implement mutual exclusion on a table J using semaphores.

JAP 1LOC1 noncritical branch to LOC1
®) J reserve table J
ENTA 1
STA SW SW «1
JMP L.0C2 unconditional jump to LOC2
. (uninteresting code)
LOCl STZ SW SW <0
1.0C2 . (uninteresting code)
LDA SW
JAZ 1.0C3 branch to LOC3 if SW=0
Q') J release table J
1.0C3 .

Figure 2.4. Segment of Source Code

The building techniques described so far result in the graph segment of

Figure 2.5.

LOC

Figure 2.5. Segment of Initial State Graph (Incorrect)



23

2.6 Splitting

In the example above, it is immediately obvious that something is
wrong. When this graph is compared to the prototype graph of Figure 2.1,
it appears that there are several illegal traces. Apparently the program
can reserve the table and not release it or release it without having re-
served it since the traces Peec and eeVe are both present in the state graph.
But a careful examination of the source code shows that these crimes will
never actually be committed and that the program is in fact correct in its
use of P and V.

This example illustrates the necessity of expanding the initial state
graph to make needed distinctions based on the values of program variables.
In the example the problem is, of course, that no account was taken of the
switch variable SW in building the graph. The graph does not have enough
states. The initial state graph produced directly from the program's source
code is not at all a complete state graph; it does not have a different node
for each combination of variable values. Many combinations are lumped together
in one state. In fact, the only distinction between states in this initial
graph is in the value of the program counter; no distinctions based on values
of other variables have been made. As the example shows, distinctions between
states based on other program variables may be needed. Yet not all distinc-
tions can be kept because the full state graph is unmanageably large.

The solution to the problem is to designate certain variables to be
critical. The initial state graph will be expanded to reflect distinctions
between states based on different values of these critical variables, while
other variables will continue to be ignored. This designation can be selec-

tive; variables can be ignored in some parts of a program and considered



24

critical in others. The definition of critical variables is pragmatic and
may be after-the-fact: a variable is critical if failure to consider it so
results in spurious illegal traces in the state graph.

Two modifications to the building process are necessary in order to
deal with critical variables. Whenever a variable which has been designated
to be critical acquires a new value, this fact must be noted and information
about its value attached to the current node of the graph. Whenever a branch
is made on the value of a critical variable, the conditions under which each
path is taken must be attached to the outgoing arcs. If SW had been desig-
nated critical in the example of Figure 2.4, then the initial state graph

should be that of Figure 2.6.

LoCl

Figure 2.6. Segment of Initial State Graph (Corrected)

The graph now contains all the necessary information, and it remains
only to expand the graph to include the additional states. This expansion
is accomplished by splitting. In splitting, one node is split into two or

more nodes, with all arcs and all information attached to the node retained.



25

This process begins at the node from which there are -conditional arcs and
propagates backward along the directed graph to nodes at which the critical
variable acquired known values. At these points arcs with conditions con-
trary to the information on the node are deleted. Thus two or more copies

of the whole graph segment between the variable being set and its subsequent
use are created corresponding to the (presumably) different sequences of
actions performed as the critical variable takes on its range of values. An
implementation of this splitting process is described in Chapter III. The
use of this technique implies that any variable to be designated critical
must be known to take on only a finite range of values. This is a limitation
on the method, but fortunately, critical variables usually obey the restriction.

To continue with the example: applying the splitting process to the
graph of Figure 2.6, beginning at the node labeled 1LOC2, the result is the
graph of Figure 2.8. The graph of Figure 2.7 shows an intermediate stage of
the process.

There are now two nodes representing the state of the machine when the
program is at the statement labeled "1,002" corresponding to the two different
paths by which the program might get there, i.e., corresponding to the two
different values of the variable SW. The state graph no longer looks so
much like a flowchart, but the retention of labels and variable values with
each node allows the user to see what each node corresponds to in the behavior
of his program.

The identification of critical variables is the only major part of the
methods described in this chapter which has not been automated. The technique
currently in use is for the human user to look over the source code and to

identify (by insertions into the text of the code) the intervals, if any, in

which certain variables must be considered critical. 1In practice the identity



1.0C3

1L.0C3

Figure 2.7. Graph Segment During Splitting

Figure 2.8. Graph Segment After Splitting

26



27

of critical variables is usually obvious; furthermore, the failure to iden-
tify one is not disasterous. As the example illustrates, failure to note a
critical variable can result only in the presence of spurious illegal traces
in the state graph, and the attempt to find the corresponding illegal path
in the program will bring the omitted variable to the user's attention.

One class of critical variables can be identified automatically,
namely the locations to which the program returns from subroutines. Asso-
ciated with each subroutine encountered in the source code is a generated
unique variable which is automatically designated critical. Wnen building
the initial state graph, each call to the subroutine results in setting the
value of this variable, and the return statements in the subroutine are treated
as branches on its value. The splitting process then results in the insertion
of a copy of the subroutine's graph at each point in the program's graph where
the subroutine was called. The finiteness restriction on critical variables
implies that recursive subroutine calls cannot be handled.

One: other problem in connection with critical variables arises when
they do not acquire their values by explicit assignment statements but rather
are set by input statements or are initialized externally. 1In this case the
splitting process as described so far cannot terminate since no nodes will be
found at which a critical variable has a known value. The most useful solu-
tion is to modify the splitting procedure slightly so that it stops at the
starting node and at relevant input nodes, simply leaving the two (or more)
outgoing arcs with conditions attached. This will result in the creation of
two or more copies of the graph segment between this node and the point where
the branch occurred. Following one or more of these paths should yield an
illegal trace (else the variable was not really critical) and thus the expli-

cit conditions on the arcs will tell the user under exactly which initial



28

values of the critical variable his program will run correctly.

