A METHOD FOR DESIGNING PROGRAMS
AND ITS APPLICATION TO
INTRODUCTORY COMPUTER SCIENCE COURSES

by

Lynne J. Baldwin

August 1974 © TR-39

This paper constituted the author's dissertation for the Ph.D. degree at
the University of Texas at Austin, August 1974,

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES



Copyright
by
Lynne Carol Juedeman Baldwin

1974



ABSTRACT

A method for designing programs is proposed as an organizational
framework for the programming task. As such, it is intended to be taught
to the introductory student and utilized by him at both the elementary and

advanced levels of programming.

The proposed method f@%ﬁhé&igﬁé éipf&gé' Lowing-fedtures.
FAirsfy At encompasses the entire programming taskJ ~Seeond; tr incorporates
general problem solving techniques and focuses them on the specific tasks in

programmingJ,§Z§i¢§?§£%”defines the major steps in programming along with

the specific tasks which must be accomplished during each step, %%ﬁgigﬁg,

d is concerned not only with the overall approach used in carrying

out the programming task but also with the design quality of the resulting

Ly ol”
€onsiderations of the desired program characteristics .=

Prograég,&iﬁ.4ﬁiw

correctness, ease of debugging, adaptability, readability and efficiency ey
are included as an integral part of the method,

The incorporation of this method for designing programs into an intro-
ductory course affects both the course content and the course structure, -

A description of such a course is given as an illustration of the applica-

bility of the proposed method,



TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION . . &+ ¢ & « o 4 v o o o o o s o oo o o o & o o o o 1
1.1 TOPIC DESCRIPTION AND GOALS . . . « ¢ ¢ o o o v o o & o » 1
1.2 MOTIVATION AND JUSTIFICATION . . . ¢ v « ¢ o o v o « o & . 1
1.3 RELATIONSHIP OF PROGRAMMING AND PROBLEM SOLVING . . . . . . 3
The Literature - Problem Solving Methods and Strategies . . 5

A Summary of Problem Solving and Programming . . . . . . . 14

1.4 DESIGNING PROGRAMS . . . v+ v v« e v o v o o o o o o = & 15
The Literature - Programming Contributions . . . . . . . . 15

A Summary of Design Proposals . . . . . . « + « « .« . . 18

2 A METHOD FOR DESIGNING PROGRAMS . . . « o « & ¢ &« o « o & o o+ = 20
2.1 DEFINITION OF PROGRAMMING . . . . . .« ¢ « o « &« o « o o + = 20
2.2 CHARACTERISTICS OF A WELL-DESIGNED PROGRAM . . . . . . . . 21
2.3 CONSTRAINTS ON PROGRAMMING . . . . ¢ + & + v ¢ « o o o o 23
The Programming Problem . . . . . . « ¢« « « « « « « ¢« . . 24
Programming Languages . . . « . « « + ¢ ¢ ¢ o e e e . e s 25
Computer SYSLEm . . + « + « & o ¢+ o s o e 4 e e e e e . e 26

Knowledge and Psychological Characteristics of the

Programmer . « . « o « « o o o o & o s 6 s s e s e e s s 27

2.4 THE METHOD FOR DESIGNING PROGRAMS . . . ¢« +« « « + « « « o . 30
A Survey of the Steps in the Method . . . . . . . . . . . . 32
Relation of Desired Program Characteristics to the Steps . 34

Specification of the Steps in the Method for Designing

Programs . . « « o« o + o o o o o o e e s e e e e . w s 36

vi



3 APPLICATION OF THE METHOD TO AN INTRODUCTORY COURSE .
3.1 INTRODUCTION . . . . & v & v ¢ v o o o o v s o v o o o
3.2 THE INTRODUCTORY COURSE . . . ¢ & v v o v v o + o
Course Objectives . . « « « o« o« 4 « = « .
Course Content . . . . . « + ¢« « « v « ¢ o &« &

Course Structure . . « « o « o o o o s o o« o o =

3.3 PRESENTING THE METHOD FOR DESIGNING PROGRAMS TO THE STUDENT.

3.4 PRESENTING NEW CONCEPTS TO THE STUDENT .
3.5 REQUIRING THE STUDENT TO DEMONSTRATE HIS KNOWLEDGE OF
CONCEPTS © & v & v v v v o o 4 o v e s 0 v s w
3.6 REQUIRING THE STUDENT TO DEMONSTRATE THE METHOD FOR
DESIGNING PROGRAMS
Construction of a Complete Program . . . .

Construction of the Top Level Design of a Program .
4 CONCLUSTION . . . . . +« . « v ¢« & o« &

4.1 ADVANTAGES FOR THE STUDENT . . . . . . .

4.2 USING THE METHOD FOR DESIGNING PROGRAMS IN ADVANCED COURSES.

4,3 SUMMARY . . . . . .« .« v .+ . .

BIBLIOGRAPHY .

vii

84

84

84

84

86

87

88

115

117

118

118

121

126

126

127

130

131



CHAPTER 1

INTRODUCTION

1.1 Topic Description and Goals

The first goal of this paper is to present a method for designing
programs which
1) encompasses the entire programming task,
2) incorporates general problem solving techniques by focusing
them on the specific tasks in programming,
and 3) defines the major steps in programming along with the specific
tasks which must be accomplished during each step.
The main purpose in presenting this method is to provide an organizational
framework for the programming task which can be taught to introductory
students and utilized by them at both the elementary and advanced levels
of programming.
The second goal of this paper is to show the applicability of
the proposed method by presenting an example of an introductory course in
programming. This course is comparable to an introductory computer science
course at the college level. The course content and the course structure
are different, however, from that of the typical introductory course since
the proposed method for designing programs is an integral part of both the

course content and the course structure.

1.2 Motivation and Justification

An introductory course in a computer science curriculum, as

outlined in "Currivulum 68" [ACM, 1968, p. 156], is designed "to provide



the student with the basic knowledge and experience necessary to use
computers effectively in the solution of problems;" all subsequent courses
depend on such an introductory course. In order for the student to be

able to use the computer in the solution of problems, he is going to need
information about the computer and how to use it, such as what a computer
language, a program, an algorithm and data are and how to use them in
implementing solutions to problems. This type of information is adequately
provided in introductory courses which parallel that outlined in "Curriculum
68." However, the student is also going to need information about solving
problems and designing programs, such as what should be done in analyzing

a problem and how this analysis relates to the desired program. This
latter type of information is usually left to the individual student to
assimilate for himself, mainly through trial-and-error experience with
programming problems, so that the student is learning about solving
problems and designing programs at the problem solving level, which is

the highest level of learning [Gagné, 1970, p. 2141, Programming is such
a complex task, requiring problem solving behavior at many points through-
out, that is seems desirable to provide the student with an overall plan
of attack for designing programs which are to be solutions to problems;
there are many other problems he will have to solve besides trying to
formulate a general plan for programming by himself. Merrill [1970]

has indicated that the learning level can be adjusted to any desired

level for any subject matter. By defining an overall plan, in this case
the method for designing programs proposed in this paper, and by presenting
it to the student for him to use throughout the introductory course, the

learning level may be lowered from that of problem solving to that of



principle learning or even lower. He will have at hand at least one
method of approaching a programming task when he reaches the end of the
course — a method which he can use in subsequent courses and can build
on or alter to suit his own personal problem solving abilities as he

becomes more experienced.

1.3 Relationship of Programming and Problem Solving

Problem solving is considered to be the most complex of the
thought processes. Simon [1969, p. 26] describes it as "a search through
a vast maze of possibilities, a maze that describes the environment.
Successful problem solving involves searching the maze selectively and

' Another definition, and one

reducing it to manageable proportions.’
which aligns itself with the intent of incorporating the method for
designing programs into an introductory course, is that given by Gagné.

He views problem solving as '"a process by which the learner discovers a
combination of previously learned rules that he can apply to achieve a
solution for a novel problem situation. It is also a process that yields
new learning" [Gagné, 1970, p. 214)}. He further maintains that what
emerges from problem solving is a higher-order rule [Gagné, 1970, p. 2247,
Simon's statement develops a feeling for the complexity and immensity of
the search process in problem solving. Gagné's statement, however,
attempts to simplify the view of this complex process by stating exactly
what it is that the problem solver is working with and what it is that he
has as a result of his having solved the problem. This complex process

of problem solving is, then, a search process through a set of rules in

order to find that combination of rules which works. It results in



learning for the problem solver which can, in turn, be used for solving
other problems.

The relationship between problem solving and programming is
rather complex. TFirst, programming belongs to the realm of problem
solving. Programming requires that a solution in the form of a computer
program be produced for a given problem, where the problem is assumed
to be novel in some, if not all, of its respects. (If this were not the
case, an existing program could be used as a solution.) Because the
process of producing a program is rarely limited to the simple application
of one or two rules, the required behavior reaches problem solving
proportions. The programmer is faced with the task of discovering the
combination of rules which will produce the required program; the rules
he chooses from are many and complex in themselves.

Second, programming is a special kind of problem solving. It
is special because the product of programming is of a singular nature —
it is a computer program. The characteristics and requirements of this
product give programming its special niche in problem solving.

Third, programming is a complex form of problem solving. It
is a case of problem solving within problem solving. For example, the
final product is to be a program which will be the solution to the given
problem — this is the overall problem for the programmer. However,
within this overall problem are at least two other "subproblems."
¥irst, there is the subproblem of creating a solution plan for the given
problem; and secondly, the solution plan must be translated into the
desired program. Such subproblems exhibit special characteristics and

requirements within the overall problem of programming, just as



[Wal

programming exhibits special characteristics within problem solving as
a whole.

Thus, programming is a kind of problem solving and as such is
subjegt to general problem solving methods. Programming also requires
problem solving methods for its subproblems. It therefore seems
advantageous to view various general problem solving methods which have
been observed and described in the literature in order that the advantages
of using these methods can be incorporated into programming. The
deliberate and conscious application of these methods to the programming
process as a whole and to the various subproblems, while taking into
consideration the characteristics and requirements of the subproblems,

should increase the efficacy of programming efforts throughout the design

process.

