TR-32
May 1974

PRIMITIVE PROCESS LEVEL MODELING AND SIMULATION

OF A MULTIPROCESSING COMPUTER SYSTEM

by

James Wayne Anderson

May 1974 TR-32

This paper constituted the author's dissertation for the Ph.D. degree
at the University of Texas at Austin, May 1974.

This work was su

GJ-1084.

pported in part by National Science Foundation Grant

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES

CHAPTER

1

TABLE OF CONTENTS

INTRODUCTION TO THE RESEARCH

1.0
1.1
1.1.1
1.1.2
1.1.3
1.2

Introduction

Related Work
Trace-Driven Modeling
Directed Graphs
Summafy

Summary of Chapters

SYSTEM PROCESS GRAPHS

2.0
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1

2.2.2

2.3

2.3.1
2.3.2

Introduction

Definitions

Memories

Processors

Processes

Operating Systems

System Process Graphs

Process States

Construction of System Process Graphs

Applications in the Simulation of Computer
Systems

Processes Represented by Graphs in the Model

Methodology of a SPG Structured Trace-
Driven Model

Properties of the SPG's

THE MODELED SYSTEM AND ITS SOFTWARE PROBE

3.0
3.1
3.1.1
3.1.2

Introduction
System Description

Hardware

‘Operating System

PAGE

CHAPTER

3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4
3.1.2.5
3.1.2.6
3.1.2.7
3.1.3

Dedicated PPU’'s

Partitioning of Central Memory
Processes at CP's

Peripheral Processes

Functions

MTR

CrM

Software Probe

THE SIMULATION MODEL

4.0
4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.2
4.1.2.1
4.1.3
4.1.3.1
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3

Introduction

Construction of System Process Graphs
Functions ' ’

Extended Channel Functions
Parameterization of the Function SPG's
Peripheral Process Graphs

SPG Builder for Peripheral Processes
Central Processes

Construction of Job SPG's

Operation of the Model

Degree of Resolution

CPM and MTR Processes

CPU Scheduling

PPU Scheduling

Job Scheduler

Servicing of RA+1 Calls -
Processing of Functions

Traversals of SPG's

Validation

Job Mix

Comparison of Performance Measures

Validation Summary .

PAGE

CHAPTER
5

PAGE

EXPERIMENTAL APPLICATIONS

5.0
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5,4.2
5.4.3
5.5

5.5.1
5.5.2
5.5.3
5.6

5.6.1
5.6.2
5.6.3
5.7

5.7.1
5.7.2
5.7.3

Introduction

Experiment

A - First Fit Memory Allocation

Memory Allocation

Experiment
Comparison
Summary

Experiment
Experiment
Comparison
Summary

Experiment
Experiment
Comparison
Summary

Experiment
Experiment
Comparison
Summary

Experiment
to ECS

Experiment
Comparison
Summary

Experiment
Experiment
Combarison
Summary

Experiment
Experiment
Comparison

Summary

Description

of Results

B - Reduce Punts
Description

of Results

C - CIO-2RD-2WD Overlay
Description

of Results

D - All PP Overlays on ECS
Description

of Results

E - Overlays on System Disk Moved

Description

of Results

F - Copy of System on Each Disk
Description

=

of Results

G - Centralized CIO
Description

of Results

CHAPTER PAGE
5.8 Experiment H - 13 PPU's
5.8.1 Comparison of Results

5.8.2 Summary

6 SUMMARY

BIBLIOGRAPHY

CHAPTER 1

INTRODUCTION TO THE RESEARCH

Introduction

t::This research consists of the modeling and simulation of ‘a real
operating system, UT-2 [5,10,12] running on a CDC 6600 computer system,
at a level of detail corresponding to the primitive processes and
modules in which the system is logically and physically defin3521 Model-
ing and simulation at this level of detail has heretofore been regarded
as an untractable task. The number of processes in a real system and
the complexity of their interactions and interrelationships have pre4
cluded simulation at this level of system model definition.

The interactions and interrelationships of processes, as well
as their consumption of resources, are determined by the sequences of
operations they performed. These sequences can be represented expli-
citly by state graphs. It is through the use of representations of
these state graphs that the problem of primitive process level simula-
tion modeling is made tractable.

The source code for the various processes could be analyzed to
produce detailed andrcomplete state graphs. Howard and Alexander (113
have, indeed, done so utilizing an automatic source code analyzer. It
is necessary, however, to parameterize the model at a level of detail
commensurate with the resclution of the state graphs. The model would
be usecless due to the absence of validation and baseline performance

information if adequately detailed pérameterization were not possible.

The availability of an elementary level, event driven trace
[12,20] in the UT-2 operating system has provided the mechanism whereby
primitive process level modeling and simulation of a real system can
be effected with very little compromise in the level of resolution or
accuracy. Trace of an elementary process will contain only a small
subset of all possible traversals through its potential state graph;
i.e., those that actually occurred during the monitored operating
period. This subset will be smaller and less complex than the complete
state graph and, therefore, more tractable for handling and inclusion
in the model. Further, the subset will be complete within the domain
of performance medeling. The trace monitor not only provides a practi-
cal resolution_of the state graphs of the system, it also provides the
essential parameters of the model and the reguired baseline case for

model validation.

