46

elaborate error handling schemes would in all probability
not be provided by hardware.

More elaborate parity schemes could detect
errors and, in addition, could identify the positions of
erroneous bits. For example, consider a two-dimensional
parity scheme used on a finite square matrix of bits shown
in Figure 4 (pictured as a 4 x 4 matrix for convenience).
The horizontal parity would be stored as a transpose

(stored horizontally like a row).

row 1 0 0 0] 0 0
row 2 1 0 0 0 1
horizontal
parity row 3 1 o{loj1}o
row 4 0 1 1 1 1

vertical parity {column 1 2 3 4

Figure 4: Horizontal and Vertical Parities

In a more powerful parity scheme, groups of the
above matrices with horizontal and vertical parity could be
combined into a three-dimensional scheme using Z—-axis

parity. This is illustrated in Figure 5.

47

ggiii;ntal vertical parity

yd
e
e

N N N\

A
i i A —

z-axis parity

Figure 5: Horizontal, Vertical, and Z-axis Parities

In a more unusual scheme, consider parity taken on

the diagonals of a matrix of bits as shown in Figure 6.

s 7 ’ V ~ N ~ .
s ’ Vd N A A N
,/ ,/ 7 ’f , \\ N N « N
s s #’ e 4 ~ N ~ \\
V4 AN
// I 7z d z'/ \\ \\ \\ \\ : \\
’ 4 ‘ z Al > N > N N
A ’ , ‘ i , i . e e N \\‘ AN \\’ \-\ \\ N
i ‘ ‘ i ‘ ‘ ‘
VIV IV VIV IV VIVIVIVIVIV]V
left diagonal parity right diagonal parity

Figure 6: Left and Right Diagonal Parities

48

Note this scheme requires two rows to store each diagonal
parity. Storage can be halved by allowing wraparound of

the diagonals as shown in Figure 7. Note that wraparound
does not cause any diagonal to occupy more than one posi-

tion on any one column (or any one row).

/‘~ 4 N ’ \\ \
» ~ ”
// ,l\ -, ‘\ N Ve N s \//\\
v’ 7 \'\' N s 7 AN Vs N \
’ d 7o N Y, ® ~
4 , N N b P ” ~ ~N
s’ 7 ’ > /’ , . S N
- r Vi 7 ’ N N < ™ N
‘/ /I L, s ’ \\ \\ \ N N N ®
rd 4
" L 4 7 . ’ N N AN N < N
% / 4 N N N AN
‘/ ’ // ’ ’/ Vs N AN N ~ N ®
/ / P N b N ~
ol L] SO N e
‘, v 4 4 AN A N ~
\ N
// // ’/ f, \\ AN \\ \‘
VIV IV |V ViV IV IV
left diagonal parity right diagonal parity
with wraparound with wraparound

Figure 7: Left and Right Diagonal Parities
With Wraparound

LIMITATIONS OF PARITY AND CHECKSUM
Parity schemes involve comparing the current parity
just computed with the original parity stored with the data.

Any change detects that an error has occurred. However,

49

there are cases where no change is apparent between the
original and the current parity--yet errors have occurred.
Specifically the problem is one of camouflage due to self-
compensating errors. Any even number of errors cancel

each other out in the parity so that detection is impossible.
Actually parity is designed to detect only single errors.
It exceeds its function by always detecting an odd number
of errors. Checksum also has design limitations. Table 3
shows two bits in their original state and demonstrates how
two erroneous bits could never be detected by parity. 1In
addition, the table shows how a checksum would fail to

detect 50 percent of the time.

original current with 2 errors|| results
data |parity| checksum data jparity |[checksum
00 0 0 11 0 2 checksum
would
detect
01 1 1 10 1 1 undetected
even by
checksum!
10 1 1 01 1 1 undetected
even by
checksum!
11 0 2 00 0 0 checksum
would
detect

Table 3: Detection Limitations Using a Checksum

This same problem appears whenever any even number of bits

have changed; parity will fail to detect 100 percent of the

50

time. However, checksum detection impro&es as the number
of erroneous bits increases. For example, it goes from a
50 percent success rate for two bits to a 63-1/3 percent
success rate for four erroneous bits.

Let us put this perfectionist's nightmare into
perspective. Such undetectable erroneous situations have
a limited probability of occurring, especially when limit-
ing the number of bits included in one parity scheme. See
the discussion in the preceding section PROBABILITY OF
ERRORS IN A DATA BASE. The error most often expected would
be a change in one bit. This is always detectable with a
parity check or with a checksum.

To fully evaluate error correction algorithms,
attention must be devoted to all cases that the algorithms
would conceivably have to analyze. The algorithm must be
able to recognize situations that are beyond its designed
capabilities and attempt no action. Indeterminant changes
to the data must be avoided.

The following discussion of probability lays the
foundation for evaluating various algorithms which are
partially capable of reconstructing two or three errors in
one nxn matrix. Most often, problems arise when multiple
errors lie on the same direction such as on the same row
or the same column. For an even number of errors in the
same direction, the corresponding parity inaccurately de-
tects no change.

Given that two errors occur in one nxn matrix,

51

the probability that they both occur in the same row is

given by the formula:

n - 1

nz— 1

The formula is the same for the probability of two errors
occurring in the same column or the probability of both
occurring in the same diagonal. Combining these formulas,
the probability that the two errors both occur in either
the same row, same column, or same diagonal is given by

the formula:

3(n-1)

P =
n2—l

Given that three errors occur in one matrix, the
probability that two or three of these bits share a common

direction is expressed in the formula:

(n=-2) (n%-6n+10)
(n+1) (n2-2)

Corresponding formulas for an nxm matrix are not
given. A bound on the probabilities may be obtained by
selecting the larger of n and m. That number may be used

as n in the above formulas.

ERROR CORRECTION ALGORITHMS

Various error correction algorithms require differ-

ent combinations of abbreviated additional information to
reconstruct a finite matrix of bits called a packet.
Selections are from the following which are shown with
abbreviations.
. C - checksum for one packet
. H - horizontal parity on x-axis
. V - vertical parity on y-axis
. Z - Z-axis parity making a three-dimensional
scheme
. D - diagonal parity with wraparound
D. means left diagonal

L
DR means right diagonal
. D1 and D2 -~ diagonal parity without wraparound

DlL, DZL mean left diagonal parity

DlR, D2R mean right diagonal parity
The error correction algorithms are defined by the additional
information used as shown in Table 4. Here D may refer to
either DL or DR although diagrams in this paper arbitrarily

show DL' Algorithms using D1 and D2 are not listed because

there is no net advantage.

