39

To achieve complete generality, an implementation of the building and
splitting process described in this study would have to be able to recognize
arbitrarily complex conditions and resolve arbitrarily complex conjunctions
of conditions and state information. A completely general implementation
would, for example, not only have to recognize that x > 5 satisfies the con-
dition x # 3 but not the condition x # 6, but also be able to deal effectively
with conditions such as x < y + z. At present, SPLIT only handles conditioms
of the forms X = ¢ and x # ¢ where ¢ is an integer or literal constant. This
has been sufficient to deal with all branches on critical variables encoun-

tered in programs analyzed so far.

3.4 Folding

The initial state graphs produced by BUILD can be quite large; for
example, the graphs representing operating system programs written in CDC6600
peripheral processor assembly language averaged about one node for every three
lines of executable source code, and about 1.5 arcs per node. (These ratios
will probably vary depending on the source language and nature of the program.)
The splitting algorithm greatly increases the number of nodes. Thus both to
conserve memory and to reduce the amount of work to be done by subsequent
portions of TRACE, it is imperative to fold the graph as much as possible at
each stage of the process. The main folding routine, FOLD, is in the main
overlay of TRACE so that it can be called at any time. FOLD incorporates the
two folding rules presented in Chapter II. When it is called, it considers
one by one each node in the whole graph and attempts to apply the two folding
rules repeatedly until no further combinations can be made with the node at

hand. 1In addition, e-arcs from a node to itself and one of a pair of identical



40

arcs between the same two nodes may be eliminated. When two nodes are com-
bined, location labels and information regarding the value of variables at-
tached to either of them are attached to the combined node, with duplications
eliminated. Nodes connected by a conditional arc are never combined.

If any combinations were made in a pass through the whole graph, then
FOLD again applies the rules to every node, and the process is repegted until
a pass has been made in which no new combinations occurred.

FOLD is applied to the graph as soon as BUILD has finished and is
usually able to cut its size in half. During the execution of SPLIT, FOLD may
be called whenever memory gets crowded and is always called when SPLIT has
finished. It has been found that at this point even very large object pro-
grams will be represented by graphs of less than 50 nodes, It therefore be-
comes practical in CLEANUP to apply folding rules with more sophisticated cri-
teria for combining states:

(3) Any two nodes whose sets of outgoing arcs are identical, with re-

spect to both labels and successor nodes, may be combined.

(4) 1If there is a closed path, no matter how long, consisting en-
tirely of e-arcs from a node back to itself, then all the nodes
along this path may be combined into one node. (Notice that this
is a generalization of rule 2; in rule 2 the length of the path
is just two.)

When all four of the folding rules have been applied to every node in

the graph without any new combinations occurring, CLEANUP outputs the result
as the final graph and may also carry out the comparison algorithm if the user

has supplied a prototype.



41

3.5 Actual Uses

Despite its experimental nature, TRACE has been put to several real
uses on the UT2 operating system. It was run on six of the system programs
which access the Job Status Table to verify that they all adhere to the sema-
phore protocol for reserving, accessing, and releasing the table. It was also
used on a few programs to verify that they adhered to a similar protocol for
reserving and releasing data channels. TRACE can also be used in its present
form to verify that programs adhere to protocols for reserving disks and Ex-
tended Core Storage, for requesting half-tracks on these devices, etc.

As a matter of fact, using TRACE on these system programs revealed two
clearcut protocol violations. It was discovered that program 1SJ could reserve
the Job Status Table and then terminate without releasing it and that program
PPR could reserve the system channel and then abort without releasing it.
Unfortunately for the prestige of TRACE, each of these paths was already known
to a system programmer, each could be taken only when the program had detected
extreme error conditions, and neither path had ever been known to be taken
under normal system conditions. Thus the protocol violations were not con~

sidered to be "important,"

and neither was corrected. Nevertheless, the dis-
covery of real sequencing errors in real operating system programs by TRACE
in the hands of a user not intimately acquainted with that operating system
is a strong argument for the practicality of the analysis method presented in
this study.

