THE CASE DESCRIPTION GENERATOR

by

BRUCE CHARLES COCEK, B.A.

August, 1974 TR-41

This paper constituted in part the author's thesis for the M.A.
degree at The University of Texas at Austin, August 1974.

Technical Report 41
THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTIMENT OF COMPUTER SCIENCES

ACKNOWLEDGMENTS

I would like to extend my appreciation to Dr.
Terrence W. Pratt for his help, guidance, and understand-
ing during the supervision of this report. Also, I would
like to extend my appreciation to Dr. John H. Howard, who
served as reader.

I would like to thank my family and friends for
their encouragement and patience during the preparation

of this report.

B. C‘ C‘

The University of Texas at Austin

July 15, 1974

T ABLE O F CONTENTS

Chapter Page
I. INTRODUCTION . & & ¢ ¢ o o o « o o o 2 o o 1
IT, CONSTRUCTION . . & & « o o o o o o « o« & o+ « 14
IIT. DERIVATION . . v v o« o« 4 o o o o o o o « & o« 39
Iv. EXAMPLES . . v v 4 « o o o o s o o » o o« o« « 54
V. IMPLEMENTATION . . +v & & o o o« o« o o o o o« & 14
VI. CONCLUSION . v & ¢ o o o o o o o« o » o« « o« o« 82

APPENDIX . - . . - L4 . » . L - . . . - - L] . - . . - 85

CHAPTEHR I

INTRODUCTION

The goal of this study is to provide a means
by which a cage description for a given program may be de-
rived. The program which has been written to handle this
does so in a concise and efficient manner. The results of
this study may then be used to achieve several goals,
Among these goals are proofs of the correctness of pro-
grams, analysis and debugging of programs, eéuivalence
proofs, and program synthesis. The first two of these ap-
plications are of particular interest to the practical user

of computing machinery.

Background

Every program has the characteristic that it
may be divided into two segments, the control and the ker-
nel, which are able to describe fully the flow through the
program and the output produced by that program. This idea
was introduced by Pratt (4) in his paper on kernel equiva-
lence. In this work, Pratt gives workable definitions for

the kernel statement and the control statement. He defines

1

kernel statements as statements within a program which
"participate directly in the computation of some output"
and control statements as statements within a program
which "participate directly in deci@ing the control path

at branch points." He also shows the relationship between
these two classes of statements in proving kernel equiva-
lence of programs. The reader is directed to this work for
a more detailed description of kernel equivalence.

The case description was proposed in another
work by Pratt (5):in which he continues the study of the
kernel and control segments of a program. Prattts paper
gives a detailed account of the case description and its
derivation. He also provides an algorithm with which a
person is able to determine case descriptions given a flow-
chart as input. The following paragraphs provide a brief

explanation of program graphs and case descriptions.

Program Graphs

It is assumed in this study that every program
may be represented by a flowchart, consisting of a directed
graph with labelled nodes and arcs. This flowchart is a
single entity, with all nodes being connected in some man-

ner by arcs. FEach flowchart is assumed to be correct, that

is, it is assumed that the flowchart meets the specifica-
tions for which the given program is intended. This flow-
chart then becomes the basic model used throughout this
study. This model is a representation that has become
widely used (see e.g., Luckham, Park, and Patterson (3),
Kaplan (2)).

In our model, nodes may have zero, one, or two
cutgoing arcs. These nodes are labelled exit nodes, as-
signment or entry nodes, and branch nodes respectively.

The entry node is unique in that it is the only node in the

graph with no incoming arcs. Exit nodes have at least one

incoming and no outgoing arcs, There may be more than one

exit node in the graph. Assignment nodes and branch nodes

have one or more incoming arcs but at least one of these
incoming arcs must be from another node. Each and every
node in the graph liles along some path from the entry node
to an exit node. However, this does not mean that every
path taken through the model will end in an exit node (e.g.
paths which generate infinite loops will never reach an
exit node). Branch nodes are defined as having two out-
going arcs labelled "T" (true) and "F" (false). These ares
are referred to as the true branch and the false branch,
respectively, when used in the description of the implemen-

tation. In the model, assignment nodes are labelled with

4
assignment statements, brach nodes are labelled with branch
statements, the entry node 1s labelled "ENTRY," and the
exit nodes are labelled "EXIT." From the model constructed
in such a manner, we are able to derive the control and
kernel segments necessary to construct the descriptors in
the case description. Figure 1.1 depicts a basic program
graph. In this example, the types of nodes are labelled

as assignment, branch, entry, or exit for clarity.

Case Desgcriptions

A case description is comprised of a set of de-

scriptors, each containing a control expression and a ker-

nel expression. The control expression of the descriptor

specifies a set of conditions which the input to the pro-
gram must satisfy in order to achieve a desired output.
The control expression is derived from a path through the
program and corresponds to the control statements encoun=
_ tered in this path through the program. There 1s no
ordering to the terms in the expression since the input
must satisfy all terms within the expression in order to
achieve the desired output from the program. An example

of a control expression is shown in Figure 1.2.

assignment

SUM «+ 0

b o o - o e o e e s e - o

!

