TR\AUIRI D 1T

Simulation Studies of Predictive Scheduling

A. S, Noetzel

This work was supported by
National Science Foundation Grant GJ-39658

Technical Report No. 37
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 738712

July, 1974

TABLE OF CONTENTS

CHAPTER

I.

II.

III.

Iv.

Introduction

The Simulation Model

Results of the Simulation Studies
Prediction from Inexact Data

Conclusions

PAGE

10

15

17

ABSTRACT

This report presents the results of simulation studies of a class
of resource scheduling algorithms called predictive algorithms. These
algorithms base their decisions on available data predicting the resource
utilization characteristics of the user jobs. The predictive memory
scheduling algorithms are BAL (which selects jobs to balance processor
and I/0 requirements) and Shortest-Time-First (STF). The predictive
CPU scheduling algorithms are Shortest-Burst-Time (SBT), Longest-Burst-
Time (LBT), and Shortest-Bumst-to-I/0 (SBIO). Each combination qf the
predictive memory algorithms, and the predictive CPU scheduling algorithms
plus three non-predictive algorithms was run in simulation. The results
of all thirty combined scheduling algorithms are presented for comparison
in terms of CPU and I70 utilization, degree of multiprogramming, and
throughput.

The results show the superiority of the predictive algorithms; and
the particular effectiveness of the predictive CPU scheduling algorithm
in maintaining high CPU utilization.

The best CPU shceduling algorithm (SBIO) was run with the predictive
data available to it being enly partially correct. This algorithm is
superior to the best of the standard CPU shceduling algorithms as long

as the predictive data is greater than approximately seventy per cent correct.

ii.

I. Introduction

Scheduling disciplines for computer systems have been studied both
analytically and by simulation modeling. The analytical studies, although
restricted to assumptions that are considerable approximations to the
complexities of real computer systems, serve to elucidate relationships
and tradeoffs between design parameters and provide order-of-magnitude
estimates of significant variables. They are useful guides to the more
detailed (simulation and éxperimental) studies necessary in the design
of complex systems.

In this report, the expected benefit of a particular class of sche-
duling algorithms--called predictive algorithms--is invesgigated through
simulation modeling. A predictive algorithm is one which bases its
decisions on available (complete or partial) information about the future
characteristics of the job being scheduled. These algorithms have not
been studied extensively in queueing theory, and in fact, the general
case of scheduling from partially correct data appears quite difficult,
The usefulness of this class of algorithms is therefore investigated
in simulation before the complete analysis is attempted.

The simulation model is not overly detailed, since its purpose is
to obtain an indication of benefit of predictive data in schedulihg, and
not to fine-tune the system. Hence, although it is based on the CDC &600
system (because extensive measurements of that system were available
for the job-characteristic distributions, and for validation of the
model) the results should be applicable to other (non-virtual memory)
systems as well. Comparisons of predictive and nonpredictive algorithms

were made for both CPU and memory-scheduling algorithms. Also, a class

-1~

of memory-scheduling algorithms in which the predictability of the
jobs processing time was known with probability p<l, was studied.

The results show the predictive algorithms are superior to
non-predictive algorithms in most cases, and their advantage is greater
in CPU scheduling algorithm than in memory scheduling, at least in terms
of the measure of CPU utilization. Furthermore, memory-scheduling
algorithms that use partially complete predictive data require data
that is at least sixty to seventy per cent reliable in order to

achieve superiority over similar non-predictive algorithms.

ITI. The Simulation Model

The simulation model used to study predictive scheduling algo-
rithms has been adapted from a model previously used to study standard
(nonpredictive) scheduling algorithms. (See reference 5).

The system used as a basis for the simulation study is the CDC
6600 computer system. It is briefly described as follows: The 6600
has one main processor, which executes user jobs in main memory, and
ten peripheral processors (PP's) which perform operating system service
functions, including I/0, for the user programs. Main memory is
128K of sixty-bit words; each PP has a 4K memory of twelve-bit words.

