63

(3) Resources cannot be forcibly removed from the tasks holding them
until the resources are used to completion ('mo preemption”
condition).

(4) A circular chain of tasks exists, such that each task holds omne
or more resources that are being requested by the next task in
the chain ("circular wait" condition).

These four conditions are necessary for deadlock to exist and are
both necessary and sufficient if all resources are unique. The circular wait
condition is the special case of a knot in which each process is wailting for
exactly one other process.

There is another presumably undesirable system situation which does
not seem to fit any definition in the literature. It is the situation, analo-
gous to that in Figure 2.3 for individual processes, in which every process
in the system is making transitions and possibly even doing useful work, yet

the system can never reach any of its resting states. Consider the system in

Figure 4.4. If through programming error or other means the common variable x

P@A)

SONy | P(B)
{ ¥
AM m
VR e < Ifxng
P(B) P(A
Lollipo Gl T
’%w%% g M_,/
V(B) V(A)
X ¢x=-1 X ¢-x-1

Figure 4.4 A Restless System

64

acquires a value of 2 before either process reaches its state 3, the system
can never reach its resting state even though both processes are using a
resource, making transitions, and thereby (presumably) doing useful work.

It does not fit Coffman, Elphik, and Shoshani's definition of deadlock be~
cause condition 2 does mnot hold. It is not the allocation of resources which
is the problem, so Holt's definition does not apply, and Haberman's does not
because it cannot necessarily be said that no '"progress' is being made. Fi-
nally, even the graph definition of deadlock does not apply because each pro-
cess always has a non-e¢ transition. The four system states (1,1,2), (1,2,2),
(2,1,2), and (2,2,2) form a region with no exit. We might call such states
S-states for Sisyphus who, no matter how long he worked, could never rest.
Notice that deadlock states are just a special case of S-states in which a
set of knotted processes have no non-€ transitions. To put it another way,
if the first condition in the definition of "wait for' was changed so that
the blocked processes could make non-e transitions but just could not reach

a final state, then S-states would be those in which a set of processes formed

a knot.

4.5 Analyzing a System for Deadlock

Analyzing a system for potential deadlock will involve generating
some or all of a list, R, of the reachable system states. How much of R
must be generated depends in part on the starting point of the analysis.
Ideally, one would observe a reachable state D, in which two or more processes
were blocked and then determine whether or not the blocked processes formed
a knot. If no deadlock state D is suspected, or if we are not sure it is

reachable, then the whole list R must be generated. 1In this case there is a

65

general method for finding regions of states with no path to a final state,
whether these states are deadlock states or just S-states. First, generate
the list R of reachable states; R should be sorted into a random-access struc-
ture such as an array so efficient search methods can be used. Next, generate
a second list, R', of states which can reach a final state: Begin by putting
all of the system final states from R onto R', and then recursively add to
R' states of R at least one of whose successors are already on R' until no new
states can be added. Finally, those states, if any, on R but not on R' are
the S-states and perhaps deadlock states. Obviously, this method is impracti-
cal for all but the smallest and simplest systems.

To illustrate the simplest use of these definitions and methods, let
us return for the last time to the mutual exclusion example of Figure 4.3.
Once again we want to generate a list of the reachable states of the system,
this time examining each state to see if it is a deadlock state. Just such
a list appears as the first column of Table 4.1. The fourth element of that
list, state (1,1,2) has no legal transitions; both processes are blocked and
each could unblock the other if it could make the transition from state 3 to 4.
Thus there is a knot Pl < P2 <>Pl. In fact the state (1,1,2) has no successors
at all and is a deadlock state. Thus the system of Figure 4.3 has a potential
deadlock and is an unsatisfactory solution to the mutual exclusion problem.
(State (F,F,0) has no successors either, but it is not a deadlock state be-
cause the processes are in their final states and thus it is a system final

state,)

66

4.6 Permanent Blocking

Even though a system of parallel processes may not have any potential
deadlock nor any S~states, it may still have another possibly undesirable

property which Holt [13] calls permanent blocking: 'some process's request

is never granted ... even though it is possible for the process to receive
its request.”" This can occur when one process is consistently "unlucky" in
that at each point in time when it could legally make a certain transitionm,
some other process quickly makes a transition which carries the system to a
state from which the unlucky process again cannot make its transition,

The notion of permanent blocking is a somewhat intuitive one; there

does not seem to be a universally accepted formal definition. Two of the -

essential features of the notion seem to be that the blocked procgfs is some~
how "actively trying" to perform some particularly important tranS%}ioﬂ, aﬁ;
that while it is failing, at least one other process is performing the sameﬁ%
transition repeatedly. For the purposes of this study we shall give a semi-

formal definition based on traces through the state graph.