The literature — problem solving methods and strategies

The sequence of events involved in problem solving has been
described by several investigators. Several early investigators suggested
the sequence of events in problem solving as being preparation, in which
extensive study of a problem is done; incubation, in which little or no

contemplation about the problem is done; and finally, illumination, in

which the solution to the problem appears in the mind's eve all at once.
This sequence of events is supported by accounts of the personal experiences
of scientists, mathematicians, and others; one collection of such
experiences appears in an essay by Hadamard [1945]. Later descriptions

have expanded this sequence. For example, Osborn [Sackman, 1970, o. 231]
gives the following: orientation to the problem, preparation by gathering

data about the problem, analysis by breaking down relevant material,



hypothesis by generating alternatives, incubation to invite illumination.

synthesis by putting pieces back together and, finally, verification by

judging the results.
A description of the events which make up problem solving
does not offer specific actions which can be applied. Working rules
based on experiment and experience can, however, offer guidance. Hyman
and Anderson [1965] discuss several general rules designed to aid the
problem solver in problem solving situations. Their rules fall into
two categories. The first is concerned with what the problem solver
should do when first confronted with a problem. It contains the
following rules:
1) GCo over the elements of the problem rapidly several times
until a pattern encompassing all problem elements emerges;
a total picture of the problem should be available before
work begins on the details.
2) Instead of accepting the first hypothesis or interpretation
that is formulated as a possible solution, suspend

judgment about the way to proceed for a time.

3) The arrangement of the elements of the problem, when it
is first encountered, mav hide familiar patterns; therefore,

exploration of different arrangements of the problem elements,

both temporally and spatially, may suggest a solution.
The second category is concerned with what the problem solver
should do when he is blocked in his attempt to solve the problem or
wants to find a better solution than the present one. The following
rules apply to this category:
4) When no progress is being made on a problem, abandon the
present approach and concentrate on another aspect of the
problem; persistence in a direction which fails to yield

a solution tends to inhibit the openmindedness needed to
discern new, potentially rewarding, directions.



5)

6)

7)

8)

9

It may be possible to find a better, or more creative,
solution to a problem if a second solution is produced
after the first one.

In order to find a better, or more creative, solution a
critical evaluation of personal ideas, i.e., looking for
weak points, and a comstructive evaluation of others'
ideas, i.e., locking for strong points, can be helpful.

It is often possible to find a new, more helpful, relation-
ship among the problem elements if a different representational
system is used; this can mean changing a verbal representation
to a graphical one, an abstract to a concrete one, and so
forth.

1f, after a thorough exploration of the possibilities that
a present approach to the problem offers, the problem
solving task appears to be blocked, a break away from the
problem can be helpful; this allows for a period of
"incubation" hopefully to be followed by an "illumination'
that will yield a solution. It is probably useless to
take a break unless sufficient exploration of the problem
has been done beforehand.

Extensive internal critical analysis of the problem can
fail to produce a solution. At such a time it may be
helpful to discuss the problem with someone else; this
forces a complete explanation of all parts of the problem
and the possible ways of solving it. Even if the other
person does mnot understand the problem, the very act of
communicating about it forces the mind to express the
problem in a slightly different way which may provide new
insight.

These nine suggestions are, obviously, broad strategies to be

used for any kind of problem solving task and, as such, can be applied

to problem solving in programming. However, they do not give specific

actions which are helpful when dealing with the problem itself, for

example, where to start when confronted with a problem.

Opne author, Polya, does offer specific actions which are helpful

throughout the process of solving problems. Although his work has been

done in the context of mathematical problem solving, the methods of

solution useful in mathematics are also applicable to other kinds of



problems. Polya [1957, p. xvi] gives an overall method of approach for
the problem solver. Briefly, it consists of these four parts:

1) Understanding the problem: determining unknowns, data,
and conditions of the problem.

2) Devising a plan: finding the connection between the data
and the unknown and eventually devising a plan of actionm.

3) Carrying out the plan: checking each step in the plan as
it is carried out to insure that it is correct.

4) Looking back: examining the solution obtained to see if
it can be obtained differently, to see if the result or
the method is useful for some other problem.

Suggestions for gaining insights into a problem include restating the
problem by drawing pictures and setting up equations, decomposing and
recombining the parts of the problem, and considering related and
auxiliary problems and their application to the problem at hand. The
method given above is concerned with "problems to find" in which the
object is to find the answer to the problem. There is another kind of
problem — a "problem to prove” — in which a proof or disproof of an
assertion is required. Polva [1957, pp. 154-157] also gives a method for
problems to prove which parallels that for problems to find. In this
method, determining what the hypothesis and conclusion are, so that the
connection between them can be constructed as a proof, replaces the
unknowns, data, and conditions between them as given in the "problems
to find" method. Both kinds of problems are found in the programming
task.

Besides overall methods of problem solving as described by
Osborn and specified by Polya, there exist other problem solving

strategies useful within an overall method. Especially important are



the strategies associated with the generation, evaluation, and validation
of hypotheses where hypotheses are generated by the problem solver as
being possible solutions, where evaluation is carried out by applving

a hvpothetical solution to the problem to see how well it works, and
where validation is carried out by confirming that the hypothesis does,
in fact, meet the requirements of the problem and is, therefore, a
solution.

There are several strategies that can be used in generating
hypothetical solutions. The most general of these is the generation
of the set of all potential solutions after which each element in the
set must be evaluated. This is identified by Newell and Simon [1972,

pp. 95-97] as set-predicate formulation.

A second strategy is to generate all possible solutions while
eliminating the generation of those which are obviously or probably

incorrect. One way of doing this is by the use of preselection as

described by Wirth [1971] in which the number of generations is reduced
logically before generation begins. For example, the generation of prime
numbers can be done by generating all positive integers and testing each
one, or the generation effort can be reduced by assuming that two is
prime and that all other primes can be found by generating only the odd
integers and testing them.

When it is not possible to take advantage of obvious reductions

in the generation scheme, some form of heuristic search [Newell and Simon,

1972, p. 98; Polva, 1957, pp. 129-134] is essential. Heuristic search
involves the generation of a hypothesis which is subsequently evaluated:

then, depending upon the evaluation, a new hypothesis may be generated.



10

There are several search strategies useful in heuristic search.
The first one is to break the problem apart into subproblems so that they

can be attacked individually. This is called factorization [Newell and

Simon, 1972, pp. 74-75] or decomposition [Wirth, 1971; Polya, 1957, pp. 75-85].

The solutions to the individual problems, once they have been evaluated and
validated, are combined together to give the solution to the original problem.
The combined solution must then be evaluated and validated as well.

The strategies of working forward and working backward each

proceed from one end of a solution chain to the other end. Using information
from only the starting end of the chain, each then proceeds to the other end,
which is used to establish that the chain is complete. Working forward
considers that the starting end is the problem itself. Working backward
starts with the solution and proceeds to the hypothesis. These are

sometimes referred to as top-down and bottom-up, respectively.

A related strategy is means—ends analysis [Newell and Simon, 1972,

p. 416]. This strategy is based on the assumption that there is a discernable
difference between the given problem and its solution, or end, and that the
solution of the problem requires the application of some means, in the form
of functional operators, which will reduce the difference between the problem
and its solution. This strategy requires the generation of a hypothesis of
how to reduce the difference discerned and an evaluation of the results of
the application of the hypothesis. Consideration of both ends of the solution
chain is therefore necessary when using means-ends analysis for both
generation and evaluation of a hypothesis.

The generation of alternate hypotheses can be carried out using

various search strategies. Such strategies can be described in terms of



11

a hypothesis tree. From any one hypothesis, or node, in the tree one or
more hypotheses may be generated which have a potential of leading to

the desired solution. One search strategy used is the breadth first

strategy in which the nodes are expanded (hypotheses are generated) in
the order in which the nodes are generated [Nilsson, 1971, p. 451.
Ceneration and evaluation of hypotheses continues node-by-node until the
solution is reached. A second strategy is the depth first strategy in
which the most recently generated hypothesis (node) is expanded first
[Nilsson, 1971, p. 48]. Expansion continues to take nlace on the most
recent node until a solution is found. If a solution is not found before

a maximum depth is reached in the tree, backtracking can be used to

start a new path through the tree from an earlier node. Backtracking
requires that former paths be remembered so that it will be possible to
back up to a previous node and start a new path from there. Also,
formerly explored paths must be remembered so that they will not be
reexamined. Both the breadth first and depth first strategies will
eventually generate all possible solutions paths for finite trees;
however, for large trees and for infinite trees the search is usually
modified by the adoption of heuristic search strategies in order to reduce
the amount of searching to practical limits. Such strategies involve the
evaluation of the potential associated with the various nodes so that the
nodes with the greater potential are expanded first. Such strategies

are applicable to both breadth first and depth first search patterns.
They are, of course, more complex due to the necessity of including an

evaluation scheme.



Hypothesis generation can be formulated by any one of the above
strategies. Usually, however, these basic strategies are combined into
more complex strategies where one strategy is applied for a time, then
another strategy is used on the results of the first strategy, and so on.

The evaluation of a hypothesis as a solution or a solution part
is governed by varying criteria depending upon the generation scheme used;
but, in general, it determines how well a possible solution meets the
requirements of the given problem. If a possible solution fails to meet
the requirements, then an evaluation must be made to determine why it
failed. For example, in the case of means-ends analysis, evaluation
determines what the difference is between the hypothesis and the desired
solution; then, further hypothesis generation is made to reduce the

evaluated difference. If a tree search strategy is used and it is found

12

that a hypothesis path does not lead to a solution, evaluation of alternate

paths is necessary. Such evaluation is involved in backtracking to a
former node in the tree when a new path is to be chosen on its evaluated
potential.

Once a hypothesis or set of related hypotheses have been
evaluated as being a solution to a given problem, then a validation is
necessary to determine that, in fact, a solution has been found. This
is accomplished by checking that all conditions in the problem are met
by the proposed solution. Validation may be considered to be a proof,
however informal its form.

There are several other strategies useful in solving problems

in general besides those found in hypothesis generation. One is the

utilization of analogy [Polya, 1957, p. 37]. A previously solved analogous



13

problem, while not possessing all the conditions of the given problem,
may be close enough so that either the answer to the analogous problem
or its method of solution may be applied in the solution of the given

problem.

The utilization of variables and parameterization are especially

useful in extending the specific solution for a given problem to a general
solution for a class of problems. This allows the problem solver to

solve all problems of a given class, the specific solutions of which

can be found by manipulation of variables and parameters in the solution,
rather than by re-solving the specific problem.

Finally, the introduction of auxiliary elements [Polya, 1957,

p. 46] is common in problem solving. Auxiliary elements are elements not
included in the given problem but are introduced during problem solution.
An auxiliary element may be a drawn figure based on the problem definition,
it may be an equation based on the conditions in the problem, or it may
be an auxiliary problem introduced in an effort to simplify the given
problem in some way.

