To zppear in :

RSl iR

Proceedings of the Association for Computing Machinery
‘ Nati nal Conference ACM 74,

S2n Diego, California, 1974.

TR=-39

‘ SKELETON PLANNING
SPACES FOR NON-NUMERIC
HEURISTIC OPTIMIZATION*

L. Sikl&ssy & M. A. Haecker

Computer Sciences Department
University of Texas
Austin, Texas, 78712, U.S.A.

Keywords: Problem-Solving, Heuristic Optimization, Robotics, LAWALY, Planning.

ABSTRACT

The AFTERMATH system implemeats a heuristic
technique for improving long solutions (up to
about 250 steps) for robot planning problems.
AFTERMATH transforms the given solution into a
skeleton solution that focuses attention on repe-
titious and opposite moves. AFTERMATH attempts to
obtain an alternate, improved skeleton. From the
alternate skeleton, an alternate solution is built
(if possible) to the original problem. If the al-
ternate solution is an improvement, AFTERMATH
accepts it as input, and cycles.

Although not guaranteeing optimality, AFTIER-
MATH improves many solutions, sometimes gradually
in several cycles. Examples can be built for which
AFTERMATH obtains an arbitrarily large improvement
in one cycle.

1. INTRODUCTION

In the past few years, problem-solving in
gimulated worlds of robots has attracted much
interest [1-11]. Two robot problem-solving systems,
TAWALY [6] and AMINA [8] have routinely solved tasks
requiring hundreds of steps, thereby showing the
feasibility of programs to overcome successfully
the challenge of finding solutions to long problems
in enormous search spaces resulting from the com~
binatorial explosion. If the number of steps in
the solution is considered, the solutions found
by LAWALY or AMINA were optimal only for very short
solutions (of the order of ten steps). Longer so-
lutions were almost never optimal. Here, we
present a system of programs, called AFTERMATH,
which acts as a postprocessor to any robot problem-
solver, whether human or machine, and attempts to
optimize solutions to long robot tasks.

The bagic mechanism that moves AFTERMATH is
simple; AFTERMATH tries to detect inefficiencies
in the solution that is proposed to it. The inef-
ficiencies could result {rom the robot making some
move, and sometime later an opposite move, when
perhaps neither the original move nor its opposite
is really necessary. Another possible inefficiency
could result from the robot's making the same move

*Partially supported by grant GJ-34736 from the
National Science Foundation.

again and again along its solution path, when
perhaps the move need not be made quite so often.

To detect these interesting repetitious or
opposite moves, AFTERMATH transforms the solution
into what has been termed a "planning space” [12]
in which (essentially) all non-interesting moves
are ignored. In other words, from the original
solution a gkeleton solution of interesting moves
is built. AFTERMATH tries to find an alternate
skeleton solution to the problem. When such an
alternate skeleton solution is found, AFTERMATH
attempts to "1ift up" this skeleton solution into
an alternate full solution to the original problem.
If the alternate full solution is an improvement
over the original solution, it becomes a new input
to AFTERMATH. 1f it is not, or a full solution
could not be lifted up, AFTERMATH backtracks to
find another alternate skeleton solution. The
number of skeleton solutions is finite, and
AFTERMATH will stop when no further alternate
skeleton solution is found, unless, of course, it
hag previously exbausted its resources of time ov
computer memory. :

The interest in AFTERMATH lies not only in
the fact that it does indeed improve solutions to
robot paths, but also in the use of skeleton solu-
tions as an intermediary problem space in which the
important aspects of the inefficiencies of the
solution become apparent and can be readily removed
(at least many times). In removing inefficiencies,
AFTERMATH uses a variety of heuristics that can be
justified both on plausible grounds --they are
based on common sense observations-- and on grounds
of efficacy --they work! These heuristics are oi
a non-numeric nature: AFTERMATH makes no use of
statistics, and its arithmetic capabilities are
limited to some elementary counting and comparisons
on the integers.

2. THE PROBLEM SPACE.

We briefly review the axiomatization, first
introduced in [1], which defines the types of
robot problems which AFTERMATH tries to optimize.
More complete axiomatizations were proposed in
{10} and [11].