A system of processes is said to have a potential permanent blockage

when its state graph has a loop from a system state back to the same state
and a process i such that
.th s

(1) the i process makes no non-€ transition on the loop, and

(2) some other process does make a non-€ transition on the loop, and

(3) from at least one state on the loop there is a reachable path on

) .th L
which the i process does make a non-e transition.

Let us call states on such a loop permanent blockage states. Notice

that there is no relation between deadlock states or S-states and permanent

blockage states; from permanent blockage states the system can reach its

67

resting states but just may happen not to.

Permanent blockage is in one sense a purely academic concept. Each
time the system traverses the loop, there is a certain probability, however
small, that it will leave the loop and that the ith process will be allowed
to proceed. Thus there is a vanishingly small probability that the ith pro-
cess will really be blocked permanently. Nevertheless, the concept is very
useful for characterizing situations in which a process may be blocked for an
unacceptably long time. In many situations, having a process accidentally
blocked for a few minutes is as bad as having it blocked permanently. Thus
it is worthwhile trying to characterize such conditions and to develop methods
of detecting them.

Such circular traces in the state graph can be fouﬁ%*by exhaustive

search, but such a procedure is quite likely to be impracti 11y long. The

only obvious heuristic is to center the search around states in which one
process is "just about" to perform the critical action. Thus as a practical

matter, the presence or absence of potential permanent blockage is not as

amenable to automatic verification as some other properties of systems.

4.7 An Example

As a final unified example of all of the techniques of this chapter,
let us consider Dijkstra's [7] elegant solution to the mutual exclusion prob-
lem. This was the first satisfactory interlock protocol which involved only
testing and setting variables in common store by the processes rather than
a monitor, queues, or static priority.

For n processes the common store consists of two Boolean arrays, b,

c[1:n] each initialized to TRUE, and integer k, 1 < k < n. The algorithm for

68

.th .
the i process is:

Li0: b(i) := FALSE;

Lil: if k#i then

Li2: begin c(i) := TRUE;
Li3: if b(k) then k := i;

go to Lil
end
else
Li4: begin c¢(i) := FALSE:
for j := 1 step 1 until n do
if j # i and not c(j) then go to Lil
end ;

critical section;
c¢(i) := TRUE; b(i) := TRUE:
remainder of program in which stopping is allowed;
go to Li0
A set of proofs about a system of three processes using this protocol
would be a more convincing verification of the protocol than one about only
two processes. As it happens, the methods of this chapter are still practical
for the 3-process case, but the 2-process case makes a more digestible example.
Two different graphs are presented in Figures 4.5 and 4.6, each repre-
senting two processes executing Dijkstra's algorithm. It is instructive to
compare these two graphs. Both graphs accurately represent the state transi-
tions of the individual processes. 1In the first, Figure 4.5, the graphs of
the individual processes are more compact and have fewer states; therefore,
in this representation the system will have fewer states, so this would seem
to be the more attractive representation. The graph in Figure‘4.6 differs from
the first only in putting conditions and their subsequent actions on separate
arcs. Thus in the second representation processes have states such as 4 when
they have tested b but not yet reset k, a state entirely missing from the
first representation. Such distinctions are in general necessary in order

to construct convincing proofs, particularly about deadlock and blockage.

69

b(l) «T
c(l) «T

If b(2)

b(l) «T
<(1) «T
f]

Figure 4.5 Inaccurate Representation of Two Processes

70

V,: k=1, b=ec=T

EC
b(l) «T
c(l) «T

Figure 4.6 Accurate Representation of Two Processes

71

Typically, it is just when one process tests a condition and then another
quickly changes it before the first can act that interlock schemes fail and
undesirable results occur. The procedures presented in this study analyze
graphs; the results of the analysis will apply to processes or systems of
processes only insofar as the graphs accurately reflect the relevant proper-
ties of the processes or systems.

We shall analyze the system of Figure 4.6 in order to verify that it
maps correctly to the prototype of Figure 4.2 and to determine whether or not
it contains potential deadlocks or permanent blockages. In each case the
first step is to generate all the reachable states of the system. The task
looks formidable because, since each process has 10 states and there are 5
common variables, each binary, there are 1022125 = 3200 possible states of the
system. However, it turns out that there are only about 200 reachable states!

