51

The method of insertion has been explained previously and
ig used in the construction of nonloop descriptors to
show the point at which the descriptor for a loop may be
inserted. Hence, as each arc is processed, the node to
which the arc is incoming is checked against the Loop Base
Table to determine if that node is a loop base. If it is,
the proper designator (LOOP x) is concatenated onto both
the control expression and the kernel expression to signify
a point of insertion.

The generator processes all ancestor lists for
a given exit node in a similar manner. When all ancestor
l1ists for an exit node have been processed, the generator
searches the Assignment Table for other exit nodes to
process. When all exit nodes in the table have been pro-

cessed, the case description is complete.

Output of the Case Description

So far in this chapter, we have seen how we are
able to derive output. What is explained here 1s the exact
content of the output.

Output is in the form of basic descriptors.

These descriptors are in an abbreviated form, with each

52
expression consisting of a list of labels representing
the statements which would be included in the expression.
Hence, the first thing to output for any case description
is the table of statements and associated labels which
was built in the first pass. This table is used to ex-
pand the control and kernel expressions of each descriptor.

A sample table is shown in Table 3.Z.

TABLE 3.2

Subscript Expression Tag Type

ENTRY

I« 1

SUM « O

SUM <« SUM + A(I)
N = I?

I« I +1

output <« SUM
EXIT

O~ U RN
OMNUWEHENND WO
(SRR N NN o

The descriptors themselves come in two forms,
one for nonlooping paths and one for looping paths. Both
forms consist of the control statement list and the kernel
statement list. Both are ready for output when they have

been created. The descriptors for the looping paths are

53

output first as they are created first in order to enable
easier referencing. Each set of descriptors are labelled

to show which loop base they describe. The descriptors

for the nonlooping paths are also output as they are created,
completing the case description. Examples of these output
descriptors may be found in the next chapter.

When this has been completed, the case des-
cription is complete. The last set of descriptors, by
referencing the loop descriptors, are able to determine
any path through the program, and, hence, become the case

description for the progranm.

CHAPTEHR I v

EXAMPLES

This chapter takes a sample program and derives
its case description using the case description generator.
The program is input to the generator in flowchart form
and the resulting output is the case description for that

program.

Input

The program to be processed is the Wensley Divi-
sion Algorithm. The flowchart for this program 1is shown
in Figure 4.1. The code representing this flowchart is
shown in Figure 4.1la,

The generator accepts this flowchart as input.
The generator makes a preliminary pass of this graph and
produces the Assignment Table shown in Table 4.1. This
table.contains the expression for each node in G, the type
of expression for each, and its respective tag. The label
which is associated with each expression is the subscript

corresponding to its entry in the table. Using these

54

55

A<O C

v

B-Q/2 |C

Dl CK

el

&

P<a+B>E plyey+n/2 | X

output«y{ XK

\V/

FIGURE 4.1

56

TABLE 4.1

Subscript Expression Tag Type
1 ENTRY A
2 A<O F C
3 B«Q/2 F c
4 De1 F CK
5 Y0 F K
6 P<A + B B c
7 Y<Y + D/2 F K
8 A«A + B F C
9 B<B/2 F C
10 D«D/2 F ’ CK

11 D<E B C
12 outpute¥ F X

13 EXIT Z

57

FUNCTION SUB(P, Q, E)

A =0
B= Q/2
D =1
Y =0
10 IF(P.LT.A+B) 30,20
20 Y =Y + D/2
A=A + B
30 B = B/2
D = D/2

IF(D.LT.E) 40,10
40 SUB = Y
RETURN

END

Figure 4.la

labels, G has been changed from its original representation

to the one depicted in Figure 4.2,

Initialization

When the Assignment Table and transformation of
the input graph is complete, the generator begins the ini-

tialization routine. In this routine, the generator sets

FIGURE 4.2

58

59
up the workspace in which the tree is to be built and be-
gins construction of the tree. It creates a node corre- -
sponding to the ENTRY node of G and then seeks the next
statement for which a node is to be created, 1.e., the ini-
tial branch statement in the program. To do this, the
initialization routine calls a second routine, known as the
Direct Descendant algorithm, which finds the direct descen-
dant for the ENTRY node. This routine returns the direct
descendant, Q, of the ENTRY node and two lists, the control
list, C, containing all control statements between the
ENTRY node and Q, and the kernel list, K, containing all
kernel statements between the ENTRY node and Q. For the
ENTRY node, Q@ = 6, ¢ = (2, 3, 4), and K = (4,5). Since
statement 6 is the first branch statement encountered in
any path through the program, the node which is created to
represent it becomes the first node representing &a branch
statement. Its type in the Assignment Table is changed
from 'B!' to tI' to denote the initial branch statement of
the program. A node in the tree is created corresponding
to this statement and an arc is created to attach this node
to the original, or ENTRY, node. The two lists, C and X,
are attached to the connecting arc as the control and ker-

nel lists for this path. An ancestor 1ist is created for

60

the initial branch statement and attached to the node in
the tree which represents it. The ancestor list, X, con-
sists of the branch list, B, and arch list, A. The branch
1ist contains the label corresponding to the initial branch
statement (B = (6)), and the arch list contains the label
for the arc connecting the root to this node (A = (201)).
Hence, X = ((6)(201)). (The labels for the arcs in this
example are completely arbitrary.)

