Run 2

Number of Mean Service (Coefficient
Function References Time* of Variances)2
RSY 5373 77.7231 5.3346
RCH 16365 23.8348 17.1703
DCH 38039 . 0.0000 0.0000
ccH 0 © 0.0000 0.0000
RMS 292 ' 1.0890 L1377
RHT 15033 1.6876 .7339
g DHT 4752 1.7298 .1774
RST 8317 36.5118 10.7557
PFR 772 20.5207 7.2305
DPP 60259 .4879 1.0893
ABT 19 ©.3684 1.7143
RCL 51026 0.0000 G.0000
RCP 12037 0.0000 0.0000
DCP 2396 0.0000 0.0000
REC 4618 5.4073 : .5041
WEC 3689 6.6208 .2991
CES 133 1.0075 . 1407
REQ 5862 .9795 .1682
DEQ 2605 1.0192 .1630
PDE (0] 0.0000 0.0000
RPP 81 .1481 5.7500
LPP 103826 1.0189 .1234
edr 9663 0.0000 0.0000
CEF 173 0.0000 0.0000
RGF 0 0.0000 0.0000
ACB 2256 .9734 .1583
RWD 26564 0.0000 0.0000
RLF 39239 1.0229 .1529
SCH 5633 0.0000 0.0000
SCP 161 0.0000 0.0000
REV 0 0.0000 ©.0000
STM 0 0.0000 0.0000
DTL S ¢ 0.0000 0.0000
CLS . 4183 1.1265 - .1526
FJIN , - 2163 1.0388 .1597
RTP 12132 3.4074 13.8957
RES 191 0.0000 0.0000
RCX . 1902 7.8586 8.6452
RCS 2180 83.1569 4.9883

*Timg in millescconds
Table 4.4

Function Statistics

A

functions. A peripheral process always Blocks after issuing a func-
tion until a response is received from MTR. Due to the polling nature
of MTR, somc time elapses between the issuance of the function request
and MTR's noticing it. As the event is recorded by the software probe
in MTR, this time is seen as part of the active state for a process
prior to the request. This polling interval averages on the order of
two milleseconds.

In certain instances, however, this time can be of a much
larger magnitude. CPM runs at the commandrof MTR for those reasons
as stated in section 3.1.2.6. Whenever MTR invokes CPM, it blocks
until CPM is finished. During this blocked interval, of course, MTR
cannot notice nor record function requests. When CPM is running to
process a function, its active period averages around 1 millesecond.
For the job scheduler, on the other hand, the average is around 20
milleseconds and can be as long as 50 milleseconds. The corresponding
statistics for a central relocation are 9 millesecdnds and 80 mille-
seconds. To decrease the effect of these perturbations, any request
recorded within 2 milleseconds after a job scheduler or central reloca-
tion execution does not have that particular instance of apparent peri-
pheral processor active time included in computing the timing statistics
for that arc. : -

As the model reintroduced similar perturbations, the overall

timing statistics for each process included these perturbed.times for

validation purposes.

4.1.2.1 SPG Builder for Peripheral Processes

A program was written to sequentially analyze the trace data
and construct and paramecterize the SPG's for peripheral processes. ~The
program did not do any automatic construction of loops as no scheme
could be found which would allow loop construction and result in graphs
free of spurious paths. The graph bﬁilder, of course, had to be able
to follow pre-ecxisting paths in graphs, producing a new arc only when
a new node was encountéred-as a successor. This allowed a pre-con-
structed graph skeleton structure to be input as data to the graph
builder. If the graphs had no loops, their size became unmanageable.
The fact that loops were necessary and that the builder could accept
a pre-constructed graph structure as data led to an iterative method-
ology being employed to construct the SPG's.

The graph builder, on its initial execution, might be supplied
with only a root node as a graph skeleton. The graph builder would
then make a short run down the trace tape. The resulting graphs would
be examined closely in association, possibly, with the source code for
the corresponding processes. Real loops would be carefully determined
and a more elaborate graph skeleton produced for the next execution.
This would be repeated until the graph builder constructed no new paths,
that ig, the graph skeleton included all patﬁs encoﬁnfered during the
system run being emulated. Figure 4.1 is a block diagram illustrating
the methodology employed in construction of SPG's for system processes.

Figures 4.2, 4.3, 4.4, 4.5 and 4.6 present the SPG's for some
of the more regularly used peripheral processes., It should be remem-

bered that these SPG's only reflect those paths through the various

soss9003xd (wasydyasd 103 8,5dS guy3oniisuo) 103 £3010poY3IaK

1'% 210814

NOLTIDIS HAV¥D QIANIIXE

"GHIVd MIN HANTONI
0l GNV S400T A3N
TAAOW ANV 1031434 OL
NOIIVIARIS NOLIT®IS HFONVHD
*9q00 AD¥N0S ANV
SHAVYD INIWVXE

SHAVYD +
sak sak
(03N VL A\ iSHIVdA MAN ANV
JOVEL TUIING/ ou. Ar Y NOLIATIAS
C HAVYO TVILINI
y3a1INd
ou HAVYO
: - 44Vl
q0vd]l LYOHS

94Vl 9OVl YIONOT

.073 .186
3.8 ms) 4.6 ms

.026
3.4 ms

.303
4.3 ms

.086 .003

4,0 ms 4.0 ms
@ | .076 .241

4.6 ms 4.1 ms
.008 ’
4.2 ms

3.7 ms

O

f o
P p——
g
»

4.9 ms

DPP

Figure 4.2
CIo

.960 / l .010

5.0 ms

.030 4.2 ms

2.7 ms

.750

\\\‘—’/i.7 ms

.250

W
O
=]
7]

4.6 ms

£~
=}
7]

Figure 4.3
2RD

LPP

.010 104
5.5 ms 4.9 ms

.886
4 5.1 ms
Hi . 5.3 ms
5.4 ms

.890 ///!lil!::ji:;o

72.9 ms 5.4 ms

-— .982 .018
159.9 ms 67.1 ms

N

.033 .967
5.7 ms 5.1 ms
5.5 ms

Figure 4.4
2WD

6.6 ms

.013
17.2 ms 19.9 ms

Figure 4.5
1RJ

‘:ﬂi’ 11.5 ms
’ 4,3 ms

.321 \ .679
15.15 ms 6.8 ms

- 4.2 ms
864 / @ @

108.6 ms .136

_’// 77.9 ms

ol

57.5 ms

.852
2.8 ms

Figufe 4.6
18J

process state graphs that were observed during the monitored period

of systcm operation.