The initial phase of this research project consists of the con-
struction of an explicit model of the elementary system processes
through analysis of trace information recorded by the UT-2 software
monitor. This model is composed of directed graphs representing the
actually occurring traversals of the state graphs for the various ele-
mentary processes. System primitive processes (or functions) are
represented as nodes of the directed graphs. The arcs are labeled with
branching pfobabilities and processing time requirements (see Figure 1.1
for an example). The model system was driven from the user level work-
load recorded by the software monitor. Each user job is itself repre-
sented by a directed graph where the nodes are requests for system

services and the arcs again are labeled with processing time requirements.

10 ms

.10 .90
20 ms ' 20 ms

20 ms 10 ms

.18
9 ms

- 3 ms

Figure 1.1
Example of a Directed Graph for Hypothetical System I/0 Process

The user requests for system services are mapped onto traversals of

the directed graphs for the designated elementary processes.

The design, goals and functions of this trace driven model

differs in a number of significant ways from previous models.

a.

The model is defined explicitly in terms of the elementary
processcs of the system and their interrelationships. It
thus presecrves the functioning structure of system. Most
previous simulation models {1,13,17,18,19] retain only the
algorithmic and conceptual structure of the system being
modeled.

The ﬁodel is explicitly graph driven. The representation
of‘the functional structure, therefore, can be readily
altered. Such modifications require little or no re-vali-
dation of the model.

All usage o& system resources is resolved to elementary
processes instead of just user jobs or gross level

system processes.

The model can provide explicit direction to the systems

programmer as well as the system designer and analyzer.

These changes have profound effects on the types of analysis

which can be carried out in the context of this model. It is possible

to precisely define and isolate either elementary or complexes of

elementary functional units for study. The effects of varying imple-

mentation and organization of elementary processes of the system can

be studied.

It is possible to define and effect localized changes and

to observe the propogation of these changes to other areas of the

system. The function of well defined systemﬁprocesses can be isolated
and optimized.

This resolution at the primitive or functional level contrasts
to and represents a conceptual advance in the concept of operating
system modeling, even over the detailed trace driven modeling studies

of Brice, Sherman, et al. (1,17,18,19].

1.1 Related Work

1.1.1 Trace-Driven Modeling

Previous trace-driven modeling studies have typically concen-
trated on the design of modeling techniques or the application of
trace-driven modeling to some particular problem or area of system
performance. Sherman [17] presents a comprehensive state-of-the-art
report on trace-driven modeling. The interested reader should refer
to Sherman's paper as no point could be seen in repeating that infor-
mation here.

Sherman ([17] also constructed detailed trace-driven models of
two opcrating systems, the UT-1 and the UT-2, and demonstrated the
flexibility of the models by investigating several areas of the operat-
ing systems as candidates for possible modification. These areas
included CPU scheduling, channel scheduling and deadlock prevention or
deadlock detection and recovery algorithms.

In an interesting work following that of Sherman, Brice [1]
used both a distribution-driven and a highly detailed trace-driven
model to investigate the application of CPU scheduiing techniques to
1/0 processing. His paper included a study of the effects of having
feedback coupled schedulers for CPU and I/0 processing. As a distri-
bution-driven model is relatively cheap to execute ip terms of computer
resoufces required, Brice used it to determine parggeters, isolate
performance trends and to draw preliminary conclusions. The more

elaborate trace-driven model was then used to verify these conclusions.

1.1.2 Directed Graphs

The use of directed graphs is not new in the study of operating

systems. Previous studies utilizing them, however, have been concerned
with thc correctness or analysis of operating systems.

Holt [7] and Hcbalkar [6] represented the resource demands of
processes with directed graphs and used these graphs in the study of
decadlock prevention, detection and recovery.

Howard and Alexander [11], as mentioned in the previous section,
produced state graphs for elementary processes of the UT-2 system.

Their primary objective was to develop an automated procedure for veri-
fying that processes obeyed given ordering rules on the sequences of
operationsvthat they performed.

A model utilizing directed graphs was presented by Rodriguez [16]
for use in the analysis of parallel computations on unstructured data.

Johnson [12] developed directed graphs of system processes
through analysis of the information recorded by the UT-2 software moni-
tor. These directed graphs were used to construct a hierarchial graph
model of the UT-2 system and to accumulate statistics on the activities
of the corresponding processes. This sequential analysis technique

allowed considerable insight into the behavior of the processes of the

system.

1.1.3 Summary ’
Johnson's work, more than any other, served as a catalyst for

this current study. One of the-accomplishments of this study is the

application of a technique formerly reserved for correctness and analy-

sis studies of operating systems, that of representing processes by

directed graphs, to performance modeling.

1.2 Summary of Chapters

Chapter one introduces the research, reviews some related pro-
jects and presents a summary of the chapters.

Chapter two presents the definitions of terms used in the
research and develops the conceptual model in which the resource de-
mands by system processes are explicitly represented by directed graphs.

The modeled system and its software monitor are described in
chapter three.

Chapter four presents a detailed description of the simulation
model including its construction, operation and validation.

The experimental studies are described in chapter five.

Chapter six presents the summary of the research.

CHAPTER 2

SYSTEM PROCESS GRAPHS

2.0 Introduction

When modeling and simulating a computer System at the primitive
process level, consideration must be given to the synchronication and
other interactions of and among processes, particularly with respect
to their use of system resources and the cbntention among them for
those resources. This chapter develops the concept of system process
graphs and describes their applicability to system modeling as a means

for handling these interrelationships and interactions of Processes.