The main processor can be interrup;ed, but not the PP's. Each PP can

gain access to each of the twelve I/O channels, but no I/0 is possible
directly from a data channel to main memory. Each user job is loaded

intola continuous set of addresses in main memory called the field length

of the job. Memory addressing is performed through an automatic b;:zﬁié_VT?~
gister, enabling memory management by core compaction and preemption

from main memory. The backup memory is a 512K-word extended core storage
(ECS), with acycle time that is effectively that of main mMemory.

The system being simulated is represented in the form of a
queueing network in figure one. Omitted from this representation of the
6600 computer system are the ten peripheral processors, as well as all
~the data channels except the four channels that have the system disk
units. This is because detailed measurements of system utilization have
shown that it is the four system disk channels that are the primary I/0
bottleneck. (Reference 4). The PP's and the remaining channels will
have sufficient availability so that under every scheduling algorithm,

queueing for these resources will not impede progress of the user jobs.

Swapd ¢

Job

Y

Initiation

Mean
Interarrival
Time: 2 seconds

out

CPU Scheduler

Decision

Memory
Scheduler

Decision

Job

Termination

Figure 1

Queueing Model of CDC 6600 System.

Scheduler activity takes place at two levels: memory scheduling
and CPU scheduling. The memory scheduler selécts tasks to be activated
whenever there is a change in demand for memory: when a job enters or
leaves the system or when a job in memory completes a job step. Preemp-
ting jobs in memory is always a possible strategy for the memory
scheduler. The CPU scheduler selects the task to be run on the processor:
it is called each time there is a change in the availability of jobs
for the processor. It may also preempt the job on the processor, either
to give the processor to a job just joining the queue for the processor,
or because the job on the CPU has completed a scheduler-allocated
time slice.

Job Descriptions

Jobs are characterized as sequences of processing periods (CPU
bursts) and 170 periods. Their characteristics were chosen from distri-
butions reflecting empirical data (References 4, 10). The total job run
time is extracted from the numerically specified distribution shown
in figure 2. The CPU burst times are selected from a hyperexponential
distribution with mean value of 40 ms. The I/O run times are selected
from an exponential distribution with a mean value of 46 ms. The
memory requirements for each job are selected from an approximate
normal distribution with a mean of 20K and standard deviation of 8K,
except that the memory requirement was limited to the range zero to 73K.
Since a job changes its memory requirements during its lifetime, the
field length of each job is recalculated after every five seconds of
the job's run time. Memory scheduling is called with every change of

a job's field length in simulation.

1.0

Figure 2.

Empirical Probability Distribution
Function for Total Job Run Time.

64

Each I/0 request generated was directed to channel one with proba-
bility 0.4, and to each of the remaining three channels with a probabi~
lity 0.2.

The interrarival time for the jobs entering the system is exponen-
tially distributed, with .a mean value of two seconds. The total length
of the simulation runs was 200 seconds.

Scheduling Algorithms

The specific scheduling algorithms investigated in this model include
a few standard algorithms and algorithms which use detailed predictive
information of the user job's demand for system resources. The standard

memory scheduling algorithms are:

1. FCFS. First come, first served. No attempt is made to place

into memory a job other than the first job on the queue for memory.

2. SMF., Smallest memory first. Jobs both in memory and on the

queue for memory are allocated in the order of the memory requirement

(field length) of the job, to the extent that the jobs fit in memory.

3; PCSM: First come/smallest memory. A combined FCFS and SMF

algorithm. Memory is allocated on a SMF basis, except that the

first task on queue for memroy on an FCFS basis is not passed over

more than once for memory allocation by a job arriving later, but

with arsmaller memory requirement.

The memory scheduling technique that usedé the predictive data is
based on the concept of attempting to balance the short-term demand for
both the CPU and the I/O devices. Therefore, a ratio of processing time
to total run time (processing and I/0) for the next 300 ms. of a job's

operation is computed, whenever necessary. The scheduling policy:is:

4., BAL: balanced processing requirements. If the set of tasks

selected for memory by the SMF algorithm has an average processing

ratio of less than a threshold value (chosen after optimizing the

algorithm; in this case, the value was .42) the task with the
largest compute ratio is chosen to replace a task with a compute
ratio below the threshold.