4.1.3 Central Processes

SPG's were constructed for central processes at the job level.
No system nor library processes were isolated into their separate
SPG's. This was done for several reasons. First, it reduces the
complexity of the model. Also, only a few of the central processes,
specifically the central loader, Fortran compiler, interactive control
card processor and a few file managing processes, ran often enough to

provide sufficient performance statistics to construct the SPG's from

analysis of the trace data. It was also difficult to determine when
the central loader transferred control to the process it had lcaded,

that is, it would be hard to separate the central loader SPG from the

SPG for the loaded process.

4.1.3.1 Construction of Job SPG's

A program was also written to separate the resource patterns
into individual job graphs. A central process consumes resources in
three ways: it uses time on the CPU; it occupies space in central mem-—
ory; and it creates dependent processes. It was thisrinformation that

needed to be-recorded and preserved in the SPG.
The SPG's for jobs are linear, the nodes of the graphs are RA+1l
calls which are serviced by MTR and often create dependent peripheral

processes. The arcs are tagged with the active CPU time between RA+1

calls. In order to keep track of these memory requirements for each

job, when a peripheral proéess (running for some job) issued an RST

request, the field length requested in the RST was attached to the
preceding node in the SPG for that job.

The program had to isolate each user job and remove all system
interference. The resulting graphs reflect only the active periods of
the central processes.

As many of the jobs were existing prior to initiating the soft-
ware monitor and many continued to exist after the trace finished, many
of the central SPG's do not reflect complete jobs.

The graph builder also kept certain statistics on central pro-
cesses, particularly, the total active CPU time listed by each job, the

degree of multiprogramming and the mean core occupancy.

4.2 Opcration of the Model

The softwarc half of the model, the SPG's being the other half,
consists of routines simulating those processes not represented by
$PG's, specifically MTR and CPM, as well as path selection and graph
traversal routines, routines for gathering model performance statistics,

and other I/0, bookkeeping and functional routines.’

4.2.1 Degrec of Resolution

By having SPG's down to the level of functions and by simulat-
ing closely those processes not represented by SPG's, a highly detailed
model can be realized. How accurately the model realizes the system
it is simulating is controlled by several real restrictions and various
pragmatic concerns.

First of all, consider the simulation of non-SPG processes.
In order for the simulation to faithfully reproduce the decisions and
actions of the real processes, it must have access to the same data
used by the actual processes. Quite often this data is incomplete or
totally missing from the trace tapes. For instance, the job scheduler
selects jobs for residence in central memory based on their field
length and remaining service time requirements. The simulated job
scheduler in most cases has a relatively accurate representation of the
field length requiréments for each job, but has only the observed pro-
cessor time used by each job as obtained from the trace tape. A long
job might only receive a few cycles of CPU service during the actual
system run and a relatively short job might receive a much larger améunt

of CPU service. As the simulated job scheduler makes decisions on the

7

observed times, the long job would receive priority over the short.

To truly reflect the oxccution of the system, all paths
through the SPG's should be deterministic or environment dependent.
Again, in many cases, the information on which to base the selections
deterministically is not available. 1In other cases some Or all of the
necessary information is available but i;s use would increase the com~
plexity of the model (the SPG's, software or both) béyond its worth.
As an instance of this, consider the RWD (reserve word) function.

This function is used as an interlock to insure that only one PPU at a
time is referencing a given word in central memory. That portion of

an SPG containing a RWD node might typically appear as in Figure 4.7.

Figure 4.7 -

Typical "RWD" Node

A process requesting access to a particular word generally loops on the
request as long as MTR indicates some other process owns the access

rights to that word. The word referenced by each RWD is recorded by

the softwarc probe. To provide deterministic path selection an asso-
ciation would have to be made between each RWD’and its designated wordx
Two approaches readily come to mind: (1) as with the RCH function,
extend RWD to a set of functions, one for each unique word referenced
by an RWD during the system run being emulated; or (2) encode the path
sclection process so that it can determine (by the process issuingv
function, the parent job number, etc.) the word to be accessed. Both
of these schemes complicate the model to a substantial extent. Further,
the model would also have to contain additional necessary bookkeeping
routineg with queues and "busy" indicators for each word. All this
added complexity has really gained is that the model can now determine
whether the lobp path will be taken after a RWD node or rnot.

The selection of a particular arc is environment dependent in
this model when reflecting system access decisions for resources being
studied or upon the invoking of processes whose behavior is of critical
interest or importance.

The non-SPG processes are modeled as closely as possible after
those of the actual system, particularly when controlling access of im-

portant resources or invoking interesting processes.

4.2.2 CPM and MTR Processes

-

As-previousiy indicated, routines simulating the various algo-
rithms of CPM and MTR constitute a large portion of the model software.
The CPU scheduler, PPU scheduler, job scheduler and several of the
routines handling the requesting and relinquishing of interesting

resources and processes are simulated in some detail.

4.2.2.1 CPU Scheduling

The CPU scheduler, as described in Chapter 2, is located in
MTR and is basically a round robin scheduler selecting among waiting
processes resident in central memory.