TRACE was also used to analyze portions of a different operating system,
a locally modified version of Scope 3.3 for a CDC6600 at a Mobil 0il installa-

tion in Dallas. Only minor changes were necessary to enable TRACE to deal

with these programs written in a different version of COMPASS, These consisted



42

mostly of adding executive routines to BUILD to respond to previously unen-
countered instructions. This experience should help justify the claim that
the verification method is essentially language-independent.

TRACE has also proven to be very useful in simply revealing the actual
(as opposed to apparent or flowchart) structure and ordering properties of
programs for human inspection. 1In these cases, the final step, comparison
with a prototype, is omitted, and the objective is just the final, split, and
folded state graph of the object program. Such state graphs could be a valu-
able part of the documentation of a program. In one instance; a Computation
Center programmer who had just acquired maintenance responsibility for a set
of difficult programs from a departed colleague asked that TRACE be run on
them simply to help him understand what they did under various circumstances
and values of certain variables.

The state graphs produced by TRACE are also of use in connection with
a major performance measurement and evaluation .project currently in progress
on the UT2 operating system. This project includes an event driven system
trace [1, 17, 22]. The trace is used to produce directed graphs representing
sequences of actions actually performed by programs including system programs.
Some 50 or 60 different actions are detected, although not all of these will
be performed by any one program. All of the actions recorded by the event
trace can also be detected by TRACE in the source code of the same system pro-
grams. Thus the two directed graphs of a program's actions produced by these
two different methods can be compared in order to help verify each method.
Comparison of the graph produced from the source code with that from the pro-
gram's actual behavior also serves to identify sections of code which are
seldom or never used as well as heavily used sections which could be most pro-

fitably optimized. Finally, the directed graphs produced by TRACE have even



43

been used to pre-set the event trace graphs so that the event records could
be used simply to put frequency information on the arcs of a graph which was
already bullt rather than having to produce one.

Table 3.1 summarizes some information about eight representative execu-
tions of TRACE on UT2 system programs. These programs are all peripheral pro-
cessor programs and all are important components of the UT2 operating system
for the CDC6600. 1AJ, 1S8J, 1RJ, and 1TD are the primary overlays of the pro-
grams which advance, suspend, and resume jobs and of the tape driver, respec-
tively. PFM and PPR are the permanent file manager and peripheral processor

resident, respectively.

TABLE 3.1

SOME EXECUTIONS OF PROGRAM TRACE

Name Lines Modifications Nodes C P Time
1AJ 2541 25 42 32

14 15
1RJ 784 15 16 6

10
183 619 6 11
PFM 1254 18 5 18
PPR 572 16 15
1TD 456 1 28

The first column of Table 3.1 gives the name of the object program. The second
column gives the total number of lines in the program's source listing, of
which perhaps 257 are comments so that, for example, 1AJ has 1800-1900 lines

of executable code. The next three columns give the number of hand modifica~

tions which had to be made to the original source code before TRACE could be



44

run on the program, the number of nodes in the final folded state graph pro-
duced by TRACE, and the number of seconds of central processor time required
by TRACE for the run. Some programs were analyzed more than once for dif-
ferent purposes. The first runs listed for 1AJ and 1RJ were for the event
trace project so that BUILD was given a long list of "interesting actions,"
while the second run on each was to verify adherence to the Job Status Table
reservation protocol so that only three actions in addition to the usual
control statements were designated "interesting." In both cases the larger

list of interesting actions given to BUILD naturally resulted in larger graphs.