In a fashion similar to that of Table 4.1, Table 4.2 lists reachable
states, pairs (s,p), and the successors of s. However, not all reachable
states are listed because two shortcuts have been taken. First, observe
that whenever we reach states such as 26 in which one process has halted, its
successors are not generated. Such states are marked with an asterisk in
the "successors” column. It is obvious that in this example each of the
processes in this system can, if running alone, reach a resting state. Thus
neither deadlock nor permanent blocking can occur if only one process is
running, and we need not check these traces further for these two conditions.
It is also assumed that each process has previously been mapped successfully
to the prototype of Figure 2.1 so that no illegal sequences of actions can
occur when only one process is running, and we can safely ignore these traces.

Unfortunately, this shortcut does not greatly reduce the number of states to

be considered since many of the successors to states like 26 can be reached

72

TABLE 4.2
ANALYSIS OF THE SYSTEM OF FIGURE 4.6

0 e} (o)} 52l ~ O
M [\ ~ o 23] ~
w n -~ - -~ ~ ~
0 HANNFOONOO NN NS00 W0 HOAONNNNONSEOO =0 NnNnunnwwo
w,m NFINNOAN A A rd A - AN NNANNNANNNNTONNDOOOONON GGG 0
c ””””’,,,’,,Q/’”’”’,m’ LAY 0% LA AU ¥ LA T) LAV AR AT T N Y
=] N MNOWONOFOANMNMNWOONMNSE NG O NS OHR ISNFH FNWOVHEK VDO E NANM™MNSO
w0 el = el o= NN NN - N oo et [2a K321 (sl 32 BN RS IS S
[¥ eReReReoReoRololoRoRoloNoNoNoloNoloNoNolel S Neolol i NoleleleloNo ool ol oo No No ol o o R e R
o~
3\
JM B B4 B B4 B B B Bl Bl B Pt Pt B Bl Bl B B B B Bt B B B B B B B B B B B B B B B B B B B W B B WA
—~
1 *
el Bt B4 B B B Bl Pl B Bl Ud B Bl U Bl Ued Bl U Ued B B Ul e Ued U BB B W U B B U U B B U U B U B U U
[$}
VY
o~
~ B U Bt U Uel B Ued U M B U U U Ul Bl Ued U U Ul U B U U U U U Bt U U U Y U U U W W U U S S U U
0
w1
o
ot ~~
i
13 e B4 B Ud U Bl U U U Bt Ued Ued U U B U U U U B U U M U U U S B U U B U U W B U U U B W T
1= Kal
ol
[}
[aW
4 11111111111111111111111121111111112211222122
o
0 OO A NONANONNAFTOANANMANTONNA ™ TONMNNGFMNNN~FNIN0 -~ JOLn
i
0 C O AOINmMINO O IO ONINOMNO M 0O ™0™ LN U P00 W00 U INO M U0 NS 00
57}
O N NO M0N0~ NMNMNTNONOAO—ANNFNONONO NGNS~ O oM
o Al pd el rd NN NNNNNNNNNONOON OO OO NT TS

TABLE 4.2 (CONTINUED)