In the model, the selection of a process to become active re-
sults in one or more events being pléced on the event list which drives
the simulation. A chronological traversal of the SPG for the active
central process will détermine the events to be entered. If no in-
teresting events, i.e., RA+l calls, occur during the next quantum for
the process, the only event entered on the list is one indicating
when the CPU scheduler is to run once more. Any RA+1 call occurring
during the next quantum would of course be entered in the event list.
A RCL function or RA+l call with the recall flag set automatically
terminates the traversal of the SPG for this period and, when such an
event is removed from the list, the CPU scheduler will again run.

The events for an active process will be chronologically per-

turbed each time that CPM is exchanged on to the CPU.

4.2.2.2 PPU Scheduling

During active periods, central processes can issue RA+1 calls

" which result in the creation of dependent peripheral processes. Periph-
eral proccsées can themselves, by issuing EDR (enter delayed request)
functions or LPP (locate peripheral process) functions, cause other
peripheral processes to be executed. In many instances and for various
reasons, peripheral processes issue EDR's for themselves to be run at

later times. There also exists a RPP (request peripheral process)

function by which one peripheral process can.cause another peripheral
brocess to be executed if a PPU is available at the time, but does not
result in any queuing for PPU's. MTR creates peripheral processes, 1sJ
(suspend job) and 1RJ (resume job), to carry out tﬁe decisions of the'
job scheduler. A peripheral process by definition consists of a periph-
erai program being executed on a peripheral processor. As there are
only a limited number of these processors, there has to be a scheduler.
The PPU scheduler resides in MTR and assigns PPU's, basically, on a
first come first serve basis, differing from a strict implementation of
this discipline as detailed in section 3.1.2.6.

Requests for peripheral brocesses, when encountered during
execution of the simulator, are entéred into the event list. The case
of RA+1 calls was covered in the previous section. EDR's are entered
into the event list, delayed appropriately, when they are encountered
in the traversal of the SPG for an active peripheral process. The
others, 1SJ and 1RJ, are entered when ;he job scheduler is run.

When a peripheral Process request is the next chronological
event in the list, the PPU's are checked to see if one is free. 1If so,
the peripheral brocess is invoked and traversal for its spg is ini-
tiated by entering its first function request, LPP, into the event list.
If no PPU is currently free, the request enters thé/éPU queue with 18J's
.and IRJ's géing to the head of the queue,

Each ABT or Dpp (abort or drop peripheral Process) function
causes the qucue to be checked for waiting requests and the next re-

qQuest, if there is one, to be processed.

4,2.2.3 Job Scheduler

In section 4.2.1 it was mentioned that the job schedu;er had
to select jobs for residency in central memory using incomplete infor- °
mation, specifically the only central processor service time require-
ment available for each job was the total of its observed active
periods extracted from the trace tape. This only presents a problem
when computing the cost of batch jobs. For interactive jobs, the
timing factor of the cost formula is based on the CPU service time
used since the last interaction and this information is supplied by
analysis of the trace tape.

To make the competition of batch jobs with interactive jobs
more in line with that of the modeled system, short batch jobs had
their costs computed using a time factor greater than observed. This
will be discussed in more detail in the sections on validation.

As the job scheduler is in CPM, each time the scheduler was
run in the model it was necessary to compute the processing time re-

quired, again based on data from the trace, and to perturb the event

list to reflect this overhead.

4.2.2.4 Servicing of RA+1 Calls

When MTR encounters a RA+l call from a central process, it
either services the call itself or, when the call is a request for a
peripheral process, initiates the creation of that process. In either
instance; the execution time required by MTR to act upon the request
cannot be determined by analysis of the trace taée. However, the time

is quite small and is reflected in a slower polling rate for MTR, i.e.,

it might make the active times for both central and peripheral pro-
cesses between successive communications with MTR appear slightly
longer than is actually the case.

Table 47§flists the RA+1l calls recorded on the trace tape.
The first fourteen are requests for peripheral processes resulting in
the execution of the associated transient peripheral process in the
actual system and in the invoking and traversal of the associated SPG
in the model. RA+1 calls for MSG are sometimes requests for the MSG
peripheral process and at other times are requests for service from
MTR alone. This is reflected in the model by having an appropriate
fraction of the MSG calls result in the invoking of the SPG for MSG
and treating the other MSG calls as requests for no service. It should
be noted that if the auto-recall flaé is set, that is, the Ra+l call
has the form XXXP, the Process issuing the request goes into ﬁhe recall
state, i.e., the CP is removed from the CPU queue, until the termination
of the process created by the call or until the issuance of a RCL func-
tion by that process.

In the actual system TIM and GSN calls are handled solely by
MTR and would be treated, essentially, as requests for no service in

the model. However, to reduce the size of the SPG's for user jobs,

these calls were simply not included.

END and ABT notify the system that the current central process
running for a job has terminated. This results in the execution'of the
transient peripheral process, 1AJ (advance job), as soon as all depen-
dent activity has terminated for the control point. In the model,

under like conditions, the SPG for 1AJ is invoked and traversed.