Another predictive memory scheduling technique attempts to maximize
throughput by choosing jobs with small processiﬁg requirements. This is
an exact version of the standard technique of scheduling jobs on the
basis of control-card estimates of job run time.

5. STF: smallest time first. The tasks with the smallest total

run time to completion are selected for memory.

The CPU scheduling algorithms are likewise divided into standard
and predictive algorithms. 'The standard algorithms’ are:

1. RR: Round-robin. Each ready job takes the processor in turn

for a small time slice.

2, FCFS: First-come, first served. The first job on the processor

queue is given the processor and not preempted.

3. LIMF: Largest memory first. The job having the largest field

length is given the processor and not preempted.

The predictive €PU scheduling algorithms are:

4: SBT. Shortest burst time. The task that will use the!CPU

for the shortest time until it completes or waits for an I/0 opera-

tion is selected. This algorithm attempts to ensure that the CPU

does not become idle by trying to achieve fast turn—around in

using the I/0 subsystem.

5. LBT. Longest burst time. An attempt to keep the processor busy

9.

by doing the largest processing load on queue for the processor.

6. SBIO: Shortest burst time to an idle I/0 device. A modifi-

cation of the SBT, this algorithm selects for the CPU the job with

the smallest burst time that is followed by either job completion

or an I/0 operation to a device that is currently idle.

Scheduling in the computer system requires both a CPU and a memory
scheduler, which oﬁerate independently of each other. Thus, the total

class of algorithms to be investigated is summarized in the following

table:
Memory Scheduler
CPU
Scheduler FCFS SMF FCSM BAL STF
RR Standard Predictive
Algorithms Memory
FCES ‘ggghdard CPU
LMF
SBT
LBT Standard Memory Predictive
Predictive CPU Memory
SBIO and CPU

10.

ITI, Results of the Simulation Studies

Simulation runs were made for each combination of the five menovy
scheduling algorithms and six CPU scheduling algorithms. The results
in terms of CPU and I/0 utilization are shown in figure 3. A few simple
interrelationships can be noted from this data. Firast, the CPU utiliza-
tion is directly related to I/0 utilization for all memory scheduling
algorithms except the STF algorithm, This is epected, since each job
is represented by a sequence of CPU bursts and I/0 utilization periods.
The utilization of all the devices increases as the rate at which jobs
cycle through tha CPU-I/0 subsystem increases. The memory scheduling
algorithm does not interrupt this pattern, since swap-outs are made to
ECS, contributing small amounts of overhead, but no additional I/0.

In the case of the STF algorithm, the I/O utilization was high
because the short jobs tended to be more I/0 bound than the longer jobs.
The CPU burst times were hyperexponentially distributed, and the short-run
time jobs had no long processing bursts selected from the long tail of
the hyperexponential distribution.

Second, the parallelism of the characteristics of the various
CPU scheduling algorithms as different memory schedulers are applied,
indicates that the relative effectiveness of the algorithms wsed to
schedule each resource are independent of the scheduling of the other.
The relative effectiveness of CPU scheduling algorithms could be expec-
ted to vary with the degree of multiprogramming, but in this case, as is
shown in figure 4, the degree of multiprogramming did not vary greatly.
The independence of CPU of CPU and I/0 schedulers is also a consequence
of the similarity of both the CPU and I/0 requirements among the various

jobs, and their independence of the job's memory requirement. This

11.

assumption is probably not well justified in reality. The design of
memory schedulers that provide a mix of jobs that allow the CPU scheduler
to achieve optimum values requires good knowledge of the total resource
demand of jobs on queue for memory.

The throughput achieved by the scheduling algorithms is shown in
figure 5. Throughput is optimized hy the STF memory-scheduling algorithm.

