TR 38
August 197

AUTOMATIC PROGRAM ANALYSIS

BY

ANN HALLER

August 1974 TR 38

This report constituted the author's M. A. Thesis in Computer Science
at The Univeérsity of Texas at Austin.

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

AUTOMATIC PROGRAM ANALYSIS

APPROVED:

AUTOMATIC PROGRAM ANALYSIS

by

JULIA ANN PEEK HALLER, B.A.

THESIS
Presented to the Faculty of the Graduate School
The University of Texas at isustin

in Partial Fulfiliment

of

ACKNOWLEDGEMENTS

I would like to acknowledge Dr. J. C. Browne for
his guidance and support in the development of this thesis
and Mr. Jemes L. Turner, Mr., R. E. Meeker, Jr., and
Mr. Gene L. Lasseter for their help on the FACES proiject.

This work was supported in part under NASA contract

NASE 28084.

Ann Haller

July, 1974

TABLE OF CONTENTS

I. GOALS AND METHODS IN DEVELOPING AUTOMATIC PROGRAM
ANALYSIS SYSTEMS. . + o ¢ v ¢ o« o o o o o o o o o

Basic Types of Automatic Program Analysis
Possible Functions of a Program Analyzer
Methods for Developing A Program Analvzer
Proposed Structure for a General-Purpose Analyzer

I, PREVIOUS WORK IN PROGRAM ANALYSIS. . . « + ¢ +« o &

Proving Programs Correct
Early Debugging Systems
Later Program Analysis Efforts

ITI. A FORTRAN AUTOMATIC CODE EVALUATION SYSTEM. . . .

Purposes of FACES

Tasks Performed by FACES
Methods Used by FACES
Problems with FACES

Possible Extensions to FACES

IV. EXAMPLE OUTPUT FROM A FORTRAN ANALYSIS SYSTEM . . .
Results of Common Block Alignment Routine
Results of Parameter Alignment Routine
Results of Variable Initialization Routine
Results of Variable Trace Routine

V.o CONCLUSION . . v ¢ ¢ o o o e o s o o o o o s « o s

APPENDIX

REFERENCES

* L] ° . & @ @ 3 @ @ @ @ @ @ @ -

® . 03 . L] @ L] @ ® @ @ @ @ @ ® % @

fot
fete
[24

&
i

I. GOALS AND METHODS IN DEVELOPING AUTOMATIC

PROGRAM ANALYSIS SYSTEMS

Anyone who has had experience in developing & large
software package is aware of the tremendous problem involved
in debugging and testing the programs sufficiently enough
to insure that they are reasonably correct and perform ac-
cording to the writer's specifications. In fact, the largest
percentage of a programmer's time is spent in debugging and
testing programs rather than in designing or coding them,

In an attempt to alleviate this problem, automatic program
analyzers have been developed in which the programmer re-
leases some of the more tedious tasks of program analysis
to be done automatically by the program analyzer. It seems
reasonable that the programmer should use the computer, a
tool with which he is most familiar, not only for running
programs, but for aiding him in analyzing them also. The
computer is adaptable to this task because of 1ts potential

for collecting sets of data, crcanizing information, and

discerning patterns which the human programmer cannot easily
recognize.
Often, in debugging & procram, a perscn spends hours

-

searching through the code looking for the source c¢f the
problem. A program analyzer can prevent nim from getting

lost in the code by automatically extrac:ti

key information that may be obscure =. zoc

this way information from one portion of the program can be
correlated with information from other parts, and the pro-
grammer can more easily recognize patterns in the overall
structure of the program. Although the programmer still
must judgz the source of the problem from the information
displayed to him by the analyzer, at least he has a better
basis from which to search.

The program analyzer may also be helpful in the fine
tuning of what seem to be "running” programs. Subtle problem
areas that the programmer has overlcocoked may be pointed out
and poor code constructs that can cause inefficient execution
may be recognized. The analyzer may also aid in producing
environments for testing of key code and in evaluating
test runs to insure that key code has been executed. Esti-
mates of core size and execution time reguirements of the
program can also be made automatically, and the structure
of the program can be analyzed to aid in determining optimum

overlay structures.

%

Program cocumentation and maintenance can also be
simplified by autcmatic analysis. Improvements in documen-
tation can be made by abstraction and display of program
structure, interface information, and other details that

should be recordecd for proper prograr maintenance. When

can use the autometic analyzer to ouuline necessary details
of the program and thus avoid generating oucs by the addi-

3,

tion of new code. Then as the program enviroament changes,

the analyrzer can be used to recognize and perhaps change

constructs as needed for the new environment.

BASIC TYPES OF AUTOMATIC PROGRAM ANALYSIS

There are two basic methods of automatic programn
analysis--static analysis and dynamic analysis. In the static
method, information is extracted from the user's source code
only. In this method, complex structural information about
the program, that may be obscure to the user, is extracted
and displayed. The analyzer can point out syntactically
correct but semantically dubious constructions that are known
to be dangerous or troublesome in the particular languace.

A static analyzer may contain a large variety of analytic
routines that extract and display different aspects of the
program. It is advantageous that the user be able to choose

the routines that will be helpful to him in analyzing

o

specific program. He then can have before him only those

details which are relevant for a

4

Do T o e e g s I =
articular purpose. This

e

method lends itself to an interactive svystem whereby the
user can type in a guestion about his program, analvze the
results, and either modify his program or ask anocther
guestion.

The second methicd of automatic analysis is called

dynamic because the analysis

'.Jw
[1]
el
©
H
(a1}
i
[}
o))
[oN)
e
[
I,..l
o]
\¢]
®
D
O
o
(&1
}, 4
O
o]

time of the user's program. This method reguires a
ary analysis of the user's source procram which alters th

source code by inserting statements to gather the reguired

data. For example, the analyzer could dynamically monitor
the values of certain variables or monitor the frequency of
execution of each statement or routine in the program. The

dynamic analysis method is helpful in evaluating the "live"

}...J

performance of a program since the program is run with actua
data. In the static method it is often times impossible to
predict how a certain portion of the program will behave
without knowing what the data will be. The dynamic method,
however, limits the evaluation to the program's performance
on a certain data set, whereas the static method gives a
more general analysis. The additional code inserted by
dynamic analyzers may produce side effects in the user's
program by altering the program structure and may affect

its performance. The optimum program analyzer should in-

corporate a combination of both dynamic and static methods.