1. CIo0 - Standard 1/0

2. OPE - Open file

3. CLO - Close file

4. RSF -~ Release system file

5. SNP - Snapshot of central memory
6. DMP ~ Dump central memory

7. INT - Interrupt central program
8. RFL - Request field length

9. PCC - Process Control Card
10. RCC - Read control cards
11. CPU -~ CP utility services

12. LDR - PP loader

13. EPR - TAURUS service routine
14. PFM - Permanent file manager
15. MSG - Issue message

16. TIM - Get time, clock or date

17. GSN - Get job name

18. END - End program
% ‘ 19. ABT - End program and abort job
20. RCL - Enter standard CP recall
21. RCLP - Enter auto-recall

Table 4.7

RA+l Calls on the Trace Tape

The RA+1 call, RCL, presents a somewﬁat more difficult problem
in the model. Typically, a RA+l call for RCL follows one or more RA+1
calls for peripheral processes. An RCL causes the CP to go into re-
call status for a number of milleseconds as specified in the call. At
the end of that period, MTR returns the CP to the queue. Immediately
upon becoming active, the process at that CP checks to see if the pre-
viously created peripheral processes have terminated or reached some
desired state. If not, the process again issues an RCL request. This
procedure might be repeated several times, the actual number depending
on the state of the system. Although the time required to check the
state of the peripheral processes might be measured in microseconds,
duc to the polling nature of MTR, theACP typically holds the CPU for
at least one millesecond waiting upon MTR to service its new RCL.
Multiple ﬁCL's constitute a férm of system interference. As mentioned
in section 4.1.3.1, it is desirable to eliminate, as near as possible,
all system interference from the SPG's for jobs.

When constructing the SPG's for jobs, only the first RCL in
each series was recorded and included as a node. The active time used
by a job iﬁ the issuance of other RCL's in the series was included in
the time associated with the arc between the last RCL and the next
RA+l call. When an RCL RA+l call was encountered during execution of
the modcl,’the CP was first removed from the CPU queue. A check was
then made to determine if the central process concerned had any re-
quests for peripheral processes in the PPU queue or any dependent
peripheral processes currently active. If there were no requests or

dependent processes, the CP was returned to the CPU queue and the

execution of the simulation continuecd. 1f there were requests or de-
pendent pProcesses, the once associated with the most recent RA+1 call
had its auto-recall flag set. Until this dependent process terminates
or issues an RCL function, the CP containing the parent central pro-
cess cannot enter the CPU queue.

A simpler alternate approach té handling the RCL problem would
have been to, during con§truction of the SPG's, set the autp-recall
flag on the node preceding the RCL call and to discard all RCL's other-
wisc. This would have eliminated, however, some of the possible over-
lap betweeg central and peripheral processing for a given job.

It should be noted that two central processes were not included
in the special handling of RCL's, neither in the construction of their .

SPG's nor processing during execution of the simulation. All RCL's for

TAURUS and PISCES were retained in their SPG's as they were to actually
remove their CP's from the CPU queue for specified time periods. The
cp for TAURUS was reentered into the CPU queue periodically (every 90

to 100 milleseconds) by a RCL function from 1ED (the remote entry driver).

4.2.2.5 Processing of Functions

Those algorithms in MTR and CPM which process functions that
requcs£ or :elinquish central memory, processors and channels (for disk,
tapes, and ECS) are represented with a high degree of resolutien by rou-
tines in the simulation. Those algorithms processing other functions

arc represented in much less detail, some only to the extent that the

% PPU waits after issuing the request for the time associated with the
:

arc of the function's SPG to elapse.

It should be noted that queues for resources requested by func-
tions are each scrviced by a cyclic scheduler in the UT-2 system. MTR
polls cyclically the communication cells in CM associated with the
PPU's. PPU's that have issued function requests are waiting for MTR
to respond. Each time MTR encounters a request, it checks to see if
it can process that request. If not, it continues on leaving the re-
quest word in CM unchanged.

In this fashion a PPU would wait, say, on channel #1 to become
available. It would be possible for a PPU to come along at a later
time, also request channel #1, and have its request satisfied before
or after the one already waiting.

In the model, the queues repgesenting the polling queues are
all scrviced by a FCFS schedulg:., Specifically, such queues are kept
for the ECS pseudo~-channel, all disk channels, the tape channel, and
all’requests for increases in the amount of central memory allocated
to a control point,.

The detailed servicing of particular functions will be dis-
cussed in greater detail as they relate to the traversal of the SPG's

for peripheral processes or to the various experiments conducted using

the simulation model.

4.2.2.6 Traversals of SPG's

The SPG's for central brocesses are traversed as outlined in
section 4.2.2.1. As each node has at most one successor, traversal is

rather simple, progress depending only upon the process being in the

active state. .

The traversals of SPG's for peripheral processes is somewhat
more compleX: The invokihg of these SPG's and the initiation of their
traversal is covercd in section 4.2.2.2. When the next chronological
event is a reply to a function issued by a peripheral process, the sim-
ulation selects the next node in the SPG for that process. There are
two basic methods in the simulation‘for selecting the next node. One
is strictly statistical in nature and the other method is environment
dependent or dctcrministic in nature.

As each arc is tagged with its observed relative freguency of
traversal, statistical selection is quite simple.

When the selection of the successor node is to be environment
dependent, the present node has a pointer to a subroutine which makes
this selection. Prior to being input to the simulation, these pointers
to subroutines consist of the names of the subroutines only. At com-
pile time a table relating the names and entry points of path selecting
subroutines is constructed by an assembly language subroutine. As the
SPG's for peripheral processes are read, the subroutine pointers
attached to the various nodes are compared with the names of the sub-
routines in the table. If a match is found, the name is replaced by
the address in the pointer. If not, the pointer is cleared. During
travérsal,-a non-zero pointer indicates the path selection is to be
made by a subroutine. The subroutines which construct the table, set
the pointers and make the subroutine calls during traversal are written

in Compass, the assembly language for the CDC 6600. All other code in

the model was written in Fortran.

As an cxample of sclecting a path based on environmental con-
ditions, consider the first few nodes of the SPG for 1RJ (Figure 4.5).
After the LPP function node, the successor node will be either an RST
(request for memory) or an SCH (request for the job scheduler to runj.
The subroutine associated with the LPP would check to see if enough
free memory is available to satisfy the RST request. If so, the RST
node is sclected; if not, the SCH node.