2.1 Definitions

This section presents definitions of terms used in this research.
Although many of these terms have been defined often in the literature,
[10,12,171, their definitions are included here for completeness.

A computer has been defined as a collection of brocessors linked
to memories, where memories are passive storage devices and processors
are elements which act upon their attached memories in a discrete fash-
ion. The term Processor is used most generally to refer to a program-

med processor, one whose actions are directed by interpreting a Program

stored in one of its memories. As this infers, a program is a sequence
of instructions applicable to interpretation by a computer. a pProgram
being interpreted by a processor constitutes ga Process. An operating
System is a set of integrated processes which allocate ang control the
resources of the computer system, acting as an interface between the
user and machine. The memories, processors and processes constitute

the resources of 4 computer system.
=2 nees

2.1.1 Memories

while executing a program, sServe various functions such as addressing
specific cells in memory, holding the lnstructlon belng 1nterpreted
contalnlng Operands and intermediate results of computations, etc. The
program, or portion of brogram, being interpreted resides in the’pro-

cessor's "fast access" executable memory. This memory is not large

enough to hold more than a small fraction of the total number of

programs or data files in the system. The rest are located in "low

speed, large capacity" storage devices, or secondary memories, and

loaded into the executable memory on demand,

2.1.2 Processors

The processors are the active elements of a computer and, under
the direction of a program, modify the contents of various cells in its
memories. If more than one prograﬁ, or parts of more than one program,
can be resident in the executable memory and the processor switched

among them, the processor is said to be multiprogrammed. A multipro-

cessor system, as the name implies, is a system with more than one
processor. Processors in a multiprocessor system interact, typically,

only through their shared memories.

2.1.3 Processes

In order for a processor to be multiprogrammed, there needs to
be at least two controlling processes for that Processor, one to deter-
mine thosc programs to be resident in executable memory and to allocate
that memory to them and another Process to switch the processor among
them. These processes, constituting a rudimentary operating system,
- may or may not be resident in the executable memory of the processor
they are controlling. The ability to interrupt a préééssor and switch
it to other érocesses necessitates a more general definition of the
term process. A process is any discrete set of executable instructions
and associated data resident in some'memory of the computer, having
been initiated or partially interpreted by a processor. 1if a process

has received some service by a processor and then interrupted, the

contents of the registers and other necessary memory is generally
prescrved so that the process can resume execution when it is again

assigned the processor.

2.1.4 Operating Systems

The operating system for any computer systemn, even thé most
moderate of them, consists of more than a memory and processor super-
visor. Not only does the operating system contain processes which
control and allocate the resources of a system, most of these perform-
ing functions beyond the control of the user, but also various service
routines which ére directly or indirectly requested by the users. To
the processes requesting one of these resources, the request might
appear as an instruction. To the external observer, this request
initiates a new process and this new process, in its execution, might
make requests initiating other dependent processes. This concept of
processes creating dependent processes projects a natural hierarchial

structure on the family of computer system processes.

2.2 Ssystcm Process Graphs

2.2.1 Process States

Once a processor is assigned to a process, execution of the
process continues until one of three events occurs: (1) the processor
exccutes a "terminate” instruction; (2) an interrupt occurs from an
external process; or (3) the process blocks itself pending the occur-
rence of some external event.

A process is aiways initiated by another process. 1In the case

"

of a "user job," the initiating process could be the operator entering
the job into the system. Once a process has been initiated, it exists
in one of the three states generally defined for a process which are:

(1) active - occupying executable memory and executing instruc-
tions on the processor;

(2) ready - desiring execution but not resident in executable
memory or, if in executable memory, not being assigned to
the processor;

(3) blocked - not desiring further processing pending the
occurrence of some external event.

While a process is active, it progresses toward completien,

altering its memories (sometimes being restricted to a subset of the

Bemories accessible by the processor) and constructing and issuing re-
quests for system services, each of these requests initiating a depen-
dent process. |

A process blocks itself, typically after initiating a dependent

Process, waiting on the completion of that bProcess. As the dependent

process must compete for system resources and may, itself, initiate
dependent processes, the duration of any blocked state is environment
dependent. When a process enters the blocked state, one of two events
usually occurs. The process can hold the processor until it is un-
blocked or, as is gencrally the case in a multiprogrammed processor, a
supervisory process can interrupt the blocked process, save the neces-
sary data for resumption, and allocate the processor to another procéss.

This "exchange" can also occur when an active process has the
processor if the processor supervisor is so designed, that is, the
supervisor assigns the processor for a time interval to each process
according to somé sharing scheme. If the process "exchanged" off were
in an active state, its state is changed to ready. If it were blocked,
its state is unchanged.

The memory manager often has the capability to swap processes
out of executable memory if a "cheaper" process is initiated or enters
the ready state. Usually, all executable memory assigned to the pro-
cess being swapped out, along with necessary data to allow resumption
of processing, is copied to secondary memory and the freed memory
enters the pool of allocatable executable memory.