There is one aspect of problem solving which can perhaps expand
problem solving abilities as well as yield a better golution to a just-
solved problem. This aspect is re-—analysis —— re-analysis of both the
answer to the problem and the solution process used to find the answer
[Polya, 1957, pp. 61-64]. A review may yield a better answer for a
problem for which there is more than one satisfactory answer. A review
may yield a shorter, more compact, solution process - gomething which
can be important in the design of programs. A review of the process

used to solve this particular problem may uncover alternative ways of



14

solving the problem which can be applied to the solution of other problems.
It may even expand the problem solver's repertoire of strategies if he

makes a conscious effort at analyzing his own problem solving behavior.

A summary of problem solving and programming

The problem solving methods and strategies discussed above are
related to programming at three levels. At the top level, problem
solving methods can be applied to the overall task of programming in order
to establish a working framework of actions which can be used in programming.
The method proposed here applies initially at this level.

At the second level, they can be applied to the specific problem
to be programmed in order to get a solution plan. They can be applied to
the task of producing a program from the solution plan, and they can be
applied to the problems encountered in testing and debugging. Specific
actions at this level are the main part of the proposed method for designing
programs.

At the third level, the various problem solving strategies can
be incorporated into the program as part of its processing scheme. For
example, heuristics are used whenever trial-and-error generation is needed,
i.e., whenever there is no formula or algorithm, in the strict sense of
the word, available. Programs using heuristics include game playing
programs when the choice of moves exceeds practical dimensions and programs
in which human behavior patterns are being simulated. One strategy of
problem solving which is automatically used in programs is the utilization
of variables and parameterization. This third level is not explicitly
treated in the proposed method for designing programs because it is specific

to particular programs rather than to the programming process in general.



15

1.4 Designing Programs

The programming task can be broken roughly into three main
parts. The first part is analyzing the problem and creating a solution
plan. The second part is creating an algorithm that represents the
solution plan in a programmable form. The third part is creating a
running vrogram based on the algorithm. A method for designing programs
which applies to the entire programming task must, of course, encompass
all three parts of the task in a unified and comprehensive manner so that
the application of the method can start with the problem statement and
carry through to the end of the programming task. Several contributions
have been made in the literature which are intended to increase the
quality of the programs while decreasing the time and effort spent on
programming. All have their advantages at certain points throughout
the programming task; however, none seem to provide guidance for the

entire task.

The literature — programming contributions

Structured programming with stepwise refinement has been

discussed extensively by Wirth [1971, 1973] and Dijkstra [1969, 1971];
on-the-job evaluation of it has been given by Baker [1972]. Of the
programming techniques described in the literature, this one seems to

be applicable to more of the programming task as a whole than the others.
Structured programming is based on the utilization of a set of basic
control structures which can be used in verifying the correctness of
algorithms and the resulting programs. Stepwise refinement is basically

the general problem solving technique known as factorization or top-down



16

decomposition; it works especially well with structured programming where
more detailed structures are substitutable for more generalized ones.
Structured programming with stepwise refinement allows for a gradual
decomposition of the problem into more specific parts while simultaneously
building up the parts of the desired program. Some disagreement has

been expressed with this programming technique in that it is strictly
top-down and does not necessarily work at all times [Naur, 1972].

Wirth [1973, p. 126] himself has pointed out that programming is not
performed purely top-down or bottom-up, but may use both. Thus, while
this proposal does not formally specify the use of problem solving
strategies other than top-down, other strategies are useful. Specific
advice as to how a problem should be approached is not given except for
the implicit use of decomposition. Thus, structured programming with
stepwise refinement does not encompass the entire programming task,
especially with regard to analyzing the problem that is to be programmed.

Naur [1969] has proposed the use of action clusters in program-

ming. This proposal can be classified as a bottom-up strategy of problem
solving. This proposal does contain some advice for analysis of the
problem; namely, that for each global requirement (invariant condition)

in the problem statement, a set of action clusters (sequences of algorithmic
statements) should be derived. Basing the derivation of the clusters on

the requirements of the problem in this way insures that the compatibility
between the resulting program and the requirements can be proved.
Unfortunately, this proposal assumes the explicit presence of the global
requirements and does not, therefore, specify how to analyze a problem

in order to separate out such requirements. Also, the proposal reflects



17

only one problem solving strategy. Programming by action clusters, while
being somewhat more specific about relating the derivation of the program
parts (clusters) to the statement of the problem, does not encompass

the entire programming task nor specify other problem solving strategies
which are useful.

Structured programming with stepwise refinement and programming
by action clusters are similar in one respect: both give implicit
organization to the resulting programs. Structured programming with
stepwise refinement, by allowing the problem to be broken down gradually
while building up the program gradually, produces an after-the-fact
program organization where the subprograms or modules are the result of
the ongoing process of refinement, rather than from analysis of the
problem before production of code begins. Programming by action clusters
starts with the coded clusters and builds a program around them. Again
the program organization tends to be after-the-fact. In contrast to
this, Parnas [1971a,1971b,19722,1972b,1972¢,1972d] has proposed a

paradigm for software modularization which emphasizes the need to completely

determine the program organization before coding begins on any part of it.
Parnas has given some general advice on what to look for in the given
problem in order to determine how to organize the parts of the desired
program. His proposal is concerned mainly with the way in which the
program parts or modules are defined; this definition then allows the
entire modularization of the program to be checked before any coding is
begun. While some suggestions are given as to what to look for in the
given problem in order to establish program modules, Parnas's method of

software modularization does not offer extensive advice on how to



establish the modules, nor is his method concerned about the creation of
the program code for the modules other than that it reflect the elements
and actions defined for the modules. Thus, this method does not encompass
the entire programming task nor does it suggest problem solving strategies
particularly useful for this method.

Other proposals in the literature tend to be even more specific
to one small part of the programming task than the ones discussed above.
For example, Neely [1973] has suggested a method of indentation to be
used in program coding which would increase the readability of a program
by directly reflecting the control structures of the program. Other
proposals focus on flowcharting techniques which support the style of
programming being utilized. For example, Nassi and Schneiderman [1973]
suggest a flowchart technique which is intended for use with structured

programming.

A summary of design proposals

While these and other proposals are applicable at various
points throughout the programming task, none are general enough to give
perspective to the entire task, nor is any combination of these able to
span the task. The most serious omission is the lack of direction for
approaching the problem to be programmed; i.e., little is said about
the specific elements to look for in the problem or how parts of the
problem relate specifically to the parts of the program to be created.
Secondly, only implicit suggestions about solving problems are given.
Since these proposals are primarily for experienced programmers, they can,

of course, assume that problem solving methods are already known and

18



19

need not be dwelled upon. However, because of these reasons it is
épparent that if a method for designing programs is to be taught to the
beginning student, it needs to encompass the entire programming task
(allowing for the utilization of the various proposals given above if
desired) and to incorporate various problem solving techniques for use

in the overall task of programming as well as for use in solving the
problems that are to be programmed. Such a method for designing programs

is presented in this paper.



CHAPTER 2

A METHOD FOR DESIGNING PROGRAMS

Before proceeding to the specific details of the proposed method,
brief discussions of the following are given in anticipation of the method.
First, a definition of programming is presented in order to establish the
bounds of the programming task.

Second, the characteristics of a well-designed program and
their importance are outlined. It is desirable that any method for
designing programs be concerned with the quality of the program that is
to be produced and, thus, with these characteristics.

Third, the constraints on programming are considered. These
constraints affect the difficulty of the programming task as well as
the design quality of the program.

Then, a brief survey of the method and its relationship to the
desired program characteristics are given. This is followed by the

detailed specification of the method for designing programs.

2.1 Definition of Programming

Programming is defined as the transformational process by which
a human, when given a programming problem, produces a computer program
which is a solution to the problem. A programming problem requires that
a program be written which will realize some function. Ideally, the
statement of the programming problem, i.e., the problem definition,
defines the function so that there is explicit pairing of inputé and

outputs for the program. In this ideal case, the programmer transforms

20



the functional definition into a program. However, this ideal situation
rarely exists. It is often the case that at least one of the following
is not well-defined in the problem definition:

1) inputs

2) outputs

3) relationship between inputs and outputs
In this case, the establishment of a well-defined functional definition
with its attendant inputs and outputs is an integral part of programming.

For the purposes of this paper, it is assumed that the subject
matter of the programming problems is unlimited; however, the size and
complexity of the problems are assumed to be in the range that can be
solved by one person. No specific programming language is recommended
for program construction, although it is expected that the higher-level
languages will be used primarily.

This paver is not concerned with those aspects of programming
which are specifically related to team and contract programming.
Therefore, discussion of management procedures, problem clarification
procedures, and extensive and formal documentation procedures that are

related to these projects is not included.

2.2 Characteristics gg‘g-Well—Designed Program

There are five main characteristics which affect the design
quality of a program. These characteristics are correctness, efficiency,
ease of debugging, adaptability and readability.

Correctness is the most important of these characteristics.

If a program does not represent the desired function, i.e., if it does

21



22

not produce the correct output for each input, it is not a solution to the
given programming problem. The presence of this characteristic is
necessary for any program.

The other four characteristics are especially important for
programs which fall into these categories:

1) large and complex

2) intended for repeated use

3) intended for use by many people
For programs which fall into the opposite categories, these characteristics
are relatively less important; however, they are still applicable. The
relative importance of these four characteristics is discussed below.

Debugging is a time consuming process for both human and
computer. The ease with which a program can be debugged directly affects
both the time and effort required in producing a correct program.
Therefore, ease of debugging is a desirable characteristic for any
program, although it is relatively more important for those which are
large and complex.

Program efficiency is especially important for those programs
that will be used repeatedly. For such programs, keeping the cost as
low as possible for each program run 1is desirable. For programs which
will be run only a few times, the increased cost per run of the program
must be weighed against the increase in the overall cost of program
production that will result from the extra programmer time needed to
increase efficiency. This is not to say that efficiency considerations
should be ignored unless the program is to be used many times; however,
program efficiency is a characteristic whose importance is relative to

the specific program and its intended use.



Readability is most important for those programs that will be
used by many people, some of whom may require that modifications be
made in the program during its lifetime, and for those programs that
are large and complex. In general, any program that is going to be
examined by someone, for whatever reason, needs to be readable. Those
programs that may be modified by someone other than the original programmer
must have adequate documentation, and this includes internal documentation
reflected both in commentary and in structure. This does not exempt the
program from needing to be readable even if it is intended for the private
use of the programmer. He, too, is going to need to read the programm.
This is especially true during the testing and debugging of the program.
Readability, for any size of program, can reduce the effort for the
programmer during this phase of programming.

For the program that is used over a period of time during

which it will be altered for a slightly different purpose or for a

different system, adaptability becomes an important characteristic. All

programs are modified to some degree during their lifetimes, if only
during testing and debugging. Therefore, all programs are subject to

considerations of adaptability.