Algorithm HV

Algorithm HV requires horizontal parity and verti-
cal parity to be computed and stored each time a matrix is
changed. Each time the matrix is to be used, both parities
are recomputed and used in an "exculsive OR" with the

corresponding original parities. Any bits left on in the

53

REDUNDANCY ERROR CORRECTION ALGORITHM
HV | HVC {HVZ | VD } VDC| VH | HVD
C X X
H X X X X X
\% X X X X X X X
Z X
D X X X

Table 4: Error Correction Algorithms

result identify a row or column which may contain an error.

The intersection of these two dimensions identifies a

guestionable bit. For the example diagrammed in Figure 8,
there is only one bit in error for the entire matrix. Thus
the identified intersection does contain the error, marked
by * in the diagram.

Now that the exact location of the error has been
detected, error correction is simple. Complement OIr flip
the bit at the intersection (change "on" to "off" and "of£"
to "on").

However, confusion exists when two or more bits
in a matrix become erroneous before a test. For a two bit
error, either four or zero intersections are identified.
The case of zero intersections would occur if the two
errors appeared in either the same row or the same column.
This would produce the camouflage effect discussed in the
section LIMITATIONS OF PARITY AND CHECKSUM. In the case

of four intersections, there is no extra information to

H ORIGINAL

0 0 0 0
1 0 0 1
1 0 0 0
0 1 1 1
AN
\
\
Wil 1 0
AN

~

~

~

N\
\RESULT OF

~
JV'exclusive OR" ,~

CURRENT
1 0
0 0
0 0
1 1
0 1

RESULT OF
"exclusive OR"

/

AY 7
N L4 !
n'a - /
identifies row —3} 1 —> |- /
in error + ;
¢} | /
‘ /
1
O i /
I
/
0 /

SEEN BN LSS H |
K\

identifies column in error

Figure 8: Error Correction Using Horizontal
and Vertical Parities

distinguish which intersections are erroneous and which
intersections are correct but are identified due to symme-
try. Let us examine using Figure 9 the case of two bits
in error but not in the same row or column. Label the
intersections as X1, X2 in row X and Y1, Y2 in row Y.
Either the pair X1, Y2 contains the erroneous bits and the
pair X2, Y1 is correct but identified due to symmetry oOr
vice versa. Algorithm HV is indeed capable of recognizing
a double error in one matrix and would not attempt to re-
constrﬁct.

The logic that Algorithm HV would use is as
follows: the number of bits turned on in the result of the
"exclusive OR" involving the original and current horizon-
tal parity should be equal to one to proceed with correct-
ing a one bit error. 1In other words, one and only one
erroneous column should be identified. This identifies
a single intersection containing the error. Under any
other conditions, the reconstruction would not be attempted.

There is a slight possibility that a triple error
could be mistaken as a single error. If a triple error
occurs such that each bit is at the corner of an imaginary
rectangular (one bit in same row as another error and also
in same column as a third error) then the fourth corner
of the imaginary rectangle is inaccurately identified

as the only erroneous bit in that packet.

H ORIGINAL H CURRENT

0 0f 0 0f o0 1 140 0
1 0 0 0 1 1 0 0 0
1 0 0 1 0 0 0 0 0
0 1 1 1 1 0 1 1 1
\ P
\ Vs
\ 7’
Vil 1 0 0 P v 0 1 1
\ 7
\ N P /
~
N ~ ’ /
\RESULT OF SO s RESULT OF /
Viexclusive OR" /> . "exclusive OR"
/’
\\ , ~ < /
\
\ 7’ g > ~ /
\ / ~ /
. s 1 L . /
%dentlfles rows —-»| 1 LS bxid-—=lx2d--drow X~ 7
in errors + 7
0 | /
' /
' row
1 —> 4@————- -y
7
0 t ’

>
e bbb st - F
S\

~

identifies columns in erroxr

Figure 9: Ambiguity of Two Erroneous Bits Using
Algorithm HV

Algorithm HVC

Algorithm HVC is designed to handle a majority
of the cases where two bits are in error.
also kept for each nxm matrix.
compares with the new checksum indicates the nature of
the changes which have occurred in the matrix.
what a checksum comparison would indicate when two bits

have become erroneocus in a matrix.

The way the old checksum

This is outlined in

A checksum is

Consider

Table 5.
RELATIONSHIP | CHECKSUM MEANING ! PROBABILITY OF
FORMULA OCCURRENCE
checksum has 1-0
decreased by | C = C - 2 1/4
two NEW OLD 10
checksum has 0~
increased by | C = C + 2 1/4
two NEW OLD 01
checksum 0~
remains C = C
constant NEW OLD 1-+0
or 1/2
e
(0~1
Table 5: Checksum Comparisons

This knowledge of the nature of the change

conjunction with the present settings of the bits at the

57

four questionable intersections allows accurate reconstruc-

tion in many cases.

the tables included in Appendix A.

These possibilities are detailed in

Some combinations

cannot occur while other conditions are indeterminate
and cannot be reconstructed properly. Determinate cases
are shown with the suggested reconstruction.

Combining the results found in Appendix A yields
a success rate of over 73 percent in correcting two errors
occurring in different rows and columns of a matrix. In-
cluding the cases where the two bits do occur in the same
row or column reduces the success rate only about 1 percent
if there are 60 rows and 60 columns. Reconstruction of
all two bit errors in one matrix would be successful over
72 percent of the time for Algorithm HVC using this tabu-
lar approach.

The possibility of three errors occurring in one
matrix before a test is indeed rare. However, the theore-
tical possibility should be considered. For Algorithm HVC,
an approach similar to the analysis of two errors suffers
from a combinatorial explosion. Two errors involved four
intersections and 48 cases. Three errors involves nine
intersections and 3584 cases. It becomes readily apparent
that the tabular probability scheme used by Algorithm HVC
is unmanageable for considering more than two errors at

one time.

