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CHAPTER 1

INTRODUCTION AND OVERVIEW

INTRODUCTION

Reliability in computer data bases is becoming
an increasingly important topic. Data integrity is needed
for the volumes of vital statistics kept in long term stor-
age such as disk. This data is used in computer processing
to produce analysis and decisions which may affect human
lives. Complex, essentially continuously running systems
cannot be adequately checked by a staff of people because
of the combinatorial explosion of predicting and analyzing
errors. Timing constraints tend to make human control im-
practical or even impossible. For example, a computer
application monitoring a spacecraft launching is designed
to instigate an abort without human authorization.

There are many causes for the existence of erro-
neous or invalid data. The data base resides on a large
number of storage media which can experience failures. The
data must be frequently transmitted through Input/Output
channels (I/0) with appreciable levels of noise. The soft-
ware system supporting the data base activity can contain
subtle or unknown errors which may perturb the data.

The problems of inaccurate or invalid data are

intensified by the criticality of the data and by the per-



formance and output demanded of an application. Human
lives or valuable processes may be jeopardized. Yet there
have been virtually no systematic studies made of possible
methods of error control and error recovery in data base
systems.

Automation points to using the computer to improve
its own reliability. Hardware capabilities should be aug-
mented by software functions. Software techniques can
provide programs to detect and correct errors~-before these

errors are used in further processing.

R

e

{ This paper is a discussion of automated error

processing to improve data base reliability. Primary em-
phasis is placed on software techniques to detect and cor-

é rect errors. Various integrity management algorithms are

; presented with a comparison of effectiveness and resource
Erequirements. The algorithms basically involve introduction
?of some redundancy computed from the original data.

%Changes in the data from the original may be identified

Eby a comparison of stored redundancy with a newly computed

gredundancy taken from the current data.

These algorithms are based on concepts developed
in communication theory [l1]. This required redundant
strings of parity taken on each row and on each column
(horizontal and vertical parity). This paper converts the
scheme into a software environment, expanding the theory

to include new algorithms based on various diagonal parity



strings. Such an amount of redundancy increases the data
base size by approximately 5 percent.

A detection function can check the data by com-
parison with the redundant information. Thus erroneous
data may be identified although the exact number or loca-
tions of the errors do not need to be pinpointed by detec-
tion. The component failure causing the problem is not
identified. An error correction function must use the re-
dundancy to locate the exact positions of errors. Then the
setting of those positions may be reversed to return the
data to an error-free state matching the original copy.

Error detection and correction algorithms may
be categorized by the amount and type of redundancy re-
quired. Any algorithm has a predictable performance when
presented with different types of errors. Any algorithm
has its limitations which allow various types of self-
compensating errors to camouflage each other and remain
undetected. Any error correction algorithm would have
classes of detected errors which can not be corrected auto-
matically. For example, majority vote involves three
copies of the same data. Majority vote throws away the
unmatching copy of data when the other two copies agree.
The algorithm cannot handle the case of three different
copies (which means two or three copies have experienced
errors).

This paper presents algorithms that are deemed



to cover a significant percentage of possible errors

at a minimal cost in system resources. This paper re-
commends that detection use the same amount of redundancy
as error correction‘uses. (A more limited detection
algorithm should be used only if system timing is a pro-
blem.) This paper presents error correction algorithms
that can automatically correct at best three erroneous
bits in one unit of data. The size of the data unit can
be decreased to cope with a high density of errors.

A status indicator is designed to categorize
each unit of data regarding the success of error correction.
The data can be marked with one of the following states:
free of errors, usable although containing error, or
unusable due to critical errors. Manual corrections or
other updates can be used to supplement automated proce-
dures in re-establishing an error-free data base.

Data Integrity Management (DIM) incorporates
the whole concept of error handling for a data base. DIM
combines the concepts of error detection and correction
with the backup capabilities of manual corrections and
Rollback/Restart/Recovery [2]. DIM can include validation
of a block which has just»been processed by error correc-
tion. DIM processing can include validation techniques
before each use of the data. For example, perform suita-
bility checks on parameter values (for proper type, range,

or context with other parameters). Alsc check every



redundancy coded into the system such as forward and back-
ward addresses when this is within the scope of the current
processing. DIM can include background validators which
run with low priority to check for errors, possibly as a
continuous process. A team of people is needed to supple-
ment computer capabilities.

Many data base systems are controlled by a Data
Management System (DMS). This provides an interface between
the users and the data. Many of the functions of DIM can
be incorporated into the DMS with minimal impact on the
users. It would be possible for the DMS to perform dif-
ferent degrees of detection and correction tailored for
the criticality of each data table within the data bases.
Limited capabilities in some phases might solve timing
problems.

Costs are incurred to incorporate error detection
and correction into a system. These costs must be weighed
against the cost of errors in a system without such relia-
bility. This paper presents factors to be considered in
a cost analysis when deciding what degree of error process-
ing to include in a system.

A sample model study was done to aid in the cost
analysis. This estimates the effect on system response
time to add error detection and correction. The system
chosen for the model is the Advanced Logistics System (ALS)

of the Air Force Logistics Command [3]. A subsystem of



ALS was chosen for primary emphasis because of the cri-
ticality of the data base: Nuclear Ordnance Logistics

System (NOLS).