2.3 Constraints on Programming

There is a basic set of constraints within which a programmer
must work regardless of the particular program he is working on. This
set of constraints consists of

1) the programming problem

2) the programming language



24

3) the computer system
4) the knowledge and psychological characteristics of the
programmer
Each of these constraints contributes to the amount of difficulty
encountered in creating a program with the desired characteristics. Each
affects the design of the program to some degree as well. Although they
influence the design process, they do not modify the overall pattern of

programming activity.

The programming problem

Obviously, the more difficult the problem is, the more difficult
the programming process becomes, both in finding a solution plan and in
inplementing that plan as a program.

One aspect of the problem that can increase programming
difficulty is the representation of the problem as it is given. The
representation of a problem may be traditional for its type; however, this
traditional representation may not readily lend itself to the programming
environment. In such a case, the programmer is faced with accepting the
representation of the problem as it is given or with finding an
equivalent alternate representation which can be more easily implemented.

Another aspect of the problem which complicates the programming
process is the clarity of the statement of the problem. The more
ambiguous the statement, the more assumptions the programmer will need
to make about various facets of the problem. These assumptions influence
the decisions made throughout the design process and thus influence the

design of the program itself.



|8
o

Programming languages

Programming languages directly affect the way that a problem
is conceptualized because programming languages shape the thought
processes, not only for small details, but also for the larger aspects
of program organization, program processes, and data organization
[Weinberg, 1971, p. 238]. (This is obviously so when comparisons are
made of programs written in different languages which are designed to be
solutions to the same problem.) For example, if only one language is
available, and it provides only simple variables and arrays as allowable
data structures, then a programmer will tend to consider representations
of the problem which lend themselves to the available data structures;
otherwise, he will have to implement special data routines himself.
For instance, he may think that list structures better represent some
aspect of the given problem. He is then faced with the choice of developing
1ist structure representation and list processing routines sO that he
can use list structures OT of abandoning list structures for the data
structures already available. It is likely that he would not even
consider data structures other than those available in the language, thus
limiting himself to a smaller set of problem representations. If other
languages are available which offer a choice of data and program structures,
then a larger, more varied, set of problem representations and subsequent
solution plans are possible. Therefore, both the number of languages
available and the characteristics of the individual languages restrict

the options that can be considered during the design process.



Computer system

The computer system is a constraint on the programming task in
various ways. Among the factors that contribute to the limitations of
the system are the following:

1) the availability of various languages

2) the availability of various types of input and output

communication

3) the speed of computer operations

4) the size of its memory, both core and auxiliary

5) the availability of library and utility routines

6) the support of the system by the staff

The availability of several different languages allows the
programmer to choose one which will work best for his specific problem.
The fewer languages there are, the fewer options he has for problem
representation.

The availability of several types of input and output communication
allows the programmer more options for designing the input and output of
his program. He also has a more varied choice for testing and debugging
his program.

Concern over efficiency can be less when the system is large
and fast. As the program approaches the limits of any system, however,
efficiency considerations become more important, if not for the cost of
the program itself, at least for increasing the priority of the program
within the system.

The availability of library and utility routines can reduce the
magnitude of the programming task when these routines can be incorporated

into the program.



27

The support that the staff gives the system is, at times, as
important as the power of the system itself. Unless there are adequate
documentation and maintenance services available, it becomes the programmer's
job to find out for himself about the problems he has with certain system
facilities. He, in fact, will not be aware of the available facilities

unless their descriptions are made accessible to him by the staff.

Knowledge and psychological characteristics of the programmer

The knowledge and psychological characteristics of the
programmer are as important as the other constraints. How much the
programmer knows about various facets of programming can make a difference
in the amount of difficulty he has with the programming task and in the
design quality of the programs he constructs. These facets include

1) the programming problem

2) programming constructs

3) language(s)

4) the computer system

5) psychological factors influencing programming

The knowledge that the programmer has about the problem
influences the quality of the design of his program. If he can see
alternative ways of representing the problem, then he has alternative
solution plans available to choose from. Since the solution plan
directly affects the characteristics of the problem, having alternative
solution plans increases the potential for program quality. If the
programmer overlooks or misunderstands a part of the problem, then the

longer he remains unaware of that fact the more difficult the programming



task will become for him. At whatever point in the task that he does
recognize his error or oversight, he will be forced to reevaluate every-
thing he has done up to that point before he can proceed. Such back-
tracking may require extensive changes or even starting over in order

to maintain design quality.

His knowledge of how to create and use programming constructs
(i.e., those construction techniques which transcend any individual
language), such as iteration, recursion or subprograms, limits the
alternatives that the programmer has for conceptualizing the processes
and data structures needed for the program. Similarly, the number of
languages he knows and the degree of familiarity he has with each of
them limits the alternatives he has for problem representation and
program construction. By using a language with which he is already
familiar, the programmer can make program construction, insofar as using
the language is concerned, easier; however, by not taking advantage
of a less familiar language that has features more compatible to a given
problem, he restricts the potential quality of the program.

The more a programmer knows about the computer system, the
more alternatives he has for the choice of a language, for incorporating
library and utility routines into his program, for input and output for
his program, and for testing and debugging aids. The more he knows about
the intricacies of the system and how the language he uses works within
the system, the better he can evaluate the effects of his program.

Increased alternatives, whether in the choice of a problem
representation, a language, a programming construct or a system facility,

offer the programmer a greater potential for a well-designed program

28



29

since each alternative offers a chance of greater efficiency, readability,
adaptability, and ease of debugging. By carefully choosing among his
alternatives, the programmer can more easily construct a well-designed
program. He restricts the alternatives himself when he does not possess
the necessary knowledge.

The entire programming process can become easier for the
programmer if he is aware of psychological factors which can influence
the process, especially as these factors relate to him personally. Among
the psychological factors assumed to be relevant in programming are the
aptitudes of memory — both short term and long term, deductive reasoning,
and problem solving ability. Even personality factors, such as the
ability to work under stress and the ability to admit mistakes, are
applicable here. Some of these factors are significant for the entire
programming process while others have a strong influence in only one or
two parts of the process.

For example, memory is important throughout the entire process.
Because programs must be expressed exactly, only very short and simple
programs, can be held in human memory. Even programmers with good
memories realize their shortcomings and compensate for the inability to
retain the details of large programs by using written records.

Another factor influencing the programming process is psychological

set. Psychological set is that phenomenon in which the categorization of a

perceived pattern, either concrete or abstract, is based on factors other
than those existing within the pattern itself. Set can sometimes produce
undesirable results for the programmer. For example, he may have a program

in which there is an error whose location is unknown. His task is to analyze



30

the program code, i.e., the pattern, in order to determine which part is
incorrect, i.e., to categorize it. Often the programmer will be unable
to find the location of the error due to his mental attitude, or set,
concerning the program code. For instance, if one of the subprograms in
the program had run earlier on a set of test data, he would assume that
the subprogram still works and, therefore, could not be the source of

the error. Yet, in fact, it might contain the error. Or, he may have
invested such an inordinate amount of time on a certain part of the program
that he feels that it must be correct, when it perhaps is not. In these
cases it is not what the programmer actually sees when he looks at the
program code and analyzes it, but it is his predisposition toward the
code that allows him to categorize it incorrectly. The debugging process
is especially susceptible to this kind of influence.

By recognizing how these and other factors can affect the entire
programming task as well as particular parts of the task, the programmer
can use these factors to his advantage whenever possible. More importantly,
he can guard against those which work to his disadvantage and try to
compensate for them in some way. In this way he can eliminate some of

the difficulties of the programming task.

2.4 The Method for Designing Programs

The proposed method for designing programs encompasses the
entire transformational process by which a human produces a program that
is a solution to a programming problem. The method divides the transformational

process into ten major steps. These steps are



1)
2)
3)
4)
5)
6)
7)
8)
9
10)

The division

Problem Definition

Problem Analysis

Solution Plan

Establishment of Algorithms
Algorithmic Description
Program Coding

Program Testing

Debugging

Documentation

Re—~analysis

of the programming task into these ten steps is not intended

to imply that each step is independent of the others. In fact, each step

is interrelated with the other steps and some steps may be carried out in

parallel. However, each step is composed of a set of related tasks which

must be initiated, if not completed, before the succeeding steps can be

initiated.

By dividing the transformational process into ten clearly defined

steps it is possible to

1)

2)

3)

explain the purpose of each step in relation to the entire
programming task

explain the purpose of each step in relation to the program
produced

explain how the tasks which must be at least initiated, if
not completed, for each step influence the design of the

program and its characteristics.

31



32

It is possible, therefore, to be explicit in presenting the method for
designing programs to a student. He will have a limited number of steps,
each with a specific set of tasks, that he can apply to any programming
task. In this way the student is not left on his own to assimilate for
himself an overall approach to programming. Instead he is given an
approach to use. The intent in doing so is to reduce the learning level
from that of "problem solving' to "principle learning' for as much of

the task as is possible. In essence, the student learns a set of rules
which he can apply to any programming task and is therefore freed from
having to create such rules himself.

The specific details for the steps in the method for designing
programs are presented as a collection of ideas for use by the teacher
in adapting the method to the particular course involved. Before proceeding
to the specification of the method, a brief survey of how a programmer
works through the ten steps is given followed by a summary of how each

program characteristic is related to the ten steps.

A survey of the steps in the method

This survey of the steps in the method is intended only to give
the overall relationship of the steps in the method. Each step in the
method and the relationship among the steps is considerably more complex
than outlined below.

When confronted with a problem to program, a programmer must
first study the problem in order to understand exactly what the problem is
and to make sure that it is clearly defined. This takes place during

the Problem Definition step. As his understanding of the problem becomes




33

clearer, he then proceeds to analyze the problem in order to separate out
subproblems which are easier to solve individually than the problem as

a whole; such analysis is done during Problem Analysis. While analysis

of the problem and its subproblems is being domne, the programmer is also
searching for solution plans for the subproblems he has found. This search
for solution plans for subproblems, and ultimately for the entire problem,

takes place during the Solution Plan step. Once he has at least one

solution plan for the problem, the programmer then creates an algorithm

for the plan — this being done during the Establishment of Algorithms

step. During the Algorithmic Description step, the algorithm is given

a formal description from which language statements can be easily formulated

during the Program Coding step. Once the entire program has been coded,

it is tested for errors during Program Testing and if any are found, they

are located and corrected during the Debugging step. When the program is
completed, documentation can be furnished which describes the program and

its purpose; this is done during Documentation. At this point the task

of producing a program and its documentation is complete; however, a tenth
step called Re-analysis has been included. This step is one which, while
not directly affecting the program at hand, is an important one. In
providing for the re-analysis of the program and its documentation, as well
as of the overall process used to produce the program, this step can
contribute valuable hindsight knowledge to a programmer's repertoire of
program design skills and thus better prepare him for his future programming

tasks.