The world is described by a set of true facts,
for example (see Figure 1): (INROOM BROOM ROOMB)
(OPEN DODRAB) (INROOM ROBOT ROOMB) (STATUS 1S1 OFF),
etc. The world can change if an operator can be

L. Siklossy & M. A. Haecker

Page 1 of 6

applied to it. For example, the robot can goto an
object. The goto(object) operator can only be
applied to a world which satisfies the conditions
of the operator. One axiomatization of goto would
have conditions: (ONFLOOR) (INROOM ROBOT place)
(INROOM object place), indicating that the robot
must be on the floor, and that she and the object
mugt be in the same room.

When an operator is applied, the world is
changed into a new world by use of the add set and
delete set of the operator:
new-world := ((old-world - delete-set-of-op) + add-
set-of-op), where "-" and "+ are set difference
and union,

An axiomatization of the add-set and delete-set of
goto could be:

Delete-set: (AT ROBOT $) (NEXTTO ROBOT §);

where "$" 1s a universal variable that will match
anything.

A task is specified as a set GOAL of condi-
tions that the world must satisfy. A particular
task, whose solution AFTERMATH tries to improve,
was defined by the GOAL set:

(NEXTTO ROBOT LIGHTSWITCH2) (NEXTTO DUSTPAN BROOM)
(WATERED TERRARIUMF) (INROOM BOX1 ROOMA)

(INROOM BOXO ROOMF) (NEXTTO BOX4 DISPOSAL)

(STATUS TABLE DUSTED) (NEXTTO BOX2 BOX3).
Clearly, the solution cannot be solved in the order
given: the robot moves around to accomplish her
work, and cannot first go to LIGHTSWITCH2 and stay
there! Therefore, not all 8! permutations of the
subgoals in the above GOAL are possible. But,
among the many possible ones, some will have
shorter solutions than others.

In general, AFTERMATH was applied to the
problems of a robot janitor. Housecleaning and
janitorial tasks undoubtedly represent the largest,
and most neglected, industry in the world in terms
of the man-hours spent on the job!

3. AN EXAMPLE.

A major problem in describing the behavior of
AFTERMATH originates from the problems on which it
works. These are fairly long solutions to robot
tasks. Just writing down a hundred-step solution
would consume clogse to a page! Hence, we shall
choose a small problem which, although it does not
do jutice to AFTERMATH's capabilities, illustrates
some of its main features. AFTERMATH is described
in detail in [13].

Figure 1 represents the initial configuration
of the world. The goal is:
(NEXTTO BOX2 BOX3) (STATUS 1LS1 ON). 1Sl is the
lightswitch in room D (abbreviated RMD). DRCD is
the abbreviation of the door joining rooms C, RMC,
and D, RMD. The robot needs to climb on BOXO to
turn on a light. The first solution input to
AFTERMATH is S1. (Operators are numbered for the
reader's convenience.)

#*#81 may have been obtained by some problem solver,
perhaps human. The source of the solution is
immaterial to AFTERMATH. In many cases, the
solutions were output by LAWALY.

[ra)
<
| W% [=] & |4

£ o
2 = @

LEGEND
’% faucet
© a £5 dustpan
pa
broom
@ disposal & box 0
%
= tavie %
terrarium
robot .
? : 8 1s1 (lightswitchl)
‘off*

Figure 1. A Robot World

S1: 1l-goto(DRBC), 2-gothrudr(DRBC RMB RMC), 3-
goto(DRCD), &4-gothrudr(DRCD RMC RMD), 5-goto(BOX2),
6-pushto(BOX2 BOX3), 7-goto(DRCD), 8-gothrudr(DRCD
RMD RMC), 9-goto(DRBC), 10-gothrudr(DRBC RMC RMB),
11-goto(BOX0), 12-pushto(BOXO DRBC), 13-pushthru(BOXO
DRBC RMB RMC), l4-pushto(BOX0 DRCD), 15-pushthru(BOXO
DRCD RMC RMD), 16-pushto(BOXO 1S1), 17-climbonbox
(BOX0), 18-turnonlight(LS1).