SUM «SUM + A(I)

-~ ~assignment

I«I +1

-~-=-Dbranch

FIGURE 1.1

C = (~(N = 1),~(N =1 + 1), N = (1+1) + 1)

Figure 1.2

The second half of the descriptor is the kernel
expression. The kernel expression specifies the output of
the program when program inputs satisfy the control expres-
sion. A kernel expression in final form is depicted in

Figure 1.3
K = (outpute((0 + A(1)) + A(1 + 1)) + A((1 + 1) + 1))
Figure 1.3
These individual descriptors are then grouped in

order to form the case description for the program. The

case description takes the following form:

if (control expressionl) then (kernel expressionl) else

if (control expressiong) then (kernel expressiony) else

if (control expressionp) then (kernel expression,)
with three major exceptions:: (1) the descriptors are unor-

dered, (2) for any given set of input values, at most, one

control expression is satisfied, and (3) there may be an
infinite set of descriptors.

The case description of Figure 1.4 is for the
program of Figure 1.1 which computes the sum of the ele~-
ments of an array. This case description does not contain
every possible descriptor for this particular program since
the descriptors are infinite in number. It does provide,

however, the general form in which the case description

appears.
C = (N =1)
K = {(outpute0 + A(1))
C = (~(N =1), N=1 + 1)
K = (output~(0 + A(1) + A{1 +1))
¢ = (~(N =1), ~(N =1+1), ¥ = (1 +1) + 1)
K =

(outpute((0 + A(1)) + A(L + 1)) + A((1 +1) +1))

Figure 1.4

In his paper concerning case descriptions, Pratt
provides & means for deriving a descriptor, Each descriptor

is derived from some path through the program graph for a

8

given progran. For each predicate node encountered in the
sequence of statements from the entry point to the exit
point, the predicate statement or 1its negation, depending

on whether the true or false branch is followed, is included.
Each statement in this sequence is either an assignment, a
predicate, or a negation of a predicate. This sequence is

known as the unreduced descriptor. The algorithm provided

by Pratt to derive a descriptor, composed of a control ex-
pression C and a kernel expression X, from this unreduced
descriptor is as follows:
1. Choose the first statement in the unreduced de-
scriptor.
2. If an assignment statement, e.g. "V=F(...)", then:
(a) 1In each following assignment and predicate
in the unreduced descriptor in which the
variable V occurs as an argument, up to and
including the next assignment to the same
variable V, 1f any, replace each occurrence
of V by the expression on the right of the <«
in the original assignment (enclosing the
expression in parentheses to avoid ambiguity
if necessary). Of course, the final occur-
rence of V if any, on the left of the arrow

in the last assignment statement is excluded.

9

(b) Delete the original assignment from the unre-
duced descriptor. If the variable V is in
the output set of the program and no later
assignment to V occurred in the descriptor,
then place the deleted assignment in the
kernel expression, K.

3. If the leftmost statement 1s a predicate or the
negation of a predicate, place it into the con-
trol expression, C, and delete it from the unre-
duced descriptor.

4, Repeat steps 1-3 for each statement in the unre-
duced descriptor.

The reduced descriptor is the pair (C,K) of ex-

pressions resulting from the reduction process.

Derivation Tree

The implementation of a case description genera-
tor presents a need for an alternative representation of a
program., This representation must enable us to derive in-
formation concerning every possible path through the pro-
gram., From this representation we must also be able to
extract a suitable idea of the results which may be obtalined

by following the flow of the program from the entry point

10

to some exit point within the program. From the informa-
tion concerning the paths through the program derived from
this representation,we are able to generate the control
expression of our descriptors. Likewise, from the infor-
mation concerning the results obtained following these
paths, we are able to construct the kernel expression of our
descriptor. Thus, through repetitious use of this repre-
sentation, our case description unfolds.

For this representation of programs, we define a
new type of tree structure. This structure is derived from
a basic binary tree, i.e., a tree structure in which each
node has exactly two descendants. The two arcs leaving
each node will correspond, respectively, to the true and
false branch of a control statement. The definition of a

derivation tree is as follows:

DEFINITION: A derivation tree is a:finite set of
nodes connected by directed arcs, which satisfy
the following conditions (if an arc is directed
from node 1 to node 2, we say that the arc is an
outgoing arc from node 1 and an incoming arc into

node 2):

1. There is exactly one node into which there
are no incoming arcs. This node is called
the root. The root has only one outgoing
arc.

2. For each node in the tree there exists a

sequence of directed arcs from the root to
the node. Thus the tree is connected.

11
3. The number of incoming arcs to any node ex-
cept the root 1s unlimited. The node in
question is a direct descendant of the nodes
from which these incoming arcs originate.

4., Each node has, at most, two outgoing arcs.

This definition differs from that of a binary
tree in that looping is allowed within this tree. The rea-
son for this is that, without this provision, the deriva-
tion tree could reach outlandish proportions at a rapid
rate and would soon become unfeasible as a means of repre-
sentation of a program. The allowance of looping within
the tree permits the inclusion of more information con~
cerning the structure of the program without the exclusion
of important facts. An example‘of a binary tree is shown
\in Figure 1.5 and a derivation tree is shown in Figure 1.6.
Other definitions which are used in this study follow.