PREVIOUS RESEARCH ON ERROR CORRECTION

Research on error correcting techniques has been
done in several related fields: communication theory,
information theory, fault-tolerant computing, and automata
theory.

Communication theory is concerned with the trans-
fer of data over teletype or telephone lines which can
degrade with noise. Special equipment could be provided
with special circuity for each end of the communication
line to increase reliability: an encoder to recode the
data with redundancy and a decoder to reformat the data
with error correction as needed.

The list of publications in this area is lengthy
but often not directly applicable to this paper. Of his-
torical interest is a paper by Elias [1l] describing itera-
tion of simple error correcting codes developed by Hamming
[4]. This code provides single-~error-correction and
double-error-detection (SEC-DED). There is the drawback
that any odd number of erroneous bits would be corrected
as if only one erroneous bit had been found. This in
effect introduces an extra error. Based on [l], Figure
1 shows an N_xXN_, rectangular array with redundancy increas-

RC
ing the block to size (NR+CR)X(NC+CC). The checks CR on



each row and checks CC on each column are termed first-

order checks. The checks on checks are called second-

order checks; these are the same whether computed from

an error-~free CR or CC’

< NR )<%~*CR-——~“~—>
Ng\ information checks
symbols on
rows
{first
order)
v/
Cé\ checks on checks
columns on
(first order) checks
(second
order)
V-

Figure 1l: Organization of First-Order and Second-
Order Check Digits

The length of CR is dependent upon the length of N For

R*
example, if NR is 60 bits, then CR must be at least 8 bits.

As a general rule, communications theory is not
overly concerned with minimizing the amount of redundant
data. Specialized encoders and decoders handle the redun-
dancy. Therefore polynomial codes such as Hamming [4] are
preferred to a rectangular parity scheme involving much
less redundancy [5].

Fault-tolerant computing is defined by Ramamoorthy

[6] as "the ability to execute specified algorithms correct-



ly regardless of hardware failures and software errors."
He goes on to state that this implies the design of com-
puters which are self-diagnosable and self-repairing.

Two examples of hardware reliability schemes are
referenced here because of their direct correlation with
this thesis. Patel and Hsiao [7] present an error correc-
tion technique to be used for a computer memory system.

It is an extension of Hamming codes [4] which requires

more than 8 bits of redundancy per row of 64 bits. As
another example, Peterson [8] describes a scheme of parity
(1 bit or redundancy) taken on each row and each column
with one seéond—order check bit. Peterson states that

this binary iterated code is actually used for error detec-
tion on magnetic tape units used by IBM computers.

To summarize, research into the type of error
correction presented in this thesis has been published
for over twenty years. It generally involved communication
networks with specialized equipment. The scheme was used
in some computer hardware development. It was not parti-
cularly presented as a technique to be incorporated into
software.

Parity taken on each row and each column within
an array of data is a generally discussed method [5, 7, 8,
9]. However, reference to a diagonal parity was not
found in the literature available to the author. No more

elaborate schemes involving parity were found.



CHAPTER II

NEED FOR AUTOMATIC ERROR HANDLING

SOURCES OF COMPUTER ERRORS

This paper addresses the smallest computer error:
a change in the setting of one bit. A bit is a physical
entity which can take on only the values of 0 or 1. If
the setting is sufficient to register as present, then the

bit is said to be "on" or set to a "1". If the "on" con-
dition is absent (or below a certain threshold) then the
bit is termed "off" or set to "0".

Groups of bits make up computer storage where
information or data can be placed. There are several
physical representations of bits used to make up computer
storage; for example, magnetic core or magnetic tape.
While a bit is expected to keep its current setting until
altered in the flow of computer logic, possibly the bit
could change accidentally. Such an error could be caused
by either hardware or software failure.

Hardware failure could be caused by a variety
of problems. Unusual environmental occurrences such as

electrical surges or temperature variations could affect

any bit. On the other hand, preventive maintenance might

not have caught a bit which is beginning to fail due to

wear. Such a bit could become sensitive to the settings
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of neighboring bits and change to match. In some com-
puters a bit is not refreshed if it is not accessed.

Thus a seldom used bit could age; that is, an "on" setting
could slowly dissipate until it goes below the threshold
to be considered a "1".

Input/Output devices transfer information between
various storage devices. Such hardware can introduce
errors into the settings of the bits. Thus the newly moved
copy does not exactly match the original copy.

Software failures are caused by faulty design
or implementation of programs. These problems appear pri-
marily in the initial stages of testing a program and upon
integration into a package with other programs.

In an attempt to classify errors, Martin [10]
provides three categories:

1. A solid or permanent error which repeatedly

occurs whenever the fault is encountered.

2. An intermittent error which occurs only
occasionally and is difficult to reproduce.

It is usually caused by unfavorable environ-
mental tolerance conditions.

3. A transient error which occurs only once and
cannot be made to repeat itself. It is caused
by such things as noise or a brief abnormal
condition in a supply line.

This paper is directed towards storage problems



involving intermittent or transient errors which are
characterized by a finite number of spurious bit changes.
The proposed methods are most effective if the erroneous
bits are not too densely packed. Note that this class of
errors normally does not automatically register as a hard-
ware or software failure. Therefore special techniques

are required even to find that an error has occurred. The
original hardware or software problem which caused the
incorrect bits is immaterial; the problem is not identified.