2.7 Folding

Tt has been mentioned that the full state graphs of most real programs
are unmanageably large. The number of nodes in the full state graph of a
program may be thought of as the product of the sizes of the ranges of all
memory cells and registers which the program uses or may use. Thus the
state graphs of many programs will have more nodes than the number of memory
cells actually available on the largest computer, even if we ignore the prob-
lems created by the facts that the ranges of some variables may not be known
and that since programs may be run on virtual machines even the number of
memory cells used cannot be determined a priori.

In general, the problem of the size of state graphs is solved by dis-
carding unnecessary information and ignoring the distinction between two
states when the distinction is irrelevant or of no use to the analysis. The
technique for compressing state graphs is called folding. Folding consists
quite simply of combining two or more nodes into one node, preserving all the
arcs into or out of all the original nodes by having them all go into or out
of the one new node.

The initial state graphs of programs can be large, and the splitting
process can greatly increase their size. The comparison algorithm must deal
with each node of the state graph at least once and possibly many times. Thus
in order to save both memory and processing time, it is necessary to keep the
graph as folded as possible at all times. In fact, folding is the crucial
technique which makes practical the analysis methods presented in this study.

Folding can be thought of as a homomorphic mapping from the set of



29

nodes of a graph onto a subset of the nodes which preserves the connectivity
properties of the graph. If G is the original graph and H is the folded
graph, then a folding is a mapping, £, from the nodes of G to the nodes of

H such that if s >s' then £(s) Eéf(s'). For a thorough discussion of graph
homomorphisms see Hedetniemi [11].

In practice, folding can almost always be defined in terms of ignoring
a particular variable or set of variables; if the only distinction between
the states represented by two nodes is the value of x, then folding those
two nodes together is equivalent to ignoring the value of x. Notice that
the source code listing of an assembly language program is an extremely
folded version of its own state graph in which every variable except the pro-
gram counter is ignored. Each line of executable code labels the transition
from one state to another, i.e., from one value of the program counter to
another. The initial state graph built from the source code is similarly
folded. The problem in the example in which the value of SW was ignored was
that the initial graph was too folded.

It is of crucial importance that since folding preserves individual
arcs with their labels, it preserves both paths and traces. That is, if the
trace xy...z existed in a graph G, and G is folded to H, then the trace xy...z
will also be present in H. A proof that folding preserves traces can be
found in Howard [15].

This property of folding allows us to deal with folded versions of the
state graph of a program when searching for sequences of operations in viola-
tion of some rule; if an illegal trace does not exist in the folded graph, it
did not exist in the original graph. Unfortunately, the converse of this is
not true; that is, folding will generally add traces which were not in the

original graph. This is undesirable only if the added traces are illegal,



30

that is, if they were not allowed by the rule to which we are trying to prove
that the program adheres. Thus the general strategy in dealing with state
graphs must be to fold them as much as possible without introducing spurious
illegal traces.

The only restriction of folding is that it must not introduce into
the graph illegal traces, i.e., traces not present in the prototype. But
this criterion is difficult to apply directly since constant reference to
the prototype would be inconvenient and time consuming and since the compari-
son algorithm cannot even be applied until all the splitting has been done.
The criterion can be applied indirectly, however, by using the one feature
known to be present in all prototype graphs, namely the unit e-arcs at every
node. The presence of these arcs in the prototypes guarantees that two traces
differing only in instances of e will either both be legal or both be illegal.
This observation permits the adoption of the following two folding rules:

1. If node s is directly connected to s' only by a e~arc from s to

s', and either (a) s has no other successors or (b) s' has no other
predecessors, then s and s' may be combined.

2. 1If there is a e-arc from s to s' and a e~arc from s' to s, then

s and s' may be combined.

It is easy to see that any traces added by folding in accordance with
these rules will differ from some trace already present in the graph by at
most some instances of e. For example, consider the "only successor' rule
illustrated by Figure 2.9. Represent any trace from 8, to s by o, any trace
from o to s' by B, and any trace from s' to a final state by y. Then the
only traces from S0 to a final state going through either s or s' are aey and

+
By. After folding, the traces added are wy, Pe vy, etc.



31

o
i
i
; a
. i
i
s
L _-B
k__/
folds to s,s'
B |° — e
\\A Y:
N
i
Y
v

Figure 2.9. TIllustration of the "Only Successor" Folding Rule

Since adding or deleting e¢ from a trace does not make it a new trace for the
purposes of sequencing analysis, it can be seen that the strategy represented
by the two folding rules given is quite conservative; not only are no illegal
traces added, but no new traces of any kind are added. With or without
allowing reference to the prototype, more sophisticated folding rules can
be devised which result in an even more compact graph than that resulting
from application of the two given rules; there is some discussion of folding
strategy in Chapter I1I.

Returning once more to the table reservation example, applying the

folding rules to the graph of Figure 2.8 yields the graph of Figure 2.10.

Figure 2.10. Graph Segment After Folding



32

The comparison algorithm can now easily verify that the graph contains only
traces present in the prototype of Figure 2.1, and therefore the code seg-
ment it represents uses the P and V operations correctly.

In this particular example the two nodes connected by the only re-
maining e-arc could have been combined safely, but only because the prototype
happens to allow repeated P-V pairs. Had the prototype been instead as in
Figure 2.11, this folding would have introduced spurious illegal traces.

This example is sufficient to show that one cannot fold across all e-arcs.

