49

transition table which contains lists of all predecessors

and successors of each statement in the routine.

Table Generator

The table generator is called into action by the
parser whenever a new item of information is to be stored.
The information is organized in a set of tables (described
in [5]). Depending on the class of information to be stored
(variable occurrence, COMMON block declaration, subroutine
call, label reference, etc.), the table generator decides
where and how the item should be stored and alters the tables
accordingly.

For example, in the statement

A = B(I)
the table generator would be called three times. First the
parser would recognize that variable A was being used as
"output" to an assignment statement (appears on the left
side of an"="). The table generator would first check to
see if A had been stored in the symbol table. If it had
not, the table generator would store it there along with
information about its class (variable) and type (floating
point). An entry would then be made in the usage table
showing that A had been used as output to an assignment
statement. Next the parser would call the table generator
telling it that B was being used as a function (a guess by

the parser). The table generator would then check to see

50

if B had been stored in the symbol table. If it had not,
it would make an entry for it and assume it was a function
call. If B had already been stored in the symbol table,
it would check to see if it had been declared an array.
If so it would send this information back to the parser.
As for variable A, an entry would be made in the usage table
for the occurrence of B, this time as "input" to an assignment
statement. The parser would then call the table generator
telling it that I was being used as either a parameter or
subscript (depending on whether B was a function or an array) .
The table generator would again make sure that I had been
stored in the symbol table and would create a new entry in
the usage table.

After each routine of the user's source program has
been completely parsed, the table generator writes the set
of local tables for that routine to a permanent file to allow
access to the tables later by the diagnostic routines. After
all routines have been parsed, the global tables are written
on the file also. The information in the tables can also

be printed for user examination.

Diagnostic Routines

Each of the diagnostic routines of FACES is written
as a separate module and can be executed independently of
the other routines. Each routine, however, requires infor-

mation from some of the tables produced by the FORTRAN Front

51

End. For example, the common block alignment routine needs
access to the storage allocation table which contains infor-
mation about the way in which all common blocks are set up.
It also must reference the symbol tables from each of the
routines to be analyzed. From the combined analysis of
both the tables, the routine can compare the structure of
common blocks declared in different routines.

The parameter alignment routine needs information
about the occurrence of parameter lists from the parameter
table and information about the type and length of each para-
meter from the symbol tables. By analyzing the tables, the
routine can make comparisons between actual parameter lists
and formal parameter lists to insure that type and length
match appropriately.

The variable initialization routine finds all
occurrences of variables used in a way that assumes the
variable has a value (such as input to an assignment state-
ment). This information is obtained from analysis of the
usage table and the symbol table. Then the routine traces
a backward path (using the graph of the program which can
be derived from the node table, successor table, and pre-
decessor table) from each of the noted variable occurrences
to insure that the variable is initialized somewhere before
its use.

The variable trace routine uses a procedure similar
to the variable initialization routine. The routine takes

a certain variable in a specific statement and traces either

52

its history or future to find variables that have affected
its value or variables whose value will be affected by the
certain variable in question. (See previous section.)

Here again information from the node table, successor table,
and predecessor table is used to trace the logical flow of

the program.

The entire structure of FACES has been designed in
a modular fashion to allow as much flexibility as possible.
The FORTRAN Front End has been written as a completely
separate entity to allow its use as a general purpose data
base collector. The data base formed from it could be used
for a variety of purposes (to be described in the next
section) other than the diagnostic routines that have been
implemented. The FORTRAN Front End has been written in three
basic modules--the scanner, parser, and table generator--
to fascillitate redesign when necessary. For example, recog-
nition of a new statement type could be added to the parser
with no change being made to the scanner. Each of the diag-
nostic routines has also been designed as a separate entity

to allow the user to execute only the ones needed by him.

PROBLEMS WITH FACES

The major problems with FACES lie more in what it
does not do than in what it does do. As the system currently
exists, only four diagnostic routines are available. These

four routines may be very helpful to a programmer but they

do not begin to cover all the possibilities for program ana-
lysis. No dynamic analysis has been implemented, and the
data base collected by the FORTRAN Front End has not been
used to the fullest extent. We shall not dwell here though
on those features not included in the system. The next
section will discuss possibilities for extensions to FACES
that could solve this basic problem of limited scope.

Another problem with the FACES system is the large
amount of memory it uses. Thié problem arises from the large
tables used to store the data base for the source program.
The tables have been designed with tightly packed fields
in an attempt to use a minimum amount of space, but the amount
of information to be stored is wvast in scope. There are two
possible solutions to this problem, neither of which seems
desirable for the purposes for which the system was intended.
One solution would be to decrease the amount of information
stored and to choose a subset of functions of the entire
system to be implemented. This of course would limit the
system's ability to serve as a general-purpose data base
collector. Another solution would be to limit the size of
the programs that could be analyzed by FACES. The table
sizes could then be decreased because of the decreased upper
limit of information to be stored. This solution, however,
does not seem desirable since large programs are often in
need of automatic analysis more than =small ocnes. Thus it
seems that the large amount of memory used will remain a

problem of FACES.

53

54

Another problem of the system is that the diagnostic
routines require a large amount of auxilary storage input-
output when analyzing the tables. This problem stems mostly
from the basic organization 6f the tables. Since each routine
has its own set of local tables, a diagnostic routine which
performs analysis on a global level (such as the common block
alignment routine) must read a local table from one module,
use it as needed, and then read the same local table from
a different routine into the same space. This problem could
be solved only be reserving a large enough space in memory
to hold all local tables. As can be seen from the preceding
paragraph, the space problem is already critical in the FACES
system; thus a solution to the file input-output problem
seems unlikely.

The FACES system, like most large software systems,
has problems in its design. The th;ee largest problems of
FACES seem to be its present limited scope, the large amount
of core space it uses, and the large amount of file input-
output it requires. The first problem has many possible
solutions to be discussed in the next section. The other
problems, although somewhat undesirable, do not seem to be

serious hinderances to the system's usefulness.

POSSIBLE EXTENSIONS TGO FACES

The FACES system could be extended to a great degree

by making additions to the already existing diagnostic routines.

55

These additions should require no changes toc the FORTRAN
Front End. Since the diagnostic routines are written as
separate modules, the changes should require only a small
amount of effort.

An obvious improvement to the system would be to
extend the variable trace to the global level. This would
mean a programmer could trace the history or future of a
variable not only within subprogram boundaries but over the
entire range of a program. This would be a much more effec-
tive means of tracing value errors in large programs with
many subprograms, since it often happens that a mistake in
one subprogram affects other subprograms also.

A similar improvement would be to extend the variable
initialization routine to the global level. This would
enable the programmer to verify that all variables in the
program are initialized at some point. The extension would
involve a considerable amount of change in the present local-
oriented diagnostic routine since all variables in common
and in parameter lists would have to be traced. The new
global-oriented routine would, however, eliminate all guess-
work in verifying variable initialization.

Another diagnostic routine that could be added to
the present system is a static path trace. With this routine,
a programmer could find all possible paths leading to a
certain point in a program or all possible paths stemming
from a certain point in a program. The routine would act in

a way similar to the variable trace, but would give the

56

programmer a list of statement numbers (for each path)
rather than a set of variables. The routine could be designed
for use on a local or global level.

Three minor additions could be made to the FACES sys-
tem that might prove useful to programmers. Routines could
be added to list all user undefined functions and subroutines,
statement numbers never referenced, and segments of unreach-
able code. The list of undefined functions and subroutines
would help the user verify that he has included all neces-
sary subprograms. Statement numbers that are defined but
never referenced are not illegal in FORTRAN but may often
indicate unintentional programming slips. Sections of un-
reachable code (segments of code to which there is no pos-
sible path) are also often indications of errors or garbage
left from previous versions of the program. These three
possible additions to FACES are relatively minor features
that some compilers already include. However, these additions
could be made to FACES with very little effort and would
prove helpful in installations where the compiler does not
include all three features.

Another possibility for improving the usefulness of
FACES would;be to design a routine that could answer general
information-retrieval questions. The routine might be
equipped to answer gquestions such as:

1. In what statements does variable A appear?

2. From which subprograms and where in those

subprograms is function F called?