DEFINITION: The set of all nodes n, such that there

is an outgoing arc from a given node m into a

node n, is called the set of direct descendants
of m,

DEFINITION: A node n is called a descendant of node
m if there is a sequence of nodes n;, ng, nsz,
. . ., ny such that n, = n, nj = m, and for each
i, ny 41 is a direct descendant of n;. We
shall, by convention, say a node 1s a descendant
of itself.

DEFINITION: Some of the nodes in any tree have no
descendants. These are known as the exlt nodes

12

-7

2

~

~A

\\w

=3

-2
e

FIGURE 1.5

BRRES

-7

FIGURE 1.6

13

within our tree and provide the end points of
paths through the tree.

DEFINITION: A subtree within a given tree is a par-
ticular node of the tree together with all its
descendants, the arcs connecting them, and their
labels.

Summary

Chapter II of this study shows how a derivation
tree is constructed for a program. It describes the
algorithms needed for this construction and how the tree
is developed from the input graph structure.

Chapter III describes the derivation of a case
description from the derivation tree built in Chapter II.
Tt shows how different types of paths are handled and how
the control and kernel expressions for each descriptor are
built.

Chapter IV gives an example of the derivation of
a case description in detail. This chapter uses the
Wensley Division Algorithm as an example and performs the
necessary action upon its graph representation in order to
obtain its case description.

Chapter V describes the program which has been
written to implement the case description generator.

Chapter VI is the concluding chapter of the study.

CHAPTER I1I

CONSTRUCTION

We are now ready to begin construction of the
tree used in our case description generator. This chapter
explains that construction, beginning with the basic struc-
ture consisting of branch nodes and directed arcs and then
adding new features to the structure making the derivation

of the case description possible.

Input Graph

The input to our case description generator con-
sists of programs in graph form. To get programs into this
form, a module is required which is able to perform the
translation of programs from their basic form, i.e., a set
of statements, into acceptable input for the generator,
i.e., a graph which is, in fact, a flowchart for that pro-
gram. The module to perform this task has been proposed
py Pratt (6). The graph produced by this module has the
characteristics described in Chapter I. From here on, we
assume our input to the generator is the graph, G, and the

program it represents is known as P.

14

15

The input, G, being in flowchart form, consists of
two types of nodes, branch nodes and assignment’nodes. Each
of these two types of nodes has been tagged prior to input
to the generator. These tags denote whether the node repre-
sents a control statement (C), a kernel statement (X), or
poth a control and kernel statement (CK), or neither a con-
trol or a kernel statement (). An example of an input
graph is shown in Figure 2.1.

In the first part of the construction, we are in-
terested chiefly in the branch statements. Hence, the first
step in the generation of the case description provides some
means other than the number of outgoing arcs to distinguish
between these two types of statements and also a means to

distinguish entry and exit points in the program.

Initialization

The graph, G, is set up in a central memory work-
space. This graph takes up only a small portion of the
workspace. The remaining portion of the workspace is used
to build the tree structure utilized by the case description
generator. The location of each node within G is known to

the generator when the graph is set up in the workspace.

ENTRY

I «1 CK
K
SUM <0

I<«I + 1

) L

SUM «SUM + A(I)

FIGURE 2.1

N

17

The generator makes a preliminary pass of G and labels each
node within the graph according to type. Entry nodes are
labelled with 'A' denoting a starting point, exit nodes

are labelled with 'Z' denoting a ferminal point, branch
nodes are labelled with 'B' denoting branch statements, and
assignment nodes are labelled with 'F' denoting assignment
statements.

Also during this preliminary pass of the graph,
the generator sets up an Assignment Table containing labels
which are to be assigned to each node in G to enable easier
referencing. This table is an array with each element
composed of three entries. The first is the statement
in the program which the node represents, the second is
the type which is assigned in this first pass, and the
third is the tag with which the node was input to the gen-
erator. The label by which the node may now be referenced
is the subscript used to access its corresponding entry in
the table. The construction of this table is accomplished

according to the following algorithm:

1. Y=+« 1
2. Find the entry node in the graph. Move "ENTRY"

to the statement portion of the table indexed by

18

Y; move a blank to the tag portion of the table
indexed by Y; replace the statement which labels
the node in the input graph with the value of Y.

3, Find a node in G which has not been referenced
previously. If no such node exists, the algorithm
has completed its processing.

4., Y« Y + 1

5. Move the statement in the node to the statement
portion of the table indexed by Y¥; move the type
(B, F, or Z) to the type portion of the table in-
dexed by Y; move the tag for this node (C, K, CK,
or a blank) to the tag portion of the table indexed
by Y; replace the statement which labels the node
in the input graph with the wvalue of Y.

6. Go to 3.

When the algorithm has been completed, the preliminary
pass is complete. As can easily be seen, the assignment
of a position in the table is completely arbitrary since
the assignment is used strictly for reference purposes and
has no direct effect upon the outcome of the generation.

A sample Assignment Table is provided in Table 2.1.