Sometimes a mixture of the two methods is used. Again look at
the SPG for 1RJ. Sugéose that the RST node had been selected. Due to
the queuing of RST's requesting increases in memory, it is possible
for another RST to be satisfied first reducing the free memory to a
level less than that required. Should this be the case, the subroutine
associated with the RST would force the selection of the SCH node as
successor. If not, one of the other four successors would be selected
statistically. This statistical selection is itself a special case
of decterministic selection by the subroutine as the SCH node is not
allowed to be a successor.

Once a node has been selected, the time required to traverse
the arc linking the two nodes would be computed. The request for the

function would then be inserted in the event list along with the clock

time for the request.

When a control point has been selected for relocation, it must
wait until all dependent peripheral processes have either terminated or
indicated that they are ready for the move to occur by issuing a PFR

(pause'for relocation) function. Many of the peripheral Processes can

issue this function at various times during their execution. It is a

conditional function, however, being issued only when the move flag is
sct for the CP for which the PPU is running. The PFR nodes in the
SPG's are never selected statistically, but only when their CP is to
be moved. A problem arises, however, in that as s00n as a node is
selected, the corresponding function request is put on the event list
to occur at the proper future time. 1In the actual system a peripheral
process might, between the issuing of two functions, check the move
flag for its Cp several times and issue the PFR function if it were to
be set during execution. In the model, the PFR node would be selected
only if the move flag was set when the previous function response were
receivea. To alleviate this problem each time a PFR node was a sibling
of the selected node, a record was kept of this fact. Then, when a Cp
was selected to be moved, a check waé madé of all active dependent pro-
cesses and, if a PFR node were a ;ibling as mentioned above, the event
in the list was changed to a PFR request and the SPG pointer and book-
keeping records were changed accordingly.

Another problem can arise when the statistical selection of
nedes is the sole control over the number of times the SPG for a partl-
cular process is invoked, particularly when that Process ran only a few
times during the run being simulated but consumed a large quantity of
resou;ces each time it ran. Consider for instance-the peripheral pro-
cess, 1XX. 1SS calls 1XXx whenever ECS becomes seven-eights full. Each
execution 1XX removes one job from ECS ang transfers it to disk. - 1xXx
repeatedly runs, by issuing an EDR for itself, until ECs is less than
three-quarters full. During one of the System runs used in this study,

1SS called 1xx only nine times. By'issuing EDR's, 1XX ran a total of

Sl

35 times, Further, 1xx occupied a PPU for an average of over one and a
half seconds each time it ran, holding a channel for a not inconsider-—
able fraction of this time. pye to the observed relative infrequency

of execution, Statistical fluctuation}in the simulation could cause the

tion, the selectio# of the nodes resulting in the invoking of 1xx cannot
be statistical. 1In these instances, the selection could bhe rated, that
is, force the invoking of the process when its ysge of resources falls
below a Predetermineg level ang Prevent its invoking if its use of re-
Sources exceeds that level. Aéain; for 1xx, its selection was based on

the amount of ppy time it was observed to consume.

4.2.3 Validation
~tddaiion

The importance of validation in trace~driven modeling has been
Stressed [1,17]. In order to have confidence in the Tesults of studjes
utilizing a trace-driven simulation model, it ig first necessary to
determine that the simulation does in fact accurately emulate the com-

buter system concerned.

Validation is g4 long ang complicated procéss due pPrimarily to

the large number of variables involved. The more complicated the model,

the more difficult the validation.

(1) Remove all known logical errors from the bprogram and ver-

ify that the various parts of the program execute as

- planned. In this particular model, it is also necessary
to verify that the SpG's adequately represent the resource
utilization patterns of their associated Processes and
that all known spurious paths have been eliminated.

(2) Execute the simulation and compare the system pPerformance
measures obtained with those of the system modeled. If
the measures agree sufficiently, the validation is done.
If not, the areas of disagreement would indicate where
changes in the model might be required. The changes
would be made in the quel and step (1) would again be

performed.

4.2.3.1 Job Mix

In section 4.2.2.3 the problem of scheduling jobs on the basis
of incomplete data was presented. A related Problem, perhaps the most
difficult one encountered during validation and perhaps the one most
responsible for variations in performance Mmeasures, was that of pro-
viding the simulated job scheduler with a representative job mix
from which to make its selections. It ig possible -that, for the dura-
tion of the actual systém run, most of the jobs were available to the
job scheduler, indced there were probably jobs available which did not

appear in the trace because of their "expense." Clearly, if al1 the

jobs observed during the run were made available at the beginning of

the simulation, based upon their observed execution statistics, all

:

"cheap" appearing jobs would run first and all "expensive" appgaring
jobs run last, severely perturbing model performance.

Another approach would be to make the jobs available to the
simulator based upon the times of their first appearance in the trace.
This approach was not taken, however, as it would present restrictions
on the system performance during experimentation. For instance, exper-—
iments which increas;d the throughput of the model would have fewer
jobs to select from and those that decreased the same measure would
have more. 1In either instance, the resulting effects on model perfor-
mance would be moderated or perturbed.

The approach taken was one which attempted to minimize the
effects mentioned in the first approach and, at the same time, not im-
posc any artificial restrictions. The number of batch and interactive
jobs in the available job mix was determined by their total CPU time
requirements. The CPU time required to complete all batch jobs in the
job mix was insured to represent some fraction of all CPU time con-
sumed by batch jobs during the run and similarly for the interactive
jobs. The total CPU time represented by the two types of jobs was
sampled periodically and, if below the threshold for either type, new
jobs of the required type would be added to the mix.

Secondary controls were also enforced. The ﬁaximum number of
interactive jobs in the mix was held to 40. Further, the simulations
were terminated when the remaining jobs in the job mix no longer con-
stituted a representative sample.

To make competition between batch jobs and interactive jobs in

the mix more in accordance with the actual system, batch jobs were

considered, initially, to require a minimum of 4 seconds of CPU time.