3.6 Conclusions

TRACE was never intended to be a production program but rather an ex-
periment, the purpose of which was to demonstrate that the method of program
analysis presented here is practical. The two kinds of uses to which the pro-
gram has been put, displaying the sequencing structure of many real programs
for human analysis and actually verifying that some programs adhered, or failed
to adhere, to a desired protocol, indicate that it is indeed practical, espe-
cially in view of TRACE's modest time and space requirements. TRACE required
surprisingly little execution time. As can be seen in Table 3.1, running
TRACE from start to final verification required about one second of CDC6600
central processor time for every 75 lines of executable source code in the ob-
ject program.

Memory space is more of a problem. Most of the memory required by
TRAGE is for the arrays in which the state graph is stored. Various sizes for
these arrays resulted in versions of TRACE requiring from 420008 to 540008

words of central memory on the 6600, 500008 words was sufficient for most of



45

the programs in the UT2 operating system including 1AJ which was about 1800
executable lines long.

The size of the graphs varies greatly from stage to stage in the pro-
cess, but they are usually largest during the splitting step. FOLD is usually
called several times during the execution of SPLIT, so it was not possible to
get accurate figures on the largest size which the graphs might reach while
being thus expanded. However, it is certainly possible that, if it were not
constantly folded, a state graph could grow to have more states than there
were lines of code in the program it represents.

The size of a state graph, both during its manipulation and the final
version, is less dependent on the length of the object program than on its
structural complexity; the number and depth of nested subroutine calls, the
number of critical switching variables, and the range of values they assume
all contribute directly to the size of the state graph. 1In its only major
failure, the largest version of TRACE ran out of memory on 1lED, a program of
about 1100 lines, many subroutines, and three switching variables with ranges
of two, four, and eight. This particular program could probably be handled
by simply increasing the array sizes of TRACE still further, but there will
certainly always be programs whose state graphs will exceed the capacity of
any given analysis program. It should be mentioned that using auxiliary mem-
ory to store the state graph would be very expensive in time and might not be
practical since both the splitting and folding algorithms traverse the whole
graph, possibly several times.

The most serious problems with implementing this analysis method are
the various additions and modifications which must be made by hand to the
source code by someone well acquainted with the method and its implementation

before the automatic processing can begin. In analyzing the operating system



46

programs, an average of about one addition or change for every 50 lines of
executable source code was necessary. Some of these, such as re-writing
table jumps, are strictly shortcomings of the particular implementation pro-
gram and are not necessary features of the general method. Other problems,
such as recognizing actions which are not performed by a single line of code,
fall into a grey area; it is probably possible to write recognition routines
to detect any desired actions, but it may be more convenient to mark some of
them in the source code by hand. Finally, at least some of the critical
variables in object programs will have to be identified by the user. Since
the number of critical variables is a crucial factor in the size of the state
graphs, it is impractical to automatically designate as critical all branch
variables, and no techniques are known at present for easily determining
which variables actually affect the order in which a given set of actions are
performed. Thus for the present the analysis method presented here will have
to be thought of as an interactive one which can be largely, but not complete-

ly, rautomated.



CHAPTER IV

ANALYZING SYSTEMS OF PROCESSES

4.1 Introduction

In the previous chapters, state graph techniques have been applied
only to individual processes. In this chapter procedures based on state
graphs will be developed to prove statements about and analyze systems of
processes running in parallel and interacting with each other. Although
the primary interest of this study is the proof of statements about systems
of computer programs, including operating system components, running in a
multiprogrammed environment, the techniques are general and should apply
equally well to other systems such as communication networks or factory
assembly lines.

The use of state graphs to analyze systems of processes is not new.
In particular, Gilbert and Chandler [8] and Bredt [3] both employ state graphs
to examine the mutual exclusion problem, although using a method less general
than the one presented here. Gilbert and Chandler present a method of using
state graphs to detect potential deadlock, and both papers use them to check
for permanent blockage. Neither paper addresses the problems of representing
or dealing with system state graphs in limited space or time. In this chapter,
the concept of the state graph of a system of processes will be developed,
and then methods will be presented for expressing and verifying properties
of such graphs, along with a discussion of the practicality of the methods.
Tt should be admitted at the outset that the analysis methods to be presented
in this chapter will be useful mainly on very small systems or on abstract

systems.
47



48

4.2 System State Graphs

Suppose that there are N processes, possibly different, executing
in parallel at possibly different rates. It is assumed that each of the pro-
cesses can be analyzed using the techniques of the previous chapters so that
each can be represented by a folded final state graph which is finite and
presumably small. A system of such processes could then be represented

simply by the N individual graphs as in Figure 4.1,

I |

1

@O~

7

. .