19
TABLE 2.1

Subscript Statement Type Tag

ENTRY

I « 1

SUM « O

SUM « SUM + A(I)
N = I%

T «~ I + 1
output « SUM
EXIT

W~ U N
N H oo
maaxx

This first pass of the graph, G, has built a
table which proves to be extremely useful in our construc-
tion. It enables us, first of all, to use numeric labels
on the nodes of our tree rather than awkward and sometimes
bulky statements from which G is derived. For example, a
statement such as IF(X.EQ.Y.OR.X.EQ.Z)... would be assigned
to an arbitrary position x in the table. Instead of using
this bulky expression to label the resulting node within
our tree structure, we may now use the number x. Whenever
the statement associated with this particular node is

needed, it may be obtained by using x as a subscript to

20
reference the Assignment Table. It also enables us to

shorten the control and kernel expressions which are con-
structed between branch statements (see below). Finally,
it enables us to condense the amount of workspace needed

for our tree structure.

Creation of the Root of the
Derivation Tree

We now execute an initialization routine. This
routine first sets up the workspace in which the tree is
to be constructed and then creates the first node in the
tree. This node becomes the root of the derivation tree.
It is the only node in the tree which does not correspond
directly to some branch statement in the program. It
corresponds, instead, to the entry point of the program
and it is not used in the derivation we make using the
tree. Its primary use is to set up a point for inserting
input specifications to the program.

The generator is now ready to make a second pass
of the graph. In this pass, the tree from which the case
descriptors are derived begins to be built. If the reader
will recall, the tree structure which has previously been

described consisted of nodes having two direct descendants

21
each. These nodes come directly from the branch nodes
within G., Hence, this second pass is concerned only with
the branch nodes of G, which are now distinguishable by
the type assigned to them in the first pass.

This second pass of the graph, G, determines the
first branch or exit statement, Q, encountered in G after
the entry statement. If the statement represented by Q
is a branch statement, a node is created to represent that
statement and this statement or its negation becomes a
part of all control expressions in this case description.
If, however, Q is an exit point of the program, the graph
represents a special case for the case description genera-
tor. In this case, the program contains no control state-
ments and, hence, no control expression can be constructed.

If we have found some branch statement, we create
a node to represent it in the tree and connect it to the
root node with an arc from the root to this node. This
node, I, is unique and distinguishable from other nodes in
the tree in that it is the only node within the tree that

is connected to the root node.

2z

Determining Direct Descendants

We recall that each node in the definition of
our tree has two outgoing arcs. Recalling also that each
branch statement in the graph has two outgoing arcs, we
are able to equate the nodes of our tree with the branch
statements in G. The construction of our tree then becomes
a simple matter of translating the branch statements in
the graph into the nodes of our tree.

The tree is constructed by levels. ZFach level
is completed before advancement to another level. In this
method, all nodes which are in the state of creation exist
on a level which is at a given distance from the root.

When all nodes have been created at this level, the distance
is incremented and all nodes at this new distance from

the root are created. Using this method, the tree grous
steadily and all paths through the program are represented
in the tree.

Hence, each node is assigned a level number ac-
cording to its distance from the root. This distance 1is
calculated by a count of the number of arcs crossed when
traversing the path from the root node to this node. The

root is on level O since no arc is crossed in the path

23

from the root node. The node representing the initial
branch statement is on level 1. The next nodes encountered
when traversing the path dictated by the true value of the
initial branch statement and when traversing the path dic-
tated by the false value of the same statement are both
assigned to level 2. The direct descendants of these two
nodes are assigned to level 3, etc. This assignment of
levels continues throughout construction. Once a level
number has been assigned to a node, this level remains the
assignment of the node throughout execution. It is easily
seen that some nodes could be encountered more than once,
hence, could receive more than one level assignment. How-
ever, we shall limit the assignment to one level number,
the initial assignment, no matter how many times the node
is encountered in the path through G. The reasons behind
this way of thinking are developed below.

In the use of our method, we must ascertain
whether all nodes belonging to the present level have been
created before advancing to the next level. When creation
of the node representing the initial branch statement is
complete, all nodes in level 1 have been created since
this node is the only node in level 1. For now, this level

is completed and we advance to level 2. To do this, we

24

must determine all direct descendants of all nodes in level
1, hence, the direct descendants of the initial branch

node. This node, or any node, has, at most, two direct
descendants, one corresponding to each of the paths deter-
mined by the true or false value assigned to the branch
statement. Fach direct descendant must be one of two types;
it must be an exit node, in which case the path is complete
upon creation of that node, or it must be another branch
node which continues the tree.

We now determine the direct descendant, Q, of
the initial branch node. If Q 1is an exit point of the
program, a special node is created to represent it. This
node is labelled "EXIT" and shows that the path through
the program has reached a termination point. From this
path, using the tree, we are able to determine a complete
descriptor. How this is done 1is shown later.

If Q@ is another branch statement, the tree con-
tinues to grow. This statement also has two direct de-
gscendants which generate other nodes. We create a node to
represent Q in the tree and label it with the node label

assigned in the first pass.

25

Connection of Direct Descendants

Now we have possibly two more nodes with which
to proceed in the construction of our tree. We create an
arc in the tree as an outgoing arc from the parent node and
as incoming arc to the descendant node. The arc from the
parent to the descendant is the primary connecting arc.
These arcs are of great importance since they are used as
the points of attachment for the tree control and tree
kernel lists which are constructed between each node in
the tree. An explanation of these lists is given later
in the text.