A

CY

e N v
9 ()

O

€ € €

Figure 2.11. Prototype for One-use-only

This example also illustrates one reason why in practice the final
graphs even of correct programs can almost never be folded to exactly match
the prototype; even if there is such a folding, universally safe folding rules
will usually not accomplish it. Another reason is that there may be no such
folding. 1In Figure 2.3, G is correct with respect to P, but there is no fold-

ing of G which will result in P.

2.8 Summary

The general method for proving assertions about the order in which
programs perform interesting actions will now be summarized before proceeding

to more detail in Chapter III. The method assumes that three things are given:



33

a source listing of the program, a list of interesting actions which the
program may perform, and a prototype graph. The method consists of three
main steps:

First, an initial state graph is built from the source code. This
is the hardest step to perform in practice, the most difficult to describe
since much depends on the source language of the object program, and the
step least amenable to proof of correctness. The method can probably be
made provably correct but at approximately the cost of proving correct a
large compiler. In practice, the user will probably have to simply assume
that an initial state graph has been built which accurately reflects the se-
quencing properties of his program. This assumption includes two subsidiary
ones: that the code which performs interesting actions can always be recog-
nized as such, and that all critical variables have been so designated and
take on only a finite range of values.

This initial state graph must then be expanded to reflect differences
between states when critical variables have different values. It must also
be folded to save time and space. These two graph manipulation actions can
be taken with perfect confidence that the sequencing properties of the initial
state graph have not been altered.

The third and final step is to verify that the state graph has the
specified property. If the property has been specified by use of a prototype
state graph, then the comparison algorithm can be used. It is assumed that
if other formalizations are used they would be chosen with a view to algo-
rithmic verification.

It can be seen that the model can be manipulated with more confidence

than it can be built. But the assumptions involved in building the initial



34

state graph are not as dangerous as they might seem because the method tends
to be failsafe; the most likely error in building a graph, the failure to
note a critical variable, will add traces rather than delete them. If this
method verifies that a program has a specified property, a user may be fairly
confident in that result. If the method indicates that a program is incor-
rect there are three possibilities: the user can find the illegal path in
the program, find an overlooked critical variable and try the method again,

or remain uncertain about the correctness of his program.



CHAPTER III

PRACTICAL EXPERIENCE

3.1 Introduction

In this chapter, the techniques which are a part of the analysis
method presented in the last chapter will be discussed in more detail. The
emphasis will be on practical problems, and the discussion will focus on a
program, TRACE, which has implemented some of the techniques to perform se-
quencing analysis on real object programs. TRACE is also discussed in a
paper by Howard and Alexander [16].

TRACE is written in FORTRAN and accepts as input object programs
written in CDC6600 peripheral processor assembly language, pp COMPASS. Using
the techniques already described, it builds and manipulates state graphs and,
optionally, outputs them at various stages in the processing. It may also
accept a prototype graph and use the comparison algorithm to verify that the
object program adheres to the prototype. TRACE is organized in overlays.

The main program consists of numerous utility routines and a simple driver.

The driver calls in turn three overlays which perform the three steps of the
analysis method: BUILD reads the source code and the list of interesting in-
structions and builds the initial state graph. SPLIT processes all conditional
arcs, splitting nodes to reflect different values of critical variables.
CLEANUP performs final folding, reads in the prototype, and performs the com-

parison algorithm.

35



36

3.2 Building the State Graph

BUILD is divided conceptually into two functions, a parser and recog-
nizer for the source code, and a set of executive routines which build the
initial state graph. BUILD first reads in the user-supplied list of source
code operations which result in some addition to the graph being built. In
effect, by ignoring and taking no-action upon those instructions whose op-code
is not on the list, BUILD is folding the graph even as it builds it. This
list includes, but is much larger than, the set of interesting operations
which appear in the prototype graph. This larger list must include all con-
trol operations in the object language such as jumps, return jumps, and branches.
While it is unlikely that such program control actions would appear explicitly
on a prototype graph as an interesting action, they do determine paths
through the graph from state to state and hence must be taken into account.
Keeping up with the value of critical variables requires that some loads and
stores also be on the list. A particular store action will result in an addi-
tion to the graph only if the operand is a critical variable. Even though the
importance of some instructions depends partly on their context, once a source
statement has been parsed and recognized it is relatively easy to make the
appropriate addition to the graph.

The more difficult function of BUILD is the recognition of important
statements. COMPASS is a relatively powerful assembly language with such
features as overlays and macros with conditional assembly. Yet BUILD had to
be far shorter and simpler than a full COMPASS assembler to allow more time
to develop the other, theoretically more interesting, portions of TRACE. Thus
no attempt was made to handle such difficult constructions as table jumps,

"7IN *+7'" (branch to this address plus 7), or macro calls. 1Imn all of these



37

cases, the user must substitute more straightforward code into the object
program before giving it to BUILD.

An even more critical problem is the recognition of important actions
when these actions are not performed in one line of code. An example will
illustrate the problem. In some systems there may be a one-line primitive
such as Dijkstra's P operation for reserving tables, but in the UT2 operating
system used at the University of Texas Computation Center this action is ac-
complished by a series of statements which load a certain value into a certain
address (to be polled by a monitor) and then repeatedly test that address for
a response signal. The names assigned to the variables involved may vary
from program to program. Some system programmers use a macro to accomplish
the task, in which case the name of the macro serves very nicely as the in-
struction to be recognized, but some programmers do not use the macro. In the
latter case it would seem that the program analysis method being presented
here needs to have incorporated into it both a pattern recognition facility
and some technique for specifying patterns of program code. This feature
has not been implemented; at present if an important action cannot be recog-
nized by the presence of one line of code, such a line must be inserted at the
appropriate point in the source by the user.