3. In which subprograms does common block Cl appear?
The list could go on. With this facility, a programmer could
find out details about his program without tracing through
the code. This feature would be particularly applicable to
use on an interactive system.

Questions such as those listed above might also be
useful for documentation purposes. A documentation routine
could be added to FACES that would extract from the data
base information such as common block structure, variable
usage, and subroutine structure. The information could be
printed in a report-like form to serve as a supplement to
the programmer's documentation.

Another possibility for an additional diagnostic
routine is to perform checks on array subscript ranges to
insure that references to the array do not exceed the limits
of the declared dimensions. A preliminary investigation of
the problem has already been done to check ranges on array
references whose subscripts are constant integers. For ex-
ample, in the statement

ARRAY (20) = 0
the routine would check to see if 20 is less than or equal
to the declared dimension of ARRAY. The real problem arises
though when array subscripts have variable values. The
investigation of this problem in fact would be of much more
value to program analysis since most array subscripts do at
some time have variable values. The solution to this prob-

lem would have to involve some type of interval arithmetic

57

58

in which all possible values of the variable subscript are
traced to verify that they fall within a certain range.

The information for this type of analysis is available in
the data base, but the construction of a diagnostic routine
to perform the analysis would involve a considerable amount
of effort.

The previously mentioned suggestions for extensions
to FACES have been those that would involve additions and
alterations to the diagnostic routines only. In other words,
the information is already available in the data base collect-
ed by the FORTRAN Front End, but routines are needed to
organize and extract the information appropriate to the
specific purpose.

The FACES system could be expanded even further if
additions were made to the FORTRAN Front End. Since the
Front End already scans and parses the FORTRAN code, these
additions would not have to be major overhauls but could
hopefully be added in a modular fashion to the present
Front End system. The following paragraphs will describe
the possibilities for such extensions.

At present, the FACES system does not recognize
FORTRAN FORMAT statements. The addition of FORMAT processing
routines to the Front End could provide the basis for further
expansion of the diagnostic routines to include analysis of
input and output. A useful feature might be to compare
input/output lists with their corresponding FORMAT statements

on

e

to insure that each I/0 item has a reasonable I/0 specificat

59

in the FORMAT statement. For instance, the routine could
check to see that an integer variable is output with an
integer FORMAT specification. This feature would be espec-
ially helpful in preventing input errors that can cause the
failure of an entire program. .

Another possible extension to FACES would be to in-
corporate into the system the ability to statically estimate
memory size and execution time requirements--that is, to
analyze a FORTRAN program before it is executed to estimate
the amount of memory space and execution time it will require.
Of course this feature would require knowledge of the par-
ticular computer on which the program would be run. In-
formation about the way in which each FORTRAN statement is
implemented in machine language would also be necessary.
From this information and that already collected by the
FORTRAN Front End, reasonable estimates could be made about
size and time requirements. This might help the programmer
decide if he needs to overlay part of a program or optimize
code to cut down on time requirements. The feature could
be especially helpful to programmers writing programs for
computers to which they do not have immediate access.

Dynamic analysis is another feature that could be
added to the FACES system. At present, the FORTRAN source
code is only analyzed statically, but several dynamic ana-
lysis methods could be added without great trouble. A
dynamic variable trace is one possibility that is often

found useful, but many compilers already include this fea-

60

ture. A dynamic trace of path execution might be a helpful
addition also. The frequency of execution of each path in
the program could be monitored to help the programmer find
those areas of the program that use most of the execution
time. This information would be helpful in program optimi-
zation. The dynamic path trace feature would also be help-
ful in testing the program to show the programmer areas of
code that have never been executed., The programmer could
then devise data that would cause those sections to be exe-
cuted.

A final suggestion for the expansion of FACES is to
include a method of test data generation. The most ideal
solution would be to automatically generate test data cases
that together would cause execution of all branches in the
program being tested. This procedure would involve two
basic steps: |

1. Determine a minimum set of program paths that

would cause execution of all branches in the
program.

2. Generate test data sets that would cause execu-

tion of each of those paths determined by 1.
The first step could be done by a method similar to that
described by Krause and Smith [7]. (See chapter 2 for
explanation of their method.) The automatic generation of
test data sets would require a considerable amount of addi-
tional effort. An interval arithmetic processor would have

to be employed to trace variable values back to their input

61

points. The advantages of this feature would probably be
well worth the effort, though, since program testing time
would be greatly reduced.

It can be seen that FACES has many possibilities
for useful extensions to its present set of tasks. The broad-
ranged data base collected by the FORTRAN Front End provides
the information to allow these extensions to become practical
possibilities. Although FACES is somewhat limited without
these extensions, the addition of these features could make

it a truly general-purpose FORTRAN analyzer.

CONCLUSION

The FORTRAN Automatic Code Evaluation System has
been described with attention given to its purposes, the tasks
it has accomplished, methods used in the system, problems
in its design, and possible extensions to its present abili-
ties. The system was designed to be used in validation of
large FORTRAN programs but provides a data base that can be
used for other purposes. At present the system has four diag-
nostic routines that may help a programmer find and correct
errors in a program. The FACES system has>several problems
in its design, the major one being that it does not at present
contain the wide variety of features which can be derived
from the data base. Suggestions for extensions have been
made which would enable FACES to aid in not only program
validation but also in documentation, maintenance, performance

evaluation, optimization, and structural and timing analysis.

IV. EXAMPLE OUTPUT FROM THE FORTRAN AUTOMATIC

CODE EVALUATION SYSTEM

The FORTRAN Automatic Code Evaluation System at
present has four diagnostic routines which extract information
about a user's program from the tables produced by the FORTRAN
Front End. (As mentioned in previous chapters, the FORTRAN
Front End scans and parses the user's FORTRAN code and builds
tables of information about the program which are stored on
file for later reference by the diagnostic routines.) The
four presently available diagnostic routines are the following:

1. Common block alignment routine

2. Parameter alignment routine

3. Variable initialization routine

4. Variable trace routine
Example output from each routine will be discussed in this
chapter.

For the purpose of obtaining illustrative examples,

a set of three FORTRAN routines has been designed which have
troublesome constructs that can be detected by the diagnostic
routines. (These routines appear in Figure 4.) The FORTRAN
Front End was used to analyze these routines and build tables
of information. Each of the diagnostic routines was then
executed to extract the appropriate information from the
tables. (See Appendix for a listing of the tables produced

by the FORTRAN Front End in this example.)

62

63

00Ul e 201

1 SUBHOUTINE T8 51

? DE“FRS U, KWF““?']O)vL»ORQS{}?)

3 CFMPC”/“L“(K'/AI“Hd-”FvAwH’M"A.UtLTAoIOTA
4 CPM~V415LUQK9/1Awnar(2q).v=q1.vau2

B CC“”V”/fLUCN?/N\ThVA(lﬂ,SB\.{NOEAM

A IFTeYaerueny 6oy g4 -5

] VE P2 K=leeh)

9 en Ta<waY (g =¢

1 Fas) PETATVINY ¢ VKD . FLN(T)(:A'MQ‘UELVA)
11 Cay g qLd?(Ht]h,x‘“4Ug)

12 IFeFrvecTon) oy g6 30

14 Mlirdsyaglszepn

[Caii <L49(ALLHa.kwn4uS,l)

le NE Tt

17 an CALE SLAz (rlena g wandp s

1R INCFxmz)

| e] H{F T U
en AL

HODULF ¢érg

1 SUMWCUT [nF S«oetwuwu~1.Jaa<Ay)

> CCANCM/”LULKl/M(#hAgHEIAvG\M“A‘UfLTAOYPTA
3 CCuer/MLQCK7/lAJoéY(ZU)OV\93

. CCV“CN/MLGCK}/NA'AIX(10030)cINDEXM
8 DIVEAS]TUN gﬂuH~Y<lﬂ).Ah4AY(2.3)

