SEQUENTIAL TREE AUTOMATA

by

Raymond T. Yeh and Peter Ng

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

‘ U.S.A.

March 14, 1974



Abstract

The concept of a "tree-walking' automaton is introduced in this
paper. It is shown that our model is equivalent in recognition power
to generalized finite automaton [4] which recognizes trees by "running"
down from the root to frontier of the tree in parallel, The correspondence
between pushdown tree automata and context-free tree grammar is also

demonstrated.



I. Introduction
In this paper, we introduce another generalization of string
recognition automata to tree recognition automata. In contrast to the
" concept of a generali;ed finite automaton [4], which recognizes a rooted,
labelled tree by "running" down from the root to the frontier of the tree
in parallel, our model walks on tﬁe tree and reads only one input symbol
at a time. Yet, surprisingly enough, our model  is equivalent
to the parallel operating model just mentioned in recognition power. The
novelty of our model lies in the fact that it has the ability to delete
edges and hence is able to know whether it has traversed the whole input
tree.
Once the concept of the tree walking automaton is introduced, the
usual technique and theorems in string recognition automaton seems to hold
and apply. In this paper, we will only concern ourself with the correspondence

" between context-free tree grammars and pushdown tree automata.

II. Context-free Tree Grammar

The concept of regular and context-free grammars generating trees
will be introduced in this section. Some preliminary notions about trees
will first be introduced.

A ranked alphabet is a pair (Z,r), where I is a finite set and T

is a function mapping I into the set of non-negative integers. We set
En = r“l(n), Usually, when there is no confusion, we will simply denote
a rank alphabet (Z,r) by I . Let X be a fixed countable set {xl,xz,...}

such that X N EO = #. Then the set of trees TE(X); generated by a



- then o(t

ranked alpﬁabet £, indexed by X, is defined inductively as the smallest
set containing 20 U X such that whenever o € En and tl,tz,...ﬁn € TZ(X)5
1t2"'t) £ TZ(X)' We will let ~TE to denote the set Tz(@). If
t is a tree, then the frontier of t, denoted by |1t]] , is the string

composed of a left-to-right concatenation of labels of the leaves of t.

A ¥-dendrolanguage is any subset of TZ‘
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A context-free grammar (cfg) G is a 4-tuple [N,T,o0,P], where N

and T are finite sets called nonterminals and terminals, respectively.

ceN and P is a finite set of ordered pairs (A,x) called productions,
where A ¢ Nand Xce (NUT)Y* -{A}. A cfg is yanked if whenever (A,x)
and (A,y) are in P, then X and y are of equal length.
If G is a ranked cfg, then we may form a ranked alphabet I by

letting I, =T and for n>0, I ={AeN| (A,x) ¢ P and length (x) = n}.

Using this ranked alphabet, we can define the set of derivation trees

Dg aséociated with any A e £ as follows:
. G ’
a) D, = {a}, for ae I,
b) if (A,x) ¢ P and x = Xl""xn such that ti € Di , 1 <1i<n,
i
- G
then A(tl"" tn) € DA‘

For any rénked cfg G = [N,T,0,P], we will refer to DG = DS as a derivation

dendrolanguage.

In the sequel, we will assume that X is a ranked alphabet.

Definition 1 - A context-free tree grammar (cftg) over a ranked

alphebet I is a quadruple G = [N,I,0,P], where



i) N is a finite set of nonterminals;

ji) © is a finite set of terminals such that NNZ = ﬁ;

iii) o ¢ N is the starting symbdl.

jv) P 1is a finite set of rules called productions of the form
A>a, where AeN and a € TZ(N)'

G is called a regular tree grammar (rtg) if every production A + a

satisfies the condition that at most one element of N occurs in o .
. . . . '

Example 1. Let G = [{A',B,C"} %,A',P], where I = {S,A,B,a,b} such

that I ={a,b}. I, = {A,B}, I, = {A,B,S}, and I, = {A,B}.

P consists of the following productions

A+ smB) | s@ch
B' o A(a) | ACA') | AGA'A)
¢' + B | B®A") | B(aC'C):

Definition 2 - Let G be a cftg. A dendroid form of G is defined

recuisively as follows:

(i) o© is a dendroid form, if oel

(ii) If a(al...an) is a dendroid form, and fqr some 1, o, ti
is a production in P, then u(al...ai_l tiai+1"' n) is a
dendroid form.

(iii) If t e TZ(N) is a dendroid form and it contains an element
A such that A »ais a production in P, then t', which is
obtained from f. by replacing A by a , is a ‘dendroid form.