3.1 Starred Operators.

AFTERMATH determines which operator last achieved
each of the subgoals in the goal. In S1, 6-pushto
(BOX2 BOX3) achieves the subgoal (NEXTTO BOXZ BOX3)
and will be called *1, The last operator 18-turnon-
light(LS1) is *2.

3.2 Interesting Operators.

Besldes starred operators, AFTERMATH will only
keep those operators which are repetitious, or have
opposites. Similar operators, such as gothrudr(DRab
RMb RMa) and pushthru(b DRab RMb RMa) are merged.
{The information on similar and opposite operators
is an input to AFTERMATH, although it is conceivable
that it could be generated by the system.)

In S1, the following are the interesting
operators:
X t 2~gothrudr(DRBC RMB RMC), 13-pushthru(BOX0O
DRBC RMB RMC); its opposite X' : 10-gothrudr(DRBC

- RMC RMB).

Y : 4-gothrudr(DRCD RMC RMD), 15-pushthru(BOXO
DRCD RMC RMD); its opposite Y' : 8-gothrudr{DRCD
RMD RMC).

(Note: Whether 4 is Y or ¥', and 8 is Y' or Y is
irrelevant.)

L. Sikléésy & M. A. Haecker

Page 2 of 6

3.3 The skeleton solution.

Eliminating all but starred and interesting
operators, we obtain the skeleton solution SS1 :
(X Y *1 Y' X' X Y *2)

3.4 Neighborhoods of Starred Operators.

The neighborhood of a starred operator includes
all interesting operators left and right of it, up
to the next starred operator. (Two starred opera-
tors which are not separated by any interesting
operator are considered as a single starred
operator.) The neighborhood of the last starred
operator consists of the preceding interesting op-
erator only. Thus, in SS1, the two neighborhoods
are : (X Y *L Y' X' XY) and (Y *2).

3.5 Vicinities of Starred Operators.

To achieve a subgoal, typically a robot will
have to set up a starred operator, then afterwards
undo some of the moves it took to set up the oper-
ator in order to achieve some other subgoal. The
vicinity of a starred operator is an estimate of
the moves needed to set up, and then undo the set-
up, of a starred operstor. It is obtained from
the neighborhood by going right to left and finding
the first interesting operator which has an lnverse
on the left of the starred operator (if several,
the leftmost token is chosen.) 1In case of failure,
the immediate left and right neighbors of the
starred operator constitute its vincinity.

In §S1, the vicinities are : (X Y *1 Y' X')
and (Y *2).

3.6 Matching Vicinities.

AFTERMATH orders all vicinities from the
longest to the shortest. An attempt is made to
rearrange the vicinities one inside the other to
reduce the number of interesting operators in the
skeleton solution. In the match-process, various
heuristics are used; they are exemplified in Ap-
pendix A.

In §S1, the Y of the vicinity of *2 can be
identified with the Y of the vicinity of %1, and
we obtain the base vicinity (X Y *#2 %1 Y' X').
No other choices are possible in this case.

3.7 Lifting of the Alternate Skeleton Solution.

After matching vicinities, the base viciolty
shows an alternate order for the starred operators,
here %2 *1, which avoids a repetition of a Y oper-
ator. AFTERMATH will now try to construct a solu-
tion which generates the subgoals corresponding to
the starred operators in the order in which the
starred operators occur in the figal base vicinity.

In general, numbering the subgoals from 1 to
n in the solution, the original solution’'is: *1,
%2, ... , *n. An alternate solution suggested by
the base vicinity will be *p(1), *p(2), ..., *p(n),
where p is a permutation of (1, 2, ..., n). AFTER-
MATH calls a problem solver with the sequence of
tasks: from the original state, achieve *p(l),
resulting in state st(l). From state st(l),
achieve *p(2), resulting in state st(2), but
without ever destroying *p(l). More generally,

from state st(j), achieve *p(j+l1), resulting in

state st(j+1), but without destroying *p(1), *p(2),
.vv, *p(1). The process stops when 3}=n-1, or when

a subgoal cannot be reached within the constraints.
We call a path from st(}) to st(j+l) a step solution.
The alternate full solution to the original problem
will be the concatenation of all the step solutions,
1f the length of the alternate full solution is
shorter than the original solution, an lmproved
solution was found by AFTERMATH.

