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Abstract

CPU burst durations for several jobs were measured.
A partially observable Markov process was used to model CPU
The model seems to fit data reasonably well.

terns over time.
burst generation.

study on general prediction schemes was carried out.
made to fall within a confidence region with a certain probability.

The CPU bursts exhibited pat-

A simulation
A jobs predicted burst was
The effect

of the length of the confidence region and the probability of predicting within

that region were studied.
predictive accuracy.
isfactory schedules.

1. INTRODUCTION

The basic goals of multiprogramming scheduling sys-
tems are to maximize overlap of device usage, e.g.
CPU 1/0 channels, and minimize mutual wait or
queueing, e.g. CPU waiting for 1/0 completion be-
fore being abie to proceed. The basic assumption
on relative device speeds is that CPU processing
has a higher basic unit rate than I/0 processing
and that a substantial level of multiprogramming is
sustainable in the available memory. To obtain the
goals of multiprogramming under these assumptions
requires a scheduling discipline which gives prior-
ity to those tasks whose CPU service requirements
between 1/0 activities {(assuming that there is no
correlation between length of I/0 burst and length
of CPU burst) is smallest. Conversely given these
goals and assumptions giving priority to the task
with the largest CPU service requirement between
1/0 activities will be the least productive. We
are thus led to the problem of determining (or pre-
dicting) the CPU service duration (CPU burst) of
the tasks executing in a2 computer system. A com-
plete knowledge of the CPU burst would (in princi-
ple at least) allow the construction of an optimal
CPU scheduler. Such a complete knowledge (in ad-~
vance) of the CPU utilization pattern is of course
not obtainable in any realistic enviromment. 1In
addition if such information were available its
sheer volume would probably render its use totally
intractable. We are thus led to the gtudy of sim~
ple predictive models and algorithms together with
an analysis of the effects of the inevitable inac-
curacles and unreliabilities of these predictions.

This paper concerns itself with recognizing and

The device utilizations were remarkably insensitive to
A pattern based predictor was developed and it yielded sat-

predicting the CPU burst patterns present in actual
burst data recorded on a production system, the
modelling of this data and with the sensitivity of
predictive CPU scheduling algorithms to the reli~
abllity and accuracy of the predictive mechanism.

The principal results obtained are: (a)Most of the
jobs analyzed had observable "patterns” in the dura-
tion of their CPU bursts. A partially observable
Markov process was used to model this behavior. Our
model seems to fit the data reasonably well. Fur~
thermore the existing theory on partially observable
Markov processes [ 5] can be brought to bear on the
problem. Our model can be easily imbedded in queune-
ing network models of computer systems [ 4 ] result-
ing in a more accurate abstraction of program be-
havior in computer systems. (b)Standard measures of
computer system performance such as CPU utilization
and throughput were found to be remarkably insensi-
tive to variations in predictive algorithm and reli-
ability. This result extends the work of Sherman,
Baskett and Browne [1] and explains why almost any
predictive scheme for CPU bursts enjoys a sizeable
advantage over first-come-first-serve or random
schemes. A pattern based predictor derived from the
data analysis was found to be a near optimal sched-
uler.

2. OBSERVATION ANDMODELLING OF CPU BURST PATTERNS
2.1 Pattern Analysis

CPU burst patterns were obtained for some 400 dis-
tinct jobs from analysis of trace tapes on the UT-2D

operating system for the CDC 6600 at the Computation
Center of The University of Texas at Austinm.



Many jobs exhibited patterns in their CPU bursts.
For instance, some jobs would have a sequence of
several relatively short bursts separated by single
bursts of relatively long duration. The probability
mass function (PMF) on the number of short bursts
between long ones often showed marked peaks (Fig 1}
The PMF for the number of short bursts between long
would be geometric (“'memoryless") 1if the duration
of successive bursts were independent; this PMF
was generally not geometric. It was therefore nec-
essary to develop models which did not assume the
independence of successive CPU bursts. Such models
are clearly required for analytical studies of CPU
burst prediction. A model on the prediction of
program behavior should preferably have two charac-
teristics. (1)It should be based on the existing
theory of program behavior and (2)It should draw
upon the theory of signal prediction 1n the pre-
sence of noise [2].