Algorithm HVZ

A theoretically advanced solution to the whole
problem of reconstruction would be to save a third dimen-

sion of parity along the Z-axis as well as saving vertical

and horizontal parity. Algorithm HVZ has the advantage
of being intuitively obvious. Its technique can easily
handle two or three errors in one level, with a very high
rate of success. It fails only on extremely rare cases
such as two bits being in the same row or column as well
as in the same Z-axis parity with two other bits in other
levels. This is sketched in Figure 10 where the four

erroneous bits are marked with heavy dots.

Figure 10: Ambiguity of Multiple Erroneous Bits
Using Algorithm HVZ

Algorithm HVZ has a drawback which seems to make
its use prohibitive if the Z-axis parity is taken on very
many layers. Reconstruction of one matrix would involve
a consideration of many matrices making up the Z-axis
parity. The problem of initially developing and re-develop-
ing the Z-axis parity is quite complex on an actual

computer. Assuming that each matrix would probably require

a unique input command, generating a Z-axis parity would
be most expensive in terms of resource allocation and

overall timing.

Discussion of Diagonal Parities in Algorithms

Let us consider diagonal parities to evaluate
possible algorithms. biagonal parities remain in a two
dimensional plane where one matrix is a reconstruction en-
tity. There are many algorithms that could be defined
combining various diagonal parities with other types of
data. Here this paper must be selective rather than com-
plete.

At first glance, a diagonal without wraparound
seems much less confusing than one with wraparound. How-
ever, this criticism fades with the realization that any
diagonal occupies only one position on any one column (or
row). Thus adding a vertical parity to an algorithm re-
solves any ambiguity. The net storage requirements are
equal for (D1, D2) or (D, V) and much more information
is available in (D, V). As an additional disadvantage,
it is slower to compute (D1, D2} than D.

In defining an algorithm using D, either the
right or left diagonal parity may be used. Arbitrarily,

the diagrams in this paper show the left diagonal D On

L°
certain computers, a savings in time to develop the pari-
ties would provide a criteria for selection. On the

Control Data computer, equal time is required to compute

60

either parity. (Note a right shift of n would distribute

the sign bit so instead code a left shift of 60-n.)

Algorithms VD and VH

Algorithm VD uses vertical parity and a diagonal
parity with wraparound. Algorithm VD is motivated by a
slight advantage over Algorithm VH specifically concerned
with the instruction set on the Control Data Computer [17].
Each horizontal parity (H) may be computed with a "Count",
"Mask", and "OR". Each diagonal parity (D) may be computed
with a shift and an "exclusive OR". Thus the computation
of the horizontal parity is slower by the time it takes
to do a "Count". Either algorithm is completely deter-
ministic on one bit errors. Also either always recognizes
a multiple error and does not attempt any reconstruction
since there is no additional information to resolve ambi-

guities.

Algorithm VDC

Algorithm VDC adds a checksum to the saved infor-
mation of Algorithm VD. It is an improvement comparable
to the expansion of Algorithm HVC from Algorithm HV.
Algorithm VDC is slightly superior to Algorithm HVC because
of the savings in computing diagonal parity D instead of
horizontal parity H. While a one bit error is 100 percent
correctable using either algorithm, a different set of

failures occurs with two bit errors for an overall compar-

62

able rate of success. Both fail when the two errors are
on the same column. Balancing out, Algorithm HVC fails
when both errors lie on the same row while Algorithm VDC
fails when both errors lie on the same diagonal.

For solvable two bit errors, Algorithm VDC must
use a tabular approach as shown in Appendix A to vield
an overall success rate of more than 72 percent for recon-
struction of two bit errors. Diagrammed in Figure 11 is
a case of two bits in error--not in the same diagonal or
column. Label the four intersections as X1, X2 in diagonal
X and Y1, Y2 in row Y. Either pair X1, Y2 contains the
erroneous bits and the pair X2, Y1 is correct but identi-
fied due to symmetry or vice versa.

For three or more errors in one matrix, this
tabular probability scheme suffers from a combinatorial
explosion. Thus Algorithm VDC is just as incapable as
Algorithm HVC in reconstructing more than two errors at a

time.

Algorithm HVD

Algorithm HVD requires three parities to be
saved: horizontal, vertical, and a diagonal with wrap-
around. Detailed logic for this algorithm is presented in
Appendix B. Actual COMPASS code to compute redundancy is
presented in Appendix C with a timing analysis.

Algorithm HVD differs from the algorithms pre-

viously presented--it involves more complicated logic when

SN,
7 /\'
K
/s P 7
Vd s
0707070
e s 7
o.10 %1071~
// 7’ 7
O d l/ O//
Fd ’
’ s "
L1
1 0 0

identifies
diagonal in
error

Figure 11:

Ambiguity of Two Erroneous Bits Using
Algorithm VDC

identifies column in error

- N
4 N s ~
A
, AN
~
/\ N
AN
> ’
bd s
o
s
s
I'd
4 4
4 ’
, ’
Ve
7’
’,
N
~
~
~
~

0 |0
0 |1
140
171
010
i
[
i
i
I
i
i
!
i
~
!
~

64

errors are encountered and as a result is more successful.
Of course one bit errors are 100 percent correctable but,
in addition, two bit errors are 100 percent correctable
and three bit errors are over 85 percent correctable (as-
suming a 60x60 matrix). Even more of the remaining 15 per-
cent of the three bit cases could be handled, but not
easily. Therefore, a smaller matrix size is recommended
if many 3 bit errors are expected in an nxm matrix.

Consider the most straightforward case involving
two errors in a matrix where there is no common row, column,
or diagonal. Figure 12 shows the reconstruction problem
using the result of the "exclusive OR" between each ori-
ginal and corresponding current parity. Since there are
three way intersections, ignore the intersection of two
directions as seen in b, ¢, d, e, f, and g. There are only
two positions that are intersections of three directions--
a and h. The parities indicate there are exactly two
errors, no two of which are in the same row, column, or
diagonal. This means a and h are required solutions.