O O

Figure 4.1. A System of Parallel Processes.

th process, m, the mth node

The node 0i represents the starting state of the i
of the ith process, etc. As before, it is assumed that each process has a
unique starting state and at least one final state. It is also assumed that
each process is self-contained, i.e., that there are no arcs of the form
n, ~9mj, i# 3.

It is not necessary to the methods of this study that the processes
ever interact in any way, but if they do not, then analysis of the system re-
duces to analysis of the individual processes. The more interesting cases

arise when the processes communicate through common store or interact by

sharing or competing for other resources. In this case a notation is needed



49

to represent the state of the whole system at any given instant. The state
of the resources of the system could be represented by a vector, V, containing
the values in common (global) memory cells, and for other shared resources
such as processors perhaps a number or tuple representing status or ownership.
The construction of V will depend on the nature or application of the analysis.
In fact, the construction of V is quite similar to the problem of designating
critical variables discussed in the previous two chapters; we want to include
in V only those common variables which cannot be ignored without invalidating
the analysis, and like the previous problem, the question of which variables
to put in V may only be solvable by successive attempts to analyze the graph.
It is necessary to assume that each member of V takes on only a finite range
of values. This is a restriction on the method.

One could in theory construct the state graph, G, of the whole system.
This graph would have nodes labeled (i, j, ..., k, Vg) corresponding to the
state of the system when process 1 was in state i, represented by the ith nod e
in its graph, process 2 in state j, ..., process N in state k, and the resources

in configuration V If one process, in performing an action, carried the

0
system to a new state, then G would have an arc from the previous node to the
new, labeled with the action performed by that process. G would be a subgraph
of the graph C formed by the Cartesian product of all the individual graphs
and the vector V. While G would be much smaller than C because of shared re-
source interlocks and branches on values of common variables, G would still

be formidable for most real systems. In general, it is impractical to repre-
sent the whole state graph. Algorithms will be developed which require at

most the folded state graphs of the individual processes as in Figure 4.1 and

an enumeration of the nodes of G. However, it is this whole state graph, G,



50

which is being used as the model of the system, and except when discussing
algorithms for automatic analysis, G will be referred to freely.

To the graphs of Figure 4.1, add N pointers, one for each process,
pointing to the node representing the state which that process is in. When
process i performs an action which carries it to a next state, the ith pointer
is advanced to the appropriate next node. Any program for automatically
analyzing systems of processes could more easily deal with a representation
of the relatively small graphs of Figure 4.1, advancing pointers along it
and acting as a simulator, keeping up with the values of common variables or
the status of other resources as individual processes changed them. Thus the
state of the system being analyzed can be represented at all times by an
ordered (M+1)-tuple, (i,j,...,k,Vg), indicating that the first process is in
state i and the first pointer is at the ith node in its graph, etc. 1t can
be seen that this pointer representation results in the same labels for states
of G as before. Storing all of G explicitly, on the one hand, and trying to
retain the same information by adding a simulator apparatus to the individual
process graphs on the other are theoretically equivalent but represent a
space-time tradeoff; in the first case the connections between states are
quickly available at some storage cost, and while the second method requires
less memory, the neighbors of a given state are not immediately obvious and
must be computed.