This paper is directed more towards hardware
failures than software failures for two reasons. First,
"it is generally agreed that once a software package is
completely debugged then it is 100 percent reliable and,
unlike hardware, does not deteriorate in time." [1ll1l] Sec-
ondly, a software error is more likely to be totally des-
tructive to any data that it perturbs.

It is assumed that implementation of these methods
will yield correct software and that the system soitware
will function without error while this implementation is
executing.

There are a multitude of other computer problems.
Many are of a catastrophic nature which require hardware
repair or software alteration. For example, a disk head
crash may destroy some data. This paper does not address
such problems although some of the proposed methods may

possibly be useful.
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PROBABILITY OF ERRORS IN A DATA BASE

Errors are unpredictable accidents by the de-
finition of computer errors as used in this thesis. Thus
it becomes extremely difficult to guantify the number of
errors which can be expected or to predict reliability in
general terms.

Discussions of reliability become most meaningful
for specific cases. Hardware manufacturers should have
some statistics on predicted reliability of a component.
System analysts could make some predictions about a group-
ing of components found in a particular hardware configura-
tion. The best source of statistics involving reliability
would come from measurements taken on a running system.

Noting the problem of generally discussing reli-
ability, Martin [5] provided some numbers merely as exam-
ples. (See reference 5, Table 2.1 on page 12 for more
details.) These estimates are summarized in Table 1 show-

ing the probabilities of errors in & data base.

Probability of Errors:

hardware/software error damages file-
loss of entire file~- might happen once in 40 years
loss of single records- might happen once in 100 years
modification of records~ might happen once in 10 days

data transmission error not detected-
loss of single records- might happen conce in 100 days
modification of records- might happen once a day

Table 1: Probability of Errors in the Data Base
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These numbers do support efforts which focus on
problems with modification of records. Modification of a
record occurs 10 to 100 times more often than loss of a
single record.

Discussing the modification of records leads to
a consideration of the extent of modification. Techniques
to handle errors are often concerned with exactly how many
bits are erroneous and with their density. Although fail-
ure rates can be correlated to the hardware and software
composing a particular system, a general rough estimate can
be made. Gear [9] states, "If the probability of a bit
error in a word is independent of all other bit errors, and
is, say 1 chance in 109 for each memory fetch, then the
probability of 2-bit errors simultaneously is 1 chance in
1018." Continuing in this manner, according to probability
theory the probability of n-bit errors simultaneously is
1 chance in lOgn.

For guidelines, this author would generalize
the occurrence of errors with emphasis on the physical
proximity of bits. Considering all of disk storage,
errors in physically disjoint areas of storage are consi-
dered to be independent of each other and thus follow
traditional probability theory. However, within physical
proximity of each other, bits are not always independent.

For example, a physical unit of storage may be experienc-

ing hardware fatigue due to wear. All bits within that
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unit are more likely to fail. As another example, when
an Input/Output device fails, multiple bits in the record
may be altered.

For guidelines in this paper, the following
generalizations are presented. The probability of a 1-bit
error occurring in a data base is 1 chance in 108 for each
microsecond. The probability of two physically disjoint
l1-bit errors is 1 chance in 1016 for each microsecond; con-
tinuing with the probability that n physically disjoint bit
errors is 1 chance in 108n microseconds. The probability
of two physically close 1l-bit errors (called a 2-bit error)

11

is 1 chance in 10 for each microsecond; continuing with

the probability that n physically close bit errors is 1

8+3 (n-1)

chance in 10 microseconds.

INCREASING RELIABILITY IN COMPUTERS

Hardware design is improving reliability. Com-
ponents have a longer mean time between failures. Also
error handling features are sometimes designed into the
hardware. In addition, software techniques are increasing
reliability. For example, system functions handle critical
areas, providing protection against careless users. Pro-
gram correctness (formal software verification) is a current
topic of considerable research and development work.

Computer errors still occur although reliability
is improving. The spectrum of computer problems ranges

from an improper setting of a single bit to a catastrophic
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complete halt in processing. The smallest error can pre-
cipitate further errors in the computer processing. For
example, an incorrect address may point to meaningless in-
formation. Such fallacies could further degrade the inte-
grity of the system until processing might completely halt.

Reliability is of grave concern where time is an
important consideration. Real time systems can suffer
serious delays caused by errors. Interactive systems can
jeopardize performance and user confidence by incorrect
responses or blackouts of service. Reliability is an eco-
nomic concern when the computer controls valuable pro-
cesses.

With increasingly complex, centralized computer
applications which may run continuously for years, the pro-
blem of reliability is greatly intensified. A change in
one bit can be an insidious error. Such applications are
generally characterized by tremendously large amocunts of
data, too large to record on hard copy periodically. Even
a team of people assigned to maintain the data cannot
verify that it is correct; they must generally serve as
"fire fighters" to solve the most pressing problems. Any
chance for compromised data integrity undermines user con-
fidence even when the data is error-free.

Automation points to further utilization of the
computer~-~directing it in ways to improve its own reli-

ability. Each time a piece of data is used, the computer
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could examine it for errors in a detection function.
If errors have occurred which are relatively simple to
diagnose, the computer could automatically correct the
data in a correction function.