For a more complicated situation, consider a
case where the two errors lie on a common direction, say in
the same column. Therefore no column is identified as erro-
neous. No three way intersections exist so the two way
intersections must be considered--a, b, c, and d. Because
no erroneous column is identified, the two solutions can

be deduced to lie in the same column. Of the four inter-

"exclusive OR"
identifies
erroneous
YOows

"exclusive OR"
identifies
erroneous
diagonals

Figure 12:

Figure 13:

65

f’ ~
s N
4 ~
I N
4 PN N
e
/s N\)
7 7 N
R 7 4
i . 4 PR s N
! 4 % ‘
l ,_._._.) AN B S TN Pd ~
: 7/ ’ a; *Cy e
i ’ 4 . v v
-0 o7 ~ ‘
: i ' [L d /’
: i * ’T 4 * <
! v , o
LI I I
A <7
%'\'\"\I\/\ ~ N R
i 9 * b
i i | ;
F 0 o1
ot 0

"exclusive OR"

identifies erroneous columns

Error Correction Using Horizontal, Vertical,
Diagonal Parities (Left-Diagonal with Wrap-

around)

BN SN
i !
i

i s
RPN NN
/ c

Algorithm HVD

Ambiguity of Two Erroneous Bits Using

66

sections under consideration, only a and d satisfy the
criteria of being in the same column. Thus by logic, an
implicit condition was identified which allowed the pro-
blem to be solved.

The basic algorithm easily expands to handle
three errors in one matrix when no errors have a common
row, column, or diagonal. The basic approach corresponds
to the case of two erroneous bits where there is no common
direction. 1In either case, all three-way intersections
mark an unquestionably erroneous bit without ambiguities.
This logic is presented in algorithmic form in Appendix B.

It is not recommended that Algorithm HVD attempt
to reconstruct any case where three errors have occurred
with a shared direction, either the same row, column, or
diagonal. But note that the ambiguity could be resolved
by the use of a theorem prover given logical statements of

implicit conditions.

SUMMARY OF ERROR CORRECTION ALGORITHMS
Table 6 presents a summary of the algorithms.
Percentages are based on a 60x60 matrix (or on a 60x60x60

three dimensional array for Algorithm HVZ).

67

ALGORITHM Saved Information Success Percentage Reasons for
Failure
(see notes :
e oo et e !
T TS oy below chart) {
#units |%increase error | errorsierrors
Hv 2 | 3<1/3 | 100 o o | T
HVC 3 5 100 72 0 A
VD or 2 3-1/3 100 0 0
VH : 1
vDC 3 5 100 g 72 0 B
HVZ 3 5 100 @ 99.9+ 85 C
HVD 3 5 100 1100 | 85 D

Table 6: Summary of Error Correction Algorithms

two errors in the same row or column
two errors in the same column or left diagonal

(if D. used in algorithm, otherwise DR)

L
two errors in same row or column and also each
error in same depth parity with another error
on a different level

two or three errors in same row, column, Or

left diagonal (if D, used in algorithm, other-

L

wise DR)

63

Algorithm Comparison with other algorithms
HV Slightly slower than VD
HVC yASllghtly éiowé;mghan vDC
" VD ‘Best algorlthm if only 1 bit errors arewto ggmm’
reconstructed. Will not handle two or more
errors in one matrix.

vDC | A gobd alégg;ghm for correctlng all l bit and E
many two bit errors. Its tabular approach]pro—]E
duces speed at the cost of storage. 1In all it
is deemed inferior to Algorithm HVD.

HVZ Computing Z-axis parity is prohibitive pri-
marily because of input requlrements.

HVD Best algorithm f6;£d for reconstructlng all 65;.
bit and two bit errors as well as most three
bit errors. It is reasonably fast and rather
low in storage requirements.

Table 7: Comparison of Error Correction Algorithms

CHAPTER V

A SAMPLE COST ANALYSIS

PARAMETERS INVOLVED IN A COST ANALYSIS

Cost analysis of error handling is concern ed with

the following parameters which describe a system:

1.
2.

3.

10.
11.
12.

13.

volume of data in long term storage (b its)
storage media fault rate (errors/sec/b it)
transmission rate--volume of data per unit of
time which is sent through the Input/owutput
device between central memory and long tgrm
storage (bits/sec) |

I/0 media fault rate (errors/bit)

transaction rate (transactions/sec)

software failure rate such that incorresct
data is placed in long term storage (ex=rors/
transaction)

transaction processing cost (in resources)
error propagation rate for an undetected error
intangible costs of errors (such as a E.ost
bomb)

time to perform a rollback and recovery=
manual correction cost

reprocessing cost for a detected error

detection cost (in resources)

69

14. cost of implementation for error detection

715. error correction cost (in resources)

16. cost of implementation for error correction

Items 1-6 give the total rate of errors which can
be predicted to occur in a system. These are the types of
errors that change bits in the data base. The product of
items 1 and 2 gives the number of errors per second which
may occur in long term storage. Thus storage failures
should increase with larger banks of storage. The product
of items 3 and 4 gives the predicted number of errors per
second which may occur while the data is being transmitted
between central memory and long term storage (read or write
Thus transmission failures should increase with greater
I/0 activity. The product of items 5 and 6 gives the num-
ber of errors per second due to software failures. This is
the rate which could occur during processing of informa-
tion which alters the bits in the data base.

Items 8-10 cover the cost of errors which are
not detected and subsequently corrected or insulated from
the rest of the system. Items 11-14 describe the costs
involved in detecting an error whether or not error correc-
tion will be incorporated into the system. Items 15-16
cover the cost of adding error correction to a system which
already contains detection.

Chandy et al. [14] present some indices which may

be useful in comparing different techniques for achieving

70

).

reliability in a specific system. These indices are called
the Hardware Reliability Efficiency index (HRE), the Soft-
ware Reliability Efficiency index (SRE), the Real-Time
Criticality index (RTC) of a system, and the inclusion
factor.

The cost of errors must be weighed against the
cost of error detection/correction procedures to decide
what degree of error processing to include in a system.
This is inherently a management decision since several
of the comparative costs are intangible. This was dis-
cussed in the previous section INCREASING RELIABILITY IN
COMPUTERS. The central question is unreliability in a data
base without DIM versus increased overhead to incorporate
DIM.