As was mentioned in the previous chapter, the user must make one other
set of additions to the source code of the object program to denote critical
variables., TIf x is critical within a certain segment of the program, then
some pseudo-op such as "NOTE X" must be inserted before that segment. "ENDNOTE
X" may optionally follow the segment. These insertions need not be made for
the critical variables connected with subroutine calls and returns which are

handled completely automatically.



38

3.3 Splitting

After the initial state graph has been built and some preliminary
folding accomplished, SPLIT is called. During the building, branches on
the value of critical variables resulted in two or more outgoing arcs from
the current node being tagged with the condition under which each path would

be followed. Nodes with outgoing conditional arcs are called "

question nodes."
Each time a question node was created as a result of such a branch, BUILD
put that node on a pushdown stack which was saved for SPLIT.

SPLIT begins each cycle through its algorithm by considering the top
node on this question stack. If the node has associated with it state infor-
mation relevant to the conditions on the outgoing arcs, appropriate action
is taken: if the condition on the arc is incompatible with the state, the
arc is deleted; if the state satisfies the condition, then the condition is
removed from the arc. If there remain arcs with conditions about which the
node contains no information, then the node is split into as many copies as
there are mutually exclusive conditions. Each node has attached to it state
information compatible with one condition, and this condition is attached to
all its incoming arcs. The conditions are then removed from the outgoing arcs.
The node is then removed from the question stack, and if it has been split then
all its predecessors are added to the stack since they now have conditional
outgoing arcs. When the question stack is empty, SPLIT terminates.

Notice that since state information is attached to each newly split
node before leaving it, and since an attempt is made to answer the questions
on the arcs with information at hand on the node before splitting it, this pro-
cess cannot get trapped on loops; it will traverse a loop in the state graph

at most once for any given set of conditions.



39

To achieve complete generality, an implementation of the building and
splitting process described in this study would have to be able to recognize
arbitrarily complex conditions and resolve arbitrarily complex conjunctions
of conditions and state information. A completely general implementation
would, for example, not only have to recognize that x > 5 satisfies the con-
dition x # 3 but not the condition x # 6, but also be able to deal effectively
with conditions such as x <y + z. At present, SPLIT only handles conditions
of the forms x = ¢ and x # ¢ where ¢ is an integer or literal constant. This
has been sufficient to deal with all branches on critical variables encoun-

tered in programs analyzed so far.

3.4 Folding

The initial state graphs produced by BUILD can be quite large; for
example, the graphs representing operating system programs written in CDC6600
peripheral processor assembly language averaged about one node for every three
lines of executable source code, and about 1.5 arcs per node. (These ratios
will probably vary depending on the source language and nature of the program.)
The splitting algorithm greatly increases the number of nodes. Thus both to
conserve memory and to reduce the amount of work to be done by subsequent
portions of TRACE, it is imperative to fold the graph as much as possible at
each stage of the process. The main folding routine, FOLD, is in the main
overlay of TRACE so that it can be called at any time. FOLD incorporates the
two folding rules presented in Chapter II. When it is called, it considers
one by one each node in the whole graph and attempts to apply the two folding
rules repeatedly until no further combinations can be made with the node at

hand, 1In addition, e-arcs from a node to itself and one of a pair of identical



40

arcs between the same two nodes may be eliminated. When two nodes are com-
bined, location labels and information regarding the value of variables at-
tached to either of them are attached to the combined node, with duplications
eliminated. WNodes connected by a conditional arc are never combined.

If any combinations were made in a pass through the whole graph, then
FOILD again applies the rules to every node, and the process is repeated until
a pass has been made in which no new combinations occurred.

FOLD is applied to the graph as soon as BUILD has finished and is
usually able to cut its size in half. During the execution of SPLIT, FOLD may
be called whenever memory gets crowded and is always called when SPLIT has
finished. It has been found that at this point even very large object pro-
grams will be represented by graphs of less than 50 nodes. It therefore be-
comes practical in CLEANUP to apply folding rules with more sophisticated cri-
teria for combining states:

(3) Any two nodes whose sets of outgoing arcs are identical, with re-~

spect to both labels and successor nodes, may be combined.

(4) If there is a closed path, no matter how long, consisting en-
tirely of e-arcs from a node back to itself, then all the nodes
along this path may be combined into one node. (Notice that this
is a generalization of rule 2; in rule 2 the length of the path
is just two.)

When all four of the folding rules have been applied to every node in

the graph without any new combinations occurring, CLEANUP outputs the result
as the final graph and may also carry out the comparison algorithm if the user

has supplied a prototype.



41

3.5 Actual Uses

Despite its experimental nature, TRACE has been put to several real
uses on the UT2 operating system. It was run on six of the system programs
which access the Job Status Table to verify that they all adhere to the sema-
phore protocol for reserving, accessing, and releasing the table., It was also
used on a few programs to verify that they adhered to a similar protocol for
reserving and releasing data channels. TRACE can also be used in its present
form to verify that programs adhere to protocols for reserving disks and Ex-
tended Core Storage,for requesting half-tracks on these devices, etc.

As a matter of fact, using TRACE on these system programs revealed two
clearcut protocol violations. It was discovered that program 1S3 could reserve
the Job Status Table and then terminate without releasing it and that program
PPR could reserve the system channel and then abort without releasing it.
Unfortunately for the prestige of TRACE, each of these paths was already known
to a system programmer, each could be taken only when the program had detected
extreme error conditions, and neither path had ever been known to be taken
under normal system conditioms. Thus the protocol violations were not con-
sidered to be "important,' and neither was corrected. Nevertheless, the dis-
covery of real sequencing errors in real operating system programs by TRACE
in the hands of a user not intimately acquainted with that operating system
is a strong argument for the practicality of the analysis method presented in
this study.