When these actions are complete, the initializa-
tion routine is finished. The Assignment Table is complete
and is ready to be output for the final case description.
The final table is shown in Table 4.2. The tree as it ap-
pears after the initialization routine is shown in Figure

4.3.

(&)

((6)(201))

Figure 4.3

TABLE 4.2

e e s i e e
e e e T e S

Subscript Expression Type Tag
1 ENTRY A
2 A<O F C
3 B«Q/2 F C
4 D«1 F CK
5 YO0 F K
6 P<A + B I C
7 Y<Y + D/2 F K
8 A<A + B F C
9 B«B/2 F C
10 D«D/2 F CK
11 D<E B C
12z output<Y F X

13 EXIT Z

62

Level 1 Processing

The generator 1s now ready to find direct descen-
dants of the initial branch statement. The generator calls
the Direct Descendant routine, passing to it as parameters
the initial branch statement, and the true value for that
statement. This routine returns the values Q = 11, C =
(6, 9, 10), and K = (10). The node corresponding to the
label 11 becomes the direct descendant of node 6. A search
of the tree shows that there is no node 11 so & new node
must be created. An arc is created between these two nodes
and labelled as a true, nonlooping arc. The control list,
¢ = (6, 9, 10), and the kernel list, K = (10), are attached
to this arc. The label, 11, is concaéatenated to a duplicate
of the parent nodest's branch list and the arc label, 202,
is concatenated to a duplicate of the parent node's arc
list. These two lists become the ancestor list, ((6,11)
(201, 202)), for the new node. This completes processing
for the true branch of the parent node.

The generator calls the Direct Descendant routine,
this time passing the false value rather than the true
value for the initial branch statement. The values re-
turned by the routine for these parameters are Q = 11,

¢ = (~68, 9, 10), and K = (7, 10). Since node 11 already

83
exists in the tree, there is no need to create a new node.
An arc is created between the parent and 1ts descendant.

A search is performed on the ancestor list of the parent
using the direct descendant as the search argument. Since
no match is found, this arc is classified as a nonlooping
arc and is labelled as false, nonlooping. The control 1list,
C = (~6, 8, 9, 10), and the kernel list, K = (7, 10), are
attached to this arc. The ancestor list, ((6,11)(201,203)),
for the node is determined in the same manner as it was
determined for the true branch and attached to the node.
Processing for the false branch of the branch statement is
complete. Likewise, processing for level 1 is complete.

The tree, as it now exists, is shown in Figure 4.4.

Level 2 Processing

The generator now moves to level 2 in the tree.
There is only one node, node 11, on level 2 of the tree.
The generator begins processing on this node by calling
the Direct Descendant routine. The parameters passed are
node 11 and the true value., The values returned by the
routine for these parameters are Q = 13, C = (11), and K =
(12). Since there is no node correspondent to statement

13, a new node is created to represent this statement. A

c=(2,3,4) €--+--» K=(4,5)

-> ((6)(201))

> ¢=(~6,8,9,10)

c=(6,9,10) <

K=(10) <- - k=(7,10)

4 ~

((6,11)(201,202)) ((6,11)(201,205))

FIGURE 4.4

64

865

true, nonlooping arc is created to connect this descendant
to its parent and the control 1list, C = (11), and the ker-
nel list, K = (12), are attached to it. Ancestor lists,
X and Y, for the new node are created from the ancestor
lists of its parents. 1In this case X = ((8, 11, 13)(201,
202,204)) and ¥ = ((s6, 11, 13)(201,203,204)). Both are
attached to node 13 in the tree. Thus, the true branch is
complete for node 11.

Now the generator calls the Direct Descendant
routine using the false parameter. The values returned
are Q = 6, C = (v1l1), and K = (). There is a node 6 in
the tree so no new node is created. A search 1s performed
upon the ancestor list of the parent node using the descen-
dant as the argument. This time a match is found so that
the arc connecting the two nodes is classified as a looping
arc. At the same time, the label 6 is added to the Loop
Base Table. An arc connecting the two nodes is created and
the appropriate control and kernel lists are attached to
it. 1In this case, the kernel list is empty. The appro-
priate branch and arc labels are concatenated to duplicates
of the parent nodet's ancestor lists and these new lists
are attached to node 6 as ancestor lists. Processing is

complete for node 11, and, hence, for level 2 of the tree.