We define a legal transition of a system of processes from one system

state to another to be the advancement of one of the N pointers from its pre-
sent node along one arc to a next node provided that any condition attached
to that arc is TRUE. Formally, there exists a legal transition from a state

A

i

(8150 0es8; 15 @y 8. 0500080 V) to a state
1 i-1 i i+l N

B = (al”"éaiel’ bys 8;49s+--28p V') if and only if:



51

(1) the graph of the ith process has an arc from its node a to its
node b, and

(2) the condition, if any, on that arc is TRUE when the system is
in state A, and

(3) the action on that arc transforms the resource vector V to V'

(where, of course, it may be that V' = V).

State B will be called a successor of state A; A is a predecessor

of B. There is a path from a state s, to a state sn if there is a sequence

1

of states SyreessS_ 15 S such that there is a legal transition from s, 1 to

n-1

s, for 1 < i < n. A state is reachable if there is a path from the system

starting state to it. 8y = (O,...,O,VO), the state where all processes are

in their starting states, will be called the system starting state, which

without loss of generality can be assumed to be unique. A system final state

is any state where all processes are in a final state.

At any given instant when a system is in state s, there will typically
be several 'next states" for the system; any one of several processes could
be the next to act, and each action would in general carry the system to a
different state. Typically, we have no way of knowing which process will per-
form its next action first, and systems appear to be nondeterministic because
of this uncertainty of order of operations. The graph model being described
accurately reflects this uncertainty property; there will typically be several
successors to any state s in G. This is because by the definition of legal
transition there will be as many legal transitions from s as there are pro-
cesses which can possibly act. 1In cases where it matters which process goes
first, this is a conservative strategy for modelling the system because no
assumptions are made about the order;kinstead,fallkpossible: traces are created

including the one where the "wrong" process acts first. However, it should



52

be noted that there is an implicit assumption in this model: In agreement
with past treatments of this problem (see, for example Dijkstra [6], p. 53,
and Gilbert and Chandler [8], p. 429) it is assumed that if two or more pro-
cesses are each about to perform an action, one or another of them actually
acts first, even if we cannot know which, but that there is never actual
simultaneity. In the case of single processor hardware, this is equivalent
to assuming that race conditions are always resolved. However, in multi-
processor systems there might be actual simultaneity, and there is no gener-
ally satisfactory way of reflecting this property with the present model.
However, if the two actions do not affect the same resource, it probably does
not matter which we say occurred first, while if they do, then there is a
race condition which is presumably resolved in some order in any real multi-
processor system.

Tt has been mentioned that the graphs of the individual processes
in the system are to be built by the methods of the previous chapters. If
these graphs are to be used in the analysis of a system of processes, then
obviously the interactions of the processes are of interest. For this reason
it is assumed that actions by the processes which may affect their interaction
were designated as "interesting' and appear on the arcs of the graphs. Speci-
fically, it is assumed that any processes which test or set the value of any
of the variables in the common vector V have such actions explicitly labeled
on the arcs of the graphs being used to analyze the system. Some of these
arcs may have special kinds of labels indicating that they may not be elim-
inated by folding but are later to be considered to be null (e) for purposes
of comparison with a prototype graph. While the graph manipulation techniques
described in the previous chapters are certainly also applicable to the system

graph G, in practice there will probably not be much opportunity to use them.



53

Because the individual process graphs from which G is constructed have al-
ready been thoroughly folded, there will be little or no folding possible

on G; and because account was taken of actions concerning the system's criti-
cal (common) variables as the states of G were generated, splitting will not
be necessary.

A common feature of multi-process systems is that processes may spawnh
child- or successor-processes; that is, one process may generate or initiate
a second process which runs in parallel with the first. This child~process
may then have the same status as the other processes in thg system, using the
common store, competing for resources, and even spawning children of its own.
In terms of the "fork'" and "join' notation of Conway [5], this initiation cor-
responds to a "fork.'" Regardless of how such process generation actually oc~-
curs in the system being analyzed, this feature can be modeled using the no-
tation already developed. The graph of the potential child process is in-
cluded in the system of graphs from the beginning, and its node pointer is
initially at node O. At this first node the only outgoing arc has as a con-
dition a certain value of an enabling variable, say e, in common store. At
the appropriate point in the parent process, e is set to the value which gives
the child a legal tramsition. '"Joins' can be modeled in a similar fashion.

