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ABSTRACT

In this report, two models of scheduling with partially correct
predictive data are presented. The first model is an open queueing
network for analysis of waiting time; the second a simple closed
network. In both cases, a scheduling discipline that has proba-
balistic knowledge of a cuétomer's service time is assumed; and the
results are parameterized by the probability p that the assumed service
time is correct.

An integral expression for the avergge waiting time is derived
for the first model. Numerical evaluations for several service time
distributions as a function of p are shown. The results show that
order-of-magnitude reductions in average waiting time can be attained
as p increéses, when the utilization factor is high. The largest part
of the decrease occurs for the smaller values of p.

The closed queueing model assumes one FCFS exponential processer,
and one processor scheduled by the probabilistically correct estimates.
Numerical results, obtained by simulation, show the idleness of the
processor can be reduced linearly, by a factor of two, as p increases

from zero to one.
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I. Introduction

A predictive scheduling algorithm is one which bases its decisions
on available (partial or complete) information about the future charac-
teristics of the job being scheduled. Study of predictive algorithms
in queueing theory is limited to a few special cases: the Shortest-
Processing-Time-First (SPTF) algérithm for non-preemptive scheduling,
and the Shortest-Remaining-Processing-Time-First (SRPTF) discipline
for scheduling with preemption (Ref. 5,6). The lack of more extensive
analysis may be due to the belief that this study is not practieal,
since processing times are generally not known in advance, or it may be
due to the difficulty of analysis in the general case of scheduling with
partially predictable service times.

In this report, some indications of the theoretical potential of
predictive algorithms are obtained, in terms of both waiting time and
processor utilization. The results are parameterized by the degree of
correctness of the predictive data.

The waiting-time result is based on an algorithm that varies from
random~priority assignment to shortest-job-first assignment, as the
correctness of the predictive data increases from zero to ome. Numeri-
cal results are shown for two specific processing-time distributiomns.
For the processing-time result, a épecific predictive algorithm was
compared in simulation against known nonpredictive theoretical models.

The results demonstrate that there can be considerable advantage in
using predictive data, even when it is far from completely correct, to
achieve either lower average waiting time, or higher processor utiliza-

tion. Furthermore, the value of the predictive data increases as the
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the variance of the processing-time distribution increases.

Sectton Two of this report discusses predictive scheduling in an
open network, to achieve the benefit of improved average waiting time.
Section Three demonstrates the effect of improved utilization in a

closed network.



1I. Predictive Scheduling in a Single~Processor Open Network.

A basic model in the study of queueing is the so-called M/G/1
system, consisting of a single processor with a general service time
distribution, at which customers (jobs) arrive with exponentially dis-

tributed interarrival times.

Exponéntial

Interarrival

..__—_——-’ s ——————— __‘E?
Time: Processor

Average rate )

Service time S
Pidtribution B(g)=Pr(S<s)

The utilization p of the processor is dependent only on the input
rate )\, and average service rate E(S), where S is the service-time
random variable. The relationship p =AE(S) holds for every scheduling
discipline that does not allow the processor to become idle while there
is at least one customer on the queue. In particular, there is no dif-
ference between the processor utilization yielded by predictive algorithms
(which have advance knowledge of the jobs processing~time) and non-pre-
dictive algorithms.

The distribution of waiting times of jobs in the queue does vary,
however, under different scheduling algorithms, and so does the average
waiting time. In<fact, it is well known that the predictive Shortest-
Processing-Time-First (SPIF) algorithm yields the lowest average waiting
time of all non-preemptive algorithms. The average wait time WSPTF
(including processing time) of jobs scheduled by the SPTF algorithm is

given by (Ref. 6):
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When the jobs are scheduled on a First-Come-First-Served basis

the average walting time is:

2
- AE(ST)
E(S) + 500

WFCFS
A scheduling algorithm that assigns jobs on the basis of partially
correct predictive data is expected to yield an average waiting time
within the range bounded by the foregoing values. To obtain am expres—
sion for this continuum, a result from the general ease of scheduling
according to assigned priorities is used. The waiting time W(t,s)

of a job that has priority t and service time s is

W(t,s) = s + AE(32)

2(1-0,)
where e is the utilization of all jobs whose priority is greater
than t.