Automatic error correction is not designed to
repair every degree of error. Some cases are ambiguous
and cannot be deterministically (100 percent accurately)
corrected algorithmically. Some cases involve too great
a degree of data change. For example, the original data
may have been accidentally destroyed by an overwrite.
Backup to automatic error correction must be provided. The
computer could notify the team of people to prepare cor-
rections to input. If the system is seriously degraded,
the computer could be restarted after it is selectively
refurbished with histories of data. Hopefully this tech-
nique of rollback would not re-introduce problems [2].

Installations may have to devote a significant
percentage of total computer resources for error handling.
Extra storage is needed to save some redundant information.
Computer processing time, central memory while executing,
and Input/Output devices are needed. The cost can be re-
garded as insurance, balanced against the small percentage
of errors that do occur and are prevented Irom causing
further damage.

In a system without adequate error handling, an

error which is not identified may have a high cost. This
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primarily depends on the type of data in which the error
occurred. A data base is composed of two levels: a data
structure which defines the positional meaning of the
data and the parameter values which make up the data. The
structure is extremely important to system integrity. An
invalid or incorrect address used to access other informa-
tion allows the possibilities of system failure or error
propagation within the data base. Addresses or indexes
are particularly prone to start a "domino effect" which
could lead to a complete halt of processing. Incorrect
data values allow the possibilities of many errors such as
incorrect reports, mishandling of inventory, or error pro-
pagation within the data base. Data could describe criti-
cal information such as the location and range of a guided
missile.

Another high cost may be associated with an error
which is identified but not corrected immediately. The
cost is determined by the significance of the data. The
information may be needed to complete an interactive request
or to proceed with a lengthy report. The computer measures
delays in units of nanoseconds. Many real time systems and
interactive systems cannot tolerate time delays. It is
estimated that, on the average, a correction entered by a
team of people would require an hour of research. If errors
were occurring at a faster rate than they could be corrected

by people, a bottleneck could build up until many needed
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functions of computer activity would be degraded.

Time delays would be minimized if the computer
software was designed to correct errors as soon as possi-
ble. Bottlenecking would be minimized.

Management decisions must weigh the cost of
errors against the cost of error processing. These may
involve intangibles. Practicality moderates the selection
of error handling methods. For a heavily loaded system
with timing restraints, error handling might be allowed
only in slack periods. For a system with storage shortages
limiting redundant data, a suitability check is still
possible. For example, make checks on maximum/minimum
values or context with other parameters.

To summarize, Senko et al. [12] state: "Advanced
computerized information systems support their primary
functions by secondary functions such as security, recovery,

input checking, and scheduling of system resources."



CHAPTER TIITX

ERROR DETECTION AND CORRECTION LOGIC

INTRODUCTION

A general description of error detection and
correction are presented in this chapter. Detailed al-
gorithms to be used by these functions are presented in
Chapter 1IV.

The first part of this chapter is devoted to the
relationship between the data base and DIM. The size of
the data unit to be presented to error handling at one
time is discussed. Storage of the redundancy is considered.
The possibility of errors in the redundancy is analyzed.

Error detection logic is presented covering both
0ld and new errors. Error correction logic is detailed.
Interaction with the staff is outlined. Recommendations
for background validation are made.

A summary of this whole chapter presents a model
which shows system logic including error detection and

correction.

DATA BASE CONSIDERATIONS

A data base is typically composed of a variety
of data tables. Each data table could have a unique defi-
nition of structure for addresses and parameter values.

Each data table could have an organization where corres-

19
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ponding strings of information are in the same hier-
archical level. Each string may be stored in disjoint
areas on the disk. A string could be composed of sub-
strings which may be physically non-contiguous with for-
ward and backward addresses stored in each substring.

All the logical strings composing a data table
may be indexed in another data table. 1In fact, pyramidal
indexing scheme may be employed to speed access of a par-
ticular block. This could involve multiple data tables
of indexes.

The need for DMS (Data Management System) becomes
more apparent as the data base system becomes more compli-
cated with various data tables and indexing schemes. DMS
must perform a mapping function between the logical string
and physical storage. DMS centralizes the logic of data
table structure and parameter values. It frees the user
from most considerations of data management. The DMS also
provides a buffer to protect the data base from careless

users.

INCORPORATING DATA INTEGRITY MANAGEMENT (DIM) INTO DMS

The proposed DIM functions would best be incor-
porated into the DMS. Error detection and correction are
logical concepts that are performed on one logical string
or substring of data at a time. The actual mechanics of
the process must work at the physical level. This discus-

sion will define a block to be a logical unit of data, not
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necessarily stored contiguously, which must be presented
to the error handling functions at one time as the data
is readied for use.

Error correction is actually performed by re-
peated application of an algorithm (in a looping process).

For clarity, define that the reconstructor represents one

execution of the algorithm. The algorithm is designed to
handle one rectangular array of bits, termed a packet, with
its corresponding redundancy. A packet is an nxm matrix

of physically contiguous bits. The dimensions of the
packet are the same for all data and remain fixed (see dis-
cussion below in SELECTING THE PACKET SIZE).

Error detection cén be implemented in a scheme
closely paralleling that used for error correction. One
execution of the algorithm would take place in the detector.
The detector would accept as input one packet of fixed
dimensions with its corresponding redundancy. (Detection
may be implemented alternatively on the block level with
no breakdown into packets.)