An analysis of a specific system can provide in-
formation as to the degree and importance of the various
cost factors to be considered. A broad overview of a pro-
cedure to follow in such an analysis is presented in the
following sections. The types of costs and their relative
sizes are discussed in a qualitative manner. A more com-
plete quantitative analysis would require extensive data
gathering in the system to be studied (i.e. the mean error
rate should be determined) and cost estimates of intangi-
ble values (i.e. a lost nuclear device) need to be made.
Such a complete cost analysis of a complex computer system

is beyond the scope of this thesis.

72

THE COST OF ERRORS WITHOUT A DETECTION/
CORRECTION PROCEDURE

The cost of errors is determined by the frequency
of errors and the average cost of each error. Hardware
specifications should provide an upper bound on the fre-
quency of errors but measurements of a system in operation
are necessary for accurate results. Few statistics are
available on the error rate for the NOLS set of hardware.
This is a common problem for complex computer installations.
The section on PROBABILITY OF ERRORS IN A DATA BASE pro-
vides some numbers for the purposes of estimation, but
these numbers are only approximate.

The cost of a given error depends on where it
occurs. If it is in an index or address, it could cause
a chain of errors in processing. There is a good chance
that the results will be obviously incorrect and thus a
problem will be detected. This type of error has a high
cost for recovery (rollback and restart) and an intangible
cost due to increased maintenance time for the system.

More insidious are those errors in the data base which are
undetected. The data provides incorrect results but the
errors may not be detected until a user finds a discrepancy
between the data base and the real world (i.e. lost ord-
nance). The cost of this type of error in a sensitive data
base such as that of NOLS could be high in intangible and
tangible terms. On the other hand, the error could be in

some unimportant area where it has no opportunity to

73

propagate. The error might be written over before it has
a significant effect on the system. Then the cost is negli-
gible. The relative percentage of each type of error
should be estimated in order to find the average cost of
a single error.

In addition to the cost of each error, there is
an intangible cost due to undermined user confidence even
when the data is error-free.

To summarize, a measure of the frequency of errors
along with a breakdown of the relative frequency of the
different types of errors should provide some guidelines for

the cost of errors without a detection/correction procedure.

THE COST OF AN ERROR DETECTION/CORRECTION PROCEDURE

There are two types of cost in the proposed error
handling procedures: storage and processing overhead. The
algorithms described earlier in this paper require up to
5 percent additional storage to maintain the redundancy.
This storage could be allocated within the current system
if it has the capacity or an additional storage system
could be added. The NOLS system does have enough available
storage to hold the redundancy. Additional storage would
be very expensive if this were not the case.

The processing overhead for the error detection/
correction procedure can be split into two parts: parity
computation time and storage retrieval time. The parity

computation time is required every time a logical record

74

is written to or read from the disk system.

The storage retrieval time is the additional
overhead on the DMS caused by the storage and retrieval
of the parity information. Implementation of error handling
has a choice of storing the redundancy with the data or in
a separate area. Storage with the data would cause an
increase in storage retrieval time of approximately 5 percent
(algorithms require up to 5 percent additional storage for
redundancy). Storage in a separate area is more expensive

since additional I/O requests are necessary.

A NEW MODEL TO ANALYZE THE NOLS SYSTEM

The system chosen for analysis is NOLS (Nuclear
Ordnance Logistic System), a subsystem of the ALS (Advanced
Logistic System) supported by and for the Air Force [3].
This system appears to be a good candidate for DIM for two
reasons. First, the cost of undetected errors in the data
base can be very high. Second, the system is lightly loaded,
making the cost of error correction low in terms of mean
system response or turnaround time.

Model studies can provide both insight and gquan-
titative analysis if pursued in depth. A model of the NOLS
system should be studied to analyze the cost of an error
detection/correction procedure. Logic flow and statistics
were found in [3]. A diagram of the model is shown in

Figure 14.

System/
source Scratch
N A
% l cPU t—Q“ \
X

(O

p = 0.2 and x = 0.01
Figure 14: A Simplified Model of NOLS
This model describes the approximate sequence of

events that occurs when a user of NOLS initiates a trans-

action. First, jobs arrive from the source (i.e. a remote

75

job entry port) at a rate of)\ and enter the CPU sub-system.

This subsystem includes the central memory (CM) and ex-
tended core storage (ECS) areas as well as the central
processing unit (CPU). It will be referred to as the CPU
hereafter. Jobs are assumed to leave this subsystem at
an exponential rate, My - Thus, l/ul is the mean CPU burst
time.

When a job leaves the CPU, it may either require
service from the DMS subsystem (i.e. a request for informa-

tion from the data base) or from the System/Scratch sub-

76

system (i.e. a library call or a read/write to a scratch
area). The DMS subsystem will be referred to as the DMS
and the System/Scratch subsystem will be referred to as the
SYS. Jobs are assumed to require DMS service with a pro-
bability of p and SYS service with a probability of 1-p.
Jobs are assumed to leave the SYS at a rate of “2 and the
DMS at a rate of Mye Therefore, their respective mean
burst times are l/u2 and l/u3.

When a job leaves either of the above subsystems,
it may leave the system (if it has completed its trans-
action) or it may return to the CPU subsystem. In this
model, a job will leave the system with a probability of x
and return to the CPU with a probability of 1-x. For
instance, if x = 1/100, then a job will cycle through the
CPU and I/O subsystems an average of 100 times before leav-
ing the system.

This model has omitted many details of the sys-
tem to maintain clarity and to keep the analysis within
manageable proportions. For example, the limitation which
ECS places on the number of active chains in the system at
a given time is ignored. While this type of model does not
give fine resolution, it does yield measurements of device
utilization, system throughput and response time with
validity bounds of less than 10 percent for a large number
of computer systems, including NOLS. See Baskett [15]

for a discussion of modeling techniques. Note also that

when the model is used in a comparison with itself, the
errors inherent in the model will tend to cancel out.

For the purposes of the cost analysis, "errors"
refers only to those errors which would be detected by
the proposed detection procedure. This restriction is rea-
sonable because the cost of the other types of errors
would not be changed whether or not the proposed error
handling procedure is implemented.

Estimates for p, x%, Hyr Hor Mg and A have been
made by comparing NOLS and ALS configurations and by assum-
ing that the characteristics of programs on NOLS correspond
to those programs used as benchmarks in [3]. Modifications
and allowances have been made for the differences between
the two systems. Since an in-depth analysis of NOLS is
beyond the scope of this thesis, these estimates will be
used to provide a basis for a discussion of cost analysis.