Relation of desired program characteristics to the steps

The importance of the characteristics of correctness, efficiency,
readability, adaptability and ease of debugging was previously discussed.
In order to construct a well-designed program these characteristics must
be planned for throughout the design process. Given below is a summary
of the considerations included in each step of the method for each of the
characteristics.

For program correctness, the following are considered in the
various steps:

Step 1 - Problem Definition

establishing the problem definition as correctly as
possible, especially the correct output

Step 2 - Problem Analysis
refinement of the desired output;
identification of a set of subproblems which encompass
all parts of the given problem adequately

Step 3 - Solution Plan

verification that solution plans suggested are actually
solutions

Step 4 - Establishment of Algorithms
verification that the algorithm produced represents the
solution plan for the given problem;
establishment of error traps for conditions which
violate algorithm invariants

Step 5 — Algorithmic Description

verification that the description used corresponds to
the intended algorithm

Step 6 - Program Coding

verification that the code produced represents the
algorithmic description



35

Step 7 - Program Testing

verification that the program produces the correct
output

Step 8 - Debugging
correction of errors

Efficiency considerations are made in a relatively few steps:

Step 3 - Solution Plan
consideration of efficiency questions for the solution
plan to each subproblem and consideration of efficiency
questions for the solution plan to the entire problem,
including overall problem structure, data structures,
and algorithmic processes

Step 4 - Establishment of Algorithms
consideration of the performance characteristics of
each algorithm for each subproblem and of the algorithm
for the solution plan to the entire problem, including
program structure, data structures, and programming
constructs used to define the algorithmic processes

Step 6 — Program Coding
consideration of the language structures which make the
best use of the language being used, including data
structures, program structure, and processing control

Step 7 — Program Testing

determination that the program actually performs as
well as expected

Readability considerations start at the very beginning of the
design process. The utilization of names which reflect the contents of
subproblems, solution plans, algorithms and subsequently subprograms should
be carefully chosen starting in Step 1 - Problem Definition and be carried
through Step 6 - Program Coding. Names which reflect the purpose of data
structures as they are developed are chosen in Step 1 through Step 6
inclusive. Comments in the program body and organizational schemes, such

as indentation, are included in Step 6 - Program Coding.



36

Adaptability considerations are related to the modularity of

the program structure and to the straightforwardness of the data structures.
Program structure is dependent to a degree on the conceptualization of the
given problem as it is seen during Step 1 - Problem Definition. The
breakdown of subproblems as carried out in Step 2 - Problem Analysis has
the greatest influence on establishing the program structure. Step 5 -
Algorithmic Description comsiders the structuring of subprograms so that
some modification of the program structure may occur here.

Data structure considerations related to adaptability fall
mainly in Step 3 - Solution Plan through Step 5 — Algorithmic Description.
It is in Step 3 that the general descriptions of potential data structures
are first considered. Step 4 and Step 5 are also important in that
efficiency questions are considered so that the tradeoff between efficiency
and adaptability becomes apparent here.

Debugging considerations are also related to the modularity
of the program structure and the straightforwardness of the data structures,
and they therefore parallel those of adaptability. Thus, Step 2 - Problem
Analysis and Step 5 - Algorithmic Description contain considerations about
program structure and Step 3, Step 4, and Step 5 contain considerations
about data structures. Step 7 ~ Program Testing bears directly on ease of
debugging to the extent that the test routines and organized testing
schedule take advantage of program structure, thus reducing the complexity

of the debugging process.

Specification of the steps in the method for designing programs

The steps in the method for designing programs were listed

previously. This specification of the method includes the name and



37

description of each step along with the relation of each step to the

other steps. The relationship between steps is expressed in two ways.
First, a discussion of how the steps overlap with each other in time and
second, a description of the requirements from previous steps for each
step is given. The nucleus of each step is the specification of the

tasks to be accomplished within the step. The specification of the tasks
is embodied in a set of questions to be asked and in the structuring of
the answers for use in other steps. The ordering of the tasks within any
one step's specification in intended only as a guide to the order in which
they are performed.

These specifications are a collection of ideas, the details of
which are adaptable to any particular programming situation. While it is
expected that the programmer will work through the steps in the method
he will not necessarily carry out all of the specifications in detail.
For example, some specifications indicate the need for written records.
Some programmers may wish to keep extensive notes while others need only
a short note. For some programming tasks, certain specifications are
not applicable. For instance, if the language is predetermined, then
those specifications concerned with the choice of a language will not

apply. The steps and their specifications appear below.

Step 1 - Problem Definition

This first step in the transformational process is concerned
with the clarification and understanding of the given problem. Unless
the problem itself is understood, all effort on the problem may be lost.

Too often major parts of a problem are misinterpreted or, worse, the



38

entire problem is understood to be something quite alien to the original
problem. Therefore, before any effort is given to analyzing the problem
or working toward the solution of specific parts of the problem, it is

advisable that the problem statement in its entirety be clearly defined.

In his discussion of problem solving, Gagné [1970, p. 215]
states that the main activity during problem definition is to distinguish
the essential features of the problem. The "essential features" of any
problem depend, to a great extent, on the context within which the problem
is bound. For example, Polya [1957, p. xvi] lists three essential features
to look for in solving mathematical problems. These are (1) the unknowns,
(2) the data, and (3) the condition or conditions linking the unknowns
and the data. Once these three features have been identified, only then
can one proceed to look for a solution to the given problem.

Similar essential features exist for problems which are to be
solved within the context of computer programming. Corresponding to the
unknown in the mathematical context is the output from the program.
Corresponding to the data is the input data for the program. And, of
course, there is some relationship linking the input data and the output
just as there is at least one condition linking the mathematical unknown
and its associated data. The relationship between the input data and
the output is ideally expressed as a function which explicitly pairs the
inputs and the outputs; however, this ideal situation rarely exists.
Therefore, the clarification of the relationship, or mapping, between the
inputs and the outputs as well as clarification of the inputs and outputs

themselves must be initiated in this step.



The main interest in program output during this step is to
determine that output which is considered to be the solution to the
problem (or that which in some way indicates that the program is a
solution). This type of output is identified as solution output. A
second type of output which is also considered is auxiliary output. This
type of output, while not being the solution output itself, is necessary
in order that the solution output can be properly identified. Auxiliary
output may be in the form of headings, labels, or anything else which
clarifies the solution output. Both the solution output and the auxiliary
output are intended either for consideration by a human, a device, or
another program, so the selection of output media for these may be an
important factor to be considered in certain problems.

0f these two types of output, the solution output must be
identified during the Problem Definition step. The auxiliary output may
be tentatively identified here, but its composition will probably become

clearer during the Problem Analysis and Solution Plan steps.

39

The input data for a program can be described as that information

given in the problem upon which operations are to be performed so that the
solution output will result. The input data may exist in the program in
two ways. 1t may actually be input (read in) to the program, especially
if the specific values are to change from ome program run to another
(e.g., payroll information). On the other hand the input data may be of
such a nature that it can exist as part of the program. In this case the
data can be initialized within the program if it will not change between
program runs (e.g., a table of constant values). Whether the input data

is to be read in or initialized is a question which is usually resolved



during the Solution Plan step; however, if any restrictions appear in the
problem statement concerning this question, they should be noted during
Problem Definition.

The relationship between the input and the solution output may
be expressed in the problem statement in various ways. It may center
around a formula or a set of explicit rules, or it may be only implied in
a verbal description of the inputs and outputs. As a first step toward
establishing the mapping of inputs and outputs, the relationship, in
whatever manner it is expressed, should be represented as a series of
broad actions or steps, which start at the input and proceed to the
desired output.

Summarily, Problem Definition is concerned with establishing
an understanding of the problem. This is done by distinguishing the
essential features of the problem. In the context of programming these
features are the input (as a given), the solution output, and the

relationship between the input and the solution output.

Specifications for Problem Definition

1. What are the outputs from the program to be?
a. List the solution outputs in general terms, along with
output media, if applicable
b. List the auxiliary outputs in general terms
¢. If the solution and auxiliary outputs are to be output
in a specific pattern, illustrate it with explanation

d. List any restrictions imposed on the output

40



41

2. What is the input data for the program?
a. List the data to be read in, along with the input
media if applicable
b. List the data to be initialized in the program, along
with the initialization process if applicable
c. List any restrictions on the input data
3. What is the relationship between the input data and the
solution output?
Starting with the input data, list the broad actions or
steps necessary to get to the desired output, i.e.,

establish the preliminary mapping of inputs and outputs

Step 2 - Problem Analysis

The Problem Analysis step is concerned with the exploration of
the essential features outlined during Problem Definition. This exploration
is intended to isolate as many of the subproblems contained within the
given problem as possible. Not only are the subproblems to be found,
but they too are to be explored as to the presence of other subproblems.
Also, it may be possible to break up the given problem into subproblems
in more than one way so that alternative sets of subproblems may exist
for the given problem. Each such set will need to be explored as well.
Besides determining subproblems, this step involves investigating the
sufficiency of the information given in the problem to solve the problem
and determining if there are any inconsistencies or omissions in the problem
statement. As work proceeds on the programming task, such difficulties

can arise at almost any step; however, it is in this step that such



considerations should begin and of course continue throughout all further
steps. In order to accomplish both the isolation of subproblems and
the investigation of problem consistency, the essential features from
the Problem Definition will probably need further clarification by
expansion of those features which have been described in general terms.
The features should be made as explicit as possible with regard to the
requirements of the program, especially the input data and the solution
and auxiliary outputs.

The relationship of the Problem Analysis step to that of
Problem Definition has been implied in the preceding discussion. Problem
Analysis is a natural extension of the work started during Problem
Definition. Problem Analysis then works directly on the results from
the Specifications for Problem Definition, i.e., the specifications given
for inputs, outputs, and the preliminary mapping of inputs and outputs.
The dividing line between Problem Definition and Problem Analysis lacks
sharpness; however, the former is more concerned with establishing what
the essential features of the problem are and the latter, with the
breakdown of those features into subproblems through extensive analysis.