TRACE was also used to analyze portions of a different operating system,
a locally modified version of Scope 3.3 for a CDC6600 at a Mobil Oil installa-
tion in Dallas. Only minor changes were necessary to enable TRACE to deal

with these programs written in a different version of COMPASS. These consisted



42

mostly of adding executive routines to BUILD to respond to previously unen-
countered instructions. This experience should help justify the claim that
the verification method is essentially language-independent.

TRACE has also proven to be very useful in simply revealing the actual
(as opposed to apparent or flowchart) structure and ordering properties of
programs for human inspection. In these cases, the final step, comparison
with a prototype, is omitted, and the objective is just the final, split, and
folded state graph of the object program. Such state graphs could be a valu-
able part of the documentation of a program. In one instance; a Computation
Center programmer who had just acquired maintenance responsibility for a set
of difficult programs from a departed colleague asked that TRACE be run on
them simply to help him understand what they did under various circumstances
and values of certain variables.

The state graphs produced by TRACE are also of use in connection with
a major performance measurement and evaluation project currently in progress
on the UT2 operating system. This project includes an event driven system
trace [1, 17, 22]. The trace is used to produce directed graphs representing
sequences of actions actually performed by programs including system programs.
Some 50 or 60 different actions are detected, although not all of these will
be performed by any one program. All of the actions recorded by the event
trace can also be detected by TRAGCE in the source code of the same system pro-
grams. Thus the two directed graphs of a program's actions produced by these
two different methods can be compared in order to help verify each method.
Comparison of the graph produced from the source code with that from the pro-
gram's actual behavior also serves to identify sections of code which are
seldom or never used as well as heavily used sectiomns which could be most pro-

fitably optimized. Finally, the directed graphs produced by TRACE have even



43

been used to pre-set the event trace graphs so that the event records could
be used simply to put frequency information on the arcs of a graph which was
already built rather than having to produce one.

Table 3.1 summarizes some information about eight representative execu~
tions of TRACE on UT2 system programs. These programs are all peripheral pro-
cessor programs and all are important components of the UT2 operating system
for the CDC6600. 1AJ, 18J, 1RJ, and 1TD are the primary overlays of the pro-
grams which advance, suspend, and resume jobs and of the tape driver, respec-
tively. PFM and PPR are the permanent file manager and peripheral processor

resident, respectively.

TABLE 3.1

SOME EXECUTIONS OF PROGRAM TRACE

Name Lines Modifications Nodes C P Time
1AJ 2541 25 42 32

14 15
I5:%) 784 15 16 6

10
183 619 6 11 3
PFM 1254 18 5 18
PPR 572 16 15 2
1TD 456 1 28

The first column of Table 3.1 gives the name of the object program. The second
column gives the total number of lines in the program's source listing, of
which perhaps 25% are comments so that, for example, 1AJ has 1800-1900 lines

of executable code. The next three coliamns give the number of hand modifica-

tions which had to be made to the original source code before TRACE could be



44

run on the program, the number of nodes in the final folded state graph pro-
duced by TRACE, and the number of seconds of central processor time required
by TRACE for the run. Some programs were analyzed more than once for dif-
ferent purposes. The first runs listed for 1AJ and 1RJ were for the event
trace project so that BUILD was given a long list of "interesting actions,"
while the second run on each was to verify adherence to the Job Status Table
reservation protocol so that only three actions in addition to the usual
control statements were designated "interesting." In both cases the larger

list of interesting actions given to BUILD naturally resulted in larger graphs.

3.6 Conclusions

TRACE was never intended to be a production program but rather an ex-
periment, the purpose of which was to demonstrate that the method of program
analysis presented here is practical. The two kinds of uses to which the pro-
gram has been put, displaying the sequencing structure of many real programs
for human analysis and actually verifying that some programs adhered, or failed
to adhere, to a desired protocol, indicate that it is indeed practical, espe-
cially in view of TRACE's modest time and space requirements. TRACE required
surprisingly little execution time. As can be seen in Table 3.1, running
TRACE from start to final verification required about one second of CDC6600
central processor time for every 75 lines of executable source code in the ob-
ject program.

Memory space is more of a problem. Most of the memory required by
TRACE is for the arrays in which the state graph is stored. Various sizes for
these arrays resulted in versions of TRACE requiring from 420008 to 540008

words of central memory on the 6600, 500008 words was sufficient for most of



45

the programs in the UT2 operating system including 1AJ which was about 1800
executable lines long.

The size of the graphs varies greatly from stage to stage in the pro-
cess, but they are usually largest during the splitting step. FOLD is usually
called several times during the execution of SPLIT, so it was not possible to
get accurate figures on the largest size which the graphs might reach while
being thus expanded. However, it is certainly possible that, if it were not
constantly folded, a state graph could grow to have more states than there
were lines of code in the program it represents.

The size of a state graph, both during its manipulation and the final
version, is less dependent on the length of the object program than on its
structural complexity; the number and depth of nested subroutine calls, the
number of critical switching variables, and the range of values they assume
all contribute directly to the size of the state graph. In its only major
failure, the largest version of TRACE ran out of memory on 1ED, a program of
about 1100 lines, many subroutines, and three switching variables with ranges
of two, four, and eight. This particular program could probably be handled
by simply increasing the array sizes of TRACE still further, but there will
certainly always be programs whose state graphs will exceed the capacity of
any given analysis program. It should be mentioned that using auxiliary mem-
ory to store the state graph would be very expensive in time and might not be
practical since both the splitting and folding algorithms traverse the whole
graph, possibly several times.