73

Pairs in L Successors
p of s
s s, k b(l) b(2) c(l) c(2)
44 5 7 2 £ £ T £ 0 51, 52
45 8 1 2 £ £ £ T 1 18, 50, 53
46 £ 4 1 T £ T T 0 * 53
47 1 6 2 £ £ £ £ 0 54, 55
48 6 1 2 £ £ £ £ 0 55, 56
49 7 6 2 £ £ £ £ 0 57, 58
50 8 5 2 £ f £ T 1 58, 59, 60
51 6 7 2 £ £ £ b 0 61, 62
52 5 8 2 £ £ T £ 2 58, 63, 64
53 £ 1 2 T £ T T 0 * 60
54 2 6 2 £ £ £ £ 0 65, 66
55 1 1 2 £ £ £ £ 0 65, 66
56 6 5 2 £ £ £ £ 0 42, 67
57 7 1 2 £ £ T £ 0 68, 69
58 8 6 2 £ £ £ £ 1 68, 70, 71
59 0 5 2 T £ T T 0 sym 5
60 £ 5 2 T £ T T 0 * 71
61 6 8 2 £ £ £ £ 2 72, 73, 74
62 1 7 2 £ £ £ £ 0 72, 75
63 5 0 2 £ T T T 0 30, 73
64 5 £ 2 £ T T T 0 * 74
65 2 1 2 £ £ £ £ 0 76, 77
66 3 6 2 £ £ T £ 0 78, 79
67 1 5 2 £ £ £ £ 0 47, 77
68 8 1 2 £ £ £ £ 1 80, 81, 82
67 7 5 2 £ £ £ £ 0 49, 80
70 0 6 2 T £ T f 0 sym 9
71 £ 6 2 T £ T £ 0 *
72 1 8 2 £ £ £ £ 2 83, 84, 85
73 6 0 2 £ T £ T 0 35, 86
74 6 £ 2 £ T £ T 0 *
75 2 7 2 £ £ £ £ 0 78, 83
76 3 1 2 £ £ T £ 0 87, 88
77 2 5 2 £ £ £ £ 0 54, 87
78 3 7 2 £ £ T £ 0 89, 90
79 1 6 2 £ £ T £ 0 89, 91
80 8 5 2 f £ £ £ 1 58, 92, 93
81 0] 1 2 T £ T £ 0 88, 92
82 £ 1 2 T f T £ 0 * 93
83 2 8 2 £ £ £ £ 2 90, 94, 95
84 1 0 2 £ T £ T 0 88, 94
85 1 £ 2 £ T £ T 0 * 95
86 7 0 2 £ T £ T 0 40, 96
87 3 5 2 £ £ T £ 0 66, 97
88 1 1 2 £ £ T £ 0 97, 98

74

TABLE 4.2 (CONTINUED)

Pairs in L Successors
S P of s
sq s, k b(1l) b(2) c(l) c(2)

89 1 7 2 £ £ T £ 0 sym 17
90 3 8 2 £ £ T £ 2 sym 32
91 2 6 2 £ £ T £ 0 sym 16
92 0 5 2 T £ T £ 0 97, 70
93 £ 5 2 T £ T £ 0 * 71
94 2 0 2 £ T £ T 0 99, 100
95 2 £ 2 £ T £ T 0 *
96 8 0 2 £ T £ T 1 45, 101, 102
97 1 5 2 £ £ T £ 0 79, 103
98 2 1 2 £ £ T £ 0 76, 103
99 2 1 2 £ £ £ T 0 104, 105
100 3 0 2 £ T T T 0 sym 8
101 0 0 2 T T T T 0 sym 0O
102 £ 0 2 T T T T 0 * 53
103 2 5 2 £ £ T £ 0 87, 91
104 3 1 2 £ £ T T 0 sym 10
105 2 6 2 f £ £ T 0 54, 106
106 3 5 2 £ £ T T 0 66, 107
107 1 5 2 £ £ T T 0 79, 108
108 2 5 2 £ £ T T 0 91, 106

75

by other paths and so appear on the list L anyway.

The second shortcut takes advantage of the fact that in this example
the two processes are identical and that for every reachable system state s
there is another reachable state s' "symmetric" to s in the following sense:
if s = (al, a,; k, b(1l), b(2), c(l), c(2)) then s' = (ai, aé, k', b(1)',
b(2)', c¢(1l)', ¢(2)') is also a reachable state where ai = a,, aé = a;,
k' = (k modz)-kl, if b(1l) = b(2) then (L)' = b(2)' = b(l), else b(l)' = b(2)
and b(2)' = b(1l), and similarly if c(1l) = c(2) then leave them unchanged else
switch them. For example, if s = (1,1,1,F,F,T,T) then s' = (1,1,2,F,F,T,T)
and if s = (5,0,1,F,T,T,T) then s' = (0,5,2,T,F,T,T). Now notice that if s
has a successor p then s' will have p' as a successor; whichever process
caused the transition from s to p, the other process will have an identical
legal transition which carries the system from s' to p'. Thus if s is not a
deadlock state, s' cannot be and we do not need to check it.

Similarly, if SPERRRTLM is not an illegal trace then s',...,sg is

1
not illegal either, and if we check all traces beginning at s, we do not need
to check any of the traces beginning at si. For this reason, of the two ini-
tial states of the system, (0,0,1,T7,T,T,T) and (0,0,2,T,T,T,T), we shall use
only the first one, secure in the knowledge that if all traces from that state
map to the prototype correctly, then so must all from the other.