The following statistics are used in the model.

A transaction consists on the average of 100 cycles through
the system (or 100 CPU bursts). Thus x=0.01. On the
average 1 out of 5 CPU bursts cuases a DMS request. This
sets p to 0.2.

In the system without DIM, the mean CPU burst
(l/ul) is 20 ms. and the mean burst times for the SYS and
DMS subsystems (l/uz, l/u3) are each 40 ms. (seek and trans
fer time). 1In the system with DIM, these values will

increase due to the overhead of the detection procedure as

77

78

outlined below.

The cost of error correction relative to its fre-
geuncy of occurrence can be neglected. It occurs less than
once in a million times and takes much less than 1 second
to process. Therefore the overhead is very small. This
model is primarily concerned with detection costs. The
cost of implementation is the major cost of an error correc-
tion package even using the slowest algorithm.

This model will use an estimate of a 5 percent
increase in the mean CPU burst time (l/ul). The actual
overhead is expected to be somewhat less than that amount.
This is based on the following reasoning. One milliseconds
is an upper bound on the time required to create or check
parity information on a physical record of 512 words (see
Appendix C). With four physical records to one logical
record, it takes 4 ms. extra to process a DMS transaction.
On the average, 1 out of 5 CPU bursts causes a DMS reguest.
Therefore, the mean CPU burst will take an additional 0.8
ms. The figure 1 ms. is used to allow for hidden costs
such as increased swapping caused by less usable core.
Thus, the average CPU burst is 21 ms.

Note that no change occurs in l/u2 since the SYS
subsystem is unaffected by the error detection procedure.

This model assumes that NOLS will implement separ-
ate storage to minimize impact on the operational system.

In NOLS, the average logical record is contained in four

79

physical records. Redundancy for all of these could be
stored in a single additional physical record. This would
mean an increase in storage retrieval of approximately 25
percent. Thus, l/u3 will increase to 50 ms.

Two cases are examined: a lightly loaded system
and a heavily loaded system. The lightly loaded system has
a transaction start on the average of once every 10 seconds.
The heavily loaded system has a transaction start once
every 4 seconds. This case is based on the possibility of
increased usage in the future.

The queue lengths, utilizations, and response times
of the various subsystems and the mean system response time
were computed by standard analytical techniques found in
Drake [16]. The results of these computations are shown
in Table 8.

The cost of the error detection/correction proce-
dure in terms of increased system response time varies
from 3 percent to 5 percent depending on the load that the
system is carrying. The relative undesirability of this
cost depends on the system. Degradation of response time
should not be significant on the NOLS system. This is due
to the manageable load on NOLS and the primary concern with
long running events.

Another measure of cost is potential throughput
of the system. The System/Scratch Disk subsystem is the

bottleneck in this model whether or not error handling is

Lightly Loaded

Heavily Loaded

80

System Parameters Without With Without With
DIM DIM DIM DIM
Mean CPU burst (l/ul) 20ms 21ms 20ms 21lms
Mean SYS burst (1/u2) 40ms 40ms 40ms 40ms
Mean DMS burst (1/u3) 40ms 50ms 40ms 50ms
Mean time between 10sec 10sec 4sec dsec
arrivals
CPU utilization .200 .210 .500 .525
SYS utilization .320 .320 .800 .800
DMS utilization .080 .100 .200 .250
Mean CPU queue length .250 .266 1.00 1.105
Mean SYS queue length .471 .471 4.00 4.00
Mean DMS queue length .087 .111 .250 .333
Mean CPU response time 25.0ms 26.6ms | 40.0ms 43.2ms
Mean SYS response time 58.8ms 58.8ms | 200ms 200ms
Mean DMS response time 43.5ms 55.5ms | 50ms 66.6ms
System response time 8.1lsec 8.5sec | 21sec 22.2sec

Percent increase in
response time

oe

Table 8: Results

of the NOLS Model Analysis

81

included. Error processing does not degrade the perfor-
mance of that subsystem, based on the model of NOLS. The
error detection/correction procedure does not decrease the
potential throughput of the system. Therefore, this cost
is zero for this model.

It must be recognized that the assumptions made
in preparing these estimates are subject to error. For
example, the system/scratch subsystem is assumed to be the
major bottleneck in NOLS as it was in ALS [3]. If this
assumption is not wvalid, the results given here are subject
to some error. The estimates of changes in system response
time would increase, and the estimates of maximum possible
throughput would decrease. These changes are not critical
so long as the actual system throughput remains significantly

below system capabilities.

SUMMARY OF THE COST ANALYSIS

It is desirable to implement an error detection/
correction procedure for NOLS. The cost of errors in the
data base can be high. An error detection/correction pro-
cedure can virtually eliminate these costs at only a
slight cost in terms of system performance and resources.
Fewer errors mean better overall system performance with
less time spent with manual corrections and Rollback/Re-
start/Recovery.

The recommendation to implement error handling

in NOLS is partially based on the model in Figure 14.

Changes to this model could influence a final decision.

82

CHAPTER VI

SUMMARY

This paper shows that error detection and correc-
tion are feasible software schemes that offer many advan-
tages for a data base system. Errors are detected and re-
moved from the normal system flow before they may jeopar-
dize further processing. The errors are corrected immediate-
ly by software routines if the error is within the design
capabilities of the algorithm selected.

Many error detection and correction algorithms
are presented which use redundancy composed of combinations
of horizontal, vertical, and/or diagonal parities. Al~
gorithm HVD is recommended as the most comprehensive of
all those presented. Detection would catch almost all errors
using such an amount of redundancy. The error correction
algorithms are designed to handle three or less erroneous
bits in one rectangular array of data. This covers a
significant portion of the errors expected in a data base.
Backup measures including other Data Integrity Management
capabilities are discussed.

The costs of including error detection and
correction in a data base system are discussed. Storage
requirements would increase an estimated 5 percent to retain

the redundancy. If the redundancy is stored with the data

83

S —

84

it describes, the Input/Output time would increase by less
than 5 percent with no additional I/0O commands. If the
redundancy is stored separate from the data, then an in-
crease in storage retrieval of 25 percent is estimated.
System response time would increase about 5 percent. These
figures are estimated to cover any data base system although
they were partially derived from a cost analysis of the
Advanced Logistics System (ALS) of the Air Force Logistics

Command.