Processes may have more than one child, and lineages may be of indefi-
nite length, but it is necessary that at least one copy of the graphs of all
potential processes be included in the original graph system. Further, it is

necessary that the total number of such processes, either initially active or

potential, be finite and known in advance so that the proper number of pointers
can be provided. This is definitely a limitation on the method, but fortunately
an acceptable one for most applications. In particular, the number of processors,

even virtual ones, and hence the number of active processes, is bounded on



54

most computer systems; job- or task-tables and queues are of finite length.
However, systems of recursive processes cannot, in general, be modeled using

this method.

4.3 Analyzing Sequencing Properties of Systems

We are now ready to develop methods for proving properties of or
statements about such systems of processes. The most general, although not
the only, class of properties which systems can be proved to have are those
which can be expressed in terms of a prototype graph. The verification method
will be similar to the method used earlier to verify that individual processes
had properties expressed by prototypes.

As before, the user will have to provide a prototype graph, P, which
expresses the desired ordering relationship on the actions performed by the
system of processes. Each node in the prototype graph will represent a state
of the whole system. If the ordering rule is of the type 'some (any) process
must do A before some (any) process does B, then the prototypes will look
just like those for individual processes. However, if it matters at any point
that an action be performed by a specific process, then the action-labels on
the arcs of the prototype will have to be subscripted with the identity of
that process. As an example, let us consider the mutual exclusion problem.
Suppose that two processes each have a critical section and that we wish to
verify that they cannot both be executing this section simultaneously. By
denoting two actions as "interesting,' namely, '"begin critical section," BC,
and "end critical section,' EC, we can state the desired order-of-operation
rule as: 'once either process has done a BC, that same process must do an

EC before the other can do a BC." The prototype graph expressing this



55

property is given in Figure 4.2.

Figure 4.2. Prototype Graph for Mutual Exclusion
of Two Processes with Critical Section

Of course, if the processes had more than one critical section governing the
use of different resources, then different arc labels would be used to denote
entry and exit for each critical section, and the prototype would be more
complex. If P is a primitive in a given system, then in some applications
"P" and "BC'" might be equivalent, but in general the action of reserving a
resource and beginning the program segment where it is used are not equiva-
lent, so two different arc labels may be needed.

The system comparison procedure will be slightly more involved than
the comparison algorithm of Chapter II because in generating legal successors
the procedure must also be somewhat like a simulator, keeping up with values
of V and evaluating conditions on the arcs of the individual graphs, and be-
cause the arcs in the prototype may specify actions by a particular process.
The system comparison algorithm presented below is written assuming that arc
labels in the prototype are subscripted as insthe example in-Figure 4.2; if

this is not the case, the algorithm can be made slightly simpler.



56

System Comparison Algorithm

1. Set up a list, L, of pairs (s,p) where s is a node of G and p is a node
of P. 1Initialize L to {(so,po)}, the starting nodes of G and P, respec-

tively.

2. If there exist s, p, X, i, s8', and p' such that (s,p) is in L, s st is
in G and the arc traversed to carry G from s to s' was in the ith process
x.
graph, and p “Lp' is in P, but (s',p') is not in L, add (s',p') to L

and repeat this step.

3. If there is a member (s,p) of L such that s is final but p is not, report

an error, otherwise report success.

The above algorithm will now be applied to a system consisting of two
processes embodying a purported solution to the mutual exclusion problem.
This "solution'" is flawed and is not seriously proposed but is constructed
solely for illustrative purposes. Suppose that a system designer has decided
to insure that two processes are never in their critical sections simultaneously
by instituting an interlock consisting of setting and testing a single common
variable w, initialized to 0. When a process wants to enter its critical
section it must first increment w by 1 and then test it against 1. If w <1,
the process may proceed through C; if w > 1 then the other process is in its
critical section and the first process must wait. As a process finishes its
critical section it decrements w. Figure 4.3 shows the graph for sucha system.