POSSIBLE FUNCTIONS OF A PROGRAM ANALYZER

A program analyzer could perform a variety of functions
to aid the user in his program evaluation., The specific
purposes for which one would wish to have an automatic
analyzer depend in part on the particular language one wishes
to analyze. However, there are basic characteristics of
programs that are universal to most languages which a gocd

automatic aid may inspect and analyze.

(%1}

Program Validation

o

One area of program validation is program data analy-
sis. That is, an automatic analyzer may recognize data
constructs (such as arrays in FORTRAN), noting the sizes
and types of these constructs and where they cccur, and
storing this information in a table for further reference.
Using this information, the analyzer can then check data
references and note possibly dangerous constructs. For
example, in FORTRAN, the analyzer could check subscript
ranges in array references. It could also inspect the usage
flow structure of the program, that is, the relationship
of data objects to each other and the possible ways they
could affect each other. For instance, one may wish to
know what variables can affect the value of a specific
variable at a certain point in the program or what other

variables a particular variable could affect. This would

ot

be helpful in determining the effects of changes in inpu

<

data, in searching for the cause of variable value errors,
and in determining appropriate data for test cases. One
may also want to verify that all variables are properly
initialized before they are used. This usace flow analysis
can be done on a modular or global level depending on the
user'‘s needs. That is, one may wish to trace the usage
flow only to within subroutine boundaries, treating each

subroutine as a separate entity; or it mav be preferable

to get an overall view of how data items interact by perform—

ing a global usage flow analysis over the entire program.
A dynamic analysis could also be done to monitor the actual
values of variables during execution of the program.

Another area of possible inspection is flow of
control analysis in which the structure of the program is
extracted and represented as a graph. The graph can be
used to determine a variety of structural details such as
looping structure, unreachable code, code without exits,
and undefined functions. Static path analysis capabilities
can be incorporated into the analyzer to trace possible
paths through the program, starting at a certain point or
ending at a certain point. This automatic tracing technigue
can replace the old-fashioned method of hand-tracing through
a program searching for the cause of a bug. One may also
wish to include dynamic path analysis to monitor the fre-
guency of execution of different branches or modules of
the program. This enables the user to pinpoint those areas
of the program that add most to the exascution time, thereby
giving him an idea about which areas should ose optimized
to reduce the execution time most effectively.

Interface analysis is another useful area of auto-
matic aid to program evaluation. This involves inspecting
the interface structure between program modules, such &s
global variable storage and argumenc transmission. The

analyzer can check to see if any inconsistencies exist that

programmer may want to know if all common blocks of the same

name have the same length and structure or if an actual
parameter is passed to a formal parameter of a different
type. Such constructs are not illegal in FORTRAN, but can
be dangerous if the programmer is unaware of them. The
automatic analyzer can extract the information and print
it in readable form for the benefit of the user.

Another possibility is to automatically check all
output statements in the user's program, comparing them with
format statements to insure that no inconsistencies exist.
The format specifications can also be checked for conformity
with the particular mechanical devices to be used. This
output analysis can be especially useful for programs that
write to files or other devices that cannot be readily seen
by the programmer.

One of the most time-consuming tasks in preparing
a program for use is testing the program after it appears
to be in running order. Ideally, the programmer must prepare
a set of test cases that will insure that the entire program
has been tested. An automatic analyzer can help by monitor-
ing the test runs dynamically and keeping statistics on
which statements and branches of the program are actually
executed during the tests. Of course it is impractical and
usually impossible to test all cases of a program, but it

is helpful to know at least that

have at some time been executed or that all branches have

been taken, since errors are often found _. =hocse parts that

e

are rarely used. Conceivably, the analyzer 2culd generate

the proper data for test cases that would insure that all
parts of the program are executed. This is complex but offers

great benefits.

Structural and Timing Analysis

A program analyzer can aid the programmer in pre-
dicting the approximate anount of memory it will use and
the approximate amount of time it will take tc execute.
This is done by recognizing the program structure and the
machine code equivalents for the source code statements.

Of course the size and execution time of a program often
depend largely on the data, so that a static prediction can
only produce rough estimates. It can however aid the user
in determining which variables will be most crucial in
affecting the size or execution time.

This aspect ofvinspecticn also inceorporates an analy™
sis of the program's modularity. That is, it recognizes

the overall structure of the program, noting groups of rou-

mine an overlay structure for very large programs or in

b3

deteyrminin ortions of the program that could be zested
g prog

independently.

Documentation

Documentation of large programs can be augmented

by a program analyzer since much of the information collect-
ed by the analyzer is that which should be recorded in the
documenitation. For instance, the structure of the program
could be displayed in flowchart form by the automatic ana-
lyzer. The programmer could be given the option to choose
the level of detail at which the flowchart is to be con-
structed. The overall structure of the program could then
be displayed in abbreviated form,or a graph of each sub-
routine could be displayed in detaill.

A tabulation of other information could also be
displayed for documentation purposes. Interface information
describing global variables and argument transmission be-
tween routines are important aspects of complete documen-
tation that could be recorded in organized form by the ana-
lyzer. Data structure information such as variable sizes
and types and information concerning their use could also
be tabulated to simplify the aliteration of these structures
due to changing specifications. All loops within the program
could be documented along with the restrictive conditions

needed to insure proper execution.

Performance and Maintenance

In most organized programming projects, standards
are set up to prohibit programmers from using constructs
that may be legal in a language but hazardous or ineffi-
cient to use on the specific system. It woull oe nelpful

to include in an automatic analyzer tne capability for

recognizing these constructs. The constructs could be
simple statement types or more complicated structures that
would be subtle to the programmers' eyes. Whatever the
case, the automatic analyzer would replace having to search
through the code looking for these constructs.