66

The tree after this step of the processing 1is shown in

Figure 4.5 and the Loop Base Table is shown in Table 4.3.

LOOP BASE TABLE

Table 4.3

Completion of the Tree

The generator proceeds to level 3 in the tree.
There it finds only one node, and this node is of type Z.
No other nodes in the tree need to be processed. Hence,
the tree is complete and ready for the derivation of the

case description.

Derivation of the Case Description

Upon completion of the creation of the tree, the
generator begins derivation of the case description. The

Assignment Table is used for reference purposes in the

c=(2,3, 4) €--+->K=(4,5)

_»((s,11,86)(201,202,205))
> ((6,11,6)(201,203,205))
{§>C=(~6,8,9,lo)
-»X=(7,10)

((6,11) ((8,11)
(201,202)) (201,203))

<> ((6,11,13)(201,202,204))

™ ((6,11,13)(201,203,204))

FIGURE 4.5

67

68
case description. As soon as it is complete, it is output
as the beginning of the case description. TIts format 1is

shown in Table 4.2

Looping Paths

The generator begins derivation with the looping
paths in the program. Searching the Loop Base Table, the
generator finds the first loop base to be processed, node
6. The generator finds that this loop base has three an-
cestor lists to be processed. These ancestor lists are
((s8)(201)), ((&, 11, 6)(201,.202,205)), and ((6, 11,6)(201,
203, 205)), which shall be referred to as A, B, and C, re-
spectively.

In processing for loop descriptors, the generator
must find ancestor lists which are determined by the paths
through the loop. Hence, the generator must search the
arc list of each ancestor list for an arc whose from node
(i.e., the node from which the arc is outgoing) is equal
to the loop base. Since the to node (i.e., the node to
which the arc is incoming) of the final arc in the arc list
is the loop base, finding an arc whose from node is the
loop base shows that the ancester list describes a loop

path.

89
The arc list of list A is searched first. The
from node of arc 201 is node 1. Since no other arcs exist
in the 1list, list A does not describe a loop path.

Next the arc list of list B is searched. The

from node of arc 201 is 1. Since the test fails, the gen-
erator moves to the next arc in the arc list. The from
node of arc 202 is node 6. Since node 6 is a member of

the Loop Base Table, this means that this list is descrip-
tive of a loop path and the generator sets up the empty
control list, C, and the empty kernel list, K, with which
it builds the descriptor for the path. To the respective
lists, the generator concatenates the tree control and tree
kernel lists which are attached to the arc. The generator
now moves to the next arc in the arc list, arc 205. From
it, the generator retrieves the tree control and three ker-
nel lists, concatenating them to the appropriate lists.
The generator now seeks another arc in this path through
the loop but finds none. Hence, the descriptor 1s complete
for this path and is ready to be output.

The generator now moves to ancestor list C to
process, This ancestor list is found to be descriptive of
a path through the loop, and, in a similar manner, the

descriptor for this path is constructed and output.

70

The generator seeks other ancestor lists for node
6 but finds none. The generator seeks other loop bases in
the Loop Base Table, but, since node 6 1is the only loop
base in the program, it finds none. Hence, the descriptors
for looping paths are complete. The output for loop de-

scriptors is shown in Figure 4.6,

LOOP 6
CONTROL: ((6, 9, 10) (~11))

KERNEL: ((10) ())

coNTROL: (((~8), 8, 9, 10) (~11))

KERNEL: ((7, 20) (.))

Figure 4.6

Nonlooping Paths

The generator now begins processing on nonlooping
paths. To do this, the generator must find the exit nodes
in the tree. To find them, it accesses the Assignment
Table, searching for a type Z node.

The first node found which is type Z is node 13.
Node 13 has two ancestor lists, ((6, 11, 13)(201, 202,204))
and ((8, 11, 13)(201, 203, 204)), to be processed. These

shall be referred to as list A and list B, respectively.

71

Processing begins with the arc list of list A,
The generator sets up empty control and kernel lists for
the processing of this ancestor list. Onto these lists,
the generator concatenates the tree control 1list and the
tree kernel list obtained from arc 201. Before moving to
the next arc in the arc list, the generator checks the to
node of arc 201 against the Loop Base Table to determine
if this is a point of insertion for a loop in the program.
The to node of arc 201, node 6, is a member of the Loop
Base Table so an identifier for an insertion point of a
Loop in the path (i.e., LOOP 6) is concatenated onto both
the control list and the kernel 1list. The generator now
moves to the next arc (202) in the arc list. The tree con-
trol and tree kernel lists obtained from this arc are con-
catenated onto the respective list. Since the to node of
arc 202, node 11, is not a member of the Loop Base Table,
the generator moves to the next arc in the list, arc 204.
The tree control and kernel lists are concatenated to the
respective lists. The to node, node 13, for this arc 1is
checked against the Loop Base Table. Since it is not a
member, the generator moves on to the next arc in the arc
list. However, since there are no more arcs in the list,
the descriptor for this path is complete and is ready to be

output.