If a real time sequential record of the states and reguests were
kept for the life of a process, that is, froﬁ initiation to termination,
it might apéear as in Figure 2.1A. If this same process were to have a
dedicated processor, it would appear as B in the same figure. As a
process is unaware of its blocked periods, that state is removed result-

ing in C. This is now a representation of a process with all external

environmental considerations removed.

a
R,B 1 I Ry I I R, B I I T
--; l b l r ‘ a a T l a l a ‘ b l r ‘ a ‘
ITT Rl B I RZB I R3 R&
l a l a l b l a ‘ b ‘ a l a ‘ a
B 1 T
‘)-a ‘ b I a l
INT R B RZB R3 R4 B T

INT - initiate process
T - terminate process
1 - interrupt

B - block

Ry - request type i

a - active state

b - blocked state

r - ready state

~Figure 2.1

An alternate representation for Figure 2.1C is given in Figure
2.2. Other executions of the same process could result in dissimiliar
request patterns. Superimposing several records of execution, insuring
only that the initiation nodes be coincident, might result in the tree
structure of Figure 2.3. Allowing loops to reduce the number of nodes,
the tree could be altered to appear as in Figure 2.4.

Figure 2.4 is a directed graph reflecting the service and re-
source demands for the ‘observed executions of that process.

A system process graph (SPG), is a directed graph of a process,

the nodes of whi;h are requests for service or resources and the arcs
represent active process time between requests. The arcs will also be
tagged with their relative frequencies of traversal although this infor-
mation will not always be utilized in the simulation as will be seen in

section 4.2.2.6.

2.2.2 Construction of System Process Graphs

There are two methods for constructing directed graphs of sys—
tem processes. The first would be by analysis of the source code of
the program corresponding to each process [1l]. Timing information and
relative frequencies of traversal for the arcs would be extremely hard
to dedgce, however. Also, the examination and analy§is of the source
code to produce the étructures, even if restricted to operating system
processes, would be in itself a formidable task. The second methqd
would be by analysis of trace tapes produced by a software probe in the
computer system. This method has been used [12] to study the sequential

behavior of individual processes. This is the method employed in this

Figure 2.2

° T

Figure 2.3

Figure 2.4

study and will be discussed in greater detail in Chapter 4.

2.3 Applications in the Simulation of Computer Systems

There have been several hierarchial approaches to designing a
computer system [4,9]. iHoward [9] states, "It would appear that any
system can profitably be described as a hierarchy even if it was not
originally designed with this idea in mind, for a hierarchial approach
logically separates internal considerations from external ones and
promotes modularity in system descriptions." Because of the applica-
bility of the concept of hierarchy in the description of computer
systems, SPG's are especially useful in the simulation of them. SPG's
readily preserve the concepts of hierarchy and modularity, providing a
means of investigating particular processes or levels of processes in
the system. Further, SPG's preserve thé time sequencings of states in
processes and can preserve both the order and the structure of the
system being simulated.

In a computer system hierarchy of processes, those correspond-
ing to user jobs would be the highest order processes. The lowest
orde; processes would be those which ini£iate no dependent processes
and will be referred to as functions. Between the two lies an arbi-
trarily complex hierarchial family of prccesses.

SPG's provide an alternative method to incorporating processes
" into a.simulation. Instead of the more conventional way of encoding a
correspondiné algorithm for each process to be modeled, they could be
included in the form of SPG's and input as data. A model incorporating
SPG's would require routines capable of simulating the system's

servicing of the requests as well as one for traversing the graphs.

2.3.1 Processes Represented by Graphs in the Model

In theory, any process could be represented by a process graph.
In practice, the reéresentation of a process by a directed graph would
depend upon the capability or possibility of parameterizing that graph.
It is not necessary, however, to represent all processes by SPG's.
Instead, the more conventional approach of representing processes by
corresponding algorithms in the model could be used. Further, it is
not necessary to represent processes at all levels by their individual
SPG's. Several levels in the hierarchy could be combined by replacing
the nodes in the highest level SPG's by the dependent processes they
create, similarly replacing the nodes in the successive dependent pro-
cesses until the desired combination is effected. If this combination
were made during the analysis of the trace, as opposed to combining the
process graphs after their structure had been realized, the nodes in the
higher level SPG's would actually be replaced by that portion of the
dependent process actually encountered. - Combining levels would allow -
model simplification, retaining and isolating, by preserving the integ-
rity of their SPG's, only those processes whose behavior or resource

utilization patterns is to be studied.

1 2.3.2 - Methodology of a SPG Structured Trace-Driven Model

Essentially, the basis of operation for most simulation models
is the same. User resource demands are presented to the model in some
fashion and the model attempts to handle these demands as they are

handled in an actual, or some conceptualized, system.

In an SPG structured, trace-driven model, the resource demands
at the highest level are separate user event traces in the form of time
sequenced requests for system services, differing from other SPG's in
that they cannot be initiated by other SPG's in the system. It is at
this level that most of the combination of SPG's might likely occur.
Typically, the Fortran compiler might not be a process whose behavior
is to be isolated and studied. No SPG for it would be included sepa-
ratcly in the model. Each user job would incorporate its particular
exccution of that process in its SPG.

As each user job is initiated, the model invokes the corres-
ponding SPG and begins to traverse the graph in a chronological fashion,
using the procesgors and memories in accordance with the supervisor
processes of the modeled systém. When a request is encountered, the
SPG for the dependent process is invoked and attached to the parent.
The model then starts the traversal of the dependent process. It is
possible for several SPG's to be invoked and actively being traversed
for the same parent process, that is, the parent process does not block
pending the completion of dependent processes. This would be used, for
example, in the case of overlapping 1I/0 processing with computation.
After the request has been serviced, the model then selects the next
arc to be followed. The selection could be étrictlyiéfobablistic
according to the relative frequencies of traversal for the arecs being
considered. It would be more realistic if, where»possible, the selec-

tion were resource or environment dependent. This will be discussed

in greater detail in Chapter 4.