The most serious problems with implementing this analysis method are
the various additions and modifications which must be made by hand to the
source code by someone well acquainted with the method and its implementation

before the automatic processing can begin. In analyzing the operating system



46

programs, an average of about one addition or change for every 50 lines of
executable source code was necessary. Some of these, such as re-writing
table jumps, are strictly shortcomings of the particular implementation pro-
gram and are not necessary features of the general method. Other problems,
such as recognizing actions which are not performed by a single line of code,
fall into a grey area; it is probably possible to write recognition routines
to detect any desired actions, but it may be more convenient to mark some of
them in the source code by hand. Finally, at least some of the critical
variables in object programs will have to be identified by the user. Since
the number of critical variables is a crucial factor in the size of the state
graphs, it is impractical to automatically designate as critical all branch
variables, and no techniques are known at present for easily determining
which variables actually affect the order in which a given set of actions are
performed. Thus for the present the analysis method presented here will have
to be thought of as an interactive one which can be largely, but not complete-

ly; automated.



CHAPTER 1V

ANALYZING SYSTEMS OF PROCESSES

4.1 Introduction

In the previous chapters, state graph techniques have been applied
only to individual processes. In this chapter procedures based on state
graphs will be developed to prove statements about and analyze systems of
processes running in parallel and interacting with each other. Although
the primary interest of this study is the proof of statements about systems
of computer programs, including operating system components, running in a
multiprogrammed enviromment, the techniques are general and should apply
equally well to other systems such as communication networks or factory
assembly lines.

The use of state graphs to analyze systems of processes is not new.
In particular, Gilbert and Chandler [8] and Bredt [3] both employ state graphs
to examine the mutual exclusion problem, although using a method less general
than the one presented here. Gilbert and Chandler present a method of using
state graphs to detect potential deadlock, and both papers use them to check
for permanent blockage. Neither paper addresses the problems of representing
or dealing with system state graphs in limited space or time. In this chapter,
the concept of the state graph of a system of processes will be developed,
and then methods will be presented for expressing and verifying properties
of such graphs, along with a discussion of the practicality of the methods.
Tt should be admitted at the outset that the analysis methods to be presented
in this chapter will be useful mainly on very small systems or on abstract

systems.
47



48

4.2 System State Graphs

Suppose that there are N processes, possibly different, executing
in parallel at possibly different rates. It is assumed that each of the pro-
cesses can be analyzed using the techniques of the previous chapters so that
each can be represented by a folded final state graph which is finite and
presumably small. A system of such processes could then be represented

simply by the N individual graphs as in Figure 4.1.

OO

Figure 4.1. A System of Parallel Processes.

The node Oi represents the starting state of the ith process, m, the mth node

of the ith process, etc. As before, it is assumed that each process has a
unique starting state and at least one final state. It is also assumed that
each process is self-contained, i.e., that there are no arcs of the form

n, ~>mj, i#j.

It is not necessary to the methods of this study that the processes
ever interact in any way, but if they do not, then analysis of the system re
duces to analysis of the individual processes. The more interesting cases
arise when the processes communicate through common store or interact by

sharing or competing for other resources. In this case a notation is needed



49

to represent the state of the whole system at any given instant. The state
of the resources of the system could be represented by a vector, V, containing
the values in common (global) memory cells, and for other shared resources
such as processors perhaps a number or tuple representing status or ownership.
The construction of V will depend on the nature or application of the analysis.
In fact, the construction of V is quite similar to the problem of designating
critical variables discussed in the previous two chapters; we want to include
in V only those common variables which cannot be ignored without invalidating
the analysis, and like the previous problem, the question of which variables
to put in V may only be solvable by successive attempts to analyze the graph.
It is necessary to assume that each member of V takes on only a finite range
of values. This is a restriction on the method,.

One could in theory construct the state graph, G, of the whole system.
This graph would have nodes labeled (i, j, ..., k, Vg) corresponding to the
state of the system when process 1 was in state i, represented by the ith nod e
in its graph, process 2 in state j, ..., process N in state k, and the resources
in configuration VZ' If one process, in performing an action, carried the
system to a new state, then G would have an arc from the previous node to the
new, labeled with the action performed by that process. G would be a subgraph
of the graph C formed by the Cartesian product of all the individual graphs
and the vector V. While G would be much smaller than C because of shared re-
source interlocks and branches on values of common variables, G would still
be formidable for most real systems. In general, it is impractical to repre-
sent the whole state graph. Algorithms will be developed which require at
most the folded state graphs of the individual processes as in Figure 4.1 and

an enumeration of the nodes of G. However, it is this whole state graph, G,



50

which is being used as the model of the system, and except when discussing
algorithms for automatic analysis, G will be referred to freely.

To the graphs of Figure 4.1, add N pointers, one for each process,
pointing to the node representing the state which that process is in. When
process i performs an action which carries it to a next state, the ith pointer
is advanced to the appropriate next node. Any program for automatically
analyzing systems of processes could more easily deal with a representation
of the relatively small graphs of Figure 4.1, advancing pointers along it
and acting as a simulator, keeping up with the values of common variables or
the status of other resources as individual processes changed them. Thus the
state of the system being analyzed can be represented at all times by an
ordered (Ml)-tuple, (i,j,...,k,Vg), indicating that the first process is in
state 1 and the first pointer is at the ith node in its graph, etc. It can
be seen that this pointer representation results in the same labels for states
of G as before. Storing all of G explicitly, on the one hand, and trying to
retain the same information by adding a simulator apparatus to the individual
process graphs on the other are theoretically equivalent but represent a
space-time tradeoff; in the first case the connections between states are
quickly available at some storage cost, and while the second method requires
less memory, the neighbors of a given state are not immediately obvious and
must be computed.