Finally, consider the two traces t1 = 8q5-
tz = PyrceeaPy_qo si,si+l,... . It is contended that if we have followed t

«esS,

i-1? %43°°

j417 705y and

1

out and know that it maps correctly, and if we have followed t_, up to and

2

including the transition from Pi_1 to si and the mapping has also been correct,
then we need check no further along tz. This is because we have put all of

the successors of S5 such as S,4q7 OD L and either have checked or will check

that all the transitions from s; map it and its successors correctly, so by

76

the symmetry of the graph all the ways of leaving state si must also map it
correctly., This argument applies recursively to each of the successors of
Si+l’ etc. on out to the end of t2. Thus whenever we reach a state of the
graph such as 59 whose symmetric state, 5, is already in L, we shall not add
the successors of 59, having already added all the successors of 5.

By taking advantage of the symmetry in this particular example we
can cut almost in half the number of reachable states which must be con-
sidered by the mapping algorithm and in checking for deadlock possibilities.
The symmetry will not, however, necessarily help us in checking for potential
permanent blockage; the non-existence of a circular trace fitting the defini-
tion in one '"half" of the graph guarantees that there is not one in the other
half but does not guarantee that there is not one which extends across both
halves.

We are now ready to analyze the system. We can use the system com-
parison algorithm with the list of Table 4.2. The mapping is successful;
each system state maps to exactly one state of the prototype, and so only
one process at a time can be in its critical section. It is obvious that
there are no deadlock states. However, in this system one process can be
permanently blocked while the other repeatedly performs BC~EC pairs. There
are an infinite number of circular traces fitting the definition of perman-
ent blockage including traces in which one process performs arbitrarily
many more transitions than the other while remaining blocked. For example,
there is the trace 1, 3, 6, 10, 15, 7, 11, 16, 21, 12, 17, 22, 28, 32, 23, 1.
Knuth [18] was the first to comment on this property of Dijkstra's protocol.
Since we did find a potential permanent blockage by examining the states in

Table 4.2, there is no need to generate the rest of the reachable states.

Had we not found one, we would still not know whether or not one existed.

77

This example illustrates several points about state graph analysis.
First, such analysis is only as good as the graphs it works on. Whether the
graphs are being produced semi-automatically by programs such as TRACE or by
hand, great care must be taken to insure that they accurately reflect the
relevant properties of the processes or systems they represent.

Second, there are at least three factors which help make state graph
analysis of systems of processes more nearly practical than it might first
appear: one is that we need deal only with those states of the system which
are actually reachable, and that the number of such states is likely to be
a small fraction (in this example about 9%) of the apparently possible states
of the system. Further, we do not need to explicitly represent even this
smaller actual state graph; a simple list of the reachable states along with
graphs of the processes retains all the necessary information. Another is
that once we have constructed such a representation of the system, it can be
used more than once to verify more than one sequencing property of the system,
whether these properties are expressed by prototype graphs or in some other
way such as the definition of deadlock states. Finally, most of the steps of
these methods of analysis are algorithmic and can be implemented as computer
programs. While it took five hours to work out and check this example by
hand, it could have been done in a matter of seconds by a program given the
prototype and either the graphs of Figure 4.6 or two different sets of source
code for the two processes.

Still, even with all of these favorable considerations, given present
computer speeds and memory sizes, such analysis will be totally impractical
for real systems consisting of many real processes. The above example was not
an analysis of a real system. But it did deal with a real problem. The veri-

fication of Dijkstra's algorithm was not trivial, and herein lies one use to

78

which the methods of this chapter can be put immediately. Notice the rela-
tionship between the use to which we put the methods of Chapter IT and the
examples in this chapter; when analyzing one process, we were essentially
asking, "Does the process always observe a given protocol?"; in analyzing

a system of processes we asked, '"Does the protocol work?'" While in the
first case we would probably only be interested in asking the question about
real programs, it should usually be possible to answer the second by analyz-
ing a system of only a few artificially simple processes. Thus, for exam-
ple, it would be quite practical to verify Knuth's [18] improvement to
Dijkstra's protocol. In fact, these methods should prove useful in verify-
ing almost any protocol proposed to coordinate parallel processes in almost

any way.