APPENDIX A

85

APPENDIX A

RESOLVING AMBIGUITIES FOR ALGORITHMS HVC OR VDC

CHECXSUM INDICATES TWOQO BITS ERRONEObSiY TURNED OFF
in an nxn matrix

CURRENT SETTING MEANING* | RECONSTRUCTION NEEDED

x1 v2 yi x2 | | X1 ¥2 ¥l X2

e s e e b

0 0 0 0

")

0 0 0 1 X 1 1
0 0 1 0 X 1 1
0 0 1 1 X 1) 1
0 1 0 0 X 1 1

1 1 1 1
o ; B et ~ S—

*determinate (X), indeterminate (?), cannot occur

(=)

Table 9: Algorithm HVC or VDC Logic When Two Bits
Turned Off

87

Summary: of the 16 combinations, only 7 are possible for
this case. Of these 7, 6 can be reconstructed determinis-
tically yielding a success rate of 85-5/7 percent. In the
remaining case, the situation is ambiguous and correction

is not possible.

CHECKSUM INDICATES TWO BITS ERRONEOUSLY TURNED ON |
in an nxn matrix

CURRENT SETTING | MEANING* |RECONSTRUCTION NEEDED
X1 Y2 Y1 X2 X1 Y2 Yl X2
o :
o o0 o0 1 -
o 0 1 0 -
"0 o0 1 1 X 0o 0
o 1 0 0 -
o 1 o0 1 -
o 1 1 o0 - |
o 1 1 1 X 0o o0
1 0 0 o0 -
1 0 0 1 -
1 0 1 0 - A
1 o0 1 1 X 0o o0
1 1 0 o0 X 0o o
1 1 o 1 X o 0
1 1 1 o X 0o o

~J)

*determinate (X), indeterminate(?), cannot occur (-)

Table 10: Algorithm HVC or VDC Logic When Two Bits

Turned On

88

89

Summary: The results of this case exactly correspond to the
previous results for two bits erroneously turned off. Of
the 16 combinations, only 7 are possible for this case. Of
these 7, 6 can be reconstructed deterministically, yielding
a success rate of 85-5/7 percent. In the remaining case,

the situation is ambiguous and correction is not possible.

CHECKSUM INDICATES ONE BIT TURNED OFF AND ANOTHER j
TURNED ON ERRONEOUSLY in an nxn matrlx

o p—

CURRENT SETTING MEANING* | RECONSTRUCTION NEEDED .

X1l Y2 Y1 X2 X1 Y2 Y1 X2

o 1 0 0 X 1 0
o 1 o0 1 ? ’
0o 1 1 o0 ? |
o 1 1 1 X 1 o
1 0 0 o0 X 0 1
1 o o 1 ?

1 0 1 o0 2 o
L o 1 1 X 0o 1

1 1 1 1 -

*determinate (X), indeterminate(?), cannot occur(-)

Table 11: Algorithm HVC or VDC Logic When Two Bits
Reversed

90

Summary: of the 16 combinations, only 12 are possible for
this case. Of these 12, 8 can be reconstructed determinis-
tically yielding a success rate of 66-2/3 percent. In the
other 4 cases, the situation is ambiguous and correction is

not possible.

APPENDIX B

92

93

APPENDIX B

ALGORITHM HVD IN DETAILED LOGIC
(using an nxn matrix)

Convert each "XOR" information to numbers corresponding

to coordinates of changed bits - Ri’ Cj’ D, for i = 1,n;

k
i = 1,n; k=1,n.

Example:
horizontal (row) vertical {(column) left diagonal
R —
0 0 0}
] I
1 0 O§
= — 3=C — 4=D
ol TR T 7T of 1
1ﬁ
0] 9] e

Count the number of 1's in each "XOR" information.

If each "XOR" has a count equal to 1 then the ordered
3-tuple (R, C, D) is the location of the erroneous bit,
go to step 8.

Example: (2, 3, 4) is the location in the example of

step 1. 1 2 3 4
7
1 Ve
2 g ‘./’."
3 V7
4 -
i/

Else if each "XOR" has a count equal to 2 then combine
the two values of R and C to form 4 unique 2-tuples.
(Rl, Cl) and (Rl, C2), (Rz, Cl) and (Rz, C2) and save
Dl and D2 separately. Compute D for each 2-tuple using
the formula

D= (R+C-1) if R+ C-1 <n

D= (R+ C-1-n) if R+ C-1 > n

Compare each D with the two accepted values Dl and D.,.

2

If D equals D, or D2 then the ordered 3-tuple (R, , Cj,
1

Dk) i=1,2; j=1,2; k =1,2; should be saved as the

position of an erroneous bit. There should be exactly
two 3-tuples satisfying this test. Go to step 8.

Else if no "XOR" has a count > 2 then take the numbers
corresponding to the two "XOR"'s with a count = 2 and
use them in the following formulas to compute numbers
corresponding to the missing coordinates. Arrange each
(Ri, Cj' Dk) in an ordered 3-tuple (a total of 4 sets).
Given R and C:

D= (R+C - 1) if R+ C - 1<n

o
I

(R+C -1 - n) if R+ C - 1>n

il

Given R and D:
C

(b+n+ 1 - R) if D<R

Q
t

(D +1 - R) if D>R

Given C and D:

il

R= (D+n+1-20C) if D<C
R

(b +1-20C) if D>C

94

95

Identify the two 3-tuples with the same value just com-
puted. These are the positions of the erroneous bits.
Go to step 8.

If each "XOR" has a count = 3 then (paralleling step 4)
combine the three values of R and C to form 9 unique

17 D2, and D3 separately. Compute a

D for each 2-tuple using the formula in step 4. Compare

2-tuples. Save D

each D with the three accepted values Dl' D2, D3. If
D equals one of these, then the ordered 3-tuple (Ri,
Cj' Dk)

as a position of an erroneous bit. There should be

i=1,2,3; 3=1,2,3; k=1,2,3; should be saved

exactly three 3-tuples satisfying this test. Go to

step 8.