Performance efficiency can also be enhanced by
automatic analysis. A frequency of execution study on the
source code statements can point out areas of code where
most of the execution time is spent, thereby stimulating
the programmer to improve those areas for better efficiency.
Constructs that are known to be inefficient can be recog-
nized by the analyzer and perhaps automatically replaced
with improved ones. Maintenance of large programs can be
simplified by using the analyzer to recognize and tabulate
specific code constructs so that when compilers or other
aspects of the program's environment are changed, alterations

in the source program can be done automatically.

METHODS FOR DEVELOPING A PROGRAM ANALYZER

There are many things to consider in developing a
program analyzer to perform the functions described above.
One must first decide if the analyzer is to be a general
purpose aid, capable of performing a variety of functions,

or if its use will be restricted to a narrower specified

i}

ertzin infor-

G
0

purpose. Each task of the analyzer reguires

nd

W
=
{15

mation to be extracted from the source code, any of the

ot
}m wd

tasks require similar data. Therefore it is possible to
build a large, general-purpcse pre-processor that will
gather a wide variety of information about the program to
build a data base from which many tasks can be performed.
This will make possible the continual expansion of the auto-
matic analyzer with little adjustment to the data collecting
routines. However, if the analyzer is only intended to aid
the user in a specific, predefined task, then the large data
base will be unnecessary.

One possibility is to incorporate the program ana-
lyzer into a compiler. Options could be included in the
compiler to give the user the choice to use or not to use
each aspect of the analyzer. This has the advantage of
simplifying the process for the user, but it could make the
compiler cumbersome and inefficient. If the alternative
method of developing the analyzer as a separate tool is
chosen, it will simplify the development of the analyzer
itself since much of the code-generating information will
not be needed. The analyzer could also be written in a
more machine-independent form, thereby simplifying its

transportation to other computer installations.

F

PROPOSED STRUCTURE FOR A GENERAL-PURPOSE ANARILYZER

A general-purpose program analyzer could be devel-

oped with the foll-wing four main modules:

1, Source code pre-processor--scan of source code
with concurrent data collection and Storage,
and code insertion if dynamic analysis is to
be used,

2. Static analysis processors—--processcrs of data
collected during scan; organizing, interpreting,
and printing information about the source code
in the following areas:

(a) Validation

(b} Structural and timing analysis
(c) Documentation

(d) Performance and maintenance

3. Dynamic monitors and data collection during
execution.

4. Post-processing and printing of information
collected during execution.

The remainder of the chapter will discuss each of the four
modules and the requirements for performing the functions

discussed in the previous section.

Module 1: Pre-processor

The pre-processor serves as the data-collecting
agent for information to be processed from the source code.
It scans the user's source program storing information needed
for the static analysis. This information can be stored

in a set of tables, the details of those tables depending

Py

S ———

on the specific functions the analyzer is designed to perform.
In order to perform the data analysis as mentioned in the
previous section, the tables must contain descriptors for

all data values that occur in the program. That is, the

name, class {(constant, variable, label, etc.), and type
(integer, floating point, etc.) of the data items along

with a record of how and when they are used must be kept.

If interface analysis is to be done, it would be advanta-
geous to organize the global data information (such as common
blocks and parameters in FORTRAN) into separate tables for

a simplified information retrieval process. Other information
coud be stored in these tables as needed for specific demands.
For instance, detailed representations of output lists and
format specifications would be needed if the output analysis
is to be performed. Also, a record of statement types and
corresponding machine code information would be needed for
sizing or execution time estimations.

It is necessary to extract structural information
from the source program (branch points, transfer points,
entries, exits) if any type of path analysis is to be done,
The graph structure of the program can be stored in the form
of a list of transition pairs (in which pairs of statements
are matched indicating that a direct path exists from the
first to the second) or in some other form from which the

graphic structure can be derived. This information can be

used for usage flow analysis, flow of control analysis,

’..MJ

[}

14

execution time prediction, and generation of test data, as
described in the previous section. The global structure of
the program, such as transfer points between routines, would
be needed for the interface analysis; and an abbreviated
graph of the entire program structure, in which sets of nodes
could be coalesced into larger nodes, would be required for
the modularity analysis.

Besides gathering and storing the required informa-
tion, the pre-processor is also responsible for inserting
code into the user's source program if any of the dynamic
analysis methods are going to be used. For example, if a
dynamic variable trace is to be used, then the pre-processor
might insert a "trace line" into the source code every time
the value of the variable is changed. This "trace line"
might be simply a print statement to display the value of
the variable or it could be a call to a run-time routine
that would check the value of the variable against pre-
specified bounds. The pre-processor might also insert “trace
lines” at branch points in the program so that the freguency
of execution of different nodes of the program could be
monitored at run-time. These "trace lines" would only be
temporarily added to the user's program in order to facili-

tate the collection of information during execution.

Module 2: Static Analysis

&1

After the user's scurce code has been scanned and

—

the appropriate information stored, each static analysis pro-
cessor may organize and analyze the stored informaticn and
print a record for the user of the requested analytical
information. The validation processor might incorporate
path analysis capabilities to trace the possible ways that
a particular variable could affect other variables or trace
possible paths to a certain statement in the program. An
arithmetic processor might also be needed to test subscript
bounds or to generate an optimal test data set. It could
also include a routine to check the initialization of all
variables used in the program, making sure that they are
in some way initialized before being used. Since this stage
of the validator would be used as an aid to debugging, it
would be advantageous to develop it on an interactive systemn.
The user could then request information periodically during
the validation process.

If a processor for structural and timing analysis
is used, it would correlate the graph structure of the program
(as stored by the pre-processor) with information about the
machine code to which the source code will be converted and
would estimate the size and time requirements for the program.
It could also give the user information for developing an
optimum overlay structure.

A processor to be used for documentation could incliude
such tasks as organizing interface information and printing
it in readable form. For instance, each global variable and

its corresponding size, type, and use could be documented, and

transfer points between routines could be noted. A flow-
chart of the program structure might also be produced. The
basic information needed for these tasks would have already
been collected and stored by the pre-processor. The docu-
mentation processor would simply re-organize the information
to be displayed in a form that could be easily understood

by the programmer.