CHAPTER V

SUMMARY AND CONCLUSION

5.1 Summary of Previous Chapters

In this study, a method has been developed for analyzing the order
in which a program performs its operations. State graphs are used to model
a program's behavior. Prototype graphs are proposed as a general and natural
way to make assertions about sequencing properties of programs. An algorithm
for proving such assertions has been given which is conceptually based on
formal language theory.

The problems of automating the various steps in the analysis method
are addressed in some detail. Techniques called folding and splitting for
manipulating the graphs in order to represent just the necessary information
and no more allow the analysis of even fairly large programs in limited space
and time. The most difficult problem is building from the source code graphs
which accurately reflect all the sequencing properties of a program; this step
has not been and probably will not be completely automated. A program imple-
menting these techniques has been used to help verify some properties of real
operating system programs.

Finally, the method is extended to apply to analysis of the sequencing
properties of systems of parallel processes. It is argued that a whole system
can reasonably be viewed as a single process which performs its operations se-
quentially and can be modeled with a single state graph. It is then observed
that not only can these methods be used to prove assertions about the order in

which the system performs operations, but to analyze other well-known system

79

80

properties such as blockage and deadlock. While it will not be practical
to use these methods on large real systems, they should be very helpful in
analyzing formal systems representing proposals for the coordination of mul-

tiple parallel processes.

5.2 Suggestions for Further Research

There are several areas relating to this work which need further study.
Certainly a better and more thorough treatment can be given to the problems
of translating or compiling computer programs into graphs. More general graph
models might also be developed. The state graph model used in this study to
represent programs was developed with operating system programs written in
assembly language in mind. Perhaps the model could be altered to allow other
program constructions such as recursion to a fixed depth. Another possibility
worth investigating is making the whole method into a man-machine interactive
system so that, for example, critical variables could be designated on-line.
Perhaps the most interesting development for the sequencing analysis method
worked out in this study would be its integration into a larger program analy-

sis package. This idea will now be explained in more detail.

5.3 Graphs as Models

The model for computer programs used throughout this study has been
the state graph. Directed graphs seem to be a very natural representation for
processes and frequently appear as the basis for program analysis. Flowcharts
are the most familiar example, but the construction of a directed graph almost
exactly like a flowchart is also a basic step underlying program verification

by inductive assertion, even though the graph is not always presented in the

81

final proof. Graphs are also used implicitly in other induction methods as
well as in data-flow analysis. Perhaps their widespread use is because any
analysis of the semantics of all but the most trivial programs must in some

way deal with the existence of different execution sequences, and directed

graphs are the most natural way found so far of representing sets of sequences.

It is appropriate to pause here briefly to examine the relationship
between state graphs and flowcharts. The relationship is that, in the infor-
mation about the program which the two models are capable of representing,
they are equivalent. Consider the following simple algorithm for converting

a state graph of a program to the equivalent flowchart:

Graph Conversion Algorithm

1. For every node with more than one outgoing arc: Divide each of its out-
going arcs into two consecutive arcs by inserting at the middle of the arc
a new node. Put the action-label of the original arc on the outgoing arc
from this new node; put the condition, if any, on the original arc on the

incoming arc to this new node.

2. Move the action-labels on the arcs back to the node from which the arc
leaves. Similarly, move the conditions from the arcs back to the previous
node and form appropriate predicates at the node, labeling the arcs only
with the values of the predicate. If desired, move state information from

each node back to each of its incoming arcs.

Figure 5.1 illustrates the use of this algorithm: G1 is a sample state

graph segment, Gi is the result of applying step one of the algorithm, and

G2 is the flowchart equivalent to Gl'

Figure 5.1 TUse of the Graph Conversion Algorithm

82

83

Any property of the program which was expressed by G1 is also expressed
by G2’ and any statement about the program which could be proven by analyzing

G1 could also be proven using G Thus, which of the two basic kinds of di-

2
rected graph is used and whether nodes or arcs represent actions or states
is a matter of convenience and will be determined by the kind of analysis to
be performed. If more than one kind of analysis is to be done requiring

both graph forms, one form can be built from the code and the second obtained

cheaply by transforming the first.

5.4 (Conclusion

The ubiquity of graphs in program analysis suggests attempting to
base a large analysis package on some common graph representation of the pro-
grams. The idea would be to translate programs written in many different
languages into the common graph language and then let many different analysis
routines operate on this one program representation. In fact, just such a
project is currently being undertaken at The University of Texas at Austin.