There must be, for the structure to have meaning,
some way to distinguish between the two arcs generated for
each node. TFor this reason, as the arcs are created, they
are given labels appropriate to the branches which they
represent. True branches are labelled as 'T' and false
branches are labelled as 'F'. A sample tree showing the

connecting arcs is shown in Figure 2.2.

Completion of the Tree

With completion of the arcs between level 1 and

level 2 and creation of the nodes of level 2, we have

Primary arc.

FIGURE 2.2

26

27
finished processing for level 1 of our tree structure. We
are ready for completion of level 2. Level 2 is completed
much in the same manner as level 1. There are two nodes
in level 2 which must be processed in order to create level
3. The order in which these two nodes are processed has
no effect upon the final construction of the tree. Hence,
the processing may be as if each were the root of its own
tree, following the procedure as was outlined above.

Processing continues on the tree until no more
direct descendants exist. When this occurs, the basic
tree is complete. However, this situation will never oc-
cur if there are one or more loops in the program, since
the path which continues the loop will never encounter an
exit statement. So, if allowed to do so, the creation of
the tree will continue and the case description generator,
itself, will be in a loop. Therefore, some means must be
found so that programs which contain loops may be repre-
sented by complete trees. In essence, there needs to be a
way to prune trees in order to eliminate unnecessary seg-

ments of the tree.

28

Processing of Loops

So far, in the creation of the tree, we have not
permitted more than one incoming arc to any node. But,
in the definition stated in Chapter I, we allow more than
one incoming arc to a particular node. Because of this

modification, we are able to prune our tree.

Ancestor Lists

In the construction of the tree, the only way to
determine the ancestor nodes of any particular node beyond
its parent would be to follow the path back up through the
tree until the path runs out, i.e., until the root is en-
countered. However, should we need to know the ancestors
of each node which we create, this could prove to be very
time consuming and inefficient. The point to be made is
that we need to know every ancestor of every node in order
to determine when a looping situation occurs. Hence, we
need a method which is both quick and efficient. For this

purpose, we create ancestor lists for each node describing

the path up to that node.
Each ancestor list consists of two lists, the

first containing the branch nodes encountered in the path

29

up to the present node (branch list) and the second con-

taining the arcs traversed in this path (arc list). Each
list is ordered, with each branch node being concatenated
onto the end of the branch list as it is encountered and
with each arc being concatenated onto the arc list as it
is traversed. Hence, the branch list has as its first
member the initial branch node and as its last member the
node being processed with each node representation listed
sequentially between them. Also the arc list has as 1its
first member the representation for the arc connecting the
root to the initial branch node and as its last member the
representation for the arc connecting the present node
with its parent with all arcs between this node and the
root listed sequentially. The method for determining these
lists and how they are attached follows.

The creation of the list begins at the initial
branch node. Looking at the path of the program up to this
node, we find that there are no branch statements preceding
the initial branch statement which this node represents.
Hence, the branch list contains only the label of this node.
Since only one arc has been crossed in the path from the
root, this arc is the only member of the arc list. These
lists become the basis for all such lists produced in the

tree.

30

The finding of a direct descendant determines the
destination of the connecting arc. Depending upon whether
or not a node representing the direct descendant exists
in the tree, creation of a new node may or may not take
place. There is, however, some point to which the path
must advance. These nodes, likewise, must each have an-
cestor lists in the tree.

When we find the direct descendant of a node, we
first create the ancestor list for this direct descendant.

This is done in the following manner:

1. A duplicate of the ancestor list of the parent
node is created.

2. The label of the node being processed is concatenated
onto the end of the new branch 1list. The repre-
sentation of the connecting arc is concatenated
onto the end of the new arc list. These lists
are combined to form a new ancestor list.

3. This list is attached to the node it describes.

This 1list is now the ancestor list for that node.

These lists are used in determining looping situations,

and, more importantly, in the construction of descriptors.

31

Arec Classification

Recall that after creation of the initial branch
node, or all nodes at level 1, we proceed to create its
direct descendants, or all nodes at level 2. Recall also
that the arcs connecting the parent node to its direct
descendant were labelled 'T' representing true and 'F'
representing false. We now classify these arcs into two
categories: 1) those which do not generate loops, or non-

looping arcs, and 2) those which generate loops, or looping

arcs. We also say that the descendant node into which a
looping arc is incoming is said to be a loop base. This
classification system and these terms are used extensively
in the pruning technique.

After an ancestor list has been created and
attached to the node it describes, we need to determine if
a looping situation has occurred. A looping situation
occurs when, in a path through a program, a branch state-
ment is encountered more than once. To determine if a
looping situation has occurred, we perform a sequential
search of the ancestor list using the label of the node
(the last label in its own ancestor list) as the search

argument. If the search is successful, the arc is classified

32

as a nonlooping arc. Also, if the search is successful,
the descendant is added to the Loop Base Table. This table
is a list of all loop bases in the program and is used in
derivation.