The principle of locality states that programs have
several localities and transit from locality to lo-
cality in the course of execution. It might be
hypothesized that the duration of a job's CPU turst
is a function of its current localities. 1Im this
case a job may have one CPU burst distribution in
one locality and may change its distribution when
it enters another locality. We postulate that a
job has "modes" (similar to localities); a job can
be in only one mode at a time and can transit from
one mode to another only at the end of a CPU burst.
Note that & job can change localities continuously.
Restricting jobs to change modes only at the end of
CPYU bursts results in simpler models. A job may
have different CPU burst distributions in differemt
modes. We shall make the simplifying assumption
that jobs transit between modes in a Markovian man-
ner. Hence the number of consecutive CPU bursts
generated in a single mode would be a geometric
random variable. A job’s CPU bursts now consist of
a concatenation of strings of bursts from different
modes where sach string of bursts has its own dis-
tribution for burst duration. The process is only
partially observable because the modes cannot be
observed directly; the current mode must be infer-
red from the history of observed CPU bursts. The
problem of prediction reduces to that of inferring
the next mode. It must be emphasized that though
the concept of modes was based on localities, no
attempt was made to determine localities from
traces of memory references because such traces
were not readily available.

Two other characteristics of CPU bursts are of in-
terest. Firstly, a job's average CPU burst dura-
tion is not generally indicative of the majority of
its bursts which are generdly under 16 msec regardless

of their means. Thus prediction schemes which at-
tempt to predict a job's true average burst dura-
tion are not very good. Secondly, there were a
number of cases where runs of short bursts were
separated by single bursts of relatively long dura-
tion. In a significant number of cases, the occur-
rence of a very long burst indicated that the fol-
lowing burst would be relatively short. In these
cases the exponential smoothing predictor did not
behave satisfactorily. It was hoped that the par-
tially observable Markov process would capture this

behavior and prove useful in prediction and sched-
uling.

A Markov diagram of a six-state model of a typical
job is shown in Fig. 2. This diagram was obtained
by analyzing the trace tape. At this time, we do
not have an algorithm which will automatically con-
struct the model from the trace. The process of
obtaining the model is one of trial and error.
is one of the serious defects of the model as it
now stands. A short burst was taken to be one
which required less than one CPU quantum (eight
milliseconds), while a long burst was one which re~
quired more than one quantum. The distribution of
long and short bursts was obtained directly from
the trace. The bursts generated by the job were
divided into three groups of four hundred consecu~-
tive bursts each; the three groups are labeled a, b
and c¢. The model was based on group a and then
compared with b and ¢. Fig. 1 shows the PMF for tie
run of successive short bursts for our model, a
model assuming independence, and group a. Fig. 3
compares the model with b and c¢. The model was com
pared to the data by comparing four sets of statis-
tics:

a) the PMF for the run of short bursts between long
b) the auto correlation coefficients for burst dum~
tions

¢) the autocorrelation coefficient for successive
runs of short bursts and

d) the mean square error made by moving point aver-
age and exponential smoothing predictors.

This

Seven jobs were picked at random out of a trace tap
containing four hundred jobs. Our results show that
the relation between the partially observable Markw
process model and group (a) is very good; but grougs
(a), (b) and (c) are somewhat different and hence
the model fits groups (b) and (c¢) less satisfactorly
[31.

It is interesting to study the effect of the length
of a run of short bursts on the behavior of a sys~
tem. Consider a two mode model for CPU bursts
where mode 1 generates short bursts and mode 2 gen-
erates long bursts (Fig. 4). Let p be the proba-
bility that the job changes mode after a given
burst. Clearly the number of bursts generated in
mode 1 will be the same as in mode 2 for all values
of p. If p=0.5 then successlve bursts are indepen-
dent. When p 1s very nearly one there will be long
strings of bursts of either duration. Let us imbed
this two mode model into the central server model
[4]. In the modified central server model, succes-
sive CPU bursts are no longer independent but de-
pend on the job's current mode. It is easy to show
that the equilibrium behavior of the system is in-
variant under p, but that the transient behavior is
very dependent on p. Patterns of successive bursts
based on the partially observable Markov process
model have no effect on equilibrium utilization and
throughput. The transient utilization as a function
of time for different values of p was obtained by
gimulation and is shown in Figs. 5(a) and (b).

2.2 Pattern Predictor

We next attempt to use the patterns in prediction.