2.3.3 Properties of the SPG's

| The SPG's provide a means of conceptualizing system processes
in that they explicitly present the resource utilization patterns for
their corresponding processes.

They also provide a means for constructing a model on a more
deterministic base. Specifically, the arcs of the lower level SPG's
may possess near invariant execution time requirements. As the lowest
level SPG's create no dependent processes, their behavior should be
well characterized or characterizable.

SPG structured models provide the capability to study system
modifications down to the level of the lowest order SPG in the model.

Software modifications to systeﬁ processes requiring changes
to the structure of the associated SPG would necessitate careful analy-
sis of the process being modified. Care must be taken to insure that
the estimated execution times for any new arcs would not significantly

affect the credibility of the model.

CHAPTER 3

THE MODELED SYSTEM AND ITS SOFTWARE PROBE

3.0 Introduction

To demonstrate the utility and applicability of SPG's in simu-
lation models, one incorporating them was designed and implemented. The
model, specifically, i§ a trace-driven simulation of a CDC 6600 running
under the UT-2 operating system. In order to discuss a model, it is
first necessary to present the system modeled. This chapter describes
the system briefly, but in enough detail to allow understanding of the
model and the manner in which it realizes the imporﬁant features of the
system. A more complete description of the CDC 6600 can be found in
Thornton ([21] or the manufacturer's reference manuals [2,3]. A quite
detailed description and analysis of the UT-2 operating system is given
by Johnson {12]. Although dealing with tﬁe UT-2D operating system, a
successor to UT-2, the information given by Howard [10] and Wedel [22]
provides further insight into the UT-2 system.

Analysis of the trace data produced by a software probe is used
in this study to parameterize the model and construct the SPG's as well
as provide statistics for model validation. This chapter also includes

a description of the software probe and the events it records.

3.1 System Descripticn

3.1.1 Hardware

The computer modeled is a CDC 6600 installed at the computation
center at The University of Texas at Austin. Hardware resources con-—
sist of one central processor (CPU), ten peripheral processors (PPU's),
131,072 words of central memory, 500,000 words of extended core storage
(ECS) and twelve 1/0 channels which are connected to four disks, one
tape controller, various remote job entry terminals, interactive ter-
minals and unit record equipment. A complete description of the I/0

subsystem can be found in Dissly [5].

All processors have access tc central memory. Only the CPU can
access ECS. Each of the peripheral processors has its own memory and

is capable of independent program execution. Each PPU has access to all

1/0 channels.

3.1.2 Operating System

The UT-2 operating system, designed at The University of Texas
at Austin, is a multiprogrammed system providing both batch and inter-
active processing capabilities. It also provides an extensive program
library. Batch jobs can enter the system from local or remote terminals

as well as from any of the interactive terminals.

3.1.2.1 Dedicated PPU's

The UT-2 system requires two PPU's which are dedicated to the
execution of system processes. One is dedicated to the system monitor,

MTR, which exercises overall control of the system. The other is to

DSD, the process which provides communication between the operator's
console and the system. When the interactive and the remote terminal
systems are active, there are two more PPU's effectively dedicated to
the system; cne to the execution of 1EI, the high speed remote terminal
driver, and the other to 1ED, the medium speed remote entry driver and

intecractive contrcller.

3.1.2.2 Partitioning of Central Memory

A portion of central memory is reserved for the central memory
resident (CMR) which consists of a resident monitor process (CPM), sys~-
tem tables, interprocess communication cells, and static storage for
some peripheral processor programs. The remainder of central memory
is partitioned to provide sixteen virtual processors or control points
(CP's). A CP can consist of varying amounts of central memory and is
considered to exist even when it is not occupied by a process and its
size is zero. Three of the CP's are assigned permanently to the system.
The interactive and low speed terminal manager (TAURUS) occupies one of
them, the real time accounting process (PISCES) occupies another, and
the third contains the system buffer pool (GEMINI). GEMINI never re-
quires the CPU and, in that sense, is not actually a process. However,
various dependent processes are attached to its control peint and they
consume system resources. For conformity, GEMINI ié é special process,
’differing from other central processes in that it is never active,

This leaves 13 CP's for allocation to user jobs.

3.1.2.3 Processes at CP's

When a central process is active, it can use the CPU to modify

the memory within its own control point area. In order to perform any
1/0 or gain access to other system resources or services, it must con-
struct an appropriate request to issue to MTR. The address cf the
first word of a control point area is referred to as its relocation
address (RA). The second word (RA+1l) is reserved for communication
with MTé and, consequently, all requests and messages issued by a cen-
tral process to MTR are called RA+l calls. Most RA+1 calls result in
the creation of dependeﬂt processes. For example, in the UT-2 system,
a user requiring the performance of I/O would issue a RA+1 call for a
specific peripheral process, CIO. MTR would take this request and put
it into the PPU queue, eventually assigning the CIO process to a PPU
and attaching it to the calling CP. As mentioned in an earlier section,
a central process can block itself. Again considering the example,
suppose the process issuing the I/0 request needed to wait until the
1/0 operation is concluded prior to continuing the active state. The
"recall" flag would be set in the RA+l call causing the request to
appecar as "CIOP." A central process can also block itself for a period
of time by issuing a RA+1 call for RCL, specifying a time in the call.
It can also block until a word is changed by issuing a RCLP call and

specifying the address in the call.