A NC 30 =110

7 MATHIX ([4])=n

“a 3n JAgasy{lyzpagam) w 1

9 SOEANMA 4 [Ky Ta
1n YZARKAY (1)
11 213K iNCT (A, Y) o VAND
12 22=rLnc Ty (x40
13 Phuavizl) # ¢
14 RE T
Is EN

MEUULF 360y

FLACTICH Funcli(ey.x2)
hCﬂ#CN/’LUCK]/“Lan.HéZA.G\WNA,OLLYA.FuQXLMf
CC!NFN/MLHCA:/IA;anezn).V\«;,vANZ
cC'vCN/uLOCK?/NAr-x(10.30).;gntxw

IF (FESILONGLY WUy 0o TO 50

Y200 FHA o b Ta o amwg @ Vi

Se 1C €9
S0 YEALFHA & RETA o CELTA e Y1
LFIXTal ToXz) GU 0 oay
6 DC 70 I=1420
TE vz (TAGNAY (L) . C1Y/XP .y
70 FITNYEzIL TAS [FMP

IFCINDEAM (B G, u) e wo
UC 7% K=l INPo X

ot ot gt o ot ot pr
OD\JJ‘*Q\)QOD#JX&*L‘JN-‘

7= MATSTX (] k)=av
INC Y AMzF TN g
2n b0 - cil=FTenmp
21 RETHRN
22 FAD

Figure 4: FORTRAN Test Routines

[—

64

RESULTS OF COMMON BLOCK ALIGNMENT ROUTINE

The output from the common block alignment routine
appears in Figure 5. The purpose of this routine is to check
the alignment of each common block declaration to insure that
each declaration of a specific common block is the same length,
that corresponding elements within the declarations are of
the same type, and that corresponding elements within the
declarations have the same name (if the user so chooses).

A separate listing appears for each common block in
the program being analyzed. The module number is listed
for each routine in which the common block appears. If an
error appears in the common block declaration of a specific
module, the type of error found is printed beside the module
number. (Errors are derived by comparing each common block
declaration with a "standard" common block. The "standard"
is chosen by analyzing the first three declarations of a
common block that are encountered. If two out of the three
match exactly, then the declaration for the matching common
blocks is chosen to be the standard.)

Three types of errors, called "size", "name", and
"type" can appear. In the results of the alignment check
for common block BLOCKl (see Figure 5), a "type" error appears
in module 303. By looking at the example routines, one can
see that in function FUNCT1, the sixth variable of BLOCK1
is called EPSILON (floating point variable), whereas the

corresponding variable in the standard BLOCKl is called

RESLLTS OF aLtu meENT TFEY FAR CoMM)

HLOCK LA-IFLED #8L0Cx] &
FINST meonlLe L 18Ten wiTruyT ERROR ¢

ORTAYNS THe STANDARN CUMMON < 0CK

MCOUL F NUMPe R FRrok
201
202
303 TYPE

RESLy Ig QF ALTOMENT TFST FCH COMMO HLCCK LAWFLED “4BILNCK>? @
FIRST MOl ¢ LISTER WITraUT ExKUR CONTAINS TheE STannanP CUMMON 31 0CK

MONUL» NUMBe R FRivCR
201
202 S14F
303

RESLI TS OF ALTonMENT TEST FOW COMMGN

nLCCRK LAELED “3LNCK3 @
FINDT menupce PISTED w[TrulT ERRUR ¢

UNTATNS THFE STANMAKN CUMMAN B aCK

MCDULF AuMpe R ©OFRACK
~01
202
303 NA 4E

Figure 5: Results of Common Block Alignment Routine

65

IOTA (an integer variable). Thus a "type" error exists.
(If both variables had been of the same type but had different
names, a "name" error would have appeared.)

In the results of the alignment test for common block
BLOCK2, a "size" error appears in module 202. From the exam-
ple routines, one can see that in the declaration for BLOCK2
in subroutine SUB2, VAR2 has been left off the end. This
indicates a "size" error since the common blocks are not the
same length. A "size" error would also appear if the common
blocks were the same iength but arrays within the block were
of differing lengths.

In the results of the alignment test for common block
BLOCK3, a "name" error appears in module 303. This results
from the spelling of "MATRX" in the declaration of BLOCK3 in
function FUNCT1l. In the other modules the variable is called
"MATRIX". (The name check is an optional feature of the common
block alignment routine, since some programmers do not intend
for common block elements in different routines to have the

same names.)

RESULTS OF PARAMETER ALIGNMENT ROUTINE

The results of the parameter alignment routine are
shown in Figure 6. The purpose of this routine is to check
the parameter lists of calls to all subroutine and functions
to insure that the actual parameter lists are the same size

as the formal parameter list and to insure that each actual

PARAMETER L IenmFAT WMESSAGES

YOO Mahy PARAMETFRS IN CaLl TO Si.se FRUM MUDULE 201

ARRAY LwORCS

FROw T

PARAMFTEH AU

(N CaLL 10 SLu2 fROw MOCULE 21 DIFFERS TA DIMENGIONS
COPRESRANIIING Frumal PARAMETER,
2 In Call. TC FUNCTL FWUM MCOULF 202 1S OF wRUNG TYPE.

END CF PakamETFR ALIGAWENT CrHECK

Figure 6:

Results of Parameter Alignment Routine

67

68

parameter is of the same type as its corresponding formal
parameter,

In the results of this example test, three errors
appear. The first message indicates that there are too many
parameters in a call to subroutine SUB2 from subroutine
TEST1. One can see that in line 15 of TEST1l, the call to
SUB2 has three parameters. The formal parameter list,
however, only has two parameters. A similar message would be
printed if the formal parameter list had more parameters
than the actual parameter list.

The second message warns that the array "LWORDS",
in a call to subroutine SUB2 from subroutine TEST1, differs
in dimensions from its corresponding formal parameter. In
the formal parameter list for SUB2, the second parameter
"JARRAY" is a linear array of length 10. The actual parameter
"LWORDS" in line 17 of TEST1 is a linear array of length 12.
This does not constitute a FORTRAN error, but may be an
unintentional slip by the programmer. The message serves as
a warning rather than an error.

The third parameter alignment message warns that the
second parameter in a call to function FUNCT1l from subroutine
SUB2 is not the same type as its corresponding formal para-
meter. The actual parameter "O0" in line 12 of SUB2 is an
integer constant, whereas the corresponding formal parameter

"X2" is a floating point variable.

RESULTS OF VARIABLE INITIALIZATION ROUTINE

The variable initialization routine checks the ini-
tialization of variables on a modular level. That is, for
each module requested by the user, the variable initializa-
tion routine will check all variables in that routine to see
if the variables are properly initialized within the bounds of
that specific routine. Variables which appear as formal
parameters or as common block elements are assumed to be
initialized.

Two types of messages may appear. One message indi-
cates that a variable is never initialized; that is, the
variable is used in the routine but is never assigned a value.
The second type of message indicates that a variable may be
referenced before being initialized. This message is caused
by two situations--one, when the variable appears as an
actual parameter without being initialized, and second, when
a path exists through the routine in which the variable may
be referenced before being assigned a value. In the first
case, it is not known whether the variable is being used as
an input or output parameter; thus the message is meant as
a warning to the programmer to make sure the parameter is
being used as an output parameter. In the second case, the
variable is given a value somewhere within the routine, but
a possible path exists through the program in which the varia-
ble would be used before being assigned the value.

The results of the variable initialization check

69

RESLI TS GF INTT1A) [Z8TICH CRFCK FUR #ODULE TEST)

THF VAHTARLF » /FTa IS NEVER INTTIALIZEN

-2
THE VAGTIABLE o 1 ® MAY BE HEFEWEACT) BEFARE BEING INITTA<ZEN,
THE VARTARLE o | wnrRDS ® MAY HF REFEWEACED HEFIRE PEInG INITTALTZED.,.
THE VAGTABLE o kwenlS @ MAY HE nEFERENCED HBEFNRE BEING INITIALTZENR.

INTTTALIZATION CHECK ~AS BEEN MLDE ON EaCr VAR IABRLE

RESLLTS OF INTTTALIZATICON ChECK FUN MOUGLE FuneTy

THFE VARTABRLE @ FIFmMP # HaY BE NEFERENCED BEFARE wEING INITIALIZFR.