A processor might also be developed for use in per-
formance measurement and maintenance. Its task would be
to do such things as point out inefficient code or check
for non-standard code constructs. It might also find sec-
tions of code that must be changed for new specifications
or for a changing enyironment and either point them out to
the user or automatically replace them. The analyzer might
then gather information about the updated version of the
program to aid the user in determining the effects of the
change.

If no dynamic analysis methods are to be used, then
the language analyzer is composed solely of the pre~-processor
and the static analyzers. That is; the source code is scanned
while information is stored; and this information is organ-—

ized, analyzed, and printed according to specifications.

Module 3: Dynamic Monitor

The dynamic monitor portion ¢~ <he analyzer is in-

corporated into the actual execution of the user's program.

16

17

It is at this stage that the rtrace lines" inserted during
the pre-processing stage will be executed. These "trace

lines" can be used to call routines that have been added to

the user's program by the analyzer to gather information during
execution. For example, statistics may be collected concern-
ing the frequency of execution of different nodes in the
program or variable values may be compared with prespecified
bounds. The routines that have been added to the user's

program either print information as it is found or store

the information on file to be accessed by the post-processor.

Module 4: Post-processor of Dynamic Analysis

This portion of the analyzer acts in the same manner
as the static processors except that it organizes and ana-
lyzes the information collected by the dynamic monitors
during execution of the user's program. The information is

printed according to the user's specifications.

CONCLUSION

There is a great need to decrease the amount of time
spent in debugging, testing, documenting, and maintaining
computer software systems. Automatic program analyzers
present a viable answer for improving the slow and ineffi-
cient methods of program validation and maintenance that
exist today. An automatic analysis system can be developed

to incorporate the following four basic Functions:

18

(a)} program validation (debugging and testing)

(b) structural and timing analysis

(c} program documentation

{(d) performance evaluation and maintenance.

These tasks can all be developed from a general-purpose data
base containing information about the source program. Both
static and dynamic methods can be included in the analysis
to broaden the capabilities of the automatic aid.

A proposal for the basic design of a general-purpose
program analysis system has been suggested in which a pre-
processor would collect information about a program and
construct a large data base containing this information.

The pre-processor could also insert "trace lines" in the
source program in order to perform dynamic analysis during
execution time. A post-processor would be designed to extract
information from the data base and analyze it in such a

way as to aid the programmer in validating, documenting, or

in some other way analyzing his program.

Some effort has already been directed toward the
development of program analysis systems, but mcst of the sys-
tems have been limited to performing a few specific functions.
The remainder of this thesis will discuss the work that has
been done and will describe in detail a specific FORTRAN

analysis system.

II. PREVIOUS WORK IN PROGRAM ANALYSIS

In the past ten years the need for program analysis
has been recognized, and a variety of systems have been
developed to aid the programmer in analyzing programs. The
interest began with early debugging aids which had limited
capabilities and has recently been expanded in the develop-
ment of large analysis systems that have a wide range of
functions. It is the purpose of this chapter to discuss
some of the previous accomplishments in the area of program

analysis.

PROVING PROGRAMS CORRECT

A considerable amount of work has been done in an
attempt to develop methods for "proving" programs correct [2].
The ultimate goal of this effort is certainly worthy of praise,
since the dream of every programmer is to be able to know for
sure that his program performs properly. There are problems
however in attempting to prove programs correct. At the
present, workers in this area have only succeeded in proving
the correctness of small and somewhat trivial programs.

Two approaches, termed formal and informal, have been

taken in proving programs correct. I. the formal metnod,

proof of correctness is transformed into =he proof of a

theorem in the first order predicate calculus. This method

19

20

is cumbersome because of the difficulty in expressing program
characteristics in such low-level terms as the first order
predicate calculus. Once expressed, the automatic proof of

a large theorem becomes difficult because of time and memory
limitations. 1In the informal method, the programmer must
provide assertions about the state of the program at dif-
ferent points in the code, and a proof of the consistencies

of these assertions is then attempted. This method is limited
by the human intervention and tedious proving procedures

it requires.

It seems evident that, despite the noble goals of
these efforts in proving programs correct, the methods at
present are of little practical value to the programmer.
Hopefully, in the future when the state of the art advances,
programmers will have access to program-proving systems.

In the meantime, study and implementation of the more prac-
tical methods of program analysis seems justified. The
program analyzer makes no attempt to "prove" that a program
is correct, but rather it furnishes the user with information
that will enable him to better judge the program's perform-
ance. The focus of this thesis will be on the practical

approach of program analysis.

EARLY DEBUGGING SYSTEMS

The birth of program analvsis began with the develop-

ment of early debugging systems whose main purpose was o help

21

users find errors in their programs. Three of these systems,
BUGTRAN, DEBUG, and AIDS, all used in analyzing FORTRAN

programs, will be discussed in this section.

BUGTRAN

One of the first debugging systems for a high-level
language was made available as early as 1963. The package,
called BUGTRAN, was developed at the University of California
at San Diego for use in debugging FORTRAN programs [3].

The system requires the user to insert cards of the proper
BUGTRAN syntax before the FORTRAN source deck to serve as
selective commands to the BUGTRAN analyzer. The system has
the capabilities to trace variable values between certain
statements, trace flow of control, ititiate dumps, check
entries to subroutines, and terminate control of the program
under certain conditions. These actions are made possible
by modification of the user's source code to insert monitors
for tracing purposes and add code for durmp and terminate
conditions.

The BUGTRAN package, although limited in scope, was
useful for its specific purposes and was an innovative idea

in its time.

DEBUG

A similar debugging aid calied DEBUG wes written at

United Aircraft Research Laboratories for the UNIVAC 1108

22

computer system [13]. In order to use DEBUG, a programmer
submits requests within his program by inserting special
comment cards in the deck. The DEBUG system pre-compiles
the program and adds new FORTRAN statements to the code to
incorporate the necessary requests. The program is compiled
and executed with the added code, and a report is listed for
the user according to his requests.

The following two functions are performed by the

DEBUG system:

(1) Program variable values are automatically
printed as requested. (Calls to an external
routine are inserted at pre-compile time which
at execution time will print the value of the
appropriate variable at that point in the pro-
gram.,)

(2) Logic flow at certain points in the program is
traced as requested. (The user inserts trace
cards surrounding the code to be examined.