3.1.2.4 peripheral Processes

Once a peripheral process has been assigned to a PPU, that pro-
cess has sole control of the PPU and its memory. Requests for other
resources or services and relinquishment of granted resources must be

communicated to MTR through a special cell in central memory. These

é CIO - standard 1/0 \ 1AJ - advance job
2 2WD -~ write disk 2EF - process error flag
f IRD - rcad disk 2TS - translate control statement
E 2PD - position disk 3AJ - special statement processor
E 2MT - recad/write/position 1CD - unit record driver
f magnetic tape 1CJ - complete job
i 2CT - read/write TAURUS CT file 1DB - dump trace driver
2DF - diop local file 1ED - TAURUS multiplexor driver
OPE - open file 1PL - plotter driver
CLO - close file i 2PL - plotter overlay
RSF -~ release system files 1PS - peripheral I/0 service
MSG - issue message to dayfile 2AM - issue accounting message
" CPU - CP utility service 2FE - transfer file entry
DMP - dump memory 2JE - transfer job entry
EPR - TAURUS service routine 2TJ - translate job card
LDR - loader 1RJ - resume job
LDE - loader error processor 183 - suspend job
LOD - loader loader 1SR ~ process system request
PCC - process control card 1ss - system I/O scheduler
RCC - read control card 1TD - tape driver
PFM - permanent file manager 1TM - write TAURUS dayfile message
RFL - request field length 2WM - write dayfile message

SNP - snapshot of central memory
é 1EI - high speed remote driver
2El - remote driver overlay

2E2 - remote driver overlay

Table 3.1

v

Peripheral Processes

requests or messages are referred to as functions. When a peripheral
process issues a function call, it blocks itself until a reply is re-
ceived from MTR.

Table 3.1 lists some of the more commonly used peripheral pro-
cesses. Only those processes whose names begin with a letter are
explicitly invoked by RA+1l calls. The others are invoked by active
peripheral processes or, indirectly, by CPM. Those processes whose
names begin with a numbér greater than or equal to 2 are considered to
be secondary overlays and in the table will follow those processes most

frequently invoking them.

3.1.2.5 Functions

MTR responds to all function requests from the peripheral pro-
cesses. Many of the functions are processed directly by subroutines
in MTR. For others, MTR invokes CPM which contains the necessary sub-
processes to handle them. A third class of functions causes MTR to
check for certain system conditions and,'when those conditions are met,
it again invokes CPM to execute one of its subprocesses.

Tables 3.2, 3.3 and 3.4 list the system functions along with a
brief description of each. The particular functions appearing in each
‘table are determined by the manner in which they are serviced, i.e.,
those functibns handled by MTR alone, those handled by CPM and those

requiring some service from both.

3.1.2.6 MTR

All requests for system resources are handled by MTR. All pro-

cesses communicate with MTR through selected cells in central memory.

Channel Reservation Functions

RSY -
RCH -
DCH -
CCH -

reserve system channel
reserve channel
dereserve channel

conditional reserve channel

Pool Peripheral Processor (PP) Control Functions

DPP -
ABT -
EDR -
RPP -

drop (terminate use of) PP
drop PP and abort control point
enter delayed request for PP

request additional PP

Control Point Status Control Functions

RCL -~
RCP -
DCp -
CEF -

unblock control point (recall)
request central processor
drop central processor

change error flag

Miscellaneous Functions

ACB -
RWD -~
REV -~
STM -

alter control point byte
reserve word in central memory

record event

control monitor step mode

Table 3.2

MTR Functions

File Reservation Functions

RLF =~ reserve local file

RGF ~ rescrve global file

Track Linking Functions

RHT -~ reserve, extend or follow a track chain

DHT - dereserve, truncate or excise a track chain

CLs - compute logical sector and update physical position
DTL - define first legal track

ECS Data Transfer Functions

REC -~ read from ECS
WEC - write to ECS

Equipment Reservation and Control Functions

RMS -~ select mass storage device
CES - change equipment status
REQ - reserve equipment for job

DEQ -~ dereserve equipment from job

Processing Service Functions

PDE - process device error
LPP ~ 1locate PP program for loading

FIJN - format job name

Table 3.3

CPM Functions

Job Scheduler Control Functions

SCH -~ request scheduler run

SCP - swap control point out

Central Memory Allocation

RST - request storage size change
PFR - pause for‘relocation
Table 3.4

MTR-CPM Functions

MTR polls these cells in a cyclic fashion, acting upon and responding
to any messages cncountered. By requiring all processes to request
resources in this manner, MTR is able to exercise complete control of
system resources and te synchronize interaction and competition of all
processes.