INTTTALTZATION rHFCK wAS REEN MaUE ~n EaCk Vaulagi £

Figure 7: Results of Variable Initialization Check

70

appear in Figure 7. For module TEST1, four messages appear.
The first message indicates that variable "ZETA" is never
initialized. One can see that in line 14 of TEST1, "ZETA"
is used as input to an assignment statement. However, it is
never assigned a value. The other three nessages produced
for subroutine TEST1 warn that variables "I", "LWORDS",

and "KWORDS" may be referenced before being initialized.
Since the variables are used as actual parameters to subrou-
tine SUB2, it is not known whether they should have been
assigned a value previous to being used as parameters.

A single message is produced for module FUNCT]1
warning that variable 'YTEMP" may be referenced before being
initialized. This message is generated even though WTEMP" is
assigned a value in line 13, since a path exists from line
10 to line 20 in which "FTEMP" is referenced without being

assigned a value.

RESULTS OF VARIABLE TRACE ROUTINE

The variable trace routine is used to trace the his-
tory (backward trace) or future (forward trace) of a varia-
ble at a particular point in a routine. In the examples
listed in Figure 8, a backward trace is shown for variable
"PARAM1" in subroutine SUB2 and for variable "TEMP" in func-
tion FUNCT1l. In the backward trace, all variables that could
have possibly affected the value of the variable prior to the

execution of a particular node are listed. A forward trace

TARGET ~0ODULE

FUl PATRS = SUSP

THE vabLug CF evabavl & a7 CHE 13 ¢an BE AFFFCTED BY THE FOLLOWING

varlanLE

ARRAY
neki fa
FUNCT
FLNCT)
(AMMa
vayve

NCDE (F USE

P -
A e DD

-t pons ot
1a) Cas NS G

TARGETY o .ULLE FOvw WATRe = FuUrnCT

THE VALt CF #
VARI;H-LF

ALpMA
AL MM
Mt TA
HETA
nEL i
GAMM Y,
{abktay
I
VA
VA»:L
X1

x?

Y

TARGET +COULE
FROM MUny

vaslanle

FlrEmp
FL-CT
A X
MpaTreya
TEMP

Y

Figure 8:

TEMpP e 5T HCLE 13 CAN BE AFFFCTED BY TWE FOLLOWING

NCDE CF Utk

R
~ i~ D D~

'y

—_
[FUOR WV}

cJyi? FATRE » Fu.CTl
7 THE VALl ARLE @GAVMA &« CAN AFFECT TrE FOLLOWING VARTABLES

NCLDE OF ust

P4
2n
18
i)
13

7

Results of Variable Trace Routine

72

is shown for variable "GAMMA" beginning at line 7 in function
FUNCT1. All variables that may be affected by that variable

after execution of line 7 are listed.

These examples have served merely as an illustration
of the types of messages that the diagnostic routines can
produce. Although the errors at times seem obvious in these
three small rdutines, it can be seen that the output from
FACES may prove to be very helpful in analyzing large programs
in which dangerous constructs can be camouflaged in pages of

FORTRAN code.

73

V. CONCLUSION

The complexity of large software systems has brought
about the need for some type of automatic program analysis.
The ocut~dated method of searching through pages of code
trying to find errors, verify program correctness, document
programs, and modify existing programs is no longer effective.
Automatic program analysis seems to be a plausible alterna-
tive to aid in this process.

Automatic program analysis can help a programmer in
several ways, such as program validation, structural and
timing analysis, documentation, performance evaluation, and
maintenance. An automatic aid can be useful to these pur-
poses by extracting and displaying constructs in a program
that might not be obvious to the human observer. Both
dynamic and static methods of analysis can be used, depend-
ing on the particular analysis function.

The problem of automatic program analysis can be
approached in two ways. One way is to develop specific
analysis programs that perform a limited service for the
programmer. A second approach is to develop a general pur-
pose analysis system to provide a variety of services at the
option of the user. The specific analysis programs have the
advantage that they can be easily written and can be executed
with a small amount of time and memory requirements. If a
programmer has a limited need for a particular service, the

limited analysis system can be used with little trouble.

74

The disadvantage of a limited system is that a programmer
who needs a wide variety of analysis functions must learn
how to use many different systems and use each one Sseparately.

A general purpose analysis system can offer a variety
of services to a user in one package. The system is likely
to be bulky (in terms of nemory and time requirements), but
its total size and time requirements will likely be less than
the sum of all the specific analysis systems that would be
needed to perform all of the services of the general purpose
analyzer. The general purpose analyzer is built around a
data base which contains a large amount of information about
the program being analyzed. The data base need only be
collected once, though, and can be referenced for a wide
variety of purposes.

Some previous work has been done in the area of
automatic program analysis. Most of it, however, has been
directed toward program validation, particularly in the area
of automatic aid to testing programs. Most of the previous
work that has been done has made use of dynamic analysis for
a specific function.

A FORTRAN Automatic Code Evaluation System has been
developed which involves static analysis of programs through
the collection of a large data base. FACES is designed to
provide a broad scope of analysis functions using both static
and dynamic methods, building on the idea of providing one
general purpose package to aid in Program analysis.

Automatic program analyzers at present are still in

76

the early stages of development and experimentation. One

of the major problems in developing them lies in defining
goals, because there are no set rules or patterns that make

a program "correct". In other words, we are not always sure
what to analyze, much less how to do it automatically. Be-
cause the human environment in which programs are run is
always subject to an infinite supply of data, many of the
questions which we wish to ask about a program become open-
ended. We find that we can only begin to insure a program's
correctness under a given, and of course limited, situation.
Once a clear set of goals is established, more progress can
be made, even though we are still faced with the problem of
discovering methods of satisfying the specifications. The
author hopes that this thesis has served to organize some

of the basic goals with which one might begin to dewelop an
automatic aid to program evaluation, documentation, and main-
tenance and to discuss some of the methods by which the gcals

may be reached.

APPENDIX

Tables Produced by FORTRAN Front End

for Test Routines

77

78

LOCAaL TARLES GEMERATED FUR ~OULLE 201

SYMHOL TaBLE

THIS Ta-1E COLTAING ALL NANES ANF LASELS TwaTl APHEAX IN EACH MONGLE
NAMES ACF PASHLCADFU 400 aFPEak wlid FOLLONING €O0FS AND BGINTEHS

TYPE rures CLASS Cores

feeATER) K N=aBROCREM Ay
TaegpLnalhg POLLT TeeSUnnOLT T navE
Pe~pliint r FYECISION 2==STATEVENT +uUNCTION NaME
JewlCrrLE X AwwdIRAY Nauc

s==t Crileal 4e=FUNCTIUN » anE
Seongiilioag SwolaREL

é==VAR]ARLE
7==CCMMOA O "CK AAME

USETAR TOP POL TFH.=POINTS T2 FIRST c~lAY OF Naums IN USAGF TAHLF

USETam w0 IT0M 2 IATER=bBCINTS 10 , [nST EnTRY 9F ApME IN S, Gy Tegts

STagIn Plh,==kny T IC LCECATION CF “ounp [N STavarfE alLoCaTinn TadLE [F ~0¥E 15 a Crovmnt vawlao §,
04 TO EnTvy [N Barigo Ir SUke R FHUNCTION AaMp

aLTap Pl ==P0gnTS 1o (ncallin Of Navg [N aHRAY LENGTH TaRLF [F AavfF IS AN AR-aY,.