Now, suppose jobs are scheduled according to randomly-assigned
priorities. Let the probability distribution for priority T be iden-
tical to that of the processing-time random variable S. The priority
is in fact the predicted processing time: the scheduling rule selects
as having highest priority the job with the smallest predicted processing
time. With probability p, T = 8§, otherwise, the predicted processing
time is independent of the actual time.

Let b(tss) be the joint probability demsity function for T and S.

Then,

b(t,s) = pbl(t,s) + (l—p)bz(t,s)
where bl(t,s) is the joint distribution for the case when the prediction

is the same as the processing time.



b, (£,8) = £(£) 3 (t,8)

3 (t,8) is the probability mass function for probability uniformly
distributed on the line t = s, and zero elsewhere, and f(t) is the mar-
ginal density function for both processing time and priority.

bz(t,s) is the joint distribution for the case when processing
time and priority are independent and have the same probability density
function f(x). Then, bz(t,s) = f£(t)f(s). |

I is computed as the average input rate times the average of

processing time s weighted by the probability that t<s.
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Then, c
Py = AP f(s)ds + A(1-p) F(t) E(S)
/o

The scheduling discipline that dispatches jobs according to their
predicted processing time will be called the random priority (RP) algo-~
rithm. The expected wait time WRP is

esh [° dB(s)
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With p = 1.0, here, the algorithm becomes the SPTF algorithm.
With P = 0, the priorities are independent of processing time.

Then, because

[

dB(t) , = 1 whenever B(t) is a probability
(1-eB (%)) 1-p
(o] .

distribution, the expression for the waiting time is the same as that of
the FCFS algorithm.

The wariation of waiting time as a function of p is demonstrated in
figures 1 and 2, for exponential and hyperexponmential service time,
respectively. Here, it is seen that for moderate values of p
(p =.8), the average waiting time is reduced by a factor of two, as the
reliability of the predictive data increases. Order-of-magnitude de-
creases in waiting time are achieved when the utilization is high (p = .99)
Furthermore, the greatest part of the decrease in walting time occurs
when the probability of correctness is low. The conclusion is that
the predictive data need not be highly accurate in order te be helpful in
achieving small average walt times when the utilization factor is high.

For the results of figure one, the service time distribution is
B(t)=l~e—t, which has mean and variance one. The hyperexponential dis-
tribution used for figure two is

B(t) = 1_% (e—.SSt + e—S.St),
wh;ch has mean 1.0 and variance of 2.173. Because the decrease in
waiting time with increased correctness of predictive data is greater for
the hyperexponential case, these instances of processing-time distribu-
tion support the intuition that the value of predictive data increases

with the variance of the processing time.
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IIT. Predictive Scheduling in Closed Queueing Networks

Queueing Networks that can be studied analytically are those for
which the scheduling discipline at each processor yields an output stream
that is a Markov process. Examples of such disciplines are Last-Come~
First-Served-Preempt/Resume, Processor Sharing and (for exponential
service times) FCFS. (Ref. 4) But for these cases, each individual
processor is loaded in the same way as it would be if it were the only
element of an open queueing network; the scheduling discipline does not
influence utilization. Analytical results for classes of more interes-
ting scheduling displines, in particular, networks with mixed predictive
and non-predictive stations, have not been obtained. As an indication
of the expected effectiveness of such dispiplines, the simple queueing
network shown below will serve for comparison of analytical and

numerical (simulation) results.

general
service time |[PROC
distribution
B(t) | {
average_ 1 exponential I/0
up 1/0 service time
4\ distribution.

] average rate L\i

Here, the station marked I/O will always have an exponential service
time, with parameter Uy and will always be scheduled by the FCFS disci-
pline. If then, the processor station also has an exponential service
time, (parameter up) every discipline that does not use advance knowledge

of the service time will result in the processor utilization hp. (Ref. 5)
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where N is the total number of jobs in the network, and p = ¥y,
<)
N P

In the particular instance u, = 4 _, n_ = by L'Hopital's rule.
i

p’ p N+l

The utilization of the processor may be improved if the processor
scheduling discipline has advance knowledge of the processing time of
each job. But in this case, analysis of the network is difficult, even
for exponentially~distributed processing times, because the rate at
which jobs leave the processor to join the I/0 queue is not a Markov
process.