4.2.3.2 Comparison of Performance Measures

In this study, the trace tapes produced during two production
runs of the UT-2 system, referred to as Run 1 and Run 2, were used to
parameterize the model and provide the SPG's for inputs. System per-
formance statistics were also obtained from analysis of these tapes.
Table 4Vﬂ ;resents a comparison of the basic processor and memory
utilization statistics for each of the two runs and their correspond-

ing simulations.

MEASURE RUN 1 SIM 1 RUN 2 SIM 2

Elapsed Time (seconds) 1691.232 1541. 406 1309.594 1238.074

CPU Utilization
Control Points .3613 . 3959 .6420 .6788
CPM .2386 .2620 . 2397 .2506

Mcan Core Occupancy

(Percent) .80 .90 .89 .91
Degree of Multiprogramming 11.28 12.77 9.18 9.34
PPU Utilization .9493 .9955 .8418 .8772

-
Table 4.4 -

Cbmparison of Basic Performance Statistics

As stated earlier, validation for a complex model is a formi-

dable task. That this model is complex was realized early in the study

and that idecal agrecment between the performance measures of the system

and the model might be different or impossible to obtain. For this
reason, two extremely dissimilar runs were selected for this study.
Validation criteria were selected, allowing more tolerance in the
agrcement of individual measures, but stressing that the model closely
reflect the system's behavior under diverse conditions.

Run 1 had a heavy interactive-load, severe PPU saturation and
was on the edge of thrashing. Run 2 had a somewhat lighter interactive
load and represented a rather balanced system. The differences in the
two simulations consisted of the job SPG's, the parameterization of the
SPG's for periphgral processes and functions, the parameters relating
to the execution time requirements for the job scheduler and the cen-
tral memory relecation algorithm, the disk chanﬁel selection probabi-
1itiés and the CPU time fractions/used in‘determining the job mix.

For both simulations, the CPU utilization was higher than that
for the system run and, therefore, the elapsed time was shorter. These
descrepancies result primarily from the job mix problem.

The scheduling of jobs on incomplete data manifested itself in
yet another measure. The effect of the "time" factor, due to the method
employed in its determination, was moderated when computing the cost of
‘"batch jobs by the job scheduler. This caused more emphasis than usual
to be placed on the central memory requirements, resulting in an in-
creased tendency to select small jobs. The degree of multiprogramming
and the fraction of central memory cccupied, therefore, was high in both
simulations. The effect was more noticeable in Run i where the system

was ncar thrashing.

The higher CPU utilization by control points results in an

increased rate of RA+1 calls. This is reflected in higher PPU utili-
zation. The PPU utilization would be higher, however, even if the CrU
utilization were not. The attempt to remove interference due to CPM
execution from the arcs of the SPG's for peripheral processes could
only be partially successful. Any interference not removed would
result in longer traversal time requirements as the simulator rein-
troduces its own system interference. Consider the CIO process. The
only function it issues which would require a variable service time
would be a PFR. 1In both the simulatiogs and the actual runs, a PFR
was issupd in less than 0.6% of the executions of CIO. Table 4.5 7
compares the execution statistics for CIO indicating the effect of the

interference left in the SPG.

MEASURE Run 1 SIM 1 Run 2 SIM 2
Number of Executions 28345 27476 25148 26445
Mean Execution Time (ms) 14.042 15.624 9.507 10.394
Coefficient of Variance .894 .597 .898 .928
Table 4.5 7

Execution Statistics for CIO

& 7
Tables 4,6'and 4.7 present the disk channel utilization statis-

tics. Again the higher CPU utilization is reflected in a higher demand
for channels. During Run 1 there were 13.51 requests for disk channels
per second. The rate for SIM 1 was 14.56 per second. The correspond-

ing rates for Run 2 and SIM 2 were 14.5 and 16.7 requests per second.

Channel Number 0 -1 2 3

Run 1

Count 4669 8933 5751 3511
Mean Holding Time 103.549 127.132 95.531 95.936
Mcan Waiting Time 43.377 139.885 37.040 26.447
Utilization .2859 .6715 .3248 .1991
Balance . .7048 .4761 .7206 .7839

Non-System Disk Totals

Count 13930

- Mean Holding Time 98.316
Mean Waiting Time . 36.495
Utilization . 2699
Balance .7293
Channel Number 0} 1 2 3
SiM 1
Count 4601 8728 5663 3451
Mean Holding Time 99.621 129.439 102.258 98.887
Mean Waiting Time 33.895 144.618 46 . 660 21.383
Utilization .2974 .7329 . 3757 .2214
Balance .7461 .4728 . 6867 .8222

Non-System Disk Totals

Count 13717
Mean Holding Time 100.525
Mean Waiting Time 36.343
Utilization .2931

Balance .7362

*All times are in milleseconds

*The statistics for Channel 1 include both RCS and RSY functions

e
Table 4.6

Disk Channel Statistics for Run 1 and SIM 1

Channel Number
Run 2

Count

Mecan Holding Time
Mcan Waiting Time
Utilization
Balance

Non-System Disk Totals

Count

Mc¢an Holding Time
Mcan Waiting Time
Utilization
Balance

Channel Number

SIM 2

Count

Mean Holding Time
Mean Waiting Time
Utilization
Balance

Non~-System Disk Totals

Count

Mean Holding Time
Mcan Waiting Time
Utilization
Balance

0 1
4922 5962
79.321 102.916
35. 459 79.312
.2981 .4686
.6910 .5648
13093
75.005
23.835
.2500
.7588

0 1
5306 6462
76.24 103.051
28.462 88.2614
.3267 .5378
.7282 .5386
14313
76.324
26.490
.2936
.7439
Table 4.7 7

4869

75.837
21.382
.2819
. 7800

5376
74.372
26.209
.3229
.7394

Disk Channel Statistics for Run 2 and SIM 2

3302
67.346
10.124
.1698
.8693

3629
78.841
22.971
-2311
.7744

4.2.3.3 Validation Summary

The reasonable, while not exact, agreements of the performance
measures for cach of the two runs and its corresponding simulation
satisfy the validation criteria as stated in the preceeding section.
Confidence, therefore, can be placed in the results of the experimental

studies using the model. -

CHAPTER 5

EXPERIMENTAL APPLICATIONS

5.0 - Introduction

The goal of this research was to develop a model of an operat-
ing system, retaining the resource ﬁtilization patterns of various
processes with directed graphs, and to demonstrate the utility of this
model in the evaluatién of suggested modifications to the actual sys-
tem. This chapter presents eight experimental studies where changes
were made in the model and its resulting behavior analyzed.