INDE & N AME Typr CLASS usgTan Tae pyRr, USFTAR AnT, BT, STal.Ti 0T, ALLTAR OTR,
20 VAN 1] 13 kL L 1}
21 Vawr3 1 & 14 24 q Py
47 ZETA 1 6 33 39 0 n
93 mLOrKd] 7 15 15 n 0
185 20 s 10009 20 22 n a
262 3 n [} 21 24 0 n
ZRA Fin=T,] ry 29 23 2 P
439 NELya 1 [} 9 31 3 n
492 TFsry 5 1 2 2 o a
5°6 NAMYA 1 [}] 39 “ n
S7% Taw=ay A 3 12 21 7 “
T70 SETs 1 6 k4 35 3 [}
772 I A [43 43 0 n
928 val-fx o 3 16 14 10 5

113 LYaGUS N 3 S “7 o 3

1270 (YR Y \ [6 ey > 0

1349 L LIRIVEY n 3 3 “? 0 2

1394 .07l 5 7 5 L) n a9

1430 ’5 S 1001 19 25 a n

1475 1ot " ° 19 14 . n

1643 ~LOAK? S 7 11 1 0 0

1056 QUM g i 32 5 5 o

1701 [T] n [} 17 “ B} 0

1729 30 5 i00y7 36 ') 6 0

79

LSAGE 1auLE

THIS Taumig CONTAINS ONF EMTRY FOK Earm AFPFARA cF NF 4 NAWE IN & MODULE. Falr FNTDY fnataiNS THF
STATEENT A an WhiCr Trf AMp QPPEARS [N THE SNUNCE LISTIng ama a USE COPE (NATCATING wOw

THE MaMy J€ HSey [n ThaT STATerERT e p ack gnTRY [S LiNggn Ta Tup PREVIOUS aun wpxl FNTR{FS nf

THE SaMe ha“F 2Y aCowatg aug FOhmaRr POINIERSG., THE FIRST Fuluy 0F 4 nNaME COMTAING 4 POINIFR

10 Tre *akg I Tag SYM.CL TAQLE e

AACK PUIrTEN«aOINTS TN FREVIOUS ENTuy QF namMg IN HSAGE TastE 0K 10 NAMF In SYMROL TARLF
FORmAND vO1LTE tv=PeINTS Ta ugkT gnIRY of NAME TN USAGE TaPLFs FAR LaST EnTHYs FOR4aRN
FolrTER IS v,
wpochd TER 15 0. FIR, FUINTS TU cymMwal TAMLFE
0 “HEL. HACK POINTER PCINTS TO USage Tagt €

INDE X STateMy a0, LSE Cope HP=CODE HACK PR, FORARN PTR,
1 o 48 0 0 a
2 1 0 1 492 n
3 2 13 1 1380 S
4 2 13 1 113a .7
] 3 0 1 1394 n
6 3 11 1 1270 37
7 3 11 1 77n 2k
] 3 11 1 506 3n
9 3 11 1 439 1
1a 3 11 1 1475 I8
1 4 ¢ 1 1661 "
12 4 11 1 579 23
13 s 11 1 20 27
14 4 11 1 21 2n
15 k] 0 1 93 o
le S 11 1 92R i}
17 S 11 1 170% 48
18 [20] Y)
19 7 10 1 1630 25
20 8 2% 1 188 22
21 8 S 1 262 24
22 9] 0 2n a
21 S 1 0 12 a
24 9 10575 0 21 0
25 10 S 0 19 a
26 10 1 0 1 31

.27 10 2 0 11 38
28 10 2 1] 14 0
29 10 2 1 28R n
In 10 18 ¢ R 0
3 10 1t 0 L] . a
32 11 21 1 1654 “n
33 1l 19 0 26 i
34 1l 19] 3 “?
35 12 20 (1] 37 n
3k 13 10 1 1729 as
37 16 1 0 L) “y
38 14 H 0 27 n
39 14 2 1 %4 n
40 15 21 0 3z “5
41 15 19 0 37 4k
LT 1% 18] 34 o
43 15 19 1 172 L]
LY 17 9 0 kL 0
.5 17 21 0 4n n
Y 17 19 0 41 [
a7 17 19 0 'S 0
48 18 1 0 1 %4 0

80

ARRAY LEAGTH TanLE

THEIS TAait CONTATNG OIVEFANGIONS FrR Al L AKRAYS ThaT APPEAR tni A MANYLE, E&fW EnTRy ™
THIS TasLE 1S SOINTED T RY THE aLTay POINTEHR OF THE AQWAY MaME TN THE SYMQQOL Tanlr,

TNOE x DIM, | oM, 2 rim, 3
1 5 1 1
2 10 1 1
3 12 1 1
4 2n 1 1
-] 10 39 1

TRANSITION PATHS TABLS

s0n00 1
[7
6 8
9 8
7 10
9 10

11 12
12 13
12 14
18 16
13 17
17 18
11 innoo
15 inopo
17 lngay
16 2nnng
19 2n0n0

20 3non0

81

NOOF TABLE
STATEMT NO. cTATEMT TYFF USETAE pIR, SUCCFsS, PIR, SUCCESS. NfYe pefrD, PTa, SHED. NG

1 3n 2 2 1 2 1
? 28 3 3 1 3 1
2 36 5 4 1 4 1
) k1 1y 5 1 5 1
L 36 . 15 [1 L] 1
A Y] 18 7 ? 7 1
b4 45 19 9 1 L} 1
A 53 én 10 1 9 2.
9 52 22 1 2 11 1
in 52 25 13 1 12 2
11 34 32 14 2 14 1
%4 in 35 16 2 13 1
i3 a5 36 18 1 16 1
la S2 37 19 1 17 i
is 34 4n 20 2 14 1
iA 51 0 22 1 19 1
17 34 44 23 ? 20 1
18 52 48 25 1 21 1B
lo 51 0 26 1 »2 1
én 14 0 27 1 9 0
INCF X SUACEFSSOR TARLE PRENECESSOR TaALr
1 27 22
4 2 Snooo
3 3 1
4 4 2
g) 3
[} (-] 4
7 7 S
[8 [}
9 10 [
in 9 9
11 8 8
12 10 7
13 11 9
16 12000 10
15 t2 11
16 13 12
17 14 12
18 17 1s
19 15 18
20 1n0n0 13
21 14 17
22 2+000 18
23 1~0ng 0
24 18 [}
2s 19 3}
26 21000 0
27 3n0no]

82

Cn Lr0P TABLF

"0, Le«BrL PR, INCEY P10, VP=nnrg INTY, vaLUF VP=r"DE TEoM, valLnie VPurniE [NAREME T
9 2] n + o n . 0 a . s
L) 185 262 n . 1 n N a0 0 . \

STrRAGE ALLUCATIAN Targg

THIC YA £ CONTAING LTISTC OF ALL COMvON VARTAGQIFS IN ALL vONUILFS AN THETR AGSHATATEA whaD
LENGTHS, CHE enTHY IS ~anE gaCM 1IMe A COMMON VAR, 1S DEFLANED Tr a COMMON ALNeK,

CNTAR PTR,ePNr TS To CaNF UF CUMMUN R{ OCK [N COUMAN NAME TAHLE

SYMTS2 ETH,==Pr]iTe T vaRTARLE NAME I8N SYvani T rRLE

STARTING LOCATIUN=oInCTrATES STOnAUE STakTyus 10FATION HELATIVE Tr FURLENT rAMMON 0| ACK
NOe Crp wORES==TOT. UL»~eASTUN CF VARTaHLE

TNDE X CNTsy TR, cywTay Pla, §TAQT { 0C. N, OF wns,
1 - 11 0 a
? > 1270 1 1
ki 2 770 2 1
4 > 506 k] 1
s 2 4139 4 1
& > 147S L] 1
7 1 575 1 20
] k] 20 1 1
9 1 21 27 1

10 4 928 1 109
11 A 1701 nt 1

LOCAL TARLES GENFRATED Fug »QOULE

SYMBOL

THIS Tantf CONTATNG aLL NAWES ANP LASELS TwaT
NAMFS A2F FASH.CNNFD arn aPPEaR wlln EOLLOWING

TYPF cOP: S
ge=fATE ¢t R
I=epiLnatine POINT
PeenCiidi b PHECTSTON
AewprCuPip X

deni Chlral

Se=NF TR

CLASS CCrts

NewPROGK A

M

‘laMe

P==SURRCLT INe sywE
2=aSTATEVENT £HNCTIAN » gug
3—-AUVAY feptic

A-~FUNCTTON » aup

S==LaHEL

&-=VaRlaplE

7==CLMMCN g0k NAME

22

YARLE

\PPEAR IN FaCwH MOnLE
CODES AND PLINTEWS

MSETAY TCP POT. TFQeaPRINTS Tr FISST entay CF NAME IN USAGF YaptF

USETAR wOTYIM DOINTEH=2PrIATS TO FIRST salny

STapta PTH,==Pr[uTe 1 LOCATION 0F ramp
0u Ty EnTeY [a ocakTadn e Sup. AN EUNCTION mamp