Our predictive schemes had a very severe restric-
tion; they had to operate in real-time. Existing
theory on mode prediction from a sequence of sig-
nals in a partially observable Markov process is
quite complex and cannot be used {5]. Furthermore
the partially observable Markov process would have
to be created on the fly. We were therefore forced
to use extremely simplistic schemes. In the pat-
tern predictor, the number of short bursts n be-
tween the last two long bursts is determined. We
then predict n more consecutive short bursts before
the next long burst. Note that the pattern predic
tor is completely different in its approach from
the exponential smoothing and moving point average
schemes. The pattern predictor attempts to predict
the length of successive runs of short bursts
rather than the duration of any given burst. A
variation of this scheme is to predict a long
burst either after n-1l, or n, or ntl successive
short bursts where n is the length of the last run
of short bursts.

Another method used was to always predict short
bursts unless there were two consecutive long
bursts. If there are two consecutive long bursts
then we always predict long bursts until the next
short one. This scheme always predicts one kind of
burst unless it is switched into predicting the
other kind; the switch from a prediction of short
to long occurs when there are two consecutive long
bursts and the switch from a prediction of long to
short occurs at the first occurence of a short
burst. We refer to this scheme as a continuous
long/short burst predictor. This predictor was
based on the observation that the majority of bursgs
of bursts were short, and that there were many
cases in which runs of short bursts were separated
by single long bursts whereas there were very few
cases where runs of short bursts were separated by
two consecutlve long bursts. We also studied ex-
ponential smoothing, moving point average, and
average burst predictors. Sherman, Baskett and
Browne [1] have donme a thorough study on the ex-
ponential smoothing and average burst predictors.

The five prediction gchemes were compared for ome
hundred and twenty three iobs taken at vandom from
a trace tape. The jobs together generated twenty-
five thousand bursts. The analysis shows that the
pattern predictive scheme has the highest matching
percentage of lomg and short bursts, i.e. it recog-
nized bursts to be short or long more accurately
than the other metheds. The pattern predictive
scheme does give a higher root mean square error,
which means that this scheme usually glves moderate-
1y accurate predictilons but occasicnally gives ex-
tremely inaccurate predictions. As will be seen in
the next section, the pattern predictive scheme can
be coupled with a bounding mechanism to yield a
reasonable scheduling technique. This suggests
that in circumstances where a job is to be run very
many times it may be desirable to establish a par~
tially observable Markov process model for each
job and use the sophisticated scheduling technigues
developed for such processes. The five methods
are compared in Table 1. ©petails are im Lo [3 ].

3. THE EFFECTS OF UNCERTAINTY IN CPU BURSTS
PREDICTION ON SYSTEM PERFORMANCE

It is clear that complete deterministic knowledge
of the CPU bursts patterns of all the processes in
a large computer installation is not possible. If
it were possible, the usage or utilizaticn of this
information would be intractable. Therefore, an
important if not dominating criteria for the selec~
tion of a scheduling algorithm for a CPU is its
tolerance for inaccuracies or its "robustness”. In
the case of predictive algorithms the essential
characteristic is the sensitivity of the perfor-
mance of the algorithm to the accuracy and reliabil-
ity of the predictor. It is convenient to define
special measures for accuracy and reliszbility in
this context. Reliability will be taken to imply
the consistency with which a predictor can make
qualitative decisions, for example whether a subse-
quent burst is "long"” or "short™ ("long” and "short"
being perhaps arbitrarily predefined). Accuracy
will be taken to be a measure of the quantitative
comparison of each prediction to the actual burst.

There was designed and implemented a simulation
model of a computer system. The model is represent-—
ed as a queueing network in Fig. 6. The service
times of the CPU were taken to have a mean of 40
miilliseconds with both exponential and hvpoexponen-
tial variances. The I/0 devices were given expon-
entially distributed service times of approximately
100 milliseconds and a skewed probability of utili-
zation. The degree of multiprogramming in the model
was fixed at 5.

The variability factor in the model was the CPU
scheduler. 1In particular, the properties of a pre-
dictive shortest burst first (PSBF) algorithm were
varied. The functional nature of the algorithm was
not of concern. Rather, the predicted bursts were
generated with given fractional probability {(confi-
dence) of falling within a specified region (confi-
dence region) around the true burst. The fraction-
al probability (or confidence limit) of a predicted
set of bursts is a measure of the reliability of the
predictor. The width of the specified region of
variation about the true burst is a constraint on
the inaccuracy and thus directly on the average ac-
curacy of the predictor. For comparison FCFS, RR
true shortest burst first (TSBR) and true longest
burst first (LBF) algorithms were alsc evaluated.