The generator now determines whether or not a
node corresponding to the direct descendant has been
created. If the direct descendant is not found among the
nodes which have already been created in the tree, a new
node is created as was explained earlier and the list is at-
tached to this node. If, however, the direct descendant
is found among the nodes of the tree, there is no need to
create a new node. Hence, there is only one node to repre-
sent each branch statement in G no matter how many times
an individual branch statement is encountered in the vari-
ous paths through G. This method eliminates duplicate
nodes in the derivation tree, therefore reducing the size
of the structure.

Whether or not a new node is created in the tree,
an arc is created between the parent node and direct
descendant and classified as was explained above. The
ancestor 1list is attached to the tree node as usual, whether
the looping situation exists or not. Because there 1is

only one node in the tree to represent each branch statement

33
in the flowchart, there may be multiple ancestor lists
attached to a single tree node, each determined by a path
from the root to this node. Each individual ancestor list
is needed on the tree node in order to determine all
possible looping situations which may occur at that node
or any of its descendants. Now, as the generator creates
the arc connecting the descendant with its parent, it per-
forms a sequential search of each of the descendant's
ancestor lists using the descendant as the search argument
in order to determine whether or not the looping situation
occurs and classgsify the connecting arc. When multiple
ancestor lists exist, the generator must perform a search
on each of these lists in order to determine the existing
situgtion.

Now, we have allowed the direct descendant of
a node to be at a lower level in the tree than the node
itself. ©Processing on this direct descendant could possibly
already be completed., Hence, provision must be made to
process this path to completion.

If the generator has found the direct descendant
node at a lower lever in the tree and the arc connecting
the parent node with the direct descendant is a nonlooping

arc, there exists a condition which must be handled in a

34

special way. If the direct descendant has yet to be pro-
cessed, then the ancestor list is attached to the node
along with any other ancestor lists which might be attached
there. If, however, the direct descendant has been pro-
cessed, the generator must propagate this possible path
through all of the descendants of this node. These lists
are passed on exactly as any other ancestor list would be
passed on. This process is continued until the generator
finds no other direct descendants which have not been pro-
cessed or no other nonloop paths exist. During this pro-
cess, the generator continues to check the direct descendant
against the current ancestor list for matches. If one is
found, and the arc to this node from its parent has pre-
viously been classified as a nonlooping arc, the generator
changes the classification of the arc to the looping

variety and adds the node to the Loop Base Table.

Algorithm for Determining
Direct Descendants

In the text up to this point, there has been
mention of determining a direct descendant in specific in-
stances but no general algorithm has been proposed to

achieve this. 1In this section, an algorithm to do this 1s

35

introduced. This algorithm, the Direct Descendant al-
gorithm, is used by the generator to determine direct
descendants. The parameters passed to this algorithm are
the graph, G, the node for which the direct descendant is
sought, J, and the value, V, either true or false, which
is to be assigned to the branch statement represented by
J. It returns the direct descendant, Q, and two lists,
the control list, C, and the kernel list, K. These lists
contain the control statements and kernel statements,
respectively, which are encountered between the parent and
its direct descendant. The Direct Descendant algorithm

is as follows:

1. Initially, set C and K equal to the empty list.
If V is true concatenate the label of the parent
onto C; otherwise, concatenate the negation of
the parent onto C. Use V to determine the next
node in G.

2. Obtain the next node, X, in G. If X is a branch
or exit statement, set Q equal to X and terminate
the algorithm; otherwise, go to 3.

3. Access the Assignment Table using X as the index.

4. If the tag entry in the table is 'C', concatenate

X onto Cj; otherwise,

36
if the tag entry in the table is 'K', concatenate
X onto K; otherwise,
if the tag entry in the table is 'CK', concatenate
X onto both C and K; otherwise,
no action is taken.

5. Go to 2.

Control and Kernel Lists

So far, in the construction of the tree, we have
dealt almost entirely with branch statements. The segment
of the tree which we have constructed and the means by which
we have constructed it is used in the construction of the
control and kernel expressions of each descriptor. This
section describes the segment of the tree which is used for
the derivation of these expressions.

In the previous section, we saw that when the
generator sought the direct descendant of a particular
node in the tree along a given path, it created 2 lists of
statements encountered when traversing the path defined in
the graph representation, a control list and a kernel list.
Fach statement which is encountered along the path through
G causes the generator to concatenate its label representa-
tion onto the appropriate list. These lists are complete

when the next branch or exit statement is encountered.

37

In order to determine the kernel expression
associated with each control expression in a particular
descriptor, we need to know the exact kernel statements in
a given path through the program. The kernel lists which
the generator has created provide these kernel statements
in a segmented fashion, i.e., they describe which operations
have been performed between branch statements in the path
from which the particular descriptor is derived. Hence,
these lists may be utilized in determining the kernel
expression of a descriptor. In a similar manner, the con-
trol lists returned by the Direct Descendant algorithm show
the control statements encountered and may be used to
determine the control expression of the descriptor.

- The most logical and, likewise, the most ef-
ficient location of attachment for these lists is to place
them exactly where they would be in the flow of the pro-
gram, i.e., the arcs which connect nodes in the tree.
Hence, the generator attaches the list of control state-
ments and the list of kernel statements upon the arc making
it truly representative of the path between statements
repregsented by nodes in the tree.