We define a legal transition of a system of processes from one system

state to another to be the advancement of one of the N pointers from its pre-
sent node along one arc to a next node provided that any condition attached
to that arc is TRUE. Formally, there exists a legal transition from a state

A

il

(8y50evs8, 15 .5 8 05000580 V) to a state
175 i-1 i i+l N

B = (al”;‘éaiel’ b ai+l"”’aN’ V') if and only -if:

i?



51

(1) the graph of the ith process has an arc from its node a to its
node b, and

(2) the condition, if any, on that arc is TRUE when the system is
in state A, and

(3) the action on that arc transforms the resource vector V to V'

(where, of course, it may be that V' = V).

State B will be called a successor of state A; A is a predecessor

of B. There is a path from a state s, to a state s if there is a sequence

1

of states Syre+es8 10 S, such that there is a legal transition from s; 1 to

s for 1 < i < n. A state is reachable if there is a path from the system
0

starting state to it. s, = (0,...,O,VO), the state where all processes are

in their starting states, will be called the system starting state, which

without loss of generality can be assumed to be unique. A system final state

is any state where all processes are in a final state.

At any given instant when a system is in state s, there will typically
be several 'next states" for the system; any one of several processes could
be the next to éct, and each action would in general carry the system to a
different state. Typically, we have no way of knowing which process will per-
form its next action first, and systems appear to be nondeterministic because
of this uncertainty of order of operations. The graph model being described
accurately reflects this uncertainty property; there will typically be several
successors to any state s in G. This is because by the definition of legal
transition there will be as many legal transitions from s as there are pro-
cesses which can possibly act. 1In cases where it matters which process goes
first, this is a conservative strategy for modelling the system because no
assumptions are made about the order; instead,.’all possible traces are created

including the one where the 'wrong' process acts first. However, it should



52

be noted that there is an implicit assumption in this model: In agreement
with past treatments of this problem (see, for example Dijkstra [6], p. 53,
and Gilbert and Chandler [8], p. 429) it is assumed that if two or more pro-
cesses are each about to perform an action, one or another of them actually
acts first, even if we cannot know which, but that there is never actual
simultaneity. In the case of single processor hardware, this is equivalent
to assuming that race conditions are always resolved. However, in multi-
processor systems there might be actual simultaneity, and there is no gener-
ally satisfactory way of reflecting this property with the present model.
However, if the two actions do not affect the same resource, it probably does
not matter which we say occurred first, while if they do, then there is a
race condition which is presumably resolved in some order in any real multi-
processor system.

Tt has been mentioned that the graphs of the individual processes
in the system are to be built by the methods of the previous chapters. If
these graphs are to be used in the analysis of a system of processes, then
obviously the interactions of the processes are of interest. For this reason
it is assumed that actions by the processes which may affect their interaction
were designated as "interesting' and appear on the arcs of the graphs. Speci-
fically, it is assumed that any processes which test or set the value of any
of the variables in the common vector V have such actions explicitly labeled
on the arcs of the graphs being used to analyze the system. Some of these
arcs may have special kinds of labels indicating that they may not be elim-
inated by folding but are later to be considered to be null (e) for purposes
of comparison with a prototype graph. While the graph manipulation techniques
described in the previous chapters are certainly also applicable to the system

graph G, in practice there will probably not be much opportunity to use them.



53

Because the individual process graphs from which G is constructed have al-
ready been thoroughly folded, there will be little or no folding possible

on G; and because account was taken of actions concerning the system's criti-
cal (common) variables as the states of G were generated, splitting will not
be necessary.

A common feature of multi-process systems is that processes may spawh
child- or successor-processes; that is, one process may generate or initiate
a second process which runs in parallel with the first. This child-process
may then have the same status as the other processes in thg system, using the
common store, competing for resources, and even spawning children of its own.
In terms of the "fork" and "join'" notation of Conway [5], this initiation cor-
responds to a "fork." Regardless of how such process generation actually oc-
curs in the system being analyzed, this feature can be modeled using the no-
tation already developed. The graph of the potential child process is in-
cluded in the system of graphs from the beginning, and its node pointer is
initially at node 0. At this first node the only outgoing arc has as a con-
dition a certain value of an enabling variable, say e, in common store. At
the appropriate point in the parent process, e is set to the value which gives
the child a legal transition. '"Joins'" can be modeled in a similar fashion.

Processes may have more than one child, and lineages may be of indefi-
nite length, but it is necessary that at least one copy of the graphs of all
potential processes be included in the original graph system. Further, it is

necessary that the total number of such processes, either initially active or

potential, be finite and known in advance so that the proper number of pointers
can be provided. This is definitely a limitation on the method, but fortunately
an acceptable one for most applications. In particular, the number of processors,

even virtual ones, and hence the number of active processes, is bounded on



54

most computer systems; job- or task-tables and queues are of finite length.
However, systems of recursive processes cannot, in general, be modeled using

this method.

4.3 Analyzing Sequencing Properties of Systems

We are now ready to develop methods for proving properties of or
statements about such systems of processes. The most general, although not
the only, class of properties which systems can be proved to have are those
which can be expressed in terms of a prototype graph. The verification method
will be similar to the method used earlier to verify that individual processes
had properties expressed by prototypes.