At pre-compile time, DEBUG replaces all logic
decision statements within that portion of the
program with eguivalent code that will also

print the value of the decision expression.)

AIDS

Another early debugging system for FORTRAN programs

was developed at New York University for the CDC 6600 [4].

The package is called AIDS (All-purpose Interactive Debug-
ging System). Although its functions are similar to those
of BUGTRAN and DEBUG, its methods are different. AIDS re-
quires the following three inputs:

(1) object code of user's program

(2) 1listing generated by compilation

(3) . "debug file" containing user's commands to AIDS.
Identifier addresses and other information about the program
are stored, and commands from the "debug file" are decoded
and stored in tables. The program is then simulated with
additional monitoring and tracing capabilities specified
in the commands to AIDS.

In order to use the system, a programmer must learn
a special debug language, This has proved to be a drawback
since it requires a large amount of effort from the program-
mer. The computer time necessary to carry out the simula-
tion is also a disadvantage of this system. AIDS has been
a worthwhile debugging aid for those programmers who have

taken the time to become familiar with its capabilities.

AIDS, DEBUG, and BUGTRAN are three examples of the
early program analysis systems that have been developed.
In all three systems the emphasis is on debugging programs
only. Tracing facilities and other mechanisms for extract-
ing information about specific problem areas in a program
are included to help the users find errors in their programs.,

The three systems served a useful purpose for vhat they were

24
trying to do, but their capabilities are limited when compared
with the wide variety of other functions that program analyzers

may accomplish.

LATER PROGRAM ANALYSIS EFFORTS

In recent years program analyzers have been develcoped
with broader goals and capabilities than the original debug-
ging systems. More emphasis is being placed on using program
analyzers for a wider range of duties than simply to aid a
programmer in finding errors in pre-specified areas of the
program. These duties include such tasks as aiding program
optimization, documentation, maintenance, timing and struc-
turai analysis, and performance evaluation. A description
of some of these newer analysis systems will be discussed in

this section.

FLOW

A software verification tool called FLOW was deve loped
at TRW Systems as the first stage of the Product Assurance
Confidence Evaluator (PACE) [1]. FLOW is =a dvnamic monitor-
ing system designed to Support test evaluation activities
for FORTRAN programs. The system scans the user's source
code, inserting additional code throughout the program.

When the program is re-compiled and executed, the additional
code will monitor the flow along paths in the program, gath-

ering statistics along the way. This path trace may be done

25

at optional levels of detail, depending upon requests from the
user.

After execution of the instrumented source program,
FLOW will output the following information:

(1) number of executions of each statement

(2) per cent of total executable statements exer-

cised

(3) per cent of total number of subroutines executed

(4) names of subroutines not executed

(5) total execution time in each routine.

The FLOW output helps the user in the following four
areas:

(1) evaluating test effectiveness

(2) recognizing inefficient subroutine structure

(3) finding areas where code is never used

(4) optimizing overused sections of code.
For example, the programmer may discover from the FLOW
output that a certain subroutine is never used. He then can
devise a test in which the subroutine would be needed, or
he might find that the subroutine is extraneous. The user
might also be able to optimize code in areas of the program
that are being executed often, thereby reducing the execution
time of his program in an effective way.

FLOW is an example of a program analyzer that has
been designed for purposes other than finding errors in speci-
fic areas of a program. It is not intended to be a general-

purpose analyzer, but instead is limited to the function of

26

aiding in testing procedures. FLOW serves well the purpose
for which it was intended and acts as a useful subsystem in
conjunction with the "optimal software test planning system"

to be described in the next section,

Optimal Software Test Planning

An innovative system for designing software tests
has been developed at TRW Systems for NASA Johnson Space
Center [7]. The system is an automated method for designing
an optimal set of test cases which will exercise all branches
of a FORTRAN source program. It's authors, Krause, Smith,
and Goodwin, emphasize the impracticality of testing all
possible paths of a program--a method which in theory would
be the optimum way to insure that a program is sufficiently
tested. They propose instead that it is better to design
a set of tests that will exercise all branch options in the
program. This method will insure more thorough testing than
simply executing all statements but will not be as exhaus-
tive as attempting to execute all possible paths.

The following two definitions are given by Krause,
Smith, and Goodwin [7] in order to describe the proposed
test planning method:

"segment of code--smallest set of consecutively

executable statements to which control can be trans-
ferred during program execution. The first statement

will be directly accessible from another segment

27

and the last will be a transfer to a new segment.”

"segment relationship--the relationship between two

segments of code resulting from the transfer of

control of execution from the first segment to the

second."
The objective as stated by Krause, Smith, and Goodwin is to
"find the minimum set of paths which exercise all the segment
relationships in any subject module."

The automated system analyzes the FORTRAN source
code and forms a table of information necessary for the
generation of optimal test paths. This information includes
segment transfer structure and variables involved in the path
control. A problem arises in generating paths since all
branch options are not mutually independent. "Impossible
pairs" of segment relationships exist that must be extracted
from the possible paths. Some of these "impossible pairs"
are detected automatically, but others must be found by the
user,

After all of the previously described information 1is
collected, all base paths and loops are automatically gener-
ated. ("A base path is defined as a concatenation of segment
relationships which begins at an entry point and ends at an
exit point of the subject module and contains no repeated
segments. A loop i1s defined as a concatenation of segment
relationships which begins and ends at a repeated segment and
contains no other repeated segments." [7]). Then optimal

paths are formed combining a base path with loops that are

—

28

accessible from it. Each path is displayed to the user who
must check to see if any impossible pairs exist. If not,
he must then determine the proper data to execute the path.
(All variables affecting the path are automatically dis-
played to him.) After test execution, the segment relation-
ships executed in that test are input to the automated tool
and flagged. The next path given to the user will be chosen
in order to execute a maximum number of segment relation-
ships not executed by the previous test. The process con-
tinues until all segment relationships have been exercised.
The automated tool described by Krause, Smith, and
Goodwin is a useful aid in planning optimum testing activi-
ties. Although it does not guarantee sufficient program
testing (since all paths are not executed), it proposes a
more practical solution of generating paths that will exer-
cise all branches in the program. This seems to be a major
improvement over the method of insuring simply that all state-
ments are executed. A weakness in the system lies in the larce
amount of work the user must contribute by determining the
input that will cause execution of a prescribed path. This
task could be simplified if the user were automatically given
the relationships that all input variables should form toward
each other. (Eg., 0 < A <10, B> A, C =B + 5, etc.) Of
course, this would greatly increase the complexity of the

automatic analysis.