Although this segment of the tree has not been

brought forth until now, its creation takes place at the

38
same time as the branch segment of the tree. As the
generator seeks the direct descendant of a node, the lists
which are built are saved for this segment of the tree.
When, eventually, the generator does find a direct des-
cendant, it creates a node to represent this statement
and an arc to connect this node to its parent. At this
time, these lists are attached to the primary arc connecting
the two nodes. The initial branch node is treated exactly
as other nodes in the tree. Its lists are attached to the
arc connecting it with the root node created at the begin-
ning of construction. These lists may have any number of
elements and may be the null, or empty, list.

Construction is now complete. In this chapter,
we have shown how a graph representation of a program i1s
transformed into the case description derivation tree.
From this tree, we are able to generate individual control
expressions and their accompanying kernel expressions
which are used to construct the case description for the

program it represents.

C'HAPTEHR III

DERIVATION

The case description generator has, so far, pro-
duced the tree with which we derive the individual de-
scriptors. This chapter explains in detail how a descriptor

is generated from the case description derivation tree.

Description of Output

The output for the case description generator
consists of a set of descriptors for possible paths through
a program. Each descriptor consists of two lists, one
corresponding to the control expression of a descriptor
and the other corresponding to the kernel expression of
a descriptor. These lists should not be confused with
the control and kernel lists which are attached to the arcs
connecting two nodes in the tree. The lists attached to the

arcs in the tree shall be known as tree control and tree

kernel lists in this chapter; the lists used to build the
control and kernel expressions shall be known as the con-

trol and kernel lists, respectively.

39

40

Briefly, these control and kernel lists are
constructed in the following manner. Each list starts as
an empty list. In a given path through a program, certain
control and kernel statements are encountered in the pro-
gram and the same statements are encountered in the cor-
responding path through the tree. As these statements are
encountered, their label representations are concatenated
onto the appropriate 1list in the form corresponding to the
path through the program. Kernel statements are concat-
enated onto the kernel list as they are encountered. Like~
wise, control statements are concatenated onto the control
list as they are encountered. When an exit statement is
encountered, the descriptor is complete.

Although it is possible to derive descriptors
from a graph representation of a program, the tree allows
us to find paths in the program which generate meaningful
descriptors more easily.

Within a given program, there are usually an in-
finite number of paths from the entry point to some exit
point in that program. If the program contains no loops,
the number of paths is finite. If, however, the progran
contains one or more loops, the number of possible paths

becomes infinite. ©Since each descriptor is derived from

41

an individual path through the program, the case descrip-
tion for a program with loops also becomes infinite. To
try to derive a case descriptor for such a program would
be impossible without some limitations on the size of the

case description.

Loops as Interruptions in Program Flow

No matter what type of program we are processing,
it contains only a finite number of paths which contain
no loops at all. A path which includes a loop also in-
cludes a path which contains no loops at all in some form
which does reach an exit point in the program. This path
may be interrupted at some point by a loop, but when the
interruption due to the loop is complete, the path resumed
conforms to a nonloop path. Hence, any path through a
program which has had all loops removed from it conforms
to some nonloop path. Therefore, we think of loops as
being interruptions which may be inserted into any nonloop

path in order to obtain some path through the program.

42

Loop Degcriptors

We recall that a node which has an incoming arc
from a node below it in the tree is known as a loop base.
These loop baseg are used as points at which to insert
the interruptions determined by a loop. We use these loop
bases as both the start and end points of any loop inser-
tion into a path through the program. The insertions

are, in essence, small loop descripiors which may be in-

serted into another descriptor at the point at which the
loop base is encountered in a nonloop path. These loop
degscriptors are descriptors for one cycle of the loop but
may be repeated any number of times in order to produce
the desired descriptor. Hence, in our derivation, we pro-
cess all loop paths first. Later, when we are processing
the set of nonloop paths, we provide points of insertion
in each descriptor for these loop descriptors.

During construction of the tree, a Loop Base
Table was built containing all loop base nodes in the tree.
This table is made use of at this time. On the nodes
represented in this table, we find one or more ancestor
list, each containing lists of labels for branch nodes
and for arcs. We may determine from these lists the total

number of loops within the program.

43

Loop Processing

Processing begins with the first loop base in
the Loop Base Table and continues until all loops have
been processed. FEach loop within a program has a defined
path for one cycle of the loop. This path is determined
by some ancestor list for that loop base which is associated
with the loop being processed. From these lists, we are
able to determine the arcs which are traversed in one
cycle of the loop.

We begin processing of the ancestor lists by
searching the arc list of each ancestor list. If the loop
base is a node from which one of the arcs is outgoing, we
know that this particular ancestor list determines a loop-
ing path whiech originates at the loop base. If the loop
base is not a node from which an arc in the arc list is
outgoing, this ancestor list does not determine a looping
path and we continue processing with other ancestor lists
for this loop base. When all ancestor lists for a given
loop base have been processed, the generator has completed
processing for that loop base.