Consider the total process of breaking a block
into physical packets of fixed dimension, assuming that the
block size is larger than one packet size. DMS must handle
the retrieval of the string (or a part of it) from disk
into central memory. The block must be presented to detec-
tion and possibly to error correction to ready it for use.
This requires DMS to perform a mapping function between

physical storage and packets. This would be done in a looping



22

process by presenting one packet at a time to the recon-
structor with its corresponding redundancy. Any unit of
data smaller than a packet must be temporarily padded with
zeroes. (This would not change the redundancy if even

parity is used.)

SELECTING THE PACKET SIZE

A packet is an nxm matrix of contiguously stored
bits. The sizes for n and m would be selected by system
designers. Hardware specifications and system data struc-
ture would control this decision. The optimal size for
both n and m would be a word width w in central memory.
This would be very efficient for describing all of disk
storage since the total size of the redundancy would be
minimized. The algorithm could function very efficiently
with n=m=w. The algorithm would be complicated if the
column width were longer than the word width, necessitating
multiple words to store vertical or diagonal parities. If
the amount of data readied for use at one time had a length
less than w, then m<w would be best for the algorithm but
would require more total storage to maintain the redundancy.
A problem with density of errors might motivate decreasing
m for a shorter packet.

It is recommended that n and m remain fixed once
selected. The algorithm could operate more efficiently
without an input of variable dimensions. Storage of vari-

able dimensions with the redundancy would increase storage



requirements significantly. The DMS can temporarily
pad with zeroes any unit of data smaller than size m.
This would not change the redundancy if even parity is
used.

Control Data Corporation equipment has a word
width of 60 bits. This provides a natural packet size
60 words in length. Thus the nxm matrix size would be
60x60 bits for a total of 3600 bits per packet. Estimates
in this paper are sometimes based on this figure (with

proper clarification given at each estimate).

MAINTAINING THE REDUNDANCY

The redundancy required for the data base values
may be stored with the data it describes or separately.
Storage with the data necessitates a slighly longer total
unit of data (approximately 5 percent increase in lengthj.
This would have little or no effect on the Input/Output
timing. Storage separate from the data seems to have a
higher cost than storage with the data. It requires an
extra Input/Output command to store or retrieve the redun-
dancy. This separate storage must be correlated in some
way to the data. One of the following methods may be
chosen:

- An address in the data pointing to the position

of its redundancy on the disk.
- An address in the indexing scheme associating

the data with its redundancy.
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. An algorithmic scheme implicitly correlating
the position of the data on the disk with a
position of the redundancy within an area de-
voted to storing all the redundancy for that

disk.

POSSIBILITY OF ERRORS IN THE REDUNDANCY

Hardware parity schemes can protect the parity
information. For example, the parity is not brought over
the Input/Output channels. Software schemes cannot provide
any special protection for the redundancy. This informa-
tion is subject to error in exactly the same manner as the
data it describes. Thus storage problems, I/0 failures,
and software inaccuracies can harm the redundancy.

Second-order checks may be implemented to detect
errors within the redundant information. This is diagrammed
in Figure 1. These checks may be implemented as a checksum,
Oor as one or more bits of parity. This would reguire
additional storage and processing time. It might require
additional I/0 time.

This paper recommends a consideration of second-
order checks when analyzing a specific system. The cost
of implementing second-order checks must be weighed against
the costs of errors in the redundancy.

There are several reasons that second-order
checks might not be included in DIM. The amount of redun-

dancy is very small compared to the data and thus much less
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subject to error on a percentage basis. This means that

an error occurs in the redundancy rather than in the data
less than 5 percent of the time. These errors will be
detected by noting a change in the redundancy. Detection
will operate with the same success as if the error occurred
in the data. If automatic error correction is performed,
validation of the block may reject it immediately as
unusable. If automatic error correction is not possible,
backup measures can analyze the problem and cause the re-
dundancy to be recomputed.

This paper predicts that invalid automatic error
correction due to errors in the redundancy will occur for
approximately 1 percent of all detected errors if second-
order checks are not implemented.

The detailed algorithms presented in Chapter IV

do not include any second-order checks.

DETECTION

Detection is the process of determining whether
errors have occurred in the data base. Detection is per-
formed on a portion of data as it is being readied for use.
The exact location of any errors in the data is not needed.

Detection must exist on two levels. First, an
old error may exist in the block which could not be auto-
matically corrected and has not received additional atten-
tion. Secondly, a new error may have occurred since the

data was last readied for use.
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Status Indicator for a Block

01d errors which have not been corrected should
be marked by a status indicator for each block. Codes
should be in patterns that will increase the probability
of recognizing an erroneous code. For example, consider
the use of five bits for the status indicator as shown in
Table 2.

Note that the status indicator is created to stop
a sequence of re-investigating the same errors in a block
every time it is to be used. Error analysis should occur
only on the first detection of an incorrect block. If
successful error correction is not possible, it could be
a matter of hours or even days before corrections are avail-
able. During that time, the incorrect block is not con-

tinually re-analyzed.