The results show that the predictive BAL memory schéduling algorithm
is marginally better than fhe SMF algorithm, which is the best of the
standard memory scheduling algoritims. The other predictive memory sche-
duler, STF, is worse than FCFS in terms of CPU effié¢iencg. It achieves
the highest throughput for the length of the simulation run by advancing
the jobs that can get done in thepperiod, but the superior throﬁghput could
not be sustained indefinitely with a high job input rate. The STF algo~-
rithm is a misapplication of the prédictive data. |

The real benefit of predictive data is apparent in CPU scheduling.
Whereas the non-predictive algorithms could achieve CPU utilization in
the range of 80.5 to 92.6 per cent for the various memory scheduling poli-
cies, the predictive scheduling algorithms for these same memory policies
were in the range of 90.3 to 97.9 per cent. The SBT algorithm was able
to achieve a large gain in efficiency because, when several jobs are on
queue for the CPU, (which represents an imbalance in demand in the
CPU-I/0 sybsystem) the decision that most quickly places a job in the I/0O
subsystem so that it may return to the processor queue before the queue
is depleted is always taken.

The SBT algorithm may be improved by choosing for the CPU not just

the job that can generate the next I/0 operation most. quickly, but the

100 CrPU

|~ Sched.
| Algorithm ;

. -
A ——
- ’//

Utilization SBIO //////////// ‘—“—‘—””—’—“’ﬂ_,————,,-
/ /
90 |_ SBT ‘/ﬂ//,,,———“‘——“——’”'
i . ///////////
B /—.—‘———‘——i
- FCFS ///////////
LBT
80 i~ :
7 - SBIO
° 30 L SBT
Utilization [~ %ﬁF ::;:;:5’;”‘
= FCFS
LBT ///////////
—
20 |
STF FCFS FCSM SMF BAL

Memory Scheduling Algorithm
Figure 3

CPU and I/0 Utilization as a Function
of CPU and Memory Scheduling Algorithms

13.

5.8
5.0 |-
Degree -
of
Multiprogramming - ’////////,/’
" I
/ i
4.0 |.
- Figure 4
Range of Degree of Multiprogramming
for Memory Scheduling Algorithms
.5 B
/S .
Jobs
Completed G I
Per
Second
T / SnRR
/
P /
STF FCFS FCSM SMF BAL

Memory Scheduling Algorithm
Figure 5

Range of Throughput (Jobs/Sec.) for
Memory Scheduling Algorithms

14.

job whose next I/0 operation can be started soonest. For example, if
the I/0 subsystem is imbalanced (as it is in the system being simulated),
it is likely that the next I/0 of the job selected for the CPU will be
directed to a device for which a queue already exists. This is not the
optimal decision. The SBIO algorithm achieves greater efficiency by
activating a job whose run time to an I/0 operation on a currently idle
device is the smallest. This reasoning can be extended to develop more
complex algorithms. If the total future resource utilization data for a
job is available, there is no limit to the possible complexity of com-
putation for scheduling, and one hundred per cent CPU utilization

(including overhead, of course) is attainable.

IV. Prediction from Inexact Data

The preceding predictive schedulers were evaluated in simulation
under the assumption that the predictive information is complete and
correct. This is an unrealistic assumptdon. Therefore, the schedu-
ling models were also evaluated with the predictive data being correct
with a probability of only P<4l, where P was varied. The predictive
schedulers recognized two classes of jobs: predictable jobs, in which
the predictive data was assumed to be valid, and unpredictable jobs, in
which the predictive déta was' known to be incorrect. The schedukers
were modified to check at each step to be sure a predictable job was
behaving as expected: 1f it didn't,it was flagged as an unpredictable
job. The schedulers were also modified for a smooth transition between
predictable and unpredictable job scheduling. For example, in the case
of SBT and SBIO schedulers, a cyclic counter, modulo the dynamically-
varying number of predictable jobs in memory, is incremented each time
the scheduler works on the basis of predictable information. When the
counter reaches zero, the scheduler swaps to RR for scheduling of the
unpredictable tasks

The results of the predictive algorithms with inexact data are

15.

shown in table 1 for the SBIO processor scheduler. It is seen that there

is a linear decline in the advantage of predictive algorithms as P is
reduced from 1 to 0.6, at whichi:time the advantage of the predictive
algorithm disappears. These results seem to indicate that the ®elia-
bility of the predictive data should be at ieast sixty-five or seventy

per cent before the design of such schedulers is seriously considered.