ALTar PTB,-=Pa¢NTS T Lecallnk Ce Navg [N ARR

INDEX AAME Typr
2n VAR
21 VAL
47 PafaMl
93 HwLO~Ky

28r FUNAT,
29n Y

3n3 IY:1-7%7
32n JARAY
439 NELTA
g fAMVA
Sac Y

578 TAR~say
770 HET 4
172 1

928 “ATrlx

1i9g 71

127n ALPva

1394 “LO~K)

1448 ’2

1475 0T

1643 EIN Ll &)

1654 SHHD

17m) INpE Xy

1729 19

1
1
1
S
1
1
1
a
1
1
1
n
1
a
a
1
t
5
1
lal
s
S
Il
S

cLASS

i00n

QT NPT NCOWOOC WP WWRPE~NOO G

HSETAR Tnp PIR,

13
37
3
14
34
31
13
4
9
A
28
12
7
20

OF NAME [N 1184AF Trar
[N STAang ALLNCATIAN Taape (f

AY LENGTM TaoUr ¢ Naur IS ab a0y,

13
a7
' al
14
19
35
32

HSFTAR 3nT, pis,

v

SO0 I PRIDIDVIIODISNINIADID IS D 39 »

-

TAME PR 4 Cowvunkg va-“traa;p,

STaLTa oTa,

QOQOOQOQQUOJNQOO’UOQOOOG

83

ALTAR pra,

84

USAGE raR(F

THIS 401 E CONTAING ONF EMTRY FOL EArH APPEAQACEE AF A navE [N & MOPULE, FACH ENTey rAvTAINS vur
STATEMENT ROy i WhlICh ThF damE APPFakg IN THE SAUACE LISTING AN~ A USE (Onp IMATCTINA wna

THE AaMe 1€ UScp [n ThyT STatevprle sacye pnTuy IS LINKEN Tn Tup 20pvians ann sexT Futures np

THE Sa™Me Ma™E oY HACR@WAKLD Aiir B OGWAHA POINTERS, ThE FIRST guTuv ar & NAME CANTAING 4 PgnTpk

T0 Trg PaPE Ik Tup SYvang Tagte.

RACK PUTLTEH..CUINTS 1A FREVIOLS ENTRY OF nave v uSagre TARLE 0K TN naMp In SYuant TaRLE
FORWARY POINTE =abrINTe TO NEXT ENIRY np NAME tN USAGE TaslLF. #0R LasST gnTuv, LOLEFT
PnisTFR 15 0,
APt CNEuu] onf RACK PTS, POINTS 1O aywacl Tanr g
0 *HEN waCK PrInTER PCINIDS 10 USAGE Tanlp

TNDE X STaTeMy O, USE CORE HP=CONE 8aCx Pra, FNRwARN Pru,
1 i} 43 0 n n
4 1 0 1 1654 o
3 1 17 1 67 2k
4 1 17 1 azn 17
5 2 0 1 1394 n
é 2 11 1 1271 a
7 2 11 1 770 n
L] 2 11 1 Sok 29
9 2 11 1 439 3n
10 2 11 1 1478 n
11 3 0 1 1641 n
1?2 3 11 1 LRA n
13 3 11 1 20 n
14 4 0 1 91 . n
15 4 11 1 92R 21
ie 4 11 1 1701 0
17 L} 13 0 4 24
1A L] 13 1 30% 3z
19 & 2s 1 1729 23

20 6 5 1 172 2>
21 ? 1 0 18 n
22 ? 10928 0 2n 2%
23] 0 19 "
24] 0 17 0
2s 8 10320 0 22 27
26 8 2 0 3 L}
27 A 2 0 2% "
2R 9 1 1 545 is
29 9 2 [} o a
3n 9 2 0 @ n
k3 1n 1 1 290 34
32 to 2 0 i n
13 11 1 1 1199 4>
3a 1l 2 1 2819 39
35 11 18 0 29 an
35 11 1g n kR a
37 1 2 1 21 b
38 12 1 1 1449 49
39 12 2 0 34 L}
40 12 18] 3s n
A1 13 1 0 24 n
a2 13 2 4] n n
43 13 2 0 39 n

AHRAY LENGTH TanLE

THIS TASE COMTAINS DIVFARTIONS FCR ALL ARRAYS THAT 8PPEAR W A MANHLE, EAfH FHTRY 1w
THIS TAutLE IS CUINTED Tn AY THE aLTan POINTER NF THE ARKAY MAME M TeE SYMang

TaRlLc,
INDF X DM, 1 OIM, 2 cimM, 3
i S 1 1
2 20 1 1
3 10 30 1
4 10 1 1
5 2 3 1

TRANSITION PAYRS TABLF

€0n00 1
8 [}
8 9
14 2n0n0

15 3n000

NONE TABLE

STAYEMT ro, eTATFMT TYPF USETAB pTwn, SUCCrss, PTa, [UCCF S8 N0, nQFN, PTo, 0qfil, snm,

: 30 2 2 1 2 1
4 36 S 3 1 3 1
3 36 11 4 1 4 |
4 36 14 5 1 5 1
< 28 17 é 1 6 1
] 53 19 7 1 7 2
? 52 21 8 1 Q i
L] 52 23 9 2 i 1
9 52 P43l 11 1 11 i
1n 52 3 12 1 12 1
n 52 33 13 1 13 1
12 52 38 14 1 is 1
[%] 52 41 15 1 15 i
la 51 [+] 16 1 1A 1
1= 14 0 17 1 n n

InEFX SUrCFSSOR TARLE PRENECESSOR TAaLF

1 17 16

2 2 50000

3 3 1

4 4 2

5 S 3

LY L) L}

7 7]

] L] S

9 6 s

10 9 7

it 10 8

12 11 9

13 12 10

14 13 i

15 14 12

18 28000 i3

17 3n000 o

87

£ LrOP TABLF

&1, MO, LBl PTR, INCEYXY PTI, VParnnE INTT, VALUF VP=rnfE TEaM, vaLure VP.rANE [NARENENT
v 2 M n . 0 n . 0 0 . a
[1729 172 0 . 1 n . 0] . 1

STORAGE AMLLUCATICN TAKLE

THEe TAGLE CONTAING L T6TS CF ALL COomMwON VARTARLFS TN ALL YARIILES AR THEIR AGSArTATER WhOD
LENGTHS, CVE ewTay IS vanE £aACH Pive a4 cOMMON VAR, 1S DECLARED IN & COwMOA BLNMX,

ENTAR Plh ==P0rnTs TO navF UF COVMON HLOCK [N rOvMAN NaME TAHLE

QYuTAR OTR,==P~147< TC VvpPLASLE rAME IN gyvuay TaRtE

STarT{ne LOCATTUN==INGTCATES STORAGE STasT{NG LNCcATIUN RELATIVE Tn cURNEST CAMMAN a] NCK
NO. CF WOURNS==70Tal UIwrASTUN CF Valrtange

INDEX CNTAB PTR, sYynTaR PIR, START 1.0C. nm, OF wne,
1 o 10] n
2 € 1270 1 1
3 € 770 > 1
. 3 s06 3 i
3 = 439 4 1
6 & 1479 [1
7 ¢ 575 1 21
a 2 2e 21 1
9 ? 928 1 101
10] 1701 In 1

88

LOCAI, TARLES GENERATED FUR wODLLE 303

SYMROL TARLE

THIS TamE CONTATNE ALL MNAREGC ANP LAAELS THAT APPFAR [N EACH MNOMLF,
NAMFS ADE RASH.CIDFD avD aPYgak wIlH FOLLOWING cODFS AND SCINTFRES