If the non-preemptive Shortest-Job First discipline is in effect,
for example, and two jobs are on queue for the processor when a job
completes, then the job with the minimum of the two processing times is
selected for the processor. If the processing-times of jobs have .
distribution B(t), with density function b(t), then the processing rate
in effect after the selection of the minimum-processing-time job (of

two jobs) 1is computed as follows: Let bm(tls) be the processing-time density

of the smaller job, given that the other job has processing time S. Then

e, ={ 208 for s

0 for t>s
Removing the conditioning on S, bm(t) --the demnsity function for the
minimum processing time--is obtained.
<0

bm(t) = bm(tls) dB(s)
ot®
= it-)— dB (S)

~ Bés)
t

- (o 1{B®)
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If the processing-time distribution B(t) is exponential, then the
distribution in effect for the minimum of two jobs is not.

The expected benefit of predictive information in scheduling in this
network can be obtained by comparing the processor utilization qp, above,
for the case of any‘scheduling algorithm with no predictiwe data (and
exponenential processing time) with simulation of the above network in
which the processor is schedulied by the preemptive Shortest-Predicted-
Remaining-Processing~Time (SPRPT) algorithm.

The SPRPT algorithm used in the simulation runs is parametefized
by p: the probability that the estimated processing time of a job, which
determines the scheduling priority of the job, is the same as the actual
processing time of the job. When a job 1s run on the processor for a
period, the estimated processing time is reduced to become the estimate of
the remaining processing time for the job. If the estimate time reaches
zero before the actual processing period completes, the estimate was known
to be in error, and is then reset to (and, for determining scheduling
priorities, reﬁains set to) the average time for the exponentially-distri-
buted jobs.

The results of the simulation runs are given #n figure three. The
cumulative probabilities of n or fewer jobs on the processor queue
(for 0€ n €N-1, where N = 5).are plotted against the probability p that the
predictive data is correct.

When p = 0, scheduling follows randomly assigned priorities. The
probability of m jobs on the processor queue is P(m) = . for all m.

N+

As p increases, P(0) and 1-P(N) decreases until they reach values of

about half their original values. For n in the middle of the range
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(0,N), P(n) increases.

The variagion of the P(n) values with p is shown to be linear in
the figure. The exact theoretical relationship may not be linear, but the
nonlinearity is not significant enough:to be observable.

The same processor-scheduling algorithm was used in a simulation rum

in which the processing-time distribution was the hyperexponential function

B(E) = 1 _%_ (=55 4 e—s.sa).

The results are shown in figure 4.

The effect of the predictive data in reducing idleness is greater,
/ because P(0) has a greater value under the randomly-assigned I
priorities discipline (p = 0). The reduction of P(0)
appears non-linear, with the greater part of the decrease at larger
values of p.

-The algorithm did not attempt to dynamically recompute the expectation
of the remaining processing time on the basis of processing time already
elapsed, when the original estimate was found to be incorrect. Such
vé comparison would involve considerable extra overhead, since it requires
evaluation, at every scheduling opportunity, of the expectation of s
normalized segment of the processing-time distribution. If such evalua-
tion were performed, it would reduce the values of P(0) for the mid-range
of p, but not for p=0, (randomly-assigned prioritd#es) or p=1 (no incorrect

predictions).
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IV. Conclusions
The theoretical analysis of queueing disciplines in which the
service period is known, but with less than total accuracy, is difficult.
The results expected from such analysis will show the parameters of
interest vary from the case of randomly assigned priorities to the case
of scheduling with complete foreknowledge (as exemplified by the Shortest-
Job-First algorithm) as the vafiable probability of correctness of the
predictive data increases from zero to one.
1f the parameter of interest is average waiting time, the estimates
of processing time have the greatest part of the reduction of average
processing time occurs at the smaller values of correctness of the estimate.
In a simple network in which the processor is scheduled in a preemp-
tive Shortest-Estimated-Remaining-Processing-Time-First, processor idle-
ness can be reduced by a factor of approximately two as the quality
of the predictive data is increased. The reduction of processor idleness
varies is approximately linearly with the correctness of predictive data.
Even though the analysis of predictive scheduling techniques is
incomplete, the results shown heee are sufficient to endourage simulation
studies and design of more complex schedulers that use predictive data,

even where only partially correct predictive data is available.
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