Initial Analysis to Detect 0ld Errors

The detection function should first look for a
status indicator of "unusable" marking a block. An indi-
cation of "unusable" makes the presence of new errors in
the block immaterial. No further detection need be per-
formed. The function should proceed to final analysis with

an output parameter of "unusable".

Detecting Current Errors

Many different detection methods may be devised

to detect new errors. Detection can be implemented on
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a block level or on a packet level. The block level

would be selected where processing time and/or storage are
more significant problems than the criticality of the data.
(Storage is a consideration for added redundancy only if
error correction is not implemented.) For example, a
checksum could be packed into the header information for

a block whenever the block is created or updated. A check-
sum is the count of the number of bits which are turned on
in a block (with care to include or exclude consistently
the bits of the checksum). Whenever a block is requested
for use during processing, a checksum is recomputed and
compared with that stored within the block. If there is

no difference, the function should proceed the final analy-
sis with an output indication of "correct". If there is
any discrepancy between checksums, an error has been de-
tected. The function should go to final analysis with an
output parameter stating "needs correction".

Detection may be implemented on a packet level
if the criticality of the data and other DIM concepts are
considered more significant than processing time and/or
storage problems. (Storage is a consideration for added
redundancy only if error correction is not implemented.)
This would involve looping through the detector with each
packet until the whole block is checked. When an error is
first detected, the looping process can cease. The func-

tion should proceed to final analysis with an output para-
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meter stating "needs correction". If no errors are
detected in the whole block, then the function may go to

final analysis with an output indication of "correct”.

Final Analysis

The detection function has produced a output
parameter of "correct", "needs correction', or "unusable".
The data block should be unchanged in any case.

If the output parameter is "needs correction", the
error correction function should be called. This may be
done optionally by bringing the logic described in the
initial analysis of error correction up into this section.
(In this case, the status of the block would be changed from
"usable with errors” to "unusable".)

If the output parameter is "unusable", then
certain users still would need to work with the block. For
example, an update routine might be processing corrections
entered by the staff. Other users might skip the unusable
block and proceed with other processing. It is suggested
that users check the status of a block before they begin
using it. This seems preferable to a DMS decision of
whether to halt processing in a user.

If the output parameter is "correct", no old or
new errors exist in the block. This data may be used im-

mediately by all users.
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ERROR CORRECTION

Error correction is the process of using redun-
dancy to correct errors occurring in the data base.

This function would be performed by computer software as
soon as possible after the error is detected.

Error correction as presented in this paper is
limited to success on slightly erroneous data. Most often
it is envisioned that within a finite segment of storage
(corresponding to a packet), only one bit will become
erroneous at any instant in time. Error correction is pri-
marily designed for this case. Any algorithm chosen should
be deterministic (completely predictable success) for a
one bit error. Correction of more than one bit in error
in a finite segment of storage may be indeterminant (for
example, a predictable success 75 percent of the time). In
the extreme, with a large percentage of erroneous bits,
reconstruction would be a farce.

Error correction is presented here as a means to
correct errors, not to randomly pertubate the data in a
probablistic hope of improvement. Therefore any indeter-
minate change should not be made. Backup measures must be
used.

Error correction is composed of several steps
which are explained in the following sections:

. initial analysis of the error

. looping through the reconstructor until ail



packets have been processed, recording each
status output by the reconstructor

. final analysis of the status of the error
correction process

. validation of the reconstructed data

. storing the changed data

Initial Analysis

Initial analysis would determine the condition of
the block. The block is eligible for error correction if
it contains no previous errors upon which correction failed.
If the block had previously been marked with a status indi-
cation of "usable with errors", the block is indicating
such a poor record of performance that it seems best just
to mark it arbitrarily now as "unusable". No attempt at
error correction should be made. This would end any insi-
dious chain of invalid correction (which did appear valid
until detailed usage). This measure would at times prevent
valid correction to occur on a further degraded block.

This logic in the initial analysis may readily be moved
into the function which calls error correction, making the
call contingent upon having a block with only currently

detected errors.

Looping Through the Reconstructor

Error correction would be performed in a looping

process repeatedly using the reconstructor until the whole
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block is examined. Each execution of the reconstructor
represents one application of the error correction algorithm
on an nxm matrix of data called a packet. This looping
process is based on the assumption that one block is

larger than an nxm matrix.

After each execution, the reconstructor returns
an indication of "success", "failure", or "no change
needed". This status may be accumulated without summation
(using a Boolean difference commonly called an "exclusive
OR"). For example, after the block is completely pro-
cessed, "failure" is just as serious whether it occurred

one or three times in the looping process.

Reconstructor Logic

Various error correction algorithms are presented
in Chapter IV. The exact one chosen will depend on the
primary goals of an installation tempered with processing
and storage considerations. The reconstructor does have
some basic logic which is independent of the particular
algorithm chosen.

The reconstructor should receive as input a
pointer to the packet and a pointer to the corresponding
redundancy. After analysis, the reconstructor can deter-
mine whether correction is needed and, if needed, whether
automatic error correction is possible. If it is needed
and possible, the packet is altered and an output para-

meter of "success" is returned upon exit. If correction



is needed but not possible, the packet is not altered and
an output parameter of "failure" is returned upon exit.
If correction is not needed because no errors are detected

in this portion of the block, then an output parameter

of "no change needed" is returned upon exit. In any case,

the packet is not moved and the redundancy is unchanged.