The simulator was evaluated with sets of confidence
limits varying from 0.9 to 0.3 and with allowed
error limits ranging from 25% to 500Z. The simula~-
tor runs were extended until 4000 CPU bursts were
accomplished. Three such runs with different random
variable kernels were taken and the average of these
is quoted as the given performance metric. For the
sake of ready comparison we will restrict ourselves
here to using CPU utilization as a performance
metric. Full details can be found in Lasseter [6].

The results of these simulations chow a remarkable
insensitivity to variations in the confidence
limits and/or the confidence regions of the predic-
tor algorithms.



Table 2 shows the CPU utilization for several

cases of PSBF algorithms using extreme values of
the confidence limits and confidence regions and
compares them to true shortest-burst-first, small
guantum round-robin, FCFS, and longest burst first
algorithms. There 1s a total 10.3% variation be-
tween the extreme cases of true shortest burst
first and longest burst first. A larger total
spread can be obtained by increasing the variance
af the hyperexponential distribution of CPU bursts.
Partial runs with a variance of 10 produced an ad-
ditional spread of some 37. However, longer runs
of the simulator are required in this case. A
predictive shortest burst first with a confidence
region of 257 and a confidence limit of 0.9 differs
from the optimal result of true shortest burst
f£irst only 0.27. The worst predictor used in this
study with a confidence limit of only 0.3 and al-
lowed variation of 500% from the true burst still
yielded a CPU utilization of 67.47, only marginally
different from that obtained with the short-quantum
round-robin. Similar conclusions result from dif-
ferent CPU burst distributions. Clearly a predic~
tive scheme with virtually any level of accuracy is
markedly superior to a FCFS or random scheduler,

Both linear and nonlinear factor analyses were
carried out on the matrix of CPU utilization for
varying confidence limits and confidence regions.
The results showed that the simulation model is
somewhat more sensitive to changes in the confi-
dence level than to the width of the confidence
region. This suggests that it is more important to
have a predictor which is reasonably reliable
rather than one of a high absolute accuracy.

It seemed desirable to test the utility of the pat~
tern predictor discussed in Section 2 with respect
to performance in a total computer system environ-
ment. Therefore, the simulator of this section was
modified to operate on the CPU burst data extractel
from the trace tape. Again the simulator was run
for approximately 4000 burstswith theoriginal pat~
tern predictor as given, then a pattern predictor
modified to have a 250 millisecond upper bound on
the amount of CPU time which could be consumed by
any one job in any one burst. The imposition of
such an upper bound is characteristic of circum-
stances where very long CPU bursts may occur. The
effects of bounding have been studied by Sherman ,
Baskett , and Browne [7] on predictive algorithms.
Other predictive aligorithms have been studied by
Sherman, Baskett, and Browne [1]. Table 3 shows
the results in terms of CPU utilization for true
shortest burst first, predictive shortest burst
first without bound, 2 round-robin schedulers with
short quantum, first-come-first-serve, and a bound~
ed predictive shortest burst first. The predictive
shortest burst first in fact is taken to be the
pattern predictor. The pattern predictor merely
predicts either that a burst is short or long.
Preference is then given to those jobs for which
are predicted short bursts with conflicts being
resolved in favor of that task which has the
earliest previcusly completed gquantum being given
the CPU.

There is approximately a 10% variation between true

shortest burst first and FCFS. The unbounded pre-
dictor, while it is better than FCFS ac 42% is
markedly inferior to the round-robin scheduler.
However, addition of the bounding procedure pro-
duces a predictor which is comparable in quality to
the round-robin and less than 1-1/2% in accuracy
from the optimal true shortest burst first.

This result clearly shows that merely the specifi-
cation of whether a burst is long or short is
adequate to return virtually all of the benefit
which can be obtained from a predictor (assuming
that the predictive mechanism has a bounding
mechanism). We note that the predictive scheduler
made approximately 257 incorrect decisions. That is
25% of the time it predicted a long or short burst
when the reverse was true.

4. SUMMARY

1. A partially observable Markov process was used
to model CPU burst generation. The model is based
on the principle of locality. The model seems to
fit the data reasconably well and it can be imbedded
into queueing network models of computer systems.
It is hoped that the theory of partially observable
Markov processes can be applied to the analysis of
program behavior by using our model.