Else exit with a failure indication.

Use each 3-tuple to flip the bit at the identified posi-

tion:

a. generate a mask of 00...010...000 where the 1 appears
in the identified column Cj

b. "XOR" this mask into the row identified by Ri’

Exit with a success indicator.

APPENDIX C

96

APPENDIX C

COMPASS SUBROUTINE TO COMPUTE_ REDUNDANCY FOR
ALGORITHM HVD

*k CRHVD - COMPUTE REDUNDANCY FOR HVD
* ALGORITHM
*
* ENTRY: (Bl) = FIRST WORD ADDRESS OF
* PACKET
* (B2) = LAST WORD ADDRESS OF
* PACKET
* EXIT: (X5) = H - PARITY
* (X6) = V - PARITY
* (X7) = D - PARITY
*
* NOTE: PACKET SIZE MUST BE LESS THAN OR
* EQUAL TO 60 WORDS
*
CRHVD RJ *+400000B ENTRY/EXIT WORD
sal B1
SB3 1
SB4 2 PREPARE TO
SX5 BO
SX6 BO ENTER THE
SX7 BO
Cx3 X1 LOOP
SB2 B2~B3
SA2 B1+B3
MXO0 1
LX0 1
TIMING *
ESTIMATE *
FOR LOOP * LOOP BEGINS HERE
START END *
*
0 2 CRHVDl LX7 1 COMPUTE PARITIES
1 3 BX6 X6-X1
3 5 LX5 1
4 6 BX7 X7-X1
7 9 BX3 X3*X0
8 15 Cx4 X2
9 11,16 sAl Al+B4 FETCH NEXT WORD
10 12 BX5 X5-X3
11 13 LX7 1 COMPUTE PARITIES
12 14 BX6 X6-X2
14 16 LX5 1

lcoMPASS is a assembly programming language [17].

98

START END
15 17 BX7 X7-X2
18 20 BX4 X4*X0
19 26 CX3 X1l
20 22,27 SAZ A2+B4 FETCH NEXT WORD
21 23 BX5 X5-X4
22 29 LT Al,B2,CRHVDL

*

END OF LOOP

EQ Al,B2,CRHVD2
SAl B2
CX4 X2 COMPUTE PARITIES FOR
LX7 1 THE FINAL WORD IN THE
BX7 X7-X1 BLOCK IF NECESSARY
BX6 X6-X2
LX5 1
BX3 X3*X0
BX5 X5-X3

*

CRHVD2 SB4 B1+58 ADJUST POSITIONS OF
SB4 B4-B2 PARITIES IF NECESSARY
EQ B4,B0,CRHVD
LX5 B4,X5
LX7 B4,X7
EQ B0O,B0,CRHVD

Every execution of the loop takes approximately
30 minor cycles. Therefore a packet of 60 words would take
approximately 900 minor cycles to complete the loop. Allow-
ing 100 minor cycles for the rest of the subroutine yields
a total of 1000 minor cycles or 100 microseconds to compute
the HVD parities for a packet. Therefore, a 512 word physi-
cal block consisting of 9 packets would require under 900
microseconds.

The above estimates assume that memory bank inter-
ference will be negligible. However, even if every other
memory access encountered a bank conflict, the total compu-
tation time would not increase by more than 100 microseconds.

Therefore, the redundancy for a 512 word block can be computed

in less than 1 millisecond.

99

10.

11.

12.

BIBLIOGRAPHY

P. Elias, "Error-Free Coding," IRE Transactions on
Information Theory, PGIT - 4, Sept., 1954, pp. 29-37.

K.M. Chandy and C.V. Ramamoorthy, "Rollback and Recovery
Strategies for Computer Programs," IEEE Transactions

on Computers, Volume C-21, Number 6, June, 1972, pp.
546-556.

Limiting Capability Analysis of the CYBER 70 ALS,
Information Research Associates, 2200 San Antonio,
Austin, TX 78705, Sept. 4, 1973.

R.W. Hamming, "Error Detecting and Error Correcting
Codes," Bell System Tech. J., Vol. 29, April, 1950,
pp. 147-160.

James Martin, Security, Accuracy, and Privacy in Compu-
ter Systems, Prentice-Hall, Inc., N.J., 1973.

C.V. Ramamoorthy, "Fault-Tolerant Computing: An Intro-
duction and an Overview," IEEE Transactions on Computers,
Vol. C-20, No. 11, November, 1971, pp. 1241-1244.

A.M. Patel and M.Y. Hsiao, "An Adaptive Error Correction
Scheme for Computer Memory System," AFIPS Conference
Proceedings, Vol. 41, Part I, 1972, pp. 83-87.

William Wesley Peterson, Error-Correcting Codes, M.I.T.
Press and John Wiley and Sons, Inc., N.Y., London, 1961,
p. 81l.

C. William Gear, Computer Organization and Programming,
McGraw-Hill Book Co., N.Y., pp. 64-65.

James Martin, Programming Real-Time Computer Systems,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965,
pp. 125-133.

A. Jelinski and P. Moranda, "Software Reliability Re-
search," Statistical Computer Performance Evaluation
edited by Walter Freiberger, Academic Press, N.Y. and
London, 1972, pp. 465-484.

M.E. Senko, E.B. Altman, M.M. Astrahan, and P.L. Fehder,

"Data Structures and Accessing in Data-Base Systems,"
IBM Systems Journal, Vol. 12, No. 1, 1973, p. 32.

100

13.

14.

15.

l6.

17.

101

ALS Application Programming and Development Guide,
AFLCM 171-286, Change 3, 7 March 1974.

K.M. Chandy, C.V. Ramamoorthy and A. Cowan, "A Frame-
work for Hardware - Software Tradeoffs in the Design
of Fault-Tolerant Computers," Proc. FJCC 1972 AFIPS
pp. 55-63.

Forest Baskett, III, Mathematical Models of Multipro-
grammed Computer Systems, TSN-17, Univ. of Texas at
Austin, Computation Center, Jan. 1971.

Alvin W. Drake, Fundamentals of Applied Probability
Theory, McGraw-Hill Book Co., New York, 1967, pp. 188~
190.

COMPASS Reference Manual, Control Data 6400/6500/6600
Computer Systems.