A dendroid form t is said to directly generate another dendroid form

t', denoted by t =} t' iff either.t = ¢ and 0 - t‘, is in P, or



‘or t' is obtained from t by either (ii) or (iii) above. We say t

r . , . .. 1
generates t iff there exists 2 finite sequence tO = t’tl"'”tk =t
such that to= bt for 0<ic< k.

We will denote by %3 the transitive closure of the relation .

Definition 3 - Let G be a cftg. The dendrolanuage generated by

| G, denoted by T(G), is the set of trees t ¢ T2 such that o2 t.
Example 2 - Let G be the cftg given in example 1. Then T(G)
is precisely the set of derivation trees generated by the cfg G' =
[{S,A,B},{a,b},S,P'], where P' consists of the following productions:
S+ DbA |aB
A + alaS|bAA
B+ b|bS|aBB

Definition 4 - Two cftg G, and G, are said to be equivalent

iff T(Gl) = T(Gz).

Theorem 1 - Every cftg G is equivalent to a normal form cftg
G'V such that productions of G' are either of the form A - a(al...dn),
o € Zn,.ai e NU ZO’ or of the form A -> B, Be N U 20.

Proof: Let G = [N,I,0,P] be a given cftg: Construct
¢' = [N',5,0,P'] as follows. N' =N U{X |ac¢I-Ij. p' consists
of all the productions in the desired fdrm plus others obtained by the
following procedures.

rLet A > a(tl...tn) be a production in P not of the desired

form. Then let A -+ a(dl...an) ¢ P', where



)

@) oy 0

.. _ . _ '
(ii) oy Xai, if ti = a; (t1

Now apply (i) and (ii) to the productions of the form Xa - ai(t;...t;).

t.,, if t. ez, UN;
RO i
\ 1
...tm), a, € 2m>0 and ti € TZ(N)'
: |

Clearly the procedure terminates and that T(G) = T(G ).H

Example 3 - Following the procedure given in the proof of theorem 1,
a production A > a(b(a(b)c)B) 1is replaced by thrée productions

A~ a(XbB), Xb > b(Xac), Xa -+ a(b).

Theorem 2 - Corresponding to each cftg G = [N,Z,0,P], there exists

a cfg G'
n(T(G))

some cftg G.

[N',2',6',P'] and a projection m:z >N U ' ‘such that
1 ) ' .
ng. Conversely, if G' is a given cfg, then DG = T(G) for

it

Proof: Let G be a cftg in normal form. Define a cfg 6' as

follows.
N'= {0} U{(A,a) | A = a(al.‘.an) e P}
¢' = o '

p' consists of the following productions:

i) a » X1X2...Xn, if o » a(aluz...an) P, whgre

X. =a, ifa, € £, and X, = (A,a') if o, = A and
1 i i 0 i i

A -+ a'(Bl...B) P.

m

ii) (A,a) X1X2.;.Xn, if A -~ a(alaz...un) e P, where Xi = o,

. o ' . 1
if a; € ZO, and Xi = (ai,a ) if a; € N and ai+ a (ﬁl...Bn) e P,
Now, let I: I =+ N'IJZ' such that

(A, ), if A =~ (alaz...an) e P

n(u) = u N if a"* u(gl.-.an)‘le P

o , if a e ZO.



R ]
Clearly, N(T(G) = D° .

Conversely, let 'Gi = [N',z',c',P'] be a cfg. Construct a cftg
G = [N,2,0,P] as follows:

N = {A | A e N}, £ = N U 2', and P consists of the productions
A 4-A'(61...ﬁn), if A' > Gl..dﬁlspv, where g. = ai, if o € 2', and
Bi = A, if a; = A,

G'

Clearly, D° = T(G).|]

Corallary 1 - Let G be a cftg. Then the language { Htﬂ] t e T(G)}
is context-free.

We remark here that the frontiers of the trees generated by a

regular tree grammar need not be a regular language. For example, consider

the regular grammar ' G = [{¢},{a,b,d},0,P], where 20 ={a,b}, I, = Ig =(d},

and P consists of the productions

o + d(acb) | d(ab).
The language {|Itll l teT(G)} = {anbn {n.>1} is context-free.
I111. Pushdown Tree Automata

In this section, we will introduce a recognizer of trees which "walks"

on input trees. Correspondence between this class of recognizers and

cftg will be proved.