These experiments, while of interest in themselves, were
selected primarily to demonstrate the versatiliéy of the model in the
investigation of the effects of both large and small scale modifica-
tions. Particulér emphasis is placed on the model's utility in the
study and isolation of precisely defined functional changes.

Each experiment was conducted twice, once on the model using

the SPG's and other parameters from Run 1 and again using those of

Run 2.

5.1 Experiment A - First Fit Memory Allocation

This experiment represents an attempt to reduce the time re-
quired to roll a job into central memory by modifying the algorithm

which first allocates memory to its control point.

5.1.1 Memory Allocation
» This section presents a deséription of the memory allocation
scheme used in the UT-2 system.

All memory aliocation to control points is controlled through
MTR's processing of RST functions. These functions are issued by periph-
erél processes running for those control peints. The RST function may
be requesting more memory (RST "up") or requesting that its porticn of
memory be decreased {(RST "down").

An RST "down" can be served as soon as its control point is
idle, that is, aii peripheral processes have terminated or paused (by
issuing the PFR function).

An RST "up" is more complicated to service. MTR will first
insure that the request can be granted and, if not, will reply accord-
ingly to the calling PPU. MTR will only process one RST "up" at a time.
It creates a gap adjacent to the requesting control point large enough
to satisfy the new storage requirement by moving the other control

points'one at a time. When servicing a RST "up" request, it picks the
next control point to be moved accordingly to the algorithm depicted in
Figure 5.1. Before a control point can be moved, it must be idle as
above. If the move is into a gap above the control point, it is moved

all the way to the top of the gap. If the move is into a gép below, it

gap-gap immediately above
requesting CP

\

»| move requesting

es
(g%p large enougé}) J

no

A

pap=gaptgap immediately below
requesting CP

es
(gap large enougi}>_zl_______

control point

—-——-———(E%p large enoug%})

yes

\

move that
control point

Figure 5.1

& no
:) »
; (Z?ll gaps above) YeS gap=gaptgap below next
i checked? /J ™ control point down
: no l
\ no
.1 gap=gaptgap above next gap large enougé})
" control point up
l yes
no move that
control point

Selection of Moving Control Point

only moves down far enough so that the sum of all gaps above is just
sufficient to satisfy the request.

Each time a control point is to be moved or its field length
changed, MTR invokes CPM to run the storage move algorithm. One RST
“up" request can result in several control points being moved. De-
crcasing the number of storage moves reqﬁired would, of course,
decrease the associated CPM overhead, but it also might decrease the
time wasted by control points during the idling down period, by PPU'S
waiting on the servicing of RST "yp" requests and, again, by PPU's
pausing for tﬁe move to occur.

when a job is to be “"rolled in" to a control point, the con-
trol point is originally considered to have zero length and is located
just above and adjacent to the TAURUS control point (Figure 5.2) -
This is true even though the "yoll in" is the second half of a "swap,"
that is, one job is "rolled out" and another "rolled in" to the same
control point. 1RJ will issue a RST "up" for the necessary field
length and the function will be serviced as before.

1t should be noted that the algorithm for selecting control
points to be moved and the distance the control points are moved was
deliberately designed so that control points are packéd toward the
upper end of memory. 'fhis tends to produce gaps in tﬂé lower end.
This is no guarantce, however, that a gap will exist next to TAURUS

large enough for the newly occupied control point.

5.1.2 Experiment Description

The model followed the actual storage allocation scheme quite

111111

IIIIII

SSSSSS

J

UR

Figure 5.2

eeeeeeeeeeeee

closely. The modification in this ekpcrimcnt consisted of searching
thn>cxisting gaps cach time a job was to be "rolled in." The control
peint would be located in the lowest gap large enough to satisfy the
memory requirements of the job. If no such gap was found, the control
point would be placed in the largest existing gap. The RST requests

would then be handled as before.

5.1.3 Comparison of Results

Table 5.1 coﬁpares some of the basic performance measures of
the modified model with those of it unmodified. The performance mea-
sures for SIM 1 showed very little change other than a 2.29% decrease
in CPM utilization of the CPU. This was expected aé the PPU's are
the major bottleneck in SIM 1, not the CPU. SIM 2 showed some im-
provement when modified as the reduction in CPM utilization was

coupled with a slight increase in CPU utilization.

MEASURE SIM 1 EXP. A-1 SIM 2 EXP. A-2
Elapsed Time (seconds) 1541.406 1548.577 1238.074 1223.192
Utilization
CPU
Contrel Points . 3959 .3941 - .6788 .6871
cPM . 2620 .2391 . 2506 .2334
PPU .9955 .9951 .8772 .8631
Central Mecmory .90 .92 .91 .92
Degree of Multiprogramming 12.7 : 12.7 9.3 9.4

Experiment A - First Fit Memory Allocation

Table 5.1

Comparison of Performance Measures

-

Tablc 5.2 demonstrates this model's ability to isolate the

results of small functional changes. The primary goal was to reduce
the time required to roll a job in. This was clearly done. Also, in
both cases, the number of storage moves was reduced significantly.
Another observation is that the job scheduler ran more often, the in-
creases being similar for both models. This reflects the fact that
the job scheduler, after being requested through a SCH function, can-
not run until all decisions from the previous scheduler execution have
been completed. The decrease in the time required to roll a job in
would tend to lessen the time required to carry out the decisions of
the job scheduler, removing this inhipition a little more quickly.