The demarkation between Problem Analysis and its successor

42

step, Solution Plan, is even less sharp than that between Problem Definition

and Problem Analysis. In fact, there is considerable interplay between
the two, since in order to decide if a potential subproblem lends itself
to being solved under certain conditions, an exploration of the potential
solution plan(s) must be dome. This in turn can lead to the isolation

of other subproblems. Therefore, the working relationship between

Problem Analysis and Solution Plan is quite close; however, since some

basic activities can be isolated in each step, they are discussed separately.



43

Specifications for Problem Analysis

1. What exactly are the outputs from the program to be?

a.

List each solution output giving its

1) name or identification

2) form (tabular, graphic, etc.)

3) type (real, character, etc.)

4) media (teletype, printer, etc.)

5) range of wvalues or attributes

List for each solution output its associated auxiliary
output giving the latter's

1) name or identification (or format)

2) form

3) type

If the solution and auxiliary outputs are to be output
in a specific pattern, describe it

List assumptions which have been made concerning the
outputs, i.e., what things have been assumed from
implications in the problem statement, but which are not

explicit in it. This may include the following:

1) name
2) form
3) type

4) media
5) range of values or attributes

6) output pattern



44

e. Describe any relationships which exist between solution
outputs and their associated auxiliary outputs, i.e., if
the values or size of one solution output entity changes,
describe how this change affects both its auxiliary
output and the other solution outputs and their auxiliary
outputs

2. What exactly is the input data for the program?

a. List the data given in the problem to be read inm,
giving its
1) name or identification
2) form (table, list, etc.)

3) type (real, character, etc.)
4) media (teletype, CRT, card, etc.)
5) range of values or attributes

b. List the data given in the problem that is to be
initialized, giving its
1) name or identification
2) form
3) type
4y range of values or attributes
5) process used to initialize data (e.g., assignment

of constant values, assignment of generated values, etc.)

c. List assumptions made concerning the input data, i.e.,

what things have been assumed from implicatioms in the

problem statement. This may include



1)
2)
3)
4)
5)
6)

7)

name

form

type

media

field specifications

range of values or attributes

process used to initialize data

45

d. Describe any relationships which exist between input data,

i.e., if the value or length of one data entity changes in

some way, describe how the change affects other input data.

What logical divisions, or subproblems, of the problem are

evident from the problem statement and from the results of

the Problem Definition step, especially concerning the

preliminary mapping of input data and solution output?

a. List any problem previously solved which is analogous

[Polya, 1957, pp. 37-46] or related [Polya, 1957,

PP-

1)

2)

3)

110-112]1 to the given problem giving

the analogous relationship

the breakdown of the subproblems in the analogous
problem

the estimated degree of usefulness of the analogous
problem and its subproblem breakdown with respect

to the given problem

b. List at least one tentative set of subproblems for the

given problem. This set may be given as a list of



46

1) events

2) functions

3) procedures

4) combination of 1), 2), and 3) which are expressed
in a definitive way (but not necessarily so well
defined as to be an algorithm) which can be used as
an outline to guide further analysis. (If helpful,
the list may be represented diagramatically as a
flowchart when the ordering of the subproblems has
been established.)

For each subproblem, list

1) a general description of what the subproblem is

2) its "input" and "output" in general terms not tied
to a specific data representation

3) its relation to immediate predecessor(s) and
successor(s) in the list of subproblems, where a
predecessor is a subproblem whose solution affects
the present subproblem, and a successor is a subproblem
which depends upon the solution of the present subproblem

4) the mapping in the subproblem relating its inputs
and outputs

For each subproblem, list the subproblems found in it

along with the elements listed in b. above. Continue

this isolation of subproblems until they are of a

manageable size. It may be advisable at this point to

diagram each set of subproblems, along with any alternative



subproblem configurations so that the given problem can
be visualized as a set of related subproblems. This
diagram may be a block type diagram similar to a Module
Linkage Chart [Maynard, 1972] in which each block
represents, in this case, a subproblem, the levels of the
blocks reflect the different depths of the subproblems,
and the lines connecting the blocks indicate which
subproblems are related to other subproblems. No
attempt is made in such a chart to indicate conditional
relationships among the subproblems; however, if
conditional relationships are desired then the flowchart
with conditionals can be used [Forsythe, et. al., 1969,

p. 45].

What inconsistencies exist in the problem statement or in

the subsequent subproblems, i.e., what omissions or

insufficiencies exist?

a.

Does each set of subproblems constitute all the parts

of the total problem? 1If not, list what is lacking.

Is each set of subproblems consistent with the problem
statement? If not, describe inconsistencies and how
they might be remedied.

What assumptions have been made about the problem itself
and subsequently about the subproblems in order to
compensate for any omissions in the problem statement
{or Problem Definition). Describe each assumption and

its relation to each set of subproblems.

47



48

Step 3 - Solution Plan

The Solution Plan step is probably the most difficult step in
the transformational process in that it requires that at least one solution
plan to the given problem be discovered or invented. This production of
a solution plan has been given a starting point by the reduction of the
given problem to a set of subproblems, which, hopefully, will be easier to
solve individually than the original problem as a whole. If a set of
subproblems which represents the original problem is complete in that
all aspects of the problem are accounted for, then it can be assumed that
the set of solution plans to a set of subproblems is a solution plan for
the original problem.

The general approach used to find a solution plan for any one
subproblem is to explore tentative solution paths. Such exploration
includes considering alternative solution processes, alternative data
representations, alternative inputs and outputs for each subproblem, and
even alternative representations of the subproblem itself. These latter
representations may already exist from the production of various sets of
subproblems during Problem Analysis, or they may become apparent during
attempts to produce a solution plan for a given subproblem. Once a set
of tentative solution plans for a subproblem have been found, the solution
plans need to be carefully examined to determine which one or ones meet
the requirements which are desired in the final product, e.g., how much
processing is to be done, how much storage approximately will be needed,
if the solution process is straightforward, etc. Each tentative solution
plan should, of course, be checked for consistency with the problem
statement and its conditions to insure that the solution plans actually

solve the given problem.



49

At this point in the transformational process, nothing has been
implied about the choice of language or computer to be used for the final
pregram. The reason for this is that such choices can be and should be
dependent upon the result of the Solution Plan step. By considering the
tentative solution plans and the desired characteristics of the final
product in tandem and comparing the features needed with available language
and computer options, an intelligent choice can be made which will reduce
the amount of work necessary to translate the solution plans into the
final program. Even if the computer and the language are predetermined,
alternative solution plans are useful in that by comparing such alternatives,
the better solution plan can be chosen based on the desired characteristics
of the final product, e.g., efficiency of processing or minimal storage
space.

The representation of the various solution plans can be expressed
in several forms. It can be an extension of the form used during Problem
Analysis or it can be something else depending upon the preference of the
programmer. Representations commonly used include flowcharts, verbal
outline descriptions, decision tables, and module charts. Whichever
type of representation is used, it should allow for a complete description
of all phases of the solution plan; it will probably be some combination
of flow diagram and verbal description.

In summary, the result of this step should be one set of
solution plans for the subproblems which comprise the given problem. In
order to produce one such set, alternative solution plans for each
subproblem in each set of subproblems from Problem Analysis should be
explored as to their suitabilities for practical implementation as well

as their consistencies with the given problem.



50

In exploring solution paths for any subproblem it is natural to
encounter new subproblems not previously envisioned during the Problem
Analysis step. Because of this, it can be seen that the Problem Analysis
and Solution Plan steps are not entirely sequential but in fact are
alternating activities. As new subproblems are encountered and recognized
as such, the exploration of solution paths becomes necessary. Therefore,
the Solution Plan step requires the isolation of some subproblems during
the Problem Analysis step and expects that at least one set of such
subproblems exists. During the quest for solution plans for the subproblems
a form of problem analysis is ongoing so that new subproblems are added
to those previously found during the initial phase of Problem Analysis.
These new subproblems are explored for solution plans and the processes

continue until all subproblems have been solved in some way.

Specifications for Solution Plan

1. What solution plan(s) exist for each subproblem given its

general description, its inputs, its outputs, the mapping

of its inputs and outputs, and its relation to its successors

and predecessors?

a. List any problem previously encountered and solved which
is analogous to or is related to each subproblem giving
1) the method used to solve the associated problem
2) the applicability of the solution and the solution

plan for the given subproblem

b. List each tentative solution plan for each subproblem

giving its complete description as far as possible

including the



1)
2)
3)

4)

5)

6)

51

assumed data representations internal to the subproblem
assumed representations for the inputs

assumed representations for the outputs

assumed mapping of the inputs and outputs of the
subproblem

valid ranges of values or valid attributes of the

data representations

verbal and/or diagrammatic general descriptions of

the solution process

c. For each solution plan list any new subproblem that has

been encountered along with its

1)
2)
3)
4)

5)

general description

inputs

outputs

mapping of inputs and outputs

relation to predecessors/successors

How ''good" is each solution plan for each subproblem, and

which is the best one in the context of solving the problem

practically?

a. TFor each solution plan, answer the following questions

1

2)

3)

Approximately how many times will the steps in the
solution process be executed?

Approximately how much storage is required for the

data representations used internally (to the subproblem)
as well as the process itself?

How straightforward is the solution process?



4)

5)

6)

7)

8)

9)

52

Can the range of values anticipated to occur in the
solution process be computed on the computer(s)

being used?

Does the solution process depend upon any external

(to it) information other than the given inputs to it?
Does the solution plan correctly solve the subproblem?
Does the proposed solution plan mesh with the

solution plans proposed for its predecessor subproblems,
i.e., those subproblems whose solution affects this
one in some way?

What type of language and/or computer characteristics
are envisioned as being either necessary or convenient
to have in order to implement the solution?

If computer and language are predetermined, then do
they possess the necessary characteristics to
implement the solution plan? 1If not, can the

characteristics be created in the language?

For each set of proposed solution plans for each subproblem,

pick out the best solution plan based on the answers to

the above questions so that it will be compatible with

its predecessors and successors, which are also to be the

best solution plans based on the above questions.

For each set of subproblems assemble the best set of

solution plans.



53

If there is more than one set of subproblems which represent

the given problem, then which solution plan set is the best

total solution plan for the given problem?

a.

For each set of solution plans answer the following

questions:

EY)

2)

3)

4)

5)

6)

7)

Which set of solution plans requires the least amount
of storage for both data representations and process
representations?

Which set of solution plans has the least number of
steps?

Which set of solution plans has the least number of
step executions?

Which set of solution plans exhibits the greatest
amount of independence among the individual solution
plans (independence here means nc connectivity between
solution plans except through defined inputs and
outputs), i.e., modularity?

Which set of solution plans seems to be the most
straightforward?

Does each set of solution plans correctly solve the
given problem with its defined inputs, outputs, and
mapping between the inputs and outputs?