Whether by their inclusion in that project or alone, the sequencing
analysis methods presented in this study will allow programmers and system
designers to include ordering statements in their specifications of correct-

ness and proofs of such statements in their demonstrations of correctness.

10.

11.

12.

13.

14,

15,

REFERENCES

Anderson, J. W. Primative process level modeling and simulation of a

multiprocessing computer system. TR-32, Department of Computer Sciences,
University of Texas, Austin, May 1974.

Baer, J. L. A survey of some theoretical aspects of multiprocessing.
ACM Computing Surveys 5, 1 (March 1973), 31-80.

Bredt, T. H. Analysis of operating system interactions. Proceedings of
the AICA Congress on Theoretical Informatics, Institute for the Elabora-
tion of Information, University of Pisa, Pisa, Italy, March 1973, 253-281.

Coffman, E. G., Elphick, M. J., and Shoshani, A. System Deadlocks.
ACM Computing Surveys 3, 2 (June 1971), 70.

Conway, M. A multiprocessor system design. AFIPS Conference Proceedings
33 (FJCC 1963), Spartan Books, Baltimore, 1963, 139-146.

Dijkstra, E, W. Cooperating sequential processes. Programming Languages
(F. Genuys, ed.), Academic Press, 1968, 48-112.

Dijkstra, E. W.. Solution of a problem in concurrent programming control.
Communications of the ACM 8, 9 (September 1965), 569.

Gilbert, P., and Chandler, W. J. Interference between communicating paral-
lel processes. Communications of the ACM 15, 6 (June 1972), 427-437.

Good, D. I. Toward a man machine system for proving program correctness.
Dissertation, University of Wisconsin, 1970.

Habermann, A. N. Prevention of system deadlocks. Communications of the
ACM 12, 7 (July 1969), 373.

Hedetniemi, 5. T, Homomorphisms of graphs and automata. Technical Report,
Communication Sciences Program, The University of Michigan, 1966.

Hetzel, W. C. Program Test Methods, Prentice-Hall, Englewood Cliffs, New
Jersey, 1973.

Holt, R. C. Comments on prevention of system deadlocks. :Communications
of the ACM 14, 1 (January 1971), 36.

Hopcroft, J. E., and Ulman, J. D. Formal Languages and Their Relation to
Automata. Addison-Wesley, Reading, Mass., 1969.

Howard, J. H. The coordination of multiple processes in computer operating
systems., TSN-16, Computation Center, University of Texas, Austin, 1970.

84

16,

17.

18.

19.

20.

21.

22.

85

Howard, J. H., and Alexander, W. P. Analyzing sequences of operations
performed by programs. Program Test Methods. (Hetzel, W. C., ed.),
Prentice-Hall, Englewood Cliffs, New Jersey, 1973, 239-254.

Johnson, D. S. A process-oriented model of resource demands in large,
multiprocessing computer utilities. TSN-29, Computation Center, Univer-
sity of Texas, Austin, August 1972.

Knuth, D. E. Additional comments on a problem in concurrent programming
control. Communications of the ACM 5, 9 (May 1966), 321.

London, R. L. Correctness of a compiler for a LISP subset. Proceedings

of an ACM conference on proving assertions about programs, January 1972,
121-127.

London, R. L. The current state of proving programs correct. Proceed-
ings, ACM National Conference. 1972, 39-46.

Manna, Z., Ness, S., and Vuillemin, J. Inductive methods for proving
properties of programs. Proceedings of an ACM conference on proving
assertions about programs, January 1972, 27-50.

Schwetman, H. D. A study of resource utilization and performance evalua-

tion of large-scale computer systems. TSN-12, Computation Center, Univer-
sity of Texas, Austin, 1970,

VITA

William Preston Alexander, III, was born in Sacramento, California,
on September 26, 1942, the son of Mr. and Mrs. William Preston Alexander, Jr.
He graduated from Waco High School, Waco, Texas, in 1960 and received the
degree of Bachelor of Arts in Philosophy from Rice University in Houston,
Texas, in May 1964. He then served for two years as a Peace Corps Volunteer
in Ghana as a high school mathematics teacher. He entered the Graduate School
of The University of Texas at Austin in September 1966 and received the degree
of Master of Arts in Computer Sciences in August 1971. In 1973 he married

Rosemary Schwetman of Waco, Texas.

Permanent address: 3202 Park Lake Drive
Waco, Texas 76708

This dissertation was typed by Dorothy W. Baker.