Notice that since both processes have 6 states and since w can take
on 3 values, 0, 1, and 2, there are theoretically 6x6x3 =108 possible states

of this system. However, as we shall see, only 32 states are actually reachable



57

and need be considered. Such dramatic differences in size between C, the
Cartesian product graph, and G the actual state graph are to be expected in

real systems and help make state graph analysis practical.

Figure 4.3. Two Parallel Processes with Interlock

Let us use the system comparison algorithm with this system and the
prototype of Figure 4.2 in order to prove that the processes cannot both be
in their critical sections at the same time. The initial state of G is
(0,0,0) which we shall call 0 for short, and the initial state of P is O,
so the first pair in L is ((0,0,0),0). There are two successors to 0 in G,
1= (1,0,1) and 2 = (0,1,1). 1In both cases, the arc from node 0 to node 1 in

the individual process graph is e for the purposes of this algorithm since



58

only BC and EC appear in the prototype. Thus ((1,0,1),0) and ((0,1,1),0)

are the next two pairs in L. The execution of the algorithm is straightfor-
ward and results in the list L which is presented in Table 4.1l. The final
state of G, (¥,F,0) is paired only with 0, the final state of P, so the com-
parison is successful. Thus the given interlock scheme involving w will
indeed prevent the two processes from being in their critical sections simul-
taneously..

Along with each pair, (s,p), Table 4.1 also lists all of the legal
successors of s. This column is presented here for expository purposes and
will also be referred to later.

The proof that the algorithm does correctly determine whether or not
all the traces in the system graph G are also traces in P is essentially the
same as that given for the algorithm in Chapter II and will not be presented
in detail. However, one point requires further consideration.

It can be seen that the sequencing analysis method for systems pre-
sented in this chapter consists basically of viewing the system as a single
process and then using the method of Chapter II. This is no small step, since
two processes each with a certain property can together form a system which
does not have this property, and vice versa. A case in point is termination.
Two processes can have the property that there is a path from every state to
a final state when running alone and yet deadlock when running together in
parallel. Conversely, two cooperating processes might be designed which mani-
pulated resources common to the two of them in such a way that they progressed
nicely together but neither alone could ever reach a final state without
enabling actions by the other. One implication of this observation is that
there are no reasonable assumptions which can be made about individual pro-

cess graphs which will guarantee that the system graph will have the property



EXAMPLE OF USE OF THE SYSTEM COMPARISON ALGORITHM

TABLE 4.1

Pairs in L

Successors of s

Co~Nount NN e-O

(0,0,0)
(1,0,0)
(0,1,1)
(1,1,2)
(2,0,1)

thhrHWHMHHWOORrPFHRNMERPPORMPOEEREPLOWO-=WNO
A2

MM S,PWEPEHWONNDERMAERENNPEPPRPORPWORWNOEN

OO O Ot bt o ok ok pod b pd pd O et O = ODN O N =N N

~
.

OO0 OO RONEFEOONOODOOOOOOONOFRNF,FOOOO

14

0, 14, 15
16
0, 16, 17
2, 18, 19
19

1,
20
5, 22, 23

22

24

4, 24, 25

26

9, 26, 27

28

7, 27, 28

29

11, 13, 29, 30
30

15, 31

17, 31

None

20, 21

59



60

that there is a path from every state to a final state. Recall that this
property was discussed in Chapter II. The remarks made there apply here also;
a user of the system comparison algorithm can simply assume that the system
state graph G has the property, or he can attempt to prove that it does, or

he can apply the algorithm to graphs which do not, with the understanding

that the algorithm is then comparing sequences of arc labels in G and P rather
than elements of £(G) and £(P). Certainly the best alternative, if it is
possible, is to prove this feature of G or to identify the system states which

cannot reach a final state. This problem will now be considered in detail.