As before, the user will have to provide a prototype graph, P, which
expresses the desired ordering relationship on the actions performed by the
system of processes. Each node in the prototype graph will represent a state
of the whole system. If the ordering rule is of the type ''some (any) process
must do A before some (any) process does B," then the prototypes will look
just like those for individual processes. However, if it matters at any point
that an action be performed by a specific process, then the action-labels on
the arcs of the prototype will have to be subscripted with the identity of
that process. As an example, let us consider the mutual exclusion problem.
Suppose that two processes each have a critical section and that we wish to
verify that they cannot both be executing this section simultaneously. By
denoting two actions as "interesting,' namely, "begin critical section," BC,
and "end critical section,” EC, we can state the desired order-of-operation
rule as: "once either process has done a BC, that same process must do an

EC before the other can do a BC." The prototype graph expressing this



55

property is given in Figure 4.2.

Figure 4.2. Prototype Graph for Mutual Exclusion
of Two Processes with Critical Section

Of course, if the processes had more than one critical section governing the
use of different resources, then different arc labels would be used to denote
entry and exit for each critical section, and the prototype would be more
complex. If P is a primitive in a given system, then in some applications
"P" and "BC'" might be equivalent, but in general the action of reserving a
resource and beginning the program segment where it is used are not equiva-
lent, so two different arc labels may be needed.

The system comparison procedure will be slightly more involved than
the comparison algorithm of Chapter II because in generating legal successors
the procedure must also be somewhat like a simulator, keeping up with values
of V and evaluating conditions on the arcs of the individual graphs, and be-
cause the arcs in the prototype may specify actions by a particular process.
The system comparison algorithm presented below is written assuming that arc
labels in the prototype are subscripted as in~the example in-Figure 4.2; if

this is not the case, the algorithm can be made slightly simpler.



56

System Comparison Algorithm

1. Set up a list, L, of pairs (s,p) where s is a node of G and p is a node
of P. 1Initialize L to {(so,po)}, the starting nodes of G and P, respec-

tively.

2. If there exist s, p, x, i, s', and p' such that (s,p) is in L, s % s is
in G and the arc traversed to carry G from s to s' was in the ith process
X.
graph, and p -l>p' is in P, but (s',p') is not in L, add (s',p') to L

and repeat this step.

3, 1If there is a member (s,p) of L such that s is final but p is not, report

an error, otherwise report success.

The above algorithm will now be applied to a system consisting of two
processes embodying a purported solution to the mutual exclusion problem.
This "solution'" is flawed and is not seriously proposed but is constructed
solely for illustrative purposes. Suppose that a system designer has decided
to insure that two processes are never in their critical sections simultaneously
by instituting an interlock consisting of setting and testing a single common
variable w, initialized to 0. When a process wants to enter its critical
section it must first increment w by 1 and then test it against 1. If w <1,
the process may proceed through C; if w > 1 then the other process is in its
critical section and the first process must wait. As a process finishes its
critical section it decrements w. Figure 4.3 shows the graph for sucha system.

Notice that since both processes have 6 states and since w can take
on 3 values, 0, 1, and 2, there are theoretically 6x6x3 =108 possible states

of this system. However, as we shall see, only 32 states are actually reachable



57

and need be considered. Such dramatic differences in size between C, the
Cartesian product graph, and G the actual state graph are to be expected in

real systems and help make state graph analysis practical.

w ¢« wtl
/ﬁ (ﬁif) If w> 1

g Ifw<<l1 BC

w — wtl

(iif) Ifw>1

BC

Figure 4.3. Two Parallel Processes with Interlock

Let us use the system comparison algorithm with this system and the
prototype of Figure 4.2 in order to prove that the processes cannot both be
in their critical sections at the same time. The initial state of G is
(0,0,0) which we shall call 0 for short, and the initial state of P is O,
so the first pair in L is ((0,0,0),0). There are two successors to 0 in G,
1= (1,0,1) and 2 = (0,1,1). 1In both cases, the arc from node 0 to node 1 in

the individual process graph is e for the purposes of this algorithm since



58

only BC and EC appear in the prototype. Thus ((1,0,1),0) and ((0,1,1),0)
are the next two pairs in L. The execution of the algorithm is straightfor-
ward and results in the list L which is presented in Table 4.1. The final
state of G, (F,F,0) is paired only with 0, the final state of P, so the com-
parison is successful. Thus the given interlock scheme involving w will
indeed prevent the two processes from being in their critical sections simul-
taneously..

Along with each pair, (s,p), Table 4.1 also lists all of the legal
successors of s. This column is presented here for expository purposes and
will also be referred to later.

The proof that the algorithm does correctly determine whether or not
all the traces in the system graph G are also traces in P is essentially the
same as that given for the algorithm in Chapter II and will not be presented
in detail. However, one point requires further consideration.

1t can be seen that the sequencing analysis method for systems pre-
sented in this chapter consists basically of viewing the system as a single
process and then using the method of Chapter II. This is no small step, since
two processes each with a certain property can together form a system which
does not have this property, and vice versa. A case in point is termination.
Two processes can have the property that there is a path from every state to
a final state when running alone and yet deadlock when running together in
parallel. Conversely, two cooperating processes might be designed which mani-
pulated resources common to the two of them in such a way that they progressed
nicely together but neither alone could ever reach a final state without
enabling actions by the other. One implication of this observation is that
there are no reasonable assumptions which can be made about individual pro-

cess graphs which will guarantee that the system graph will have the property