29

PET

An automatic program testing tool called PET (Program
Evaluator and Testor) was developed by McDonnell Douglas
Astronautics Company. L. G. Stucki describes PET as a system
for automatically generating "self-metric" software. [11,12]
That is, the system supplements the source program with code
that, when executed, will gather statistics and syntactic
information about the program. The program itself then
becomes "self-measuring” and enables the programmer to better
evaluate it.

PET is designed to perform analysis on FORTRAN pro-
grams. The system first scans the FORTRAN source code,
inserting statements to be used in gathering statistics.
Static information about the execution is saved. The PET
post-processor analyzes the static information and the results
of the execution and generates a report for the user. The
following information is displayed in the report:

(1) Syntactic Profile

(number of executable, nonexecutable, and comment
statements; number of CALL statements; total
program branches)

(2) Program Performance Statistics

(number of statements executed; number of
branches and CALLS taken; associated with each
executable statement--execution counts, branch

counts on IF's and GO TO's, minimum/maximum

data range values on assignment statements and
DO-loop control variables)

PET has proven to be an effective tool in evaluat-
ing FORTRAN programs. For instance, one program that was
believed to be "thoroughly tested" was found to be ineffi-
cient when PET helped to recognize that the program spent
one fourth of total execution time 1n an inefficient DO-loop.
[11,12] The analyzer has also been helpful in finding un-
reachable code in programs. The development of the PET
system is an example of an effort to broaden the capabili-
ties of a language analyzer. 2Although it cannot be termed
"general-purpose" since it focuses mainly on dynamic analysis,
it does at least include some static analysis in the "syn-
tactic profile." The usefulness of counting comment state-
ments, executable statements, etc. seems guestionable, but
at least the basis for static analysis is incorporated into

the system.

FETE

Another existing FORTRAN language analyzer, similar

[5% 3]
i
b

1

iy

(FORTRAN

2

to those previously described, is called

of 1

bt

ETE is to

Fij

Execution Time Estimator). [6] The purpcs

42]
]

aid in optimizing program code in order to minimize execution
time. The method is similar to those used in previously
described systems. That is, counters are inserted into the

P - -

source code, and the modified program is then executed. In

=

31

FETE, the modified program is then re-read and correlated
with the final counter values obtained in execution. The
output lists each statement and the number of times it was
executed. It also shows the number of times the TRUE branch
was taken in logical IF statements and shows the "cost”
(relative to execution time) of each siafement. The "cost”
is based on such things as the number of operators, the number
of parentheses, and the statement type.

in using FETE, Ingalls found that most programs spend
a large percentage of total execution time in a small per-
centage of statements. [6] By pointing out this small per-
centage of statements, FETE can encourage the programmer to
optimize his program code in the areas where it really matters.
FETE could also be used to aid in evaluating test runs for
completeness, although it was not specifically designed for
that purpose. Although limited in scope, FETE serves as
a useful tool in optimizing programs and develops a new idea

in its "cost analysis" of each statement.

of the first attempts at providing a general-purpose
analyzer. It was developed at the University of Texas at
Austin for the Safeguard System Evaluation sgency. (8,91

ACES analyzes an intermediate-level language called CENTRAN

i)

which is used specifically for Safeguarc system Soltware.

Both static and dyneamic methods of analysis are used. The

main purpose of ACES is to create an organized data base
containing information about a program. The programmer 1is
then relieved of the task of searching through large amounts
of code in validating a program. The system was designed

to be used on large programs in which correct performance

is critical.

The static analysis portion of ACES involves a scan
of the CENTRAN source code and the formation of a set of
tables with information about program variables, labels,
statement types, and structure. During the lexical scan,

a set of messages are collected which are printed to warn
the user about possibly dangerous constructs. (The CENTRAN
language is in particular need of this type of analysis be-
cause it gives the programmer freedom to use several unde-
pendable language constructs that may cause critical errors
if not used wisely.)} The tables may be printed if the user
wants access to information about a program that would nor-
mally require a tedious search of the source code. The

programmer may want to know such things as "in what statement

{1

does variable A appear?”. This information could be Iound
in the tables.

ACES also includes a dynamic monitoring feature in
which the programmer may trace the value of certain pre-
specified variables. At each point in the program wihen the
value of a specified variable may be changed, ACES inserts
a call to a CENTRAN routine which at run-time will check

the value of the variable against pre-specified bounds.

32

If its value does not fall within the specified range, a
warning message is printed.

The ACES system serves as a useful background for
developing broadbased analysis systems, but the immediate
practicality of ACES is guestionable. The data base that
is generated contains a wide variety of information that can
be useful in many stages of program analysis. The system
does not, however, use this information to its fullest advan-
tage since the tables are simply printed for the user to
decipher. BAnswers to questions about the program that the
user must now find by examining the tables could be done
automatically. The ACES system has served as a useful guide
though to program analysis, particularly in the development

of the FACES system to be described in the next chapter.

CONCLUSION

This chapter has briefly described some of the auto-
matic program analysis systems that have been developed in
the past. Most systems so far have attempted to aid the pro-

grammer in some specific area of program validation. Many

33

of the systems deal with program testing procedures and include

dynamic monitoring. Few of them give the user any helpful
information about the program before it is in the execute
mode. ACES attempts to do this but produces results that are
somewhat impractical.

Another automatic analyzer, called FACES, has been

recently developed which uses information learned in the
development of ACES as a background. FACES extends the ideas
of ACES and attempts to develop a general-purpose data base
from which extensive information about a program can be

drawn to aid in many aspects of software development and

maintenance. FACES will be the topic of the next chapter.