<MTR has two explicit schedulers. One is the PPU scheduler which
is basically a FCFS scheduler. Certain peripheral process requests can
move to the head of the.queue, however, such as the processes requested
by the job scheduler to roll jobs in and ocut of central memory. Fur-
thur, if a job has been selected by the job scheduler to be preempted
from its CP, all process requests associated with that job are removed
from the queue and saved until the job is again assigned to a CP. The
other scheduler is for the CPU and is effectively a round robin sched-
uler with an eight millesecond quantum. Once a CP is given the CPU, it
holds it for its quantum unless it blocks or is interrupted by an ex-
change from MTR for CPM. After CPM has executed its task, another
exchange occurs and the interrupted CP is given the CPU for the remain-
der of its quantum (or until it blocks or is interrupted again). A
further divergence from a strict round robin discipline is that TAURUS
gets preferential treatment. The CPU scheduler always selects the
TAURUS‘CP when the TAURUS process is in the ready séate. When a CP is
exchanged off the CPU, MTR saves the contents of the register- and then
assigns the CPU to next ready CP. ,

MTR interrupts the CPU with an exchange for CPM for one of
three reasons: to process a function; to run the job scheduler; or to

relocate a CP. When MTR has invoked CPM for any reason, it blocks until

it receives a response from CPM and another exchange is executed.

SCH and SCP are two of the functions requiring both MTR and CPM
service. They are in effect messages requesting that the job scheduler
be run. The reccipt of one of them will cause MTR to set a flag indi-
cating that the job scheduler is to be run. As soon as MIR determines
that ail processes carrying out the decisions of the previous execution
of the job scheduler have terminated, it clears the flag and activates
CPM to run the scheduler again.

RST and PFR are the other two functions requiring beth MTR and
CPM service. RST is a request that a certain amount of central memory
be assigned to a CP. If MTR determines that the change represents a
decrease in memory for the CP, CPM will be invoked once to run the cen-
tral relocation process and update various table entries associated with
the CP an. the process assigned to it. If it represents an increase and
enough free memory is available to grant the request, CPM could be
activated several times to run the relocation process to satisfy this
one RST. The number of times would be determined by the amount of
compaction necessary to give the CP the amount of contiguous memory
requested. In any event, if a CP is to be moved or have its allocated
memory changed, MTR sets its move flag. Only one RST representing an
increase in the amount of allocated memory cah be réééiving sefvice at
any given time. A CP cannot be moved or have its field length changed
until all its peripheral processes have terminated or indicated that
they have paused for the relocatiqn process by issuing a PFR function.
Once MTR determines that all peripheral processes have términated or

are pausing, CPM is exchanged on to the CPU and the relocation process

HREATI B N SR DT R IR

executed. Should not enough free memory exist to satisfy an RST re-
quest, the peripheral process making the request would be notified by
MTR. This usually results in a request from that peripheral process
for the job scheduler to be run which could result in the parent cen-

tral process being preempted from central memory.

3.1.2.7 CPM

CPM contains subprocesses to handle those functions as indi-
cated in Figure 3.3. The program directories, file tables, eqdipmént.
tables and some éeripheral process program files are located in cen-
tral memory. Functions which reference or manipulate them are handled
by processes in CPM.

The relocation process is located in CPM primarily because the
CPU can perform core to core transfers much faster than a PPU.

The job scheduler, as previously mentioned, is a part of CPM.
It runs at the request of MTR and selec;s those jobs to be resident in
the user CP's. Scheduler decisions are implemented by the creation of
resume job (1RJ) and suspend job (1SJ) peripheral processes. The cost
for a batch job is determined basically by the product of its memory
requirement and estimated remaining execution time (an estimate of the
execution time for each batch job is supplied by the user via a control
card). For interactive jobs, the time since last interaction réplaces
the execution time factor in computing the cost. Jobs are selected by
the scheduler on a least cost basis, restricted by their ability to fit
in the remaining free centrél memory. The ﬁT—z system uses dynamic mem-~

ory allocation, thus a job's ability to fit in the remaining free memory

is not affected by the contiguity of the free words of central memory.
Processces at CP's, except for the three assigned to the system, can be
preempted (rolled out) from central memory if a cheaper job is made
available to the system or if there is not sufficient memory for it and
for the cheaper jobs already in central memory. A process cannot be
preemp£ed until all its existing dependent peripheral processes have
terminated. A copy of the control point to be preempted, including a
list of all entries in.the PPU queue and a copy of the CPU registers as
they were at the conclusion of the process' last active period, is
saved in secondary mémory, usually ECS, to allow resumption of process-

ing when the job scheduler next selects this job.

3.1.3 Software Probe

The software event prcbe i§ a resident of MTR. When an event
occurs which is to be recorded, MIR stores the event description in one
of two buffers in central memory. When a buffer is full, MTR issues a
request for a peripheral process, 1DB, which is to be attached to the
GEMINI CP. When a PPU is assigned, 1DB copies the buffer to tape. 1In
the interim, the event recorder is using the other buffer. 1In a highly
active system, it is possible for a buffer to be re;written prior to
its being copied to tépe, resulting in lost buffers. Missing buffers
greatly complicate analysis of the trace, perturbing the results con-
siderably. All event tapes used in this study have less than .05%

lost data. The events recorded are depicted in Table 3.5,

1. RA+1 calils

2. Function requests and responses

3. Switching of the CPU among central processes,
including CPM.

4. Movement of requests through the PPU queue

5. Assignment of PPU's v

6. Job scheduler decisions

S Table 3.5
Events Recorded by the Software Monitor
!