The time patterns of bursts generated by the partid-
1y observable Markov processes do not affect
equilibrium behavior though it greatly affects
transient behavior.

The duration of bursts generated by a single job
often do not vary slowly over time; changes in
burst duration are often abrupt.

2. Predictive CPU schedulers are insensitive to the
quality of predictions. The ability © correctly
classify bursts as long or short is more important
than absolute accuracy. The simple pattern predic-
tor of long or short burgts is adequate since it
returns 90% of the benefit which can be obtained
from predictive scheduling.

Note:~ This research was supported by NSF Grants
GJ-1084 and GJ-35108,



12

redicted

i"P

i®

true
-
9
&
3]
E]
o
A N
B i\p‘independence assumption
2 & \;

' Al amr o=z

o 0 20 g0 Figure 4. A Simple Markov Model
number of consecutive short bursts

Figure 1. Comparison of data and models 1.0‘
0015
e
S
oyl
bt
«
N
Rl
4
-
4
]
d
£
© -
€

time—p

Figure 5 (a) p = 0.9, transient behavior

loo‘ —‘

g
Figure 2: Markov model for a typical job E
|
-
weed
b
2
) | =
&
©
3 LA 2]
! % time—»
i i L\ Figure 5 (b) p = 0.5, transient behavior
L ;i predicted @
g i/ group b o 1 g
By .’ ‘ d VE
é P ' QUE
2 P 1/0
@
= QUEUE GUBVE
1/0 3
2
QUEUVE

Figure 6: Simulation Model

number of consecutive short bursts

Figure 3: Comparison of data groups b,c and model



method

data
term EXPONENTIAL MOVING POINT AVG. PATTERN CONT.S/L AVERAGE BURST

Average Abso-

lute errvor 32.9697 30.7692 26.9625 26.002 33.7148
Average error

squared 163.517 174.073 186.872 162.71 164,437

Matching % 67.661 72.365 77.664 69.387 62.661

TABLE 1. COMPARISONS OF PREDICTIVE METHODS

Measure  ZCPU Utilization Throughput (Jobs/second) CPU Switches (1000s)
Scheduling discipline

Preemptive SBF 71.5 1.31 82.0
PSBF,CL = 0.9, VAR = 257 70.8 1.28 80.6
VAR = 100% 68.8 1.25 77.5

VAR = 300% 67.3 1.21 76.1

BR, Q = B 67.1 1.22 217.2
Q=16 67.0 1.20 134.8
LCFS 66.7 1.21 91.4
FCFS 62.5 1.14 56.0
LBF, Q =32 59.7 1.09 103.9

TABLE 2. PERFORMANCE MPASURES OF THE MODELS WITH HYPEREXPONENTIALLY DISTRIBUTED CP BURSTS
(&2 =10 X MEAN)

2. Y.W. Lee,"Statist®cal Theory of Communicatien,

Scheduling discipline % CPU Utilization John Wiley, New York (1968).

3. T. Lo, "Computer aids in computer systems ana-
Prediczziz :g; Zg'é lysis,” Ph.D. dissertation, Computer Sciences,

> i ty of .

R, 0= 8 379 University of Texas at Austié, Austin, {1973)
KR, Q = 16 48.5 4. J Buzen,''Queueing network models of multiprog-
FCFS 38.0 ramming,” Ph.D. dissertation, Div. Engineering

Bounded PSBF 47.4 & Applied Physics, Harvard Univ., Camb., (1971).

5. J.S8. Kakalik, "Optimum policies for partially
observable Markov systems,MIT Operations
.Research Center Report No. TR-18., MIT,
Cambridge, Mass (1965).

6. G. Lasseter, "A model of predictive CPU sched~
REFERENCES uling of known uncertainty," Master's thesis,
University of Texas at Austin (1972).

TABLE 3. <(PU UTILIZATIONS OF THE MODELS

1. S. Sherman, F. Baskett, and J. C. Browne, 7. S. Sherman, F, Baskett, and J. C. Browne,
"Irace driven modeling and analysis of CPU "Trace driven modeling and analysis of CPU
scheduling in a multiprogramming system,” Proc. scheduling in 2 multiprogramming system,"
SIGOPS Workshop opn System Performance and Comm. , ACM s Vol. 15, No. 12, pp. 1063~
Evaluarion,Harvard Univ,, (April,1971)pp.173-~191. TO69 .
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