Final Analysis

Looping through the reconstructor has built up
a status indicating the success of the total error correc-
tion effort. If this status indicates that in the total
process at least one change was made in the data with no
failures then the data has been properly corrected. In
other words, successful reconstruction indicates that at
least one problem was corrected in the block and that the
original redundancy now is verified.

The block may optionally be examined by valida-
tion routines before it is released for general use.
Validation provides a safety check on the error correction
algorithm. Approximately 1 percent of the time, an impro-
per correction may be made if second-order checks are not
implemented. Validation could catch this problem and
keep the incorrect block from being used.

The status indication could show that on at
least one loop through the reconstructor, an error could
not be successfully corrected. The procedure to follow

in this case is open to debate. Failure to reconstruct

33
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could arbitrarily cause the block to be marked "unusable®.
However, an optional approach is recommended to facili-
tate using the correct data in a block where the errors
are not detrimental to system performance. Analysis is
needed to determine the significance of the errors. The
block could be used if the errors are determined to be not
in the structure but in the data portion of a block where
the data is non-critical. The decision of criticality
would probably be based on an examination of the data
table name. Criticality of each data table would be indi-
cated in a tabular definition. Thus the block could be
marked "unusable" if the data is critical. If the data is
non-critical, the block could be marked "usable with
errors" and examined for structural validity by the vali-
dation function before it is released for use.

If marked "usable with errors", the redundancy
should be recomputed for the block. This will subsequently
detect an invalid reconstruction or detect further degrada-

tion in a reconstructed block.

Validation of One Data Block

Validation is the task of checking the integrity
of a block to determine whether a block is usable or
unusable. Validation does not state whether the block is
free of errors but only whether the block is usable. The
first failure to validate should end the process of check-

ing and set the status indicator within the block to
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"unusable". If no failure to validate occurs, the status
indicator should be unchanged.

Validation is concerned with the two levels con-
tained in a data table: the structure and the data values.
Most important, the structural portion must be intact.
Addresses and indexes should be within the proper bounds.
Any redundancy coded into the data base may be checked (by
performing accesses of other data blocks if necessary).

For example, forward and backward pointers may be compared.
Validation must examine the data within the block for
suitability of type, range, or context with other para-
meters.

To summarize, validation is required for a block
temporarily marked "usable with errors". Validation is
not necessary for a newly reconstructed block but it pro-
vides a safety check. Subsequent normal processing should
continually check a block using the same techniques of

validation.

Storing the Changed Data

The block must be transferred from central memory
to long term storage after the error correction process is
completed. The action primarily depends on the current
status of the block. If the block is marked "error-free"
or "unusable" then it is stored without updating the re-
dundancy. If the block is marked "usable with errors”, the

block and its redundancy must be updated. Some parts of
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the block may have been corrected (if more than one erro-

neous packet existed in the block).

INTERACTION WITH THE STAFF PERSONNEL

After error analysis is completed on a block, a
report should be presented on the staff personnel terminal.
The following parameters should be displayed:

- type of block--data base name to which this
block belongs

. address of the block on the disk

- status indicator now associated with this
block

. data bass descriptors where applicable or
needed (examples are number of indexed data
elements (IDE) in this block along with Data
Reference Number (DRN) and occurrence number
for each IDE in this block)

- contents of the block--opticnal since the
staff can use the Data String Examine Utility
described below. It might be best to go ahead
and print the contents of a block marked with
a "unusable" or "usable with errors" status
indicator since the staff is expected to
enter corrections.

Two utilities are needed by the staff to correct

errors. The Data String Examine Utility prints the contents

of a data string as requested. The Data String Update




37

Utility allows creation, deletion, or updating of the data
sffing as specified. These utilities have already been
implemented in ALS [13].

The following are considerations to incorporate

error detection and correction logic.

. These utilities should be available to the
staff at any time.

. These utilities must be able to work with
blocks marked with any kind of status indi-
cator (including unusable).

. The status indicator should be included in
the print of the examine utility.

. Of major importance is an automatic action
which would occur as the update is being pro-
cessed. The status indicator should be set
to "correct". New redundancy information

should be computed and stored.

SUGGESTIONS FOR BACKGROUND VALIDATION

Vaiidation of many blocks can be achieved by a
looping process. Each block would be read from disk. This
would automatically invoke error correction if an error
is detected. If no error is detected, the block should
still be examined for integrity by using the techniques
presented in VALIDATION OF ONE DATA BLOCK.

It is suggested that background validators be

run regularly in periods of low volume (with a low priority).
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This is especially beneficial preceding the generation of
a report. Thus the associated data bases will be readied
for use. If error correction logic must be invoked, its
time and storage requirements will not delay the report.
If the staff must be notified of problems that reconstruc-
tion could not correct, the staff can have time to develop
and enter changes without delaying the report.

If compromises have been made in reduced error
detection or correction to increase system performance,
the background validator should operate with maximum capa-
bilities. This is especially true if detection ever uses
less redundancy than that saved for error correction. For
example, detection may only use one checksum for a block,
thus failing to detect a class of self-compensating errors.
An expanded detection scheme can use parity strings in an
algorithm closely paralleling that used for error correc-
tion. This use of increased redundancy enables the algorithm
to detect more errors.

