming task. For
instance, a stack structure, once defined, can be related to programming
by describing, among other things,
1) the characteristics of a programming problem which indicate
that a stack is to be used
2) the characteristics of a solution plan that indicate the
use of a stack
3) the various ways that a stack can be represented algorithmically
4) the ways that a stack can be implemented in various languages
and the ways that the stack structure has been implemented
in the languages that have a stack feature
5) the specific characteristics of a stack which must be tested
for when it is used
6) the typical errors encountered when implementing a stack
and when using it in a program
7) how the stack affects the characteristics of a well-designed
program
In this course the presentation of the various data structures is analogous
to the presentation of new concepts as described for the introductory
course. The presentation of the different data structures as being
alternative ways of representing the information given in a programming
problem should receive strong emphasis, especially how the alternatives

can affect program design.

129

Due to the depth of exploration of the various data structures
and their relationships with programming languages, computer storage
structures and manipulation techniques, an organizational framework is
important in order that the many details be perceived in proper relation
to the overall programming task in which they are used. Since it is
assumed that the student is already familiar with the method for designing
programs from the introductory course, it can be used for the organizational
framework, thus precluding the development of such a framework especially
for this course. It is also assumed that the student is able to apply
the method for designing programs to the programming assignments in the
course.

The second type of course is one in which a specific class of
programs is studied$ such courses include Course I5 — Compiler Construction
and Course A6 — Computer Graphics as outlined in "Curriculum 68" [ACM, 1968].
For this type of course, the method for designing programs can be focused
on the special features found in the specific class of programs being
studied.

For example, in a compiler course any given programming problem
which requires that the solution be a compiler will have specific characteristics
that must be identified and analyzed. For instance, the Problem Definition
step and the Problem Analysis step can be focused on the specific aspects
of source languages that should be separated out, e.g., storage allocation
and expressions. The Solution Plan step can be focused on the parts of
compilers which handle the various aspects of the source language, and
the Program Coding step can specify ways to implement the parts of a

compiler.

130

In this course, the refined method for designing programs
serves as a guide for the construction of a specific class of programs
as opposed to the basic method presented in the introductory course that
serves as a guide to program construction in general. Again the framework
of the method can provide an organization for the course content to the
extent that the student does not lose sight of the total programming

task while he is involved in the details of writing compilers.

4.3 Summary

Classroom experiences and student commentary as observed by
the author as well as recent articles, such as those by Gries [1974] and
Kernighan and Plauger [1974], indicate that there is a need for more
emphasis on problem solving and program quality, especially at the
introductory levels of the curriculum. The proposed method for designing
programs is intended to increase the emphasis on these two areas of concern.
While the proposals in this paper have not yet been applied to the class-
room, it is anticipated that they will be of significant value there.
Incorporation of the proposals into an introductory course is planned
for the latter part of this year in an experimental team teaching project.
The results of this project will be used as the basis for further refinement
of the proposed method for designing programs and for extending its

application to the more advanced courses of the curriculum.

BIBLTIOGRAPHY

ACM Curriculum Committee in Computer Science (1968) Curriculum 68,
CACM 11(3), 151-197.

Baker, F.T. (1972) Chief Programmer Team Management of Production
Programming. IBM Systems Journal 11(1), 56-73.

Dijkstra, Edsger W. (1969) Notes on Structured Programming. Report EWD249,
Tecnical University Eindhoven, The Netherlands.

(1971) A Short Introduction to the Art of Programming. Report
EWD316, Technical University Eindhoven, The Netherlands.

Federighi, F.D. and E.D. Reilly, Jr. (1971) Computer Science Laboratory
Exercises. Schenectady, New York: Reidinger and Reidinger, Limited.

Forsythe, A.I., T.A. Keenan, E.I. Organick, and W. Stenberg (1969)
Computer Science: A First Course. New York: John Wiley and Sons, Inc.

Gagné, Robert M. (1971) The Conditions of Learning, Second Edition.
New York: Holt Rinehart.

Gray, Max and Keith R. London (1969) Documentation Standards. Princeton:
Brandon Systems Press, Inc.

Gries, David (1974) What Should We Teach in an Introductory Programming
Course? SIGCSE Bulletin 6(1), 81-89.

Hadamard, Jacques (1945) An Essay on the Psychology of Invention in the
Mathematical Field. New Jersey: Princeton University Press.

Hoare, C.A.R. (1969) An Axiomatic Basis for Computer Programming.
CACM 12(10), 576-583.

Hyman, R. and B. Anderson (1965) Solving Problems. International Science
and Technology, September, 36-41.

Kernighan, B.W. and P.J. Plauger (1974) Programming Style. SIGCSE
Bulletin 6(1), 90-96.

Knuth, Donald E. (1969) Fundamental Algorithms. Reading, Massachusetts:
Addison-Wesley Publishing Company.

Maurer, H.A. and M.R. Williams (1972) A Collection of Programming Problems
and Techniques. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Maynard, J. (1972) Modular Programming. Princeton: Auerbach Publishers.

McCracken, Daniel D. (1972) A Guide to Fortran IV Programming, Second
Edition. New York: John Wiley and Sons, Inc.

131

Merrill, M. David (1971) Necessary Psychological Conditions for Defining
Instructional Outcomes. Educational Technology 11(4), 34-39.

Nassi, I. and B. Shneiderman (1973) Flowchart Techniques for Structured
Programming. SIGPLAN Notices, August, 12-26.

Naur, Peter (1969) Programming by Action Clusters. BIT 9, 250-258.
(1972) An Experiment on Program Development, BIT 12, 347-365.

Neely, Peter M. (1973) On Program Control Structure. Proc. of the ACM
1973, 119-125.

Newell, Allen and Herbert Simon (1972) Human Problem Solving. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc.

Nilsson, Nils J. (1971) Problem Solving Methods EE_Artificial Intelligence.

New York: McGraw Hill Book Company.

132

Parnas, D.L. (1971a) Information Distribution Aspects of Design Methodology.

Report, Carnegie Mellon University, Pittsburgh, Pennsylvania, February.

(1971b) A Paradigm for Software Module Specification with Examples.

Report, Carnegie Mellon University, Pittsburgh, Pennsylvania, March.

(1972a) A Course on Software Engineering Techniques. Proc. SIGCSE

Technical Symposium, March, 154-159.

(1972b) Some Conclusions from an Experiment in Software Engineering

Techniques. Report, Carnegie Mellon University, Pittsburgh,
Pennsylvania, June.

(1972c) Use of the Concept of Transparency in the Design of

Pittsburgh, Pennsylvania, July.

(1972d4) On the Criteria to be Used in Decomposing Systems into
Modules. CACM 15(12), 1053~1058.

Polya, G. (1957) How to Solve It. Garden City, New York: Doubleday and
Company, Inc.

Ralston, Anthony (1971) Introduction to Programming and Computer Science.
New York: McGraw Hill Book Company.

Sackman, Harold (1970) Man-Computer Problem Solving. Princeton: Auerbach
Publishers, Inc.

Simon, Herbert A. (1969) The Sciences of the Artificial. Cambridge,
Massachusetts: The M.I.T. Press.

Hierarchically Structured Systems. Report, Carnegie Mellon University,

133

Weinberg, Gerald M. (1971) The Psychology of Computer Programming. New York:
Van Nostrand Reinhold Company.

Wirth, Niklaus (1971) Program Development by Stepwise Refinement. CACM
14(4), 221-227.

(1973) Systematic Programming: An Introduction. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc.