4.4 Deadlock

The whole subject of systems reaching their final states, states in
which each process is in a final state, is very important in computer operating
system theory. As it turns out, a system's state graph as defined here so
far is also a natural model for investigating these properties of systems.

One feature for which we would like to analyze systems of processes operating
in parallel is the possibility of deadlock.

Deadlock has been defined in various ways in the literature, usually
in terms of system resources. For example, Haberman {10] says it exists when
"cooperating processes prevent their mutual progress even though no single one
requests more resources than are available." Holt's [13] definition is: "the
resources of the system have been allocated among certain processes in such a
way that it is impossible to grant additional requests to these processes.”

The concept of system resource is not strictly necessary to the con-
cept of deadlock. Omne thing that is necessary is that processes in the system

not be completely independent, i.e., that they interact, and that the condition



6l

exists wherein one process may have to halt, or block, while waiting for an-
other. That for which it must wait, even if only a message, may be considered
to be a resource and may be considered to be "owned" by the system or a pro-
cess if necessary or desirable for the unification of a theory or to aid
analysis. For a thorough discussion of the ownership problem see Howard [15].
Howard and Holt [13] have both observed that one can always define blockages
(and thus deadlock) in terms of resources by, if necessary, inventing re-
sources.

Here deadlock will be defined solely in' terms of sequences of legal
transitions of the states of a system of processes., The idea is to define a
set of circumstances in which two or more processes are blocked waiting for
each other and in which there are no state transitions available to the other

processes, if any, which will unblock them.

First we define "waiting' in terms of state graphs: Process i is
waiting for process j, i # j, Pi <§Pj, if
(1) Pi cannot make any non-€ transitions because the conditions lead-
ing to the non-e arcs are FALSE (to allow for the case where Pi
is in a testing loop, the definition will allow Pi some € transi-
tions provided that the only traces Pi can generate are e*) and
(2) there is on a path between Pj's present state and a reachable
state some action which will make the condition on Pi's non-¢
arc TRUE, Pj need not be able to actually take the path if some
condition along it is also FALSE; the definition only requires
that the path exist.
The subtle ownership problems which must be dealt with in other defini-
tions of blockage appear here, too, even though no explicit mention is made

of resources or ownership. Suppose that there are several processes any one



62

of which can perform an action which unblocks Pi' Then for whom is Pi wait~-
ing? 1In this case we will simply say that Pi <»Pj is true of each Pj which
can change the value of the condition on Pi's blocked arc. But the situation
can be even more complicated. Pi might be waiting for all of a set of pro-
cesses to act, either because they are all necessary to change one condition
or because Pi has a compound condition on its arc. In fact, since the con-
ditions on arcs can be arbitrary logical expressions, wait relations among
processors can be arbitrarily complex. 1In the definitions which follow, the
simplifying assumption will be made that no more than one process will ever
have to act to change the condition on an arc of any other process.

We shall now define a condition which corresponds to "circular wait"
in other definitions of deadlock but which is more general.

A non-empty subset D of processes is a knot if for all Pi which are
members of D,

(1) if Pi <}Pj then Pj is also in D, and

(2) there exists a P, in D, different from Pi, such that Pi < P

k k*

Deadlock can now be defined in terms of system state graphs: A system

is in a deadlock state (or deadlocked) if some subset of its processes form

a knot. A system is said to have a potential deadlock if one of its reachable
states is a deadlock state.

It is easy to see that this state graph definition of deadlock in-
cludes all the cases described by the well-known four conditions of Coffman,
Elphik, and Shoshani [4]:

(1) Tasks [processes] claim exclusive control of the resources they
require ("mutual exclusion'" condition).

(2) Tasks hold resources already allocated to them while waiting for
additional resources ('wait for" condition).