SUMMARY USING A MODEL OF SYSTEM LOGIC INCLUDING
DETECTION AND CORRECTION

A simplified overview of a typical system is
needed to show how error detection and correction control
the logical flow of data through the system. The model in
Figures 2 and 3 is offered as a pictorial aid. This flow
is complicated by the degree of error which possibly can

occur in the data and the length of time that an error
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may remain in the data.

A packet is a unit of data. A packet comprises
one rectangular array of bits of the size chosen to enter
the error correction routine at any one time. The possi-
bility of looping through the detector and reconstructor
to process a block is not shown in this model.

The model identifies branches within the network
by a circled numbered node. At a branch, a packet will
enter one of a group of states. Each branching point is
associated with a set of probabilities whose sum is equal
to one. Each state has s probability p associated with it
in the following manner: given that the packet arrives at
that branching point, the packet will enter that state with
a probability of p.

Figure 2 shows how packets come from long term
storage such as disk into central memory. Just considering
the time interval since this packet was last read into or
written from central memory (i.e. the time interval since
the packet was last created, updated, or readied for use)
the packet may or may not have experienced errors. Errors
are introduced into the data by a storage failure with a
probability represented at node 1. Errors are introduced
into the data by an Input/Output transmission problem
with a probability represented at either node 2 or node 3.

Continuing Figure 2, Figure 3 shows the system

flow through the detection unit. Now the main complication
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to the logic appears. The degree of error determines
whether the data can or cannot be automatically corrected
(or re-corrected). The criticality of the data determines
whether or not it can be used while uncorrected.

Each packet is marked with a usability indicator
regarding old errors (see section on Status Indicator for
a Block in DETECTION). A packet is marked usable if it
contains a non-critical uncorrected error. A packet is
marked unusable if a critical error exists in the data,
automatic error correction has failed, and the staff has
not yet manually entered corrections.

If a packet from node A goes through the detection
unit and, with a probability represented at node 4, is
found to be marked with a status indicator of unusable due
to old errors, the packet immediately leaves the system.
Otherwise the packet is correct or is usable with regard
to old errors (and since it is free of new errors), it is
used in the normal computations of the system. During nor-
mal processing, the packet is used with or without being
modified and rewritten to the long term storage. The pro-
bability of modification is represented at node 5. Here
the Input/Output transmission could introduce errors into
the packet with a probability represented at node 6.

If a packet from node B goes through the detec-
tion unit and, with a probability represented at node 7,

is found to contain a status indicator of unusable, the
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packet immediately leaves the system. Otherwise, the packet
contains a status indicator of correct or usable and may be
tested for new errors (errors which have occurred since

the packet was last read or written to long term storage) .
The new error may be detected or undetected with a probabil-
ity represented at node 8. If the packet is found to con-
tain new errors, its status indicator must be rechecked.

The branching probability is shown at node 9. If the packet
has old errors indicated by the status indicator, it is
deemed to be experiencing too many problems to be safely
used, and it is forced to leave the system. Otherwise the
packet has new errors but no old errors and it is sent to
the error correction unit.

The packet leaves the error correction routine
either as corrected or uncorrected with a probability re-
presented at node 10. A corrected packet goes through
validation with a possibility of being found unusable re-
presented at node 12. An unusable packet leaves the system
and the staff is informed that further action is necessary.
A correct or usable packet joins the path of normal pro-
cessing at node 5. The staff should be informed. Sub-
sequent manual corrections are expected for a usable packet
to make it error-free.

An uncorrected packet leaving node 10 is analyzed
for criticality of data content. It is found to be either

critical or non-critical with a probability shown at node
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11. If it is deemed critical, then it joins the unusable
path. A packet containing non-critical data joins the
corrected path from node 10. Validation will check for
structural validity before this packet will be considered
usable.

To return to another possible branch leaving the
detection unit at node 8, a packet may contain errors
which are undetected. Thus the packet joins normal pro-
cessing. This is the most critical, dangerous path in the
model. The potential cost may be great. If the error
affects the structure of the data, the cost involves possi-
ble propagation of the error. Degradation of the data and/
or the system will incur any degree of cost necessary to
repair the system when a malfunction becomes apparent. This
can range from reprocessing one interactive request to
rollback and restart. On the éther hand, if the error in-
volves critical information, the cost is largely intangible--
a function of the criticality and the propagation of the

error in further processing.



CHAPTER IV

ALGORITHMS FOR ERROR DETECTION

AND CORRECTION

PARITY SCHEMES

Parity is an established computer concept in
hardware design to detect errors. Generally one additional
bit called the parity describes the state of a group of
bits. The parity may be either even or odd. 1In a scheme
called even parity the total number of bits turned on
counting the parity bit is even. Specifically, if an odd
number of bits is on then the parity bit is turned on. If
an even number of bits is turned on then the parity is
turned off. For example, for the string 0101 containing
an even number of bits turned on, the parity would be equal
to zero.

Whenever the group is accessed, the parity is re-
computed by the hardware and compared with the original
stored value. If there is a difference, the group has
developed errors. However, the erroneous bits cannot be
identified individually. The original cannot be deduced
from the present condition.

If such a parity scheme is not included in the
hardware design, it can be implemented by software at some

increase in storage and processing requirements. More
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