TYPF CONFS cLass COres

Aemw INTEAER A==PROCHAM Natp
je=pLnaTAr PRt t==SUREOULT [Me » ANE .
ZeaNCrinl§f BECTISTON 2e=STATENENT FUNCTION NAME
JeecCPLE X J==AdRAY Nauc

bwet Crilral 4mmFURCTTUN A aME
Sempfiioal CeelAREL

e==VaRiaulE
T==CrMMCN BL CK NANME

HISETAR TOP PO TERLPCINTR T FIRST rATHY CF MaMc [N USAGE TaA s

DSETan wOVTOM COINTER=-OGTINTS TQ FIRST gATRY AF s~ auE IN H€anF Tra g

SYALTH WTk,wePr]vTe TC L rCaltON AF Sarg N STADAAF ALLNCATINAN Tall® [F “AME TS 2 £ uuny VASTAR P,
0o 10 EnTuY TN PakTasd 1F SiyRe NR v CTION NavFE

ALTAP PTO,=«PnInTS T {~ealiAN OF Mave IN ARRAY LENGTH TaBIF (5 ~ave IS AN aBwav,

INDFE X AAME Tyer cLASS USETAR Tae pPIR, HEFETAA AnTY, plo, STaL T o¥2, AL TaR prTa,
2n VAR, 1 L] 13 1 a n
21 VaH3 1 6 14 14 9 9
93 4LNeK3 bl 7 is 15] n
15% 15 & 10018 S0 <3 4 n

159 X2 1 6 L3 L¥ n 0

262 "] & S1 S35 A f

Z2RR Fumn~Ty 1 L3 2 AN 1 n

e9n Y 1 [29 LT) 0

433 NELTA 1 & Q 19 5 a

654 "y s 10020 34 &3 a n

Snk GAMuA 1 [L] 23 4 n

533 VAT n 3 16 14 19 3

5§75 [Apasy n 3 12 9 7 2

Tnq In b 10014 s Y] L] n

7 HETA 1 [} 7 4k 1 n

7712 ! 0) 17 an " n
871n £PS 1L AN 1 6 10 1R 3 [

92r “aT [L] 4 54 Sa4 £ 1]

954 50 1 10012 25 15) 0

1219 S0 S 10009 19 7k n n

127¢ tP.a l 6 L] 24 4 n

1360 TEma 1 [3a [%4 4 9

1394 “L 07K S 7 5 3 " "

141 FTEP 1 6 45 &1 n 0

1687 “ 0AR 2 5 7 11 11] L]

170y THOE Rt b .} 17 87 11 9

17n9 i 1 [3 4l N n

USAGE T1anLE

THIG YAQIE CONTAING QOAF FNTHY FCR EAarM APPFARNASCE nf A NAVE IN A uCnULE, FACH ENTRY FAGTATNS TWF
STATEMEST Ay 1A wWhiCh TeE NAME AMPEanNe N THE QAURCE 1 ISTING AMA 4 HSE CORF (MRICsTYIVN WM

THE Na¥e 1S UScen In That STATErErTe pack FNTAY 1S LINKEp Tn Tup PYpEVIO S akin nie T enT01eS nF

THE Sate Na“E of paChwavn aNm FURwARS PAINTEAS, TRE FIHST gnlTay nF & NaME CONTAINS 4 OnNTER

TO THe ~aaME IN Tup SYMOOL TASLE.

BACK PUOTHTEHLLPOINTS Tr POEVIOLS ENTIY OF AAMF TN HSAGE TARLFE OR Y0 wnave Ia Syupnl TahLr
FOAWARY POTNTEI=<PAINTS T ngXT gNIQY OF NauF TN USAGE TanLFe FIR LaST ENTRYs £0QwaARN
Enintba 18 0,
BPoCCNE-~] ~HEA “aCK PTR, FOINTS TO <ymucl TaRLE
0 *HE™ aark PetATER POLIMED 10 uSage Taalg

INOF X §TavesMt nO, LSt coOpE AP=CONE Halk PTR, FrowARY PTR,
1 0 61 0] n
2 1 0 1 FLL 6n
3 1 16 1 1700 32
4 1 1¢ 1 159 Kk
L3 2 0 i 1394 A
[3 2 11 1 1271 21
7 2 11 1 170 2?
e 4 11 1 So% 23
L] 2 11 1 43¢ 3n
1o 2 11 1 R7n 1a
11 3 0 1 1667 A
1? 3 11 1 575 39
13 3 11 1 20 24
14 3 11 1 21 a
1c 4 0 1 91 °
16 L} 11 i £33 ¢
17 4 11 i 1701 4Q
in 5 20 3} in "
19 [} 10 1 1219 24
2n 7 1 1 291 27
21 7 2 (] L} 28
22 7 2 0 7 29
23 7 2 0 L] a
24 7 2 0 11 i
2%] 10 1 964 as
26 S 9 0 19 a
27 3 1 0 2n [
FL] 9 H 0 21 n
29 9 4 0 22 an
30 9 Fd 0 9 n
3N 9 2 o 24 n
32 10 20 0 3 &
33 10 20 0 4 ')
34 11 10 1 454 X
s 12 S 0 2% ~
kL) 12 2% 1 709 as
37 12 5 1 772 4r
38 13 1 1 13648 a7
39 13 2 a9 1?2 n
Ap 13 10575 0 37 "
41 13 4 0 » "
a2 13 2 [\ N n
L) 13 2 0 27 Sa
Y 14 S [V 34 1
4% 14, 1 1 1411 5a
46 14 2 (1] 29 n
(%4 14 2 0 30 B}
48 1% 20 0 17 L
49 14 10] 34 39
5n 1?7 25 1 155 %3
51 17 s 1 262 5
%2 17 7 0 'L 57
53 18 S 0 L1 [
54 1R Q 1 924 L}
55 18 14 0 S A
sS4 18 1¢ ° 41 "
87 19 1 1] g2 »
LY 19 2 0 45 L

s %9 2N 9 [} 49)
80 20 1 0 ? "
61 20 2 0 s 0

AMRAY LENGTH TARLE

THIG TANLE CONTAINS DIvEASIUNG FCHR A1LL AFRAYS THAT APPFEAR T 4 yanuLE, EArH EsTRY o
THIG TauLE 1S 20INTED 10 nuY THE ALTaa POINTER OF THE ARRAY MaME [N THE SY¥anL Tadle.

{NDE X oIM, 1 ntv, 2 cir, 3

i 3 1 1
2 20 1 1
3 10 3o 1

TRAASITION PATRS TABLF

50000 1
& [}
5 7
6 9

10 11
8 12
10 12
16 12
16 15
19 16
15 17
18 17
18 19
11 20
16 20
21 gnngo

22 3n0n0

STATEMT NO,

OD AR W

¢TATEMT TYPE

27
36
36
36
io
45
52
45
52
1o
45
53
S2
52
io
45
53
52
S$2
52
S1
14

INCFX

bt
-3 OB LIS LN

[e RN
DD NIN LN

n oo
D

~N
N

NN N NN
BN IN S W

USETAY oTR,

2

-3
11
15
1R
19
2q
25
26
32
34
35
38
'
48
49
So
53
87
59

0

0

?8

b e N} e bt o e
PWON=IN D ONIN S WN

NONE TAMSLE

SUCArRsSS,

SU~CESSOR TaRLE

Pia, QUCLFSSe NO»s

O N N e e e I

FREDECESSOR Taalr

27
51000

) o s ot b b ot bes nk h bt ot s et
DOWVRr BABANS W SDIDOOO NN E LN -

oRFEN, PTn,

QT NN LN

91

eREN. vA,

P P e R el i

ST.