AFTERMATH needs to use a robot problem solver
which can find step solutions. Moreover, the step
solutions given should be optimal, or close to
optimal; otherwise the cure may be worse than the
disease! The STRIPS problem solver finds non-
optimal solutions even to very simple tasks {11,
and therefore should be disqualified. On the
other hand, LAWALY [6] does qualify, and was used
exclusively as the auxiliary problem solver in
AFTERMATH.

In the example under consideration, reordering
the tasks does indeed result in a shorter solution
S1' of 11, instead of 18, steps.

S1' & goto(BOX0), pushto(BOXO DRBC), pushthru(BOX0
DRBC RMB RMC), pushto(BOXO DRCD), pushthru(BOXO
DRCD RMC RMD), pushto(BOXO LS1), climbonbox(BOXO),
turnonlight(SL1), climboffbox(BOX0), goto(BOX2),
pushto(BOX2 BOX3).

The example is unsatisfactory, since it might
imply that AFTERMATH simply generates all other
permutations of the goal set. This is not the
case. In fact, very few of the permutations are
generated in the skeleton space, and sometimes
none at all. Appendix A shows a more realistic
generation of a skeleton solution.

4. STRENGTHS AND WEARNESSES OF AFTERMATH.
4.1 Strengths.

AFTERMATH is quite successful at rearranging
subgoals in such a way that locally grouped sub-
goals are accomplished together. Locally grouped
subgoals are subgoals which need not be separated
by interesting operators. In the robot world that
we considered, locally grouped tasks would be ac-
complished in the same room. In other worlds, the
concept of locally grouped subgoals may refer to
subgoals performed in the same house, street, city,
country, or planet!

-

19-——>2 e‘l—;———é& S\l/

| I

WA 5

[U]
<

 \e— - - — - \ &

S

)
—>

n-1 2 i+4 1e3

Figure 2. The Ring House

L. Sikio;sy & M. A. Haecker

Page 3 of 6

A particularly strong showing of AFTERMATH
occurs in the world of Fipure 2, The N rooms form
a ring, and the robot must accomplish a task Ti in
each room i. If the robot must move clockwise,
and decides to accomplish the tasks in the (worst
possible) order TN, T(N-1), ..., Tl, the solution
path would be:

*
1 ﬂN,lal,Z"'

2Nl P N,

81,2%2,3""" -1,

1,2 *@-1

3., . %1 ™
where *j sccomplishes T(N-j+l), and a
going from room j to room k.

,k represents

b

The vicinities are : *(N-j) a

(8 441 §+1, j+2)

for j=1 to N-1 (with 1 replacing N+1), and
(an_1 *N). The vicinities are ordered from that

of *1 to that of *N. The first match (of the first
two vicintities) gives the base vicinity:

*: *
a2, N-1 2 .p, w Cl A,
with no alternative. The final base vicinity will
be uniqueé

* (N~
‘1,2 ¢ }) 82’3 Ve aN-l,N *1 aN,l *N, (no
alternative).

The pew ordering of starred operators suggests
golving the tasks in the order T2, T3, ..., TN, T1,
since *j corresponds to T(N-j+l).

The original solution requires N2 steps
(ecounting Ti as oune) while the new solution requires
2N steps. With N sufficiently large, the improve-
ment i3 as close to 1 (or 100%) as one wishes.
However, the new solution is not optimal. The
optimal solution would require solving tasks in
the order T1, T2, ..., TN, and has a length of
(2N - 1). AFTERMATH finds no additional skeleton
when it cycles on its first improved solution, and
hence does not find the optimal solution to the
problem.