When an ancestor list is found which determines
a looping situation, the generator makes use of the arc

list within the ancestor list to determine the descriptor

44

for the loop. A search is performed upon the arc list
until a representation of an arc which is outgoing from
the loop base is found. This arc is used to determine
the control and kernel 1lists for the loop. Originally
empty, the control and kernel lists have concatenated onto
them the tree control and tree kernel lists, respectively,
which are attached to the connecting arc. Each arc¢ repre-
sented in the arc list is processed sequentially in the
same manner until the arc list is exhausted. When this
occurs, the descriptor corresponding to the particular
ancestor list is complete and the generator processes other
ancestor lists for the loop base.

The generator processes all ancestor lists for
a given loop base in the same way. Processing continues
in the same manner for all loop bases in the tree. When
all loop bases have been processed, the generator has
completed processing for loops and is ready to process
direct, or nonlooping, paths through the program. How-
ever, an explanation of how loops are to be inserted is

given first.

45

Method of Insertion of Loops

It is possible that the direct descendant de-
termined by an arc may also be a loop base. If this is
the case, we must somehow show that another loop may be
inserted at this point. The means by which this is done
is outlined in the following paragraph. This method is
used throughout derivation to designate insertion points
for a loop or loops into a path through the program.

As we are now processing, we generate a single
descriptor for each loop path. This loop descriptor des-
cribes the path of one cycle through the loop. As was
explained above, these descriptors may be inserted into
any path containing the loop base and may be inserted any
number of times. To signify the point at which a loop
may be inserted into a descriptor, we concatensate a label
of the form LOOP x onto the control 1list and kernel list
after concatenation of the tree control and tree kernel
lists from the incoming arc onto the control and kernel
lists. The letter x signifies the subscript with which
the loop base is accessed in the Assignment Table. This
expression denotes that the loop originating at the par-
ticular loop base may be inserted into this descriptor any

number of times to determine a new path.

46

Any node may be the loop base for more than one
loop. Hence, any one of these loops may be inserted into

a path at the point where a loop insertion is signified.

Nonlooping Paths

Processing of nonloop paths is done as the final
step. Whereas, in loop processing, we sequentially fol-
lowed the path dictated by the ancestor lists, in the
method which has been chosen for use for nonloop paths,
we first find the goal which we seek and then determine
the means by which this goal was achieved. In our situa-
tion, we determine the exit points of the program and then
find the shortest paths through the program which may be
traversed in order to reach these exit points.

Seeking exit nodes in the tree, we begin a search
of the Assignment Table looking for exit nodes (type = Z).
Our search continues until at least one exit node is found.
The first level which contains such nodes produces the
shortest paths through the program. (Recall that length
of path was defined by the number of branch statements
which were encountered in the path. A path which en-

counters an exit node at a lower level than other paths

47

encounters fewer branch statements and, therefore, is of
shorter length.) Each exit node is processed to obtain
gll possible paths not containing loops which terminate
at the particular level which is being processed. When
all exit nodes have been processed in such a manner, the
case description generator has found all possible nonloop
paths through the program. An example of the order of

processing is shown by using Figure 3.2 and Table 3.1.

TABLE 3.1

Label Type

1 A
2 I
3 B
4 B
5 B
6 Z
7 B
8 Z
9 B
10 Z
11 Z
12 Z

Figure 3.2 is the case description derivation tree con-
structed for some program and Table 3.1 is the Assignment
Table for that program. Searching the table, the generator

first finds the node represented by the label 6 to be an

FIGURE 3.2

48

49

exit node. The generator processes the ancestor list of
node 6 to find all paths from the root to this node. When
all such paths have been processed, the generator returns
to the table to find another exit node to be processed,
this time returning with node 8. This node is processed
in a similar manner as are nodes 10, 11, and 12. When the
last descriptor has been built for node 12, the case des-

cription for that program is complete.

Processing of an Exit Node

For each possible path which ends at the exit
node being processed, we create two lists. The first is
a list of control statements and the second is a list of
kernel statements. At creation for each path, these lists
are empty.

Attached to each of the exit nodes in the tree
are one or more ancestor lists which have been generated
by particular paths through the program. Each of the lists
describe a unique path through the tree from the root to
this exit node, and also describe a unique path through
the program for which the description is beirng built from

the entry point to an exit point. Hence, these ancestor

50
lists are utilized to create the descriptors for the path
from which they are generated.

The generator finds an ancestor list attached
to the exit node which has not been processed. From this
ancestor list, the generator extracts the arc list which
is a list of all arcs which have been traversed in the path
from the root to the exit node. The task for the generator
now is to use this list to build the control and kernel
expressions for the descriptor.

To accomplish this, the generator processes
sequentially each member of the arc list. The generator
accesses each arc in the list and uses the lists attached
to these arcs to build the control and kernel expressions
for the descriptor. The tree control list from the arc
is concatenated onto the control expression and the tree
kernel list from the arc is concatenated onto the kernel
expression. Each arc in the arc list is processed in a
similar manner. When all elements of the list have been
processed, the descriptor is complete.

As was explained previously, loops may be con-
sidered as interruptions in the normal flow through the
program. The loop descriptor for a loop may be inserted

into a path when its loop base is encountered in the path.