N,

17

pn LA0P TABLF

92

LeB8EL PIR, INCEY PT, VP=nNE INIT. VALUF Vp~=rn0F TEDM, valtiF VParnANE INCRFMENT
3 0 a ¢ [} n * 4] 4] » a

79 172 a ® 1 n * on 0 . 1

155 202 L] . 1 1 . 1701 0 . i

eTrHAGE ALLOCATICN TrrLE

tHIg TauiE CONTATNE L Te7¢ CF ALL COMuON VARTARLFS TN ALL VEMILE G AAR THEIR ACSAATATEA 4D
LENGTAS. CE cNTRY 18 wank gaCr TIME s COMMON VAR, IS PECLAMER (M & COMON aLrrK.

eNTak Pl e=PniNTS TO * AVF OF CONMOM HLOCK TN FNuMNN NAME TastF

GYMTAG OTR,==P 111Tc Tf VaO[ASLE AaME I% SYVROL TARLF

gTanT e LOCAT IO == CTcaTES STCRAvE STakTmg LOCATICN weATIVE To cURMENT caMMON 2 N0k
NOo CF “CHPES==TOTAL UIVFASTUN CF VRRTARLE

INDE 2 ENT8 PIR, sysTag PTa, START 1.0Ce NP, OF NS,
1 - 11 [} n
2 a 1270 1 1
k] a 770 ? 1
4 @ s06 3 1
< o 439 4 1
[L] 87¢ s 1
T L] 575 t 2n
A a 20 21 1
q 2 21 22 1

1n i~ 533 1 300
1 1- 1701 nt 1

93

GLORAL TadLE®

CIRErToRY

THIS TAULE LISYS NAMES NF ALL MOrULES IN SYSTEY ALNNG WITH aM aSSTANED “0DLLE NA, 4NA CONE.,

INDF X vONUI E NaME FILE NIMBE R
48 TEST 1 201
85 gz 2 202
95 FUNCT 3 LR

COWMMCN NBME Tau(F

THIC Taarf CONTATAG Nawrs CF ALL CUMYON alOcKsg Trn THE SyS&Teu, 0OAF ERTCY e vane
FOR EACH DECLAZATINAN CE A CUMMCA plnrx, FOINTCRS TO THE TAP ann AATIOY OF THE LIST nE Vallanles
IN Tee FnMMON SEAeK pFRe <TCH€O wiim crem EATRY,

STALTa TOP PTR «uPrINTCcQ 10 FIRST VARTAHLE OF cOVMAN B NCK TN STARAAE AL LNAATINAM TaopF
STapta w0OTTOM T eapGrnieh T0 LaST vatlaplF NF rOMMON pliew 11 STROaRc alpdes TaalF
MUNULS 2le==NO, "F MUCHLE [N WhkIrH c VYO g 00w FECLASATINN aPbcaus,

INDF X HLCOX » anvg «TAaLTa 10F PTn, $TAt Tq ROT, PTo, NANULE Qe
i 0) a
2 RLCCx) 2 [} 201
3 HLOCK2 7 9 291
[BLCCK 3 10 11 201
k] RLCOXY 2 6 212
6 wLOCX 2 7 8 232
? HLECR] 9 10 232
8 HLECK Y 2 s 393
9 wlCCwy 7 9 354

10 nLecxg 10 11 303

94

pARAMETES TAHLF

THlg Tanyf CORYATINE ERTRIFE FOM sLL 0AnANETEARS Tr QYSTEM, THF COANF N FACH Wwhan NTeTINALISHFSR
THE TyPg OF POTRTED STadEn 1A Thal wWonn, THE ¥Ane NUe 1S THFE uDAULF TN wHICH THE OARAMETES ATOFAMS

¢OonES

PoepTie TO OUIMLY Barawe TFR [N sywiag

lJe=p 7 To aCTUaL Parave TER [N <yw fan

p==pife 10 Pa@emeTed L1sT FUR NEXT CatlL CF SaME oonT INE

Jewplo. TO SUg, R FUNATION NANME N QYMTAR

A—*TV{% WO MerxS g0 TR c\)‘;us_nt Paipgup TFl LIsT

Ge=Th1S 1S A CNSTANT PakanvpTik. PO TER FLIFLN CANTAINS coasTanT Tyoe

INOE R COnF MO LE RO, ARAMT NG, PoINTER
| 0 n 0 3
2 3 201 1 283
3 1 ¢} 1 506
& 1 201 e A3e
5 4 o [0
6 3 201 1 1656
7 1 20 1 779
R 1 2n1 2 1389
] 2] 0 in
19 3 2n 1 1654

11 1 2m 1 1276
12 1 201 2 1389
13 1 20l 3 172
14 2 n 0 15
is 3 271 1 1654
14 1 201 1 127a
17 1 261 2 1134
in L " L] 4]
19 3 232 1 1656
2a 0 2n? 1 67
21 n 232 2 320
22 4 n [} 0
23 3 262 1 288
24 1 2n? 1 545
2< 1 202 2 290
26 2 0 0 27
27 3 212 1 288
2% 1 2ne H 545
29 s 2n2 F] n
3n)] 0 0
N 3 1113 1 288
32 q 303 1 1709
33 Y A 2 189
3s 4 n [[
kL] 3 n3 0 923
3s [3n3 n 262
37 . o) n
kL] 0 I3 0 2%0
33 0 [0 0

(1]

(2]

(3]

(4]

(51

(6]

(7]

{8l

[91]

[10]

95

REFERENCES

Brown, J. R. and Hoffman, P. H. "Evaluating the
Effectiveness of Software Verification--Practical
Experience with an Automated Tool." Proceedings
of the AFIPS Fall Joint Computer Conference 1972,
Vol. 41, Part I, pp. 181-189.

Elspas, Bernard; Levitt, Karl; Waldinger, Richard; and
Waksman, Abraham. "An Assessment of Techniques on
Proving Program Correctness." Computing Surveys,
Vol. 4. No. 2, June, 1972, pp. 97-147.

Ferguson, H. Earl and Berner, Elizabeth. "Debugging
Systems at the Source Language Level." Communica-
tions of the ACM, Vol. 6. No. 8, August, 1963,

e —————

p. 430,

Grishman, Ralph. "The Debugging System AIDS." Pro-
ceedings of the AFIPS Spring Joint Computer Con-
ference 1970, Vol. 36, pp. 59-64.

Haller, Ann Peek; Lasseter, Gene; Meeker, R. E., Jr.;
Turner, J. "Final Report--FORTRAN Automatic Code
Evaluation System." Internal report, Information
Research Associates, Austin, Texas, 1973.

Ingalls, Daniel H. H. "FETE: A FORTRAN Execution Time
 Estimator." Report to National Technical Information

Service from Computer Science Department at Stanford
University, February, 1971.

Krause, K. W.; Smith, R. W.; and Goodwin, M. A. "Opti-
mal Software Test Planning Through Automated Network
Analysis." PReport of the 1973 IEEE Symposium on
Computer Software Reliability, pP. 18-22.

Meeker, R. E., Jr. "A Study of Software Reliability
and Evaluation."” Master's Thesis. University of
Texas, August 1972.

Ramamoorthy, C. V.; Meeker, R. E., Jr.; and Turner,J.
"Design and Construction of an Automated Software
Evaluation System." Report of the 1973 IEEE Sym-
posium on Computer Software Reliability, pp. 28-37.

Russel, E. C. and Estrin, G. "Measurement Based Auto-
matic Analysis of FORTRAN Programs." Proceedings of
the AFIPS Spring Joint Computer Conference, 1969,
Vol. 34, pp. 723-732.

96

[11] Stucki, L. G. "A Prototype Automatic Program Testing

[12]

[13]

Tool." Procgedings of the AFIPS Fall Joint Com-
puter Conference 1972, Vol. 41, Part II, pp. 829-

833.

Stucki, L. G. "Automatic Generation of Self-Metric
Software." Report of the 1973 IEEE Symposium on
Computer Software Reliability, pp. 94-100.

Taylor, Richard C. "Source Language Debugging."
Computers and 2utomation, Vol. 20. No. 2, February,

1971, pp. 19-22.

97

VITA

Julia Ann Peek Haller was born in Waco, Texas, on
November 3, 1951, the daughter of JoAnn Torrence Peek and
James Robbins Peek. She received a diploma from Richardson
High School, Richardson, Texas in 1969 and received a Bach-
elor of Arts Degree with a major in mathmatics from the
University of Texas at Austin in 1972. While working
toward a Master of Arts degree in Computer Science at the
University of Texas, she was employed as a programmer for
Information Research Associates. She also held a teaching
assistantship at the University of Texas and taught an intro-

ductory computer science course.

Permanent address: 1324 Chickasaw
Richardson, Texas

This thesis was typed by Ann Haller.