If the language and computer are predetermined,

then can each set of solution plans be implemented
using existing characteristics of the language and

computer? If so, how difficult does the implementation



54

appear to be? If not, can the necessary characteristics
be created; and if they can, how difficult does their
creation and subsequent implementation appear to be?

8) 1If a choice of languages is available, which language(s)
best fit each set of solution plans, i.e., which
language{(s) possess the necessary characteristics
to allow implementation of the total solution plan
either directly or with a minimum of created
characteristics?

b. Determine the one total solution plan to be used on the
answers to the above questions. There should be at least
one such total solution plan to the given problem.

c. Determine which language (or languages) is to be used
for the program by evaluating the answers to the following
questions:

1) Which language possesses the characteristics (i.e.,
processing features, data structures, program
structures) which match the needs of the proposed
total solution plan the closest?

2) Which language possesses the characteristics from
which the necessary features for the solution plan

can be created with the least amount of difficulty?

Step 4 - Establishment of Algorithms
The Establishment of Algorithms step in the transformational

process requires that the proposed solution plan developed during the



Solution Plan step be expressed algorithmically. Algorithmic expression,
after Knuth [1969, pp. 4-6], means that the solution plan is to be
expressed as a finite set of rules which gives a sequence of operations
that will solve the given problem. The set of rules should exhibit the
following features:

1) finiteness -~ the algorithm must terminate after a finite
number of steps

2) definiteness ~ each step in the algorithm is to be precisely
defined so that all required actions are unambiguous and
rigorous with respect to each case to which it is applied

55

3) dnput - there is to be zero or more quantities from a specific

set of objects which are given to the algorithm before it
begins

4) output - there is to be one or more quantities resulting from

the action of the algorithm which have a specified relation
to the inputs

5) effectiveness - all operations in the algorithm must be so
basic that they can be, in principle, done exactly and in a
finite length of time by a person using pencil and paper

Regardless of the manner in which the proposed solution plan
has been expressed as the result of the Solution Plan step, it must be
expressed algorithmically so that it can be transformed into a program.

In order to do this, each solution plan for each subproblem needs to be
established as an algorithm so that the entire solution plan for the
given problem will be in the required form.

The goal in this step is to establish a complete algorithmically
expressed solution plan for the given problem. Therefore, this step
expects to receive a complete solution plan for the given problem, where
the expression of the solution plan as given in the Solution Plan step may

range from a general description of the solution processes to a precise

description which may be almost algorithmically expressed.



56

In case there is some question about the kinds of solution
processes which can be expressed algorithmically, it does not matter
whether the processes are in fact algorithms in that they always produce
the desired answers or are heuristics in which the desired answers may
or may not be produced, as long as the result of the proposed solution
process is acceptable to the problem solver. It is expected that the
proposed solution plan resulting from the Solution Plan step may be some
type of heuristic process. This kind of process, if it is to be transformed
into a program, must be expressed as an algorithm whether or not it produces
the desired answer every time; as long as the heuristic process provides
some means of expressing the lack of an answer, it can be given the
algorithmic expression necessary for translating it into a computer
program.

The Establishment of Algorithms step is a natural extension of
the Solution Plan step in that there may be no discernable break between
them in actual practice; however, there is a difference between being
able to create a solution plan for a problem and being able to give an
algorithmic expression of that plan. Thus the Solution Plan step and the

Establishment of Algorithms step have been treated separately.

Specifications for the Establishment of Algorithms

1. What is the algorithmic expression for the proposed solution
plan established during the Solution Plan step?
a. For every solution plan corresponding to the subproblems
representing the given problem, establish it as an
algorithm, i.e., as a finite set of rules giving a sequence

of operations where the following features are present:



57

1) finiteness

2) definiteness

3) dinput

4) output

5) effectiveness

Besides developing the algorithm, include the following

information about it:

1) specify the inputs as to number, type, range of
values, etc.

2) specify the outputs as to number, type, range of
values, etc.

3) specify the mapping of the inputs and the outputs

b. Combine all algorithms for the solution plans for all the
subproblems so that the complete solution plan for the
given problem is an algorithm which exhibits the features
listed above. Include information specifying the inputs,
the outputs, and the mapping of the inputs and the outputs.

2. Does the complete algorithm provide a correct solution to

the given problem?

a. Determine for all algorithms corresponding to the
subproblems if each such algorithm expresses a solution
to its corresponding subproblem by
1) showing that it produces the correct outputs for all

expected inputs; do this by tracing through the

algorithm using critical inputs (maximums, minimums, etc.)



2)

58

showing what happens when it receives unexpected
inputs; do this by tracing through the algorithm
using values outside the range expected by the

glgorithm

b. Determine for the complete algorithm that it provides a

solution to the given problem by

1

2)

3)

establishing that all inputs and outputs for each
algorithm corresponding to a subproblem are correctly
positioned in the subproblem structure

showing that it produces the correct outputs for

all expected inputs

showing what happens when it receives unexpected

inputs

3. What are the performance characteristics of the complete

algorithm?

a. TFor each algorithm corresponding to a subproblem

1)

2)

3)

4)

5)

indicate where the error-prone points are in the
algorithmic process

establish how many times the steps in the algorithm
will be executed

establish that the estimated execution time and
storage requirements for the algorithm are within
reasonable limits

establish under what conditions the algorithm will
break down

establish under what conditions the algorithm becomes

too costly



b. For the complete algorithm
1) idindicate where the error-prone points are
2) establish the approximate amount of storage needed
for the algorithm proper and its data structures
3) establish an estimate of the time needed to execute
the entire process
4y dindicate under what conditions it will break down
5) establish under what conditions its performance
becomes too costly
¢. If any part of the complete algorithm appears that it
will not perform at the desired level, then that part
should be changed before proceeding further.
d. At those points in the algorithm which are susceptible
to errors, e.g., ill-defined input, establish error

traps as part of the algorithm.

Step 5 - Algorithmic Description

The Algorithmic Description step in the transformational process
is concerned with giving the complete algorithm (established during the
Establishment of Algorithms step) a description suitable for use in
developing the program structure and the program code for the desired
program. This description should, of course, accurately reflect the
processes defined in the algorithm by preserving the operations defined
and the paths through the steps in the algorithm. The description should
also be in a notation which can be readily used to reflect the logical
organization of the algorithm and, ultimately, the organization of the

program itself. The description may be some combination of

59



1) flow diagrams

2) verbal descriptions, e.g., after Knuth [1969, pp. 2-4]

3) decision tables
Such a description will be called a flowchart in further discussions.

The degree of detail required by this step is difficult to
define precisely; however, it can be broadly described as being that
amount necessary for the programmer to organize and code the program.
This is not to imply that the degree of detail required in the flowchart
will be of the same level throughout. In fact, it will probably be a
multi-level chart in which the highest level will encompass the entire
program structure in a broad sense, where the subprograms are only seen as
",lack boxes." Lower level flowcharts will give greater detail for black
boxes until the degree of detail is that required.

After the flowchart has been created, it should be carefully
surveyed to insure that it agrees at every step with the algorithm it
describes; the flowchart itself should be examined to see that it, with
the included subprogram organization, gives a solution to the given
problem. Those areas which were identified earlier as being error prone
should be marked for incorporation of special testing processes. It is
at this time, when the flowchart is tentatively in final form, that all
work produced so far should be reviewed in an effort to locate slips and
logical errors; once the coding of the program begins, the location and
correétion of errors becomes more difficult.

The Algorithmic Description step expects to take the complete

algorithm produced during the Establishment of Algorithms step and produce

a flowchart which, while reflecting the defined processes in the algorithm,

60



61

will be useful as a guide to the organization and coding of the program

to be produced. The objective of this step is to represent the total
program organization as a flowchart of some type which will provide a guide
for program construction. It should be noted that flowcharting as an aid
to programming is not restricted to this one step. The description of

this step should not be taken as an implication that flowcharting is only
used at this point; it is useful throughout the programming process and

should be used whenever it is needed.

Specifications for Algorithmic Descriptiom

1. What representation is to be given to the complete algorithm?
a. Does the complete algorithm with its sub-algorithm
structuring (corresponding to the subproblem structure)
possess the organizational characteristics desired for
implementation of the sub~algorithms as subprograms in
the program to be produced?

1) Group together those sub-algorithms which form a
logical function or set of related logical functiomns
as a subprogram

2) Group together those sub-algorithms thch are
concerned with one particular data structure or
with one set of related data structures as a subprogram

3) Produce a high level flowchart which gives the
relationship among the subprograms and the main
program giving the following information (subprograms

are to be represented as black boxes):



62

a) a description of the main program with its
defined inputs and outputs

b) the flow of control among the subprograms giving
the inputs and outputs for the subprograms
(i.e., parameters) along with their general

descriptions

Does the high level flowchart reflect the intent of

the complete algorithm?

1)

2)

Trace through the flowchart using the defined inputs
in order to determine that the flow of control through
the subprogram structure does produce the required
output.

For those parts of the flowchart which do not
represent subprograms, i.e., those parts of the main
program which carry out some function other than
subprogram calls, determine that the detail is

gsufficient for translation into code.

2. What representation is to be given to the subprograms?

a.

Produce a flowchart to the desired level of detail for

each subprogram describing

1
2)

3)

4)

its dinputs

its outputs

its relationship to the main program, i.e., Where

it can be called from and where it returns control to

its relationship to other subprograms by establishing



63

a) which ones it calls
b) which ones call it
¢) the communication between calling and called as
to inputs and outputs
5) the inner workings of the algorithm which it represents;
the subprograms it calls may be at the black box level
b. Determine that the flowchart for each subprogram reflects
the intent of the represented algorithm by tracing through
the flowchart with inputs defined for it to determine that
it produces the proper outputs; also, use undefined inputs
to determine its performance under undefined conditions.
What parts of the flowchart are error prone?
a. Locate and mark each place which was found earlier in
the Establishment of Algorithms step.
b. Locate any new places which have become apparent during
the flowcharting process.
c. For each place so marked describe the potential error
conditions by giving
1) wvalues which could cause such conditions
2) reasons such values could exist
d. For each place so marked detail a process {or routine)
that will test for such errors which can
1) be inserted into the program as a
a) permanent error trap

b) temporary error trap for use during testing only



64

2) be used as a test routine (include test data, if
necessary) during testing
Are there any errors in the work produced so far?
Check the product of each step in the transformational process
to make sure that
a. each product is consistent with its predecessor products
from earlier steps

b. that the given problem is the one which is being solved

Step 6 - Program Coding

Program Coding is the step in which the flowchart is translated

into program statements. This translation process involves

i)

2)

3)

4)

recognizing programming structures in the flowchart, e.g.,
loops, data structures, etc.

creating at least one corresponding language structure from
the language concepts, e.g., variables, statements, etc.
choosing the best language structure

coding it

Programming structures are those concepts which can be generalized over

many languages, although no one language can represent all such programming

structures.