Definition 5 - A pushdown tree automaton (p.t.a.) is a 7-tuple

P= [Q,Z,P,S,qo,zo,F], where Q,Z,F] and F¢Q are finite sets of states,

input alphabet, pushdown symbols, and final state set. 9 © Q and 2 © Z

are the initial state and starting pushdown symbol, respectively. ¢ is

" a partial function mapping Q x{Z U {A}} X T into finite subsets of

Q x ™ x{-1,0,1}x {o,1}.



We may view a p.t.a. P as a pushdown automaton whose inputs are iabelled,
rooted trees. We assume that the P has a read head with an arrow
attached to it. Initially, it is assumed that the read head is reading
the label of the root Vo of its input tree with its reading arrow coinciding
with the leftmost edge (vo,u) incident from the root. The automaton makes
an atomic move as follows. If (q’,y,dl,dzj e 6(q,a,z), it means that
the automaton was in state q with 2z as the topmost symbol of the
Pushdown stack, and the reading arrow is coinciding with an edge (u,v) such
that the label of u is a. P then changes to state q', replaces z by
y, moves its reading arrow according to dl ¢{-1,0,1) deleting edges
according to d2 e{0,1}.

If d1.= -1, then the reading arrow reverses its direction. This
means that if the read head were reading a, the label of u, and the
arrow is pointing in the direction (u,v) for some v, then the read
head is reading the label of v and reading arrow is now pointing in the
direction of (v,u); if d1 = 0, then the reading arrow remains stationary.
If d1 = 1, then the read head is stationary but the reading arrow will
make 'a counterclockwise swing until it meets another edge. Thus, if the
'read head is on a vertex u which has successors vl,vz...vk and
predecessor u' such that the reading arrow was on the edge (u,vi) then
after the transition, the reading head is on the edge (u,vi+1), if
i <k, and (u,u'), if i = k.

1f d2 = 1, this means that the reading head will delete the

edge it is on. 1If d2 = 0, no deletion will occur.



A Configuration of a p.t.a. P is a 4-tuple (T,q,a,2x), where T
is the undeleted portion of the input tree, q is the current state of
P, a is the current input symbol being read, and Zo 1is the content
of the pushdown stack.

Let LE (or simply }~ when no confusion arises) be a binary
relation de;ined on the set of all configurations of P such that
(T,q,a,za) | (T',q',b,ya) if (a',v,d;,d,) €6(q,a,z) where b is the

symbol read by means of a d, operation, and T' is obtained from T

1
by d, operations. Let - be the transitive closure of |—.

Definition 6 - Let P be a p.t.a A tree Te Tz is said to
be recognizable by P iff
(Tyapa,25) = (A ,q,3,a)

for some q F. Where a is the label of root of T and Aa is a

degenerate tree which contains a single node with label a.

The tree dendrolanguage recognizable By -P, denoted'by L(P), is
the set of all trees recognizable by P.

Remark: By the usual technique, it is easy to show that the
set of trees recognizable by a p.t.a. P by emptying stack is the
same as L(P). In other words,

L) = {T l (T,qo,a,zo) L_iu_(Aa,q,a,A) for some q e Q and

a is the label of the root of T}.

Example 4 - Let P = {{qo};{a,b,é};{zo,a,al,b,bl,s,sl,sz,ss},
6,q0,zo,¢] be a given p.t.a. with & given in table 1. It is easily

seen that L(P) = DG, where G = [{s},{a,b},s,P], where P consists



of the following productions.

8 =+ asa l bsa l aa I bb.

Q b r Q r* d1 d2
9 s ZO q, aslal -1 0
4y | s Z0 q, bslbl -1 0
q0 s ZO 4 aa; -1 0
9 S ZO qo bb1 -1 0
q s | s qo 31513153 1 0
qq | S s a blslbls3 1 0
4 s ] q 2,25, 1 0
qO [ 5 qo blblss 1 0
949 | S 2; 1 9, a -1 0
9 S bI q b -1 0
qQ | s | 5119 s -1 10
a s a q0 s, -1 0
a5 | s | P {9 S, -1 | 0
q S ss |19 s -1 0
G | S | S2 {|% 1
qg | S 52 a 0 1

Table 1 - Transition table for P



We will illustrate a computation sequence of P by the following

diagrams:

£(dg22o) | o o 5392577521

0 e o} 0

b b b b b b
s s(q,55,9;)
s (QO’Sla) 0 o 0 2 l

5 (q0952) S (qo!A)
o .

own

a (qoﬁa)
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Leima 1 - Let G bea cfg. Then there exists a p.t.a. P such
that L(P) = DG.