The above example illustrates AFTERMATH's
capabilities in accomplishing a task on its way to
another task. The skeleton solution makes it easy
to recognize that a task may be inserted in a ten-
tative partial skeleton solution. For example,
(see Appendix A) if the vicinity (2' %*7) is to be
ingerted in the base vicinity (X' %1 %3 X 2 %2 Z'
X') an obvious choice would result in a new base
vicinity (X' #1 %3 X Z %2 2' %7 X') which would
indicate that *7 could possibly be accomplished on
the way out from *2.

4.2 Weaknesses.

Perhaps the major weakness of AFTERMATH is
that the optimal solution need not be found.
There may be several reasons for the failure to
optimize totally and each of these has in fact
shown up in actual test cases: the lack of

interesting operators, the elimination of optimal
paths during cycling, and the lack of direction for
long tasks.

4,2.1 Lack of Interesting operators

In the improved solution to the ring problem
(section 4.,1) there are no repeated steps, hence
no interesting dperators. Similar situations occur
when access to a room occurs through different
doors. AFTERMATH may not recognize the various
different accesses as similar.

4.2.2 Elimination of Optimal Paths during Cycling.

1f an initial solution S1 is improved with a
non-optimal solution S2, AFTERMATH does not return
to alternate ways of improving S1. Instead, it
concentrates its efforts on improving 82. If 82
cannot be improved by AFTERMATH's heuristic methods,
the optimal solution will not be found. It could
be that an alternate skeleton solution of S1 would
have led to an optimal solution. But this alternate
skeleton was eliminated as soon as S2 was found to
be an improvement over Sl.

The above two types of weakness might be
remedied by making the AFTERMATH heuristics less
sharp, and therefore filtering out far fewer can-
didate alternate skeleton solutions. Although the
weaknesses might be occasionally removed, the
performance of AFTERMATH would be considerably de-
graded overall as the third type of weakness indi-
cates.

4.,2.3 Lack of Direction for Long Tasks

For long problems (about 200 steps), AFTERMATH
tends to generate far too many alternate skeleton
solutions, each of which must be lifted to an actual
solution., It appears that in these cases and unlike
shorter problems, AFTERMATH lacks direction as to
the most promising alternate solutions. A broaden-
ing of its heuristics, as mentioned at the end of
the above section, would only make matters worse.

5. RESULTS.

Table 1 shows the performance of AFTERMATH on
fourteen problems. 1In general, we have no firm
knowledge about the optimality of the final solu-
tion reached by AFTERMATH. Breadth-first search
would be a way to find a shortest path, but an
unfeasible one; and human patience is rapidly ex-
hausted on such long problems'! The times, in
seconds, refer to a compiled implementation in
LISP on the CDC 6600. Of particular interest are
the successive improvements by AFTERMATH, as it
takes as input an improved solution that it had
generated. (See problems 9, 10 and 13 in par-
ticular.)

As was mentioned in section 4.2.3, the per-
formance of AFTERMATH was weaker on long problems.
Problems with initial solutions of 172 to 259 steps
were improved (to 160 and 241 steps), with no
improvements over 12%, and rarely any natural ter-
mination of AFTERMATH. Needless to say, the cost
of experimenting with such long solutions is
prohibitive!

L. Slklsgsy & M. A, Haecker

Page 4 of 6

TABLE 1
initial final i{nitial iterations total
problem no. of no., of solution successes total time finished? breakdown®

steps steps longer by (s)

1. 17 15 13% 1 1 10 yes (1-15)

2. 18 18 0% 0 1 5 yes

3. 24 24 0% 0 1 8 yes

4, 36 31 16% 2 15 104 yes (1-33)(3-31)

5. 36 36 0% 0 6 150 no

6. 40 34 18% 2 12 56 yes (9-39)(11-34)

7. 51 39 . A% 2 3 50 yes (1-47)(2-39)

8. 66 53 25% 2 4 85 yes (1-59)(4-53)

9. 79 61 307 5 6 132 yes (1-74)(2-70)(3-67)
(4-64)(6-61)

10. 87 61 437% 6 15 199 yes (1-83)(2-79)(5-77)
(11-67)(13-63)(14-61)

11, 93 78 19% 1 208 no (1-78)

12, 105 35 200% 1 27 yes (1-35)

13. 107 86 247 5 9 300 no (1-99)(4-98)(5-94)
(6-92)(7-86)

14, 108 91 19% 3 11 247 no (1-105)(2-100)(4-91)

*In the breakdown column, the terms describe the successful iterations by (i-3j) where i is the iteration

number and j is the number of steps the solution was reduced to.