For example, a loop is a programming structure, as is a

subprogram, a variable, and a conditional. An iterative process and a

recursive process are also programming structures. There are many ways

of creating these structures in different programming languages, and

certain programming structures can be represented in more than one way in

any one language. Therefore, before coding can actually begin on a program,



65

the programmer must first recognize the programming structures in the
flowchart. He must also be able to represent the programming structures
in the language by combining the language concepts in specific ways. If
there is more than one way, he needs to choose the one which fits best
with the rest of the program code. Then, he must code the entire program.
It is advantageous to start the coding at the lowest level
subprograms, i.e., those programs which are called by other subprograms
or the main program but that do not call any themselves, and then proceed
upward through the levels of subprograms until the main program is reached.
This is in order that the running and debugging of the program can proceed
efficiently. Each section of code, corresponding to a subprogram or other
logical division, should be carefully checked to see that every part, no
matter how small, corresponds exactly to the flowchart. Once the entire
program is coded it should be thoroughly checked to insure that all the
subprograms and the main program will communicate properly. Those places
marked on the flowchart as being error prone should be marked on the coded
program in anticipation of the incorporation of testing code to be produced.

Those test routines and test data should then be coded as well.

Specifications for Program Coding

1. What code represents the flowchart?
a. Determine the programming structures in the flowchart,
e.g., type of processes — iterative, recursive
type of subprograms - procedure, function
type of data structures - simple, arrays

type of values - characters, numeric



Create one or more language structures to correspond

with the programming structures by combining language

concepts such as variables, constants, assignment

statements, etc.

Choose the best language structures by determining

which ones

1) represent the corresponding programming structures
best

2) make the most effective use of the language and
computer

3) mesh best with the other language structures to be
coded

Code the program by

1) starting with the lowest level subprogram(s)

2) working up through the levels of subprograms until

the main program is encountered

Does the code produced actually represent the flowchart

solution?

a.

Check each step in the code to see that it corresponds
to the flowchart by matching

1) overall processes, such as subprograms, loops, etc.
2) data structures

3) data values

4) total program organization

Check the coded program to see that it produces the

correct output for the inputs received by

66



D)

2)

3)

4)

67

tracing through each subprogram with its inputs

and determining that the outputs are correct

tracing through each subprogram with undefined

inputs and determining its behavior under undefined
conditions

tracing through the entire coded program with the
defined inputs to determine that the required solution
and auxiliary outputs are produced, especially noting
the communication between subprograms and main program
tracing through the program with undefined inputs

to determine its behavior

Where are the error-prone areas in the coded program?

a. Mark each place in the code which corresponds to an

error-prone area marked on the flowchart.

b. Mark any new places which have become apparent during

coding.

c. Briefly describe the reasons that they are error prone

and outline a method for handling them which can be

inserted in the code for testing purposes either as

error traps or as part of test routines.

d. Code those routines that are needed for initial testing

purposes.

What should be done to clarify the coded program?

a. Insert appropriate commentary for the main program and

the subprograms which describes the purpose of each; such

commentary should be set apart from the code in some way.



68

b. Use an indentation scheme which will set apart underlying
programming constructs.

c. Organize the subprograms so that they are easily accessible
for reference purposes, e.g., put related subprograms

on the same page or on consecutive pages.

Step 7 - Program Testing
Program Testing is the step in which the coded program is run
to determine if it does in fact produce the correct output. Program
Testing must be planned before the program is run in order that testing
routines can be devised which will provide adequate tests. Therefore,
trouble areas are anticipated starting early in the programming process.
Such anticipation is explicitly expressed in the Establishment of Algorithms
step, and it is in the flowcharting and coding steps when test routines
are developed along with program development as a whole.
Program Testing can be thought of as consisting of several
phases. (Although the first phase should be almost complete by the time
this step is reached, it is a part of the testing process and is, therefore,
included as part of this step.) The phases of testing are
1) planning, in which test routines with test data are devised
which will test each subprogram and the main programs at
those places which are potentially error prone
2) running, in which the tests are carried out in an organized
manner as independently as possible
3) devising new tests, whenever bugs are found which require

program modification



When it has been determined that the program has been adequately tested,
all test routines are removed and the program is tested as it is intended
to be run to insure that no errors were introduced or covered up by the
test routines. Upon satisfactory completion of this last testing, the
program is ready for use and can be completely documented.

The Program Testing step requires the presence of both the
coded program and the test routines which have been developed in earlier
steps. Program Testing is also closely related to another step — Program
Debugging. Testing of programs leads (usually) to the discovery of errors
which must be corrected. Debugging and correcting lead to more testing,
so it is apparent that a type of cyclic relationship exists between the

two steps.

Specifications for Program Testing

1. Are the existing test routines adequate for testing the
coded program?

a. Survey the test routines to see that they cover all
error-prone areas marked on the coded program.

b. 1If there are trouble spots which do not seem adequately
tested by the existing routines, revise them or create
new ones.

c. Note especially the following test areas:

1) wverification of program input
2) verification of input to subprograms

3) verification of output from subprograms

69



70

2. Do the results of the test runs indicate that the program

gives the desired output?

a.

Run each subprogram and the main program as independently
as possible from all other subprograms, each with its own
test routines by
1) starting at the lowest level subprograms, i.e.,
those which do not call other subprograms
2) working up through the subprograms as the lower level
subprograms are satisfactorily tested and can be used
to test the higher level subprograms
3) wusing dummy subprograms for those which require the
results from subprograms which have not yet been
completely tested
When all subprograms have been tested satisfactorily as
has the main program, combine them and run the program
with its test routines.
When satisfactory results are produced with the test
routines for the entire program, remove them and test the
program to see that their presence did not cover up any
errors and that their removal did not introduce any errors.
The testing is complete when a satisfactory result,
i.e., correct output, is obtained.
For each error discovered, proceed with the debugging

as outlined in the Debugging step.



71

3. What do the results of the Debugging step require in the
way of new tests, if any?

a. If the debugging results have necessitated major changes
in the program and the previous tests do not test the
new code, devise a test which will.

b. If the debugging results are covered by the present
tests or have been compensated for by new tests, rerun
the program as outlined above.

4, Do the results of the test runs indicate that the program
runs as efficiently as expected for

a. Each subprogram

b. The entire program?

If not, how can it be improved?

Step 8 -~ Debugging

This step in the transformational process is concerned mainly
with locating and correcting errors, or bugs, in the program which are
discovered during the Progrém Testing step. The discovery that errors
exist, an activity of the Program Testing step, can be and usually is
separate from the location and correction of such errors. There are four
types of errors which can exist in a program; these are

1) syntactic

2) semantic

3) pragmatic

4)  logic
Syntactic errors are those which violate some language rule(s) for some

statement in the program, e.g., misplaced comma, misspelled variable, etc.



72

Semantic errors are those which violate some language rules governing a
combination of statements, e.g., if the number of subscripts in a variable
differs from the way in which the variable has been declared. Pragmatic
errors are those in which the conceptualization of the meaning of a
language structure by the programmer is different from the defined meaning
of the language structure, e.g., input/output operations for arrays may
cause an error if the programmer thinks that a certain operation handles
the data elements by rows but the operation in fact handles them by
columns. Logic errors are those errors in which the conceptualization of
the solution plan is incorrect, e.g., a loop which does not execute the
correct number of times due to a miscalculation by the programmer.

Syntactic errors are usually obvious due to diagnostic messages
from the computer system. Exceptions include those errors which are
syntactically correct but are not correct in the context of the program.
For example, a keypunch error in which a plus sign is punched instead of
a minus sign in an expression will produce an incorrect result during the
execution of the program but will not necessarily be incorrect syntactically.
This latter type of error is usually discovered because the program
produces incorrect results.

Semantic errors, like syntactic errors, are usually found due
to diagnostic messages. Again, the exceptions to this are usually discovered
because the program produces incorrect results.

Pragmatic errors and logic errors are both difficult to find.
Both of these types of errors can be syntactically and semantically correct
and therefore produce no diagnostics. Again, it is usually only through

incorrect results that the presence of these errors is discovered.



73

There are basically, then, two ways in which errors can be
discovered. One is by the diagnostic messages given during compilation
and during execution. The other is by discovering incorrect results.
Errors pointed out by diagnostic messages are usually the easiest to find
and correct. Those errors which are discovered as a result of observing
that incorrect results have been produced are usually more difficult to
find, although their correcfion may be relatively easy. In order to
locate where such an error occurs, traces through the program, either by
hand or by computer printouts, are usually necessary. Such tracing can
be quite costly in terms of both human time and computer time. It is for
this reason that testing should be carried out in stages as described
earlier in an effort to eliminate extended error tracing.

The correction of errors seems to be of two basic types. One
is a straightforward correction of a small error, e.g., a keypunch error,
in which only a few statements are involved and the logic of the program
is correct -— this includes most syntactic and semantic error corrections.
The other type is more serious and involves a revision of several statements
or more in the program code; this usually reflects a pragmatic or logic
error. 1In corrections where extensive revision is necessary, extreme
care must be taken to insure that new errors are not introduced while the
attempt is being made to correct the first error. Such corrections may
in fact require a complete reevaluation starting with Problem Analysis
in order that a logic error camn be corrected throughout the entire program
organization. Whenever any correction is made, the program should be

retested to insure that the corrections are correct.



74

The Debugging step, then, is primarily an error location and

correction process.

Whenever errors are discovered during Program Testing,

as a result of either diagnostic messages or incorrect results, debugging

is necessary; and whenever corrections are made, testing is again necessary.

Thus, the Program Testing and Debugging steps are interdependent.

Specifications for Debugging

1. Where is the error located?

a. If there is a diagnostic message and it is

1)

2)

a compile time error message, then

a) determine what errors can cause such a message

b) 1locate the error by looking for occurrences of
the possible errors

a run time error message, then

a) if the message indicates the approximate location,
proceed as in a) above

b) if the message does not indicate the location
then determine what errors can cause such an error
message, and trace through the program either by
hand or by inserting trace printouts in order to

locate the error

b. If there was no message, then what results are incorrect?

1)

Where were the results calculated and at what point
were they output? The point of output can give an
approximate location of the error. The point where
calculations were initiated can also give an

approximate location of the error.