Table 1

CPU Efficiency Showin%
Effectiveness of Predictive Scheduling Algorithms

With Inexact Data

Memory Sched.

Algorithm
CPU STF FCFS FCSM SMF BAL

Sched. RR 87.2 90.3 91.8 92.9 94.0
Algorithm
SBIO,P=1.0| 92.4 96.2 97.0 97 .4 97.9
SBIO,P=0.9| 91.1 94.5 9% .6 95.8 95.8
SBIO,P=0.8| 89.0 93.0 92.9 93:9 - 93.9 .
SBIO,P=0.7| 87.8 91.7 92.1 93.5 94.0
SBIO,P=0.6| 86.9 90.1 91.0 92.3 93.3

(P is probability of correctness of predictive data.)

17.

V. Conclusions

The results of the simulation runs with inexact predictive data
are the most relevant to the design of scheduling algorithms for compu-
ter systems. Knowledge of what conditions might be elitained if complete
predictive data were available is interesting but irrelevant, since it
is inconceivable that this will ever be the case. The results indicate
that seventy per cent of the jobs in the system must be totally predic-
table before the predictive scheduler will have an advantage over nonpre-
dictive schedulers.

Although it is not expected that such a large portion of the jobs in
the system will be found to be totally predictable, it is conceivable
that the resource utilization patterns of more than seventy per cent of
the jobs may be found to be predictable for a large part of their run
time; during the compilation gnd loading of p¥ograms to be compiled and
run, for example. Furthermore, the predictive algorithms investigated
here represent the simplest possible use of predictive data. Once the
resource utilization patterns of jobs are recorded and made available,
scheduling techniques to further exploit the data will surely be deve-
loped. For example, in this relatively simple model (amd also in many
advanced operating systems), scheduling in the I/0 subsystem is strictly
on a first come, first served basis. Another increment in utilization
and throughput may well be possible if decisions in the I/0 subsystem are
made to achieve balance globally, with the aid of predictive data.

The implementation of the predictive technique would be considerably
more complex in a virtual memory system, but it has potential for great

benefit there also; for example, in look-ahead paging.

18.

The results of the simulation study encourage measurement and
recording of resource utilization patterns by user jobs to determine
whether indicated degree of predictability required to make the implemen-—

tation of predictive schedulers feasible, can in fact be attained.

10.

REFERENCES

Baskett, F.
Mathematical Models of Computer Systems. Ph.D. Dissertation,
The University of Texas at Austin, 1970.

Baskett, F., Browne, J. C., and Raike, W. M.
"The Management of a Multi-Level Non-Paged Memory System,"
Proc. AFIPS 1970 SjCC, Vol. 36, Montvale, N.J., pp. 459-465,

Estrin, G., Muntz. R. R,, and Uzgalis, R. C.
Modelling, Measurement, and Computer Power, Proc. SJCC, 1972
pp. 725-738.

Johnson, Douglas S.
A Process-Oriented Model of Resource Demands in Large Multi-
processing Computer Utilities, University of Texas Computation
Center Report TSN-33, Austin, Texas.

Lan, J. C.
A Study of Job Scheduling and Its Interaction with CPU Scheduling
Computation Center Report TSN-24, University of Texas at Austin
(Dec. 1971).

MacDougall, M. H.,

"Simulation of an ECS-based Operating System," Proc., AFIPS 1967
SJCC Vol. 30, pp. 735-741.

Noe, J. D. and Nutt, G. D.
Validation of a Trace-driven CDC 6400 Simulation, Proc. SJCC
(1972) 749-757.

Noetzel, A, S.
The Design of a Meta-System, Proc. SJCC, 1971, 415-424.

Schwetman, H. D.
A Study of Resource Utilization and Performance Evaluation of
Large-Scale Computer Systems, University of Texas Computation
Center Report TSN-12 (July 1970), Austin, Texas.

Sherman, S., Baskett, F., and Browne, J. C..
"Trace Driven Modeling and Analysis of CPU Scheduling in a
Multiprogramming System,'" The University of Texas at Austin, 1970.