Proof: We construct P to simulate the leftmost derivations in

Let G = [N,Z,0,P]. Construct P = [{qO},E',P,a,qO,zo,{$}] such
that z' =NuUz, =NUzU(BL,858° | BeN U (al) acl & isdefined
such that corresponding to each production B » Bpeesl s GE N U 2,
in P, we have _
1) (dgBs2p) }—(qo,ala;ag...a;,-l,m
2) (ay8,8%) | (ag:h,0,-1)

D (agBB) | (@golal...of 81,0

if B=g¢

) (ap%;503) 1-ag045-150)
2
5) (qoaui:ai)i’“(qo,s 9’1:0)3 for ai e X

2

6) (q ,d.,a§)f—(q ,B“,-1,0), for ¢, e N.
0’7171 0 i

It can be shown in a straightforward fashion by induction that

G * '
teD &= (t,qo,a,zo) }.— (Aa:q’asA)' H

As a consequence of theorem 2 and lemma 1, we have the following
result. | |

Corollary 2 - If G is a cftg, then T(G) = L(P) for some one
. state p.t.a. P.

Since the deletion function of a p.t.a. corresponds to marking the
edges of an input tree, and that all p.t.a. under discussion are non-

deterministic, we have the following straightforward result.
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Lemma 2 -~ Every one state p.t.a. P is equivalent to a one state
p.t.a. which recognizes trees by always performing a preorder traversal
and deleting terminal edges as its reading head encounters them.

Theorem 3 - Corresponding to each one state p.t.a P, there exists
a cftg G such that L(P) = T(G).

Proof: By 1lemma 2, we may assume that P 1is a preorder p.t.a
since P must perform deletion when after reading an input which belongs
to EO, the only transition which contributes to the generation of
trees is of the form

(4,2,¥,1,0) € 8(q,a,z) or (q,ay,-1,0) e §(q,a,2)
Thus, corresponding to each such transitions, we add the production
z + a(y) to G.||

Lemma 3 - A dendrolanguage is p.t.a. recognizable iff it is one
state p.t.a. recognizable.

Proof: Let P = [Q,Z,F,G,qe,zo,é] be a p.t.a. Construct a one-state
p.t.a. Ef = [{qo},z,r',s',qozé,b] as follows:

{[Q:Z] ! qeQ z E;_P}

o |
i

zq = 19y 2p]
§ is defined as follows:
i) wherever (P,A,dl,dz) e 6(q,a,z), then (qO’A’dl’dZ) € g(qo,a,[q,z])
. ' . '
ii) §'(ap.a,[a,2]) contains [(ay, [P,z [ay2z)l-«-(q»2,)s d1ydyl,
P,qz,..,qm € Q@ wherever
(P,zl..zm,dl,dz) e 6(q,a,2). H
As a consequence of previous results, we have
Theorem 4 - A dentrolanguage L is p.t.a. recognizable iff it is
generated by a cftg.
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As a consequence of [1,2,4], we have the fqllowiné result.
Corollary 3: The following statements are equivalent.

1. L is p.t,a recbgnizable;

2. L is recognizable by a generalized finite automata [4];

3. L 1is recognizable by é finite recursive tree recognizer [2];
4. L 1is generated by a cftg; )

5. L is generated by a regular tree system [1 ].

To complete this section, we given the following definition and

the straightforward result.

Definition 7 - A finite tree automata (f.t.a) is a 5-tuple

A= [Q,Z,G,qO,F], where Q, and F are finite sets of states, input

alphabet, and final state set. qois Q is called the initial state,

and é: Qx I ~+Qx {-1,0,1} x {0,1} is the transition function

of A.

The concepts of "configuration' and '"recognition' for A can
"be defined in a way similar to that for a p.t.a. and hence will not be
given here.

By observing that the trees generated by a regular tree grammar is
really "lineaxr" in the sense that all edges of each tree are incident
with a vertex in the longest path of the tree. This observation lead$ to
the following straightforward result. (A detailed proof of this result
is quite tedious, however.)

Theorem 5 - A dendrolanguage L is recognizable by a f.t.a. iff

it is generated by a regular tree grammar.
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1IV. Concluding Remarks

It was established in the previous sections that a correspondence
between the walking automata and the generating grammars do exist. It
ié our conjecture that the usual Chomsky hierarchy generalizes to the
tree case using our model. Furthermore, our model generalizes to the
case of hierarchical graphs [3] which is really the motivation for this
paper.
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