III. A FORTRAN AUTOMATIC CODE EVALUATION SYSTEM

The present chapter will describe the FORTRAN Auto-
matic Code Evaluation System (called FACES) that was devel-
oped for the National Aeronautics and Space Administration,
Marshal Space Flight Center, during 1972 and 1973. The basic
goals of FACES will be discussed, and its operations on
FORTRAN programs will be described. The chapter will include
a discussion of the methods used in implementing the analysis
procedure and suggestions for possible extensions to the

system.

PURPOSES OF FACES

FACES was designed to serve as an automatic aid in
analyzing FORTRAN programs. Because the system was designed
to be used on programs that would be applied in crucial
situations in which accuracy is of utmost importance, the
system emphasizes aid in finding and correcting semantic
and logical errors in FORTRAN programs. (Programs are
assumed to be free of syntactic errors before being analyzed
by FACES.) BAn effort is made to critically analyze progran
constructs and to point out those that cculd possibly hindexr
correct program execution. Operations are alsc provided
that will aid the programmer in tracing the cause oi errors
once they have been found.

The application of FACES is intended mainly for use

G}
(&

with large FORTRAN programs. For this reason emphasis is
placed on automatically assimilating and organizing informa-
tion about the program. An attempt is made to condense and
display the information to the user in a concise form. It
is hoped that this aspect of the analysis will relieve the
user of the tedious task of searching through pages of FORTRAN
code when examining a program. Instead, the programmer can
request that the information he needs be automatically gathered
and displaved.

Although FACES was designed with an emphasis on val-
idation, it was constructed in a manner that will allow it
to be expanded to perform other services as well. In this
analysis system, a large data base containing information about
a program is collected. Information from the data base can
then be used for a variety of purposes. Additions to the
present validation features could be made and extensions in
other areas of analysis, such as documention, optimization,
performance evaluation, maintenance, and structural and tim-
ing analysis, could be implemented. Some would require
substantial changes to the FACES system while others would
require only minor additions.

In brief, the design of FACES aspires to the follow-
ing three goals:

1. to aid in finding and cocrracting semantic errors,

2. to assimilate and organize information about

large programs, and

3. to build a data base from which information can

be collected for a variety of purposes.

TASKS PERFORMED BY FACES

The tasks performed by FACES are divided into two
jmain sets. First, information about the FORTRAN source code
is gathered and stored. This information serves as the data
base mentioned in the previous section. Then the information
stored in the data base is queried, at the user's request,
in an effort to find program constructs that could possibly
be hazardous or to organize and display information needed

by the user in searching for the cause of an error.

Data Base Collection

The data base collecting part of FACES (called the
FORTRAN Front End) gathers two basic types of information--
global and local. The global information includes items
that relate to the entire program, whereas the local infor-
mation applies to each routine independently. (See Figure 1.)
For example, the global information includes a list of all
subroutine names along with locations in other routines from
which the subroutines are called. Common block structures
are stored in the global information set along with lists
of the elements within each common block. Argument trans-

mission information, including all actual and formal parameter

lists, is also stored with type and size information noted

Local
Information

Local
Information

Local
Information

1
]
§
§
i
(!
i
|

Main
Program
Sub. 1
. ///////////////
Informa-
tion
Sub. 2
1
i
i
i
}
§
H
]
Sub. n
Figure 1:

Local
Information

Structure of Local and Global Information

35

for each parameter.

A unique set of local information is collected for
the main FORTRAN routine and for each subprogram in the whole
program. Each set contains a table of all symbols used in
the routine (e. g. variables, labels, common block names,
subroutine and function names, etc.). For each name a code
is attached to indicate what the name is (simple variable,
array, common block name, etc.) and the type of the name
(integer, floating point, etc.). For each occurrence of a
name in a routine, a note is made to indicate how the name
is used in that particular occurrence. For example, a
variable could be used as input to an assignment statement,
as B is used in the statement

A=B* 2,
The variable could alsc be used as an actual parameter in
a subroutine call, as B is used in the statement

CALL SUB(B).
For another example, labels could be used in reference, as
label 25 is used in the statement

GO TO 25.
Labels could also be used in definition, as label 25 is used
in the statement

25 X=X,

The occurrences of each name in a routine are linked in a
way such that, given a particular occurrence of a name in
the routine, the preceding occurrence (in order of appear-

ance in the program) and the succeeding occurrence can easily

be found.

In addition, the local information about a routine
includes the storage of all array names in the routine with
the dimensions of each. Info¥mation about each DO-lcop in
the routine is also stored, including the ending label, index,
initial value, increment, and terminal value. Information
about structure of each routine is stored by noting the
immediate predecessors and immediate successors of each
statement (logically rather than in order of appearancej.
From this information, a complete graph of the routine
can be derived.

The global and local information collected by the
FORTRAN Frcnt End is stored in a set of tables that may be
displayed to the user or stored on file for later reference.
The tables are organized in a manner such that a set of
local tables can be accessed independently to allow the
study of a single module; or information about the entire
program may be examined. It is hoped that the information

is organized in such a way to allow flexibility in its use.

Data Base Query

The second major part of the FACES system contains
a set of routines that gquery the data base formed by the
FORTRAN Front End. The routines are designed to be called
independently by the user, according to his needs. Each

routine extracts from the data base a certain type of infor-

40

41

mation to help the user in analyzing a program. The four
following diagnostic routines have been implemented in the
FACES system:

1. Common block alignment routine

2. Parameter alignment routine

3. vVariable initialization check

4. Variable trace routine
Each will be discussed further in the succeeding paragraphs.

The common block alignment routine is used to verify
that all common blocks in a program are aligned. The routine
checks to see that all common blocks of the same name have
the same number of entries, and that corresponding elements
within each block have identical dimensions and are of the
same type. An option allows the user to also verify that
corresponding elements of each block have identical names.
Although FORTRAN allows a programmer to construct common blocks
with elements of differing dimensions and names, these prac-
tices are considered dangerous by some (especially if not
intended). Thus FACES allows the user to verify that the
above restrictions are met throughout a program.