6. CONCLUSIONS.

The skeleton solution extracted by AFTERMATH
from the solution to a robot problem may be con-
sidered as the structure of the solution., AFTERMATH
manipulates, and changes this structure to a new
structure which will, hopefully, correspond to an
improved solution to the initial problem. Hence,
AFTERMATH can be viewed as a structural optimizer,
and should be contrasted to other techniques of
optimization which rely more heavily on computation.

The particular skeletons that are extracted,
and the heuristics used in optimizing the skeleton,
were developed in the framework of housecleaning
robots. The justification of the heuristics lies
in their efficacy. AFTERMATH does indeed improve
many solutions. Other heuristics may be more power-
ful in the world that we have chosen, and yet other
worlds may require quite different heuristics.
Nevertheless, the basic ideas in the design of this
structural optimizer should find applications in
many areas.

7. ACKNOWLEDGMENT s

! We are grateful to J. Dreussi who participated
in the development of LAWALY, and who helped to
modify her so as to make her find step solutions
and interact with AFTERMATH.

.

8. REFERENCES.

1. Fikes, R. E., and Nilsson, N. J., "STRIPS: A

Times: compiled LISP on CDC 6600.

New Approach to the Application of Theorem
Proving to Problem Solving," Artificial
Iatelligence, 2, 3/4, 189-208, 1971.

Fikes, R. E., Hart, P. E. and Nilsson, N, J.,
"Learning and Executing Generalized Robot
Plans," Artificial Intelligence, 3, 4, 251-288,
1972.

Fikes, R. E., Hart, P, E, and Nilsson, N. J.,
"New Directions in Robot Problem Solving,"
Machine Intelligence 7, Michie, D. and Meltzer,
B. (Eds.), Edinburgh University Press,
Edinburgh University Press, Edinburgh, Great
Britain, 1972.

Sacerdoti, E., "Planning in a Hierarchy of
Abstraction Spaces," Third International Joint
Conference on Artificial Intelligence, Palo
Alto, California, 1973.

Siklossy, L., Modelled Exploration by Robot.
Technical Report TR-1, Computer Sciences
Department; University of Texas, Austin, 1972.

Sikléssy, L. and Dreussi, J., "An Efficient
Robot Planner which generates its own
Procedures," Third International Joint
Conference on Artificial Intelligence, Palo
Alto, California, 1973.

$ik1dssy, L. and Roach, J., "Proving the
Impossible is Impossible is Possible:

Disproofs based on Hereditary Partitions,”
Third International Joint Conference on
Artificial Iotelligence, Palo Alto, CA,

1973.

L. SLklo%sy & M. A. Haecker

Page 5 of 6.

8. Siklébsy, L. and Dreussi, J., Sitmulation of
Executing Robots in Uncertain Environwents,
National Computer Contference and Exposition,
Chicago, Illinois, 1974,

9, Sikld%sy, L. and Roach, J. Model Verification
and Improvement using DISPROVER. Technical
Report TR-26, University of Texas, Austin,
July 1973.

10. Hendrix, G., Beyond Omnipotent Robots, Techni-
cal Report N1-14, University of Texas, Austin,
1973. (To appear under the title '"Modeling
Simultaneous Actions and Continuous Processes,"
in-Axtificial Intelliyence Journal.)

11. Sikléssy, L. and Dreussi, J., Robot problem-
solving with negative goals, Technical Report
TR-23, University of Texas, Austin, 1973.

12, Newell, A., Shaw, J. C., and Simon, H. A.
Report on a general problem-solving program
for a computer, Information Processing, Proc.
Internat. Conf. Inform. Processing, pp.
256-264. Paris: UNESCO, 1959.