CHAPTER 4

THE SIMULATION MODEL

4.0 Introduction

The simulation model in this study utilizes directed graphs to
reflect expiicitly the resource utilization patterns of processes.
Traversal of these graphs produces time sequenced events which control
the simulétion.

This chapter presents a detailed description of the simulation

model including its construction, operation, and validation.

4.1 Construction of System Process Graphs

All SPG's used in this model were constructed through sequential

analysis of the data produced by the software event monitor.

4.1.1 Functions

Due to the degree of resolution of the data recorded by the
software probe, the lowest level processes for which SPG's were con-
structed were function§. These SPG's consist of two nodes, one for
"request"” and the other for "response," connected by a single arc.

No process graphs were constructed for CPM nor MTR. The pro-
grammed portion of the model consists primarily of routines simulating
the execution of these two processes.

The time required for CPM and MTR to service and respond to
each of the functions is explicitly presented in the trace data. For
functions processed primarily by CPM, virtually all the processing time
was used by CPM and very little by MTR in invoking CPM. The processing
times for CPM functions, except for those accessing ECS, were generally

of the magnitude of 1 millesecond or less (see Tables 4.3 and 4.4).

4.1.1.1 Extended Channel Functions

The RCH function is a request for a channel. 1Included in the
request is a specification for the desired channel. Analysis of the
trace data revealed, as expected, diverse holding times for channels
linked to dissimilar devices. In order to denote the channel beihg
selected more explicitly, the set of functions was extended, in effect,
isolating the requests for and utilization of specific designated

channels. A RSY is a request for the channel connected to the disk

containing the system files, commonly referred to as the system disk.
A RCH can also be used to gain access to this channel. The analysis
of holding times for channels revealed that the holding time for the
system channel, when accessed by a RCH, varied considerably from that
of the holding times for the other three disk channels (see Table
4.1). For this reason the extended set of functions was increased

by one. Table 4.2 presents the definitions for the extended channel

functions.
Run 1 Run 2
Channel Holding Time Holding Time
0 : , 103.549 79.321
*] 163.827 99.982
2 95.521 , 75.837
3 95,936 67.346

*In both runs, channel #l1 was connected to the system disk.

Table 4.1

Disk Channel Holding Times

RSY Request system disk channel

RCH 4 - Request non-system disk channel

RCS Request (RCH) system disk channel

RTP Request tape channel

RES ’ Request ECS pseudo-channel

RCX Request for any channel not specified above
Table 4.2

Extended Functions for RCH

4.1.1.2 Parameterization of the Function SPG's

The statistics gathered for functions include the number of
times cach function was invoked, the average elapsed time between issu-~
ance of a request and receipt of a response for each function and the
coefficient of variation for these elapsed times.

For some functions this elapsed time does not reflect accurately
the active Processing time required. This is true for all functions
requesting a limited resource. For instance, the actual processing time
used by MTR to service a RCH is negligible. The elapsed time actually
indicates the time spent waiting for the desired channel to become
available. However, all arcsg were tagged with their measured elapsed
time characteristics. How these arc times are used in the model will be
discussed in a later section of this chapter. Tables 4.3 and 4.4 present
function statistics gathered from the trace tapes of two system runs.

These two runs will be referred to in this study as Run 1l and Run 2.

4.1.2 Peripheral Process Graphs

SPG's were constructed for all peripheral processes except MTR,
as previously mentioned, and DsD. DSD drives the operators console and
Provides communication between the operator and the system. The soft-
ware event probe sces no significant events generated by DsSD directly.

Therefore, the only effect of DsD reflected directiy in the model is

that, since DSD occupies a dedicated PPU, the number of pool PPU's is

reduced by one.

Run 1

Number of Mean Service (Coefficient
Function References Time* of Variance)?
RSY 6664 142.2933 3.8608
RCH 16389 36.4947 13.7842
DCH 44064 0.0000 0.0000
CCH 0 0.0000 0.0000
RMS 541) .9464 .1970
RHT 20234 1.4293 .7557
DHT 5999 1.4462 .2012
RST 10077 75.8690 - 7.7481
PFR 1546 39.5938 11.8291
pDPP 66918 .4050 1.5176
ABT 17 .1765 4.6667
RCL 59471 0.0000 0.0000
RCP 12102 0.0000 0.0000
DCP ' 3180 .0003 3179.0000
REC 6383 3.7932 : .6114
WEC 4230 5.4369 . 3385
CES , 215 .8279 . 3572
REQ 7102 . 9095 .2531
DEQ 3162 .9336 .2221
PDE 0 0.0000 0.0000
RPP 428 .0818 11.2286
LPP 113133 .9348 .1885
EDR 11498 0.0000 0.0000
CEF 241 .0041 240.0000
RGF 0 0.0000 0.0000
ACB 2239 .8825 .2719
RWD 32884 0.0000 0.0000
RLF 44011 .9180 .2332
SCH 8275 0.0000 0.0000

SCp 224 0.0000 0.0000

{
REV 0 0.0000 0.0000
. STM 0 0.0000 0.0000
' DTL 0 0.0000 0.0000
CLS 3583 .9911 , .1829
, FIN 1921 .9162 ” .2217
RTP ‘ 13542 10.4573 4.5077
RCX 3505 7.1201 8.3023

RES 121 0.0000 0.0000
RCS 3846 135.8679 3.6991
*Time in milleseconds

Table 4.3

Function Statistics