The parameter alignment routine is used to verify
the alignment of all parameters in subroutine and function
calls. The routine checks all actual parameter lists in
subroutine and function calls to see chat they correspond
with the formal parameter lists described in the subroutine
or function definitions. To meet the standards, corres-

ponding parameter lists must have the same number of para-

42

meters; and corresponding parameters within each list must
be of the same type. The user also has the option to check
that arrays in each parameter list have the same dimensions.
If any of these conditions are not met, warning messages

are issued.

The third diagnostic routine verifies that all var-
iables within a routine are in some way initialized before
being used in a way that assumes a value is already attached
to the variable. Variables which appear in a common block,
in a DATA statement, or as entry parameters are assumed to
be initialized. For each of the remaining variables a trace
is performed along each entry path to check that the variable
is initialized before its wvalue if used.

The fourth diagnostic routine (called a variable trace)
may be used to trace the history or future of particular
variables within subprogram bounds. That is, given a cer-
tain variable at a certain point in the program, the routine
will list all variables that could possibly affect the value
of that variable previous to the specified statement. This
is called a history trace. In the future trace, the routine
will list all variables that could possibly be affected by
the value of the specific variable after a certain point in
the program. This routine is particularly useful in helping
a programmer to find the cause of an error in a program.

For example, the programmer may know that in a specific
statement the value of variable A is incorrect. He then

could run a history trace to find all variables that might

43

have caused A to obtain the incorrect value. The programmer
might also want to know what repercussions the incorrect
value of A will cause in the remainder of the program. For
this purpose, he could use the future trace to find all
variables that might be affected by A. (See Figure 2 for
further explanation.)

The routines described above aid the user both in
finding errors and in correctiﬁg them. The common block
alignment routine, parameter alignment routine, and variable
initialization routine serve mainly to find program constructs
that could possibly lead to error. The variable trace routine
helps the programmer in finding the cause of errors by auto-
matically doing the tedious job of tracing through the code.
These four routines, however, are not a final list of tasks
that can be performed by analyzing the data base. Possibil-
ities for further extentions will be discussed in a later

section.

METHODS USED BY FACES

The FORTRAN Automatic Code Evaluation System is com-
posed of two distinct modules—--the FORTRAN Front End and the
Data Base Query (diagnostic routines). As mentioned earlier,
the FORTRAN Front End collects information about the FORTRAN
program being analyzed, and the Data Base Query analyzes this
information, looking for particular constructs. The FORTRAN

Front End and the Data Base Query will be discussed separately

SUBROUTINE SUB1(N,B,C)

F =0
K = N
L=B*%C
IF (N.EQ.0) 10,20
10 A = K
GO TO 25
20 A=1
25 PRINT 2, A
2 FORMAT (110)
IF(A.GT.0) F = A
D=2aA/B
DX = F - D
RETURN
END

Results of history trace on A at statement 25:
"The value of A could have been affected by

L, X, B, C, N."

Results of future trace on A from statement 25:
"The wvalue of A could affect the future values of

Figure 2: Example of Results from Variable Trace Routine

45

in this section. (More detailed information about FACES

can be found in the original documentation. [5])

FORTRAN Front End

The Front End is composed of three interacting
modules--the lexical scanner, the parser, and the table
generator. The lexical scanner reads each FORTRAN statement
on a character-by-character level, grouping the character
strings into larger entities to be examined by the parser.
The parser determines the statement type of each statement,
picks out valuable portions of the statement, and sends
information to the table generator to be stored. The table
generator handles all table manipulation upon commands from
the parser. The parser is the main routine of the Front End
and calls the scanner and table generator into action when

necessary. (See Figure 3.)

Lexical Scanner

The scanning routine of the FORTRAN Front End reads
a statement of the source program and recognizes alphanumeric
strings which appear to represent FORTRAN variables, constants,
operators, and labels. It then passes to the parser an inter-
mediate symbol string (ISS) and a temporary symbol table
(TSTAB) . The intermediate symbol string is a list of codes
corresponding to lexical entities, and the temporary symbol

table contains the actual characters for each alphanumeric

——
Ililrt 17
£ 7
FORTRAN
source //
program
&
Disc

Parser

lexical
Entities

lexical

Scanner

Table
Generator

po103s o9 03 UOTJFRUIOFUT

Tables
in memory

46

FORTRAN
Front End %

Tables

output to

Diagnostic

y

Output
after

Routines

Figure 3:

Overview of FACES

analysis

string that could possibly be a variable. Some typical

entities that are recognized by the scanner are: logical

operator--code L, floating point constant--code F, relational

operator--code R, and "possible variable"--code V. For exam-

ple, in the statement
IF (ALPHA.EQ.BETA)X = 2.5
the scanner would form the intermediate symbol string and

temporary symbol table as below.

1SS (Intermediate Symbol String) = "V (VR V) V = F"
TSTAB (Temporary Symbol Table) = IF

ALPHA

BETA

X

Information such as that above is formed and given to the

parser for each statement in the FORTRAN source programn.

Parser

The parser is the main controlling module of the
FORTRAN Front End and handles the parsing of each statement

in the FORTRAN source program. After receiving information

47

about a statement from the scanner (in the intermediate symbol

string and the temporary symbol table), the parser determines

the statement type by the following algorithm:
1. Is there a zero-level equals sign? (an equals
sign that is not within parentheses) If no,
go to 6; if yes, go to 2.

2. 1Is there a zero-level comma? (A comma that is

not within parentheses) If no, go to 4; if
yes, go to 3.
This is a DO statement. Statement recognition
completed.
Does the statement have the form

IF ({expression)) <assignment statement) ?
If no, go to 5. If yes, this is an IF statement
and statement recognition is completed.
This is an assignment statement. Statement
recognition completed.
Determine the statement type by matching the
first four characters of the statement with a
list of special FORTRAN words (such as READ,
PRINT, COMMON, etc.) Statement recognition

completed.

After the parser has recognized the type of a statement,

it calls a routine designed to analyze statements of that

type which will pick out important information and call the

table generator to store the information. (See next section

for description of table generator.)

Program transfers are also recognized by the parser

and stored in a transition table in the form of non-normal

transition pairs. (A transition pair is a pair of state-

ment

s having a direct transfer from the first to the second.

A non-normal transition is any transition other than the

normal fall-tkrough case.) After an entire routine of the

source program has been parsed, a table is formed from the

48