13. Haecker, M. A. An Algorithm for the Heuristic
Optimization of Modeled Robot Solution Paths.
Thesis., Computer Sciences Dept. University
of Texas, Austin, November 1973.

14, Sikld%sy, L. and Roach, J. Collaborative
Problem-Solving between Optimistic and
Pesaimistic Problem-Solvers. IFIP Congress
74, Stockholm, Sweden, 1974.

9. APPENDIX A. AN EXAMPLE OF VICINITY MATCHING.

In this example we describe some of the heuris-
tics used in building up base vicinities. The
original solution was mapped into the skeleton solu-
tion (X Y Y' X' *1 X 2 %2 2' X' %3 X W %4 %5 W' *6
W 2' %7). The neighborhoods of the starred opera-
tors are: (X Y Y' X' *1 X 2), (X 2 %2 2' X'),

(2' X' #¥3 X W), (XW 6 *S W'), (W *6 W 2'),

(W 2' *7). The vicinities are: (X' *1 X),

(X Z %2 2" X'), (X' #3 X), (W *4 *5 W), (W' %6 W),
(2' *7). The vicinities are ranked from "strongest"
to "weakest", according to length. Ties are broken
by preferring vicinities that are bound by opposite
operators. Further ties are broken by preferring
starred operators with smaller indices, i.e. %3 to
*6., The above vicinities would be ranked in the
vicinity list as 1-(X 2z %2 2' X'), 2-(W *4 %5 W'),
3-(X' *%1 X), 4-(X' *3 X), 5-(W' %6 W), 6-(Z' *7),
where numeric labels are inserted for the conven-
ience of the reader.

The initial base vicinity is the first vicinity
1ist. Since it is the longest vicinity, it holds
the greatest promise for the successful insertion
of other vicinities within its bounds.

First base vicinity: (X 2z *2 2' X').
-Insext 2-(W *4 *5 W')., TFail. Save vicinity 2.
~Insert 3-(X' %1 X). Two choices result as possi-
ble new base vicinities: (X' %1 X 2 %2 Z' X') and
(X 2 *2 Z' X' *1 X). A shorter base vicinity would
always be preferred. However, here the two candi-
date base vicinities have the same length, and the

tie 1s broken in favor of the first base vicinity
since it more closely preserves the original order-
ing of subgoals. If necessary, backtracking can
return to the second choice, in this as in other
cases where several possibilities for insertion are
present.

-Insert 4-(X' #*#3 X). The new base vicinity
preferred fs (X' *1 %#3 X Z %2 2' X'). 1t is
shorter than the choice obtained by identifying the
last X' of the base vicinity with the X' of the
4-th vicinity. The combination *1 *3 {s always
chosen over *3 *1 since it is closer to the order-
ing in the initial solution.

-Insert 5-(W' %6 W). Fail. Save vicinity 5.
-Insert 6-(Z' *7). The new base vicinity is

(X' *1 %3 X 2 %2 2' %7 X'), since it is shorter.
Returning to previous failures, we insert vicinity
2. Insertions could be at the front or at the end
of the base vicinity., The end insertion is
preferred, since its order i{s closer to the

initial ordering of subgoals. We obtain:

(X' %1 %3 X 2 %2 2' %7 X' W %4 %5 W'). Of the

two choices for inserting 5-(W' %6 W), the re-
sultant vicinity list (X' %1 %3 X Z %2 Z' *7 X' W'
*6 W %4 %5 W') is preferred since the vicinity 5
was inserted inside the previous base vicinity.

The desire to maintain the boundaries of the base
vicinity overrides the fact that the ordering of
subtagsks in the alternate insertion is closer to
the original solution.

From the new skeleton solution, a new tentative
ordering for the subtasks is suggested: (%1 %3 %2
*7 %6 *4 %*5), AFTERMATH will make repeated calls
to LAWALY to try to 1ift up this suggested solution.
{In practice, the tentative ordering is compared
to previous full solutions, and common initial
overlaps in the solutions are exploited to save
computer time.)

L. Siklossy & M. A. Haecker

Page 6 of 6