As the>number of storage moves decreased, so did the service
time required for RST function; and the number of PFR's. Note, how=-
ever, that the service time for PFR's increased considerable indicating
that the eliminated PFR's had relatively small service times. The
service time for a PFR denotes the time a PPU waits after issuing the
function until the storage move is completed. This time, of course, is
affected by having to wait for other PPU‘s‘to terminate or also issue
a PFR. The number of executions of the storage move algorithm for the
PISCES and GEMINI control points will be affected only slightly, if at
all, by the first fit modification. The same folldw; for the number
of PFR's issued by their dependent peripheral processes. This means
that a larqe; percentage of the storage moves, and PFR's are attributed
to these control points. Both PISCES and GEMINI often have more than
one dependent process active at a time. This is especially true of

GEMINI which generally has several. This explains, at least in part,

MEASURE SIM 1 EXP. A-1 SIM 2 EXP. A-2

Function
RST
Number 7751 7769 5440 5390
Mean Service Time (ms) 59.05 . 33,42 48.28 25.55
PFR
Number 910 475 S61 303
Mean Service Time (ms) 24.47 39.818 26.13 36.129
Overlay
1RJ
Number ' 4294 - 4324 2999 2973
Mean Processing Time 183.50 135.95 122.27 82.80
(ms) '
Storage Move
Number 13763 11662 8369 7349
Rate (per second) 8.9 7.5 6.7 6.0
Job Scheduler
Number 4629 4824 3660 3787
Rate (per second) 3.0 3.1 2.9 3.1
1RJ Punts
. Number ' 702 735 Sle6 504
Rate (per second) .455 .474 417 .412

Expcriment A - First Fit Memory Allocation

Table 5.2

Detailed Cémparison

the longer PFR scrvice times seen.

5.1.4 Summary

This experiment indicates that some improvement in system per-—
formance might be realized by this modification, particularly if the

CPU were heavily utilized.

.2 Experiment B - Reduce Punts

[$,)

Experiment B represents an attempt to reduce the number of
abortive "roll in" attempts (punts) by 1lRJ, thus reducing the number
of times the job scheduler runs and the amount of CPU overhead asso-
ciated with CPM.

The job scheduler selects those jobs to be resident at control
points on a lcast cost basis, restricted by their ability to fit into
the available allocatabie central memory. Each time a job is selected
for residency, the amount of available allocatable memory will be re-
duced by an amount equal to the memory requirement for that job. Any
job currently at a control'point and not selected for residency must
be rolled out and its assigned memory freed. 1RJ's and 1SJ's are then
invoked to perform the actual "roll in" or "roll out" as necessary.

In order for a job to be rolled in successfully, there must be suffi-
cient free memory when 1lRJ is executed for that job. Two factors can
prevent this. First, some other job already at a control point could
have had more memory allocated since the job scheduler made its de-
cisions and, secondly, insufficient "roll out's" may have occurred to
free the necessary space. This second factor could be considered as
an ordering problem. The job scheduler attempts a partial solution
by combining "roll in's" and "roll out's" into “swapé; whenever pos-
sible, that is, 1SJ runs for a job at a control point and then invokes
" 1RJ to run for the same control point. No consideration, however, is

given to the relative memory requirements of the two jobs involved in

each case.

At two points 1RJ can abort (punt) an attempted "roll in" by
issuing a SCH function requesting exccution of the job scheduler and
then a DPP function relinquishing the PPU (see Figure 4.5). Immedi-
ately after the LPP function, 1RJ checks to see if sufficient free
memory cxists to accomodate the job Qeing "rolled in." If not, 1RJ
punts; if so, it issues an RST function requesting allocation of the
required memory. If the RST function were issued, 1RJ would still
punt if some other RST "up" function should be serviced first leaving
less free memory than required to hold the job. 1RJ punts cause the
job schedﬁler to execute more often than might otherwise be necessary,

resulting in higher CPU overhead for CPM.

5.2.1 Experiment Description

Experiment B attempts to reduce the number of punts by modify-
ing the SPG for 1RJ. Figure 5.3 depicts how the first portion of the

modificd 1RJ SPG would be structured.

Figure 5.3

1RJ Modified

The subroutines attached to the LPP and RST nodes (section 4.2.2.6)
are modified so that the first traversal of 1RJ never results in the
scit function's being issued. Instead, if at either of the two points
insufficient frec memory exists, 1RJ enters a delayed request for it~
sclf. An arbitrary delay of 50 milleseconds was used. During the
sccond traversal, insufficient free épace would result in a punt as

before.

5.2.2 Comparison of Results

Table 5.3 compares various measures of the modified and un-
modificed model. Two of the goals of this experiment were realized.

The number of pﬁnts were reduced and the job scheduler ran less often.

MEASURE SIM 1 EXP. B~1 SIM 2 EXP. B-2
Elapsed Time (seconds) 1541.406 1584.183 1238.074 1233.603
Utilization
CPU
Control Points .3959 - .3852 .6788 .6812
CPM .2620 .2522 .2506 .2512
PPU .9955 .9941 .8772 .8773

Central Memory .90 .91 .91 .92

Disk Channel Requests
per second 14.56 - 14.62 16.77 16.71

Number of Executions

Job Scheduler 4629 4508 -3660 3633
1sJ : 3589 3550 2487 2491
1RJ 4294 4384 2999 3045
Number of Punts 792 414 516 278

Experiment B - Reduce Punts

Table 5.3

Comparison of Performance Measures