72

The generator now processes the second ancestor
list, 1ist B. The processing for this 1list is similar to
that of 1list A and will not be described in detail. Upon
its completion, all ancestor lists for node 13 have been
processed.

The generator returns to the Assignment Table to
find other type Z nodes. Since there are no other type Z
nodes in this program, the set of nonlooping descriptors

is complete. These descriptors are shown in Figure 4.7.

CONTROL: ((2, 3, 4) LoOP 6 (6,.9, 10) (11))

KERNEL: ((4, 5) LooP 6 (10) (12))

CONTROL: ((2, 3, 4) LooP 6 ((~8), 8, 9, 10) (11))

KERNEL: ((4, 5) LooP & (7, 10) (12))

Figure 4.7

The complete case description for the Wensley
Division Algorithm is shown in Figure 4.8. This example
is brief but includes the important aspects of the deriva-

tion of a case description.

FIGURE 4.8

CASE DESCRIPTION FOR WENSLEY DIVISION ALGORITHM

73

Assignment Table

Label Expression Tag Type
1 ENTRY A
2 A<0 c F
3 Beq/2 c F
4 Del CK F
5 Y0 K F
6 P<A + B? c I
7 Y<Y + D/2 K F
8 A<A + B c F
9 B«B/2 c F

10 D<D/2 CK F

11 D<E? C B

12 outputey K F

13 EXIT z

LOOP BASE TABLE

*¥¥¥ 00P DESCRIPTORS¥**

**LOOP o%*

CONTROL:
KERNEL:

CONTROL:
KERNEL:

((6,9,10) ((~11)))
((x0) ()

(((~8),8,9,10) ((~11)))
((7,10) ()

¥%¥%¥NONLOOP DESCRIPTORS**¥*

CONTROL:
KERNEL:

CONTROL:
KERNEL:

((2,3,4) LOOP 6 (6,9,10) (11))
((4,5) ooP 6 (10) (12))

((2,3,4) 100P 6 ((~6),8,9,10) (11))
((4,5) LooP 6 (7,10) (12))

CHAPTER v

IMPLEMENTATION

This chapter describes the implementation of the
case description generator. It describes briefly the lan-

guage used and the routines needed for implementation.

Language and Machine

The generator was implemented at The University
of Texas at Austin on the CDC 6600/6400 in use at the Uni-
versity. The language in which 1t was written 1s the
FORTRAN-based graph processing language GROPE (1), a GRaph
OPerations Extension to FORTRAN IV. The language GROPE is
designed to perform operations on atoms, nodes, directed

arcs, graphs, graph structures, and lists.

The Program

The following paragraphs describe the implemen-
tation of the case description generator. They describe
the different routines and how they operate together in
order to achieve the goal of producling & case description
for a program.

74

75

MAIN

This is the main program of the generator which
calls the other routines to produce the case description.
Tts main functions are to call the routines to obtain the
flowchart, initialize all counters used in the program,
build the tree from the initial branch node to completion,
and call the routines which determine and print the de-
scriptors. A more detailed description of MAIN follows.

MAIN first sets up the area to be used by the
GROPE system to build the derivation tree. It then sets
up all the counters and lists which are used by the gener-
ator. MATIN then calls GETGR in order to obtain the flow-
chart for which the case description is to be built. A
call to INIT sets up the Assignment Table and starts con-
struction on the derivation tree, A check is also made
to determine whether or not a case description would be
meaningless, i.e., whether or not the program in dquestion
contains a branch statement. If the case description 1is
meaningless, the generator terminates operation with an
appropriate message.

The generator begins construction of the remain-
der of the derivation tree. It builds a list (NMG) which

contains the nodes whose direct descendants have not been

76

found. Upon return from INIT, this list contains the ini-
tial branch node. As the direct descendants for a tree
node in this 1list are found, the node is deleted from the
list. As direct descendants are found, they are added to
the list if they are not already a member of the l1list.
When no other members of this list exist, the tree 1s
complete.

The direct descendant for a node is determined
by a call to DDA. An arc is created to the direct descen-
dant. When this has been done for both the true and the
false direct descendant for the node, MAIN processes the
next member of NMG.

When the tree is complete, MAIN calls the routines
to process looping paths and then the routine to process
nonlooping paths. When the latter is finished, the case

description for the program is complete.

GETGR

This routine reads in the flowchart for which a
case description is to be produced. In this implementation,
all data is read from cards. The routine first reads in
the number of nodes to be created. The expressions from

the flowchart and their tags are each read in and a node

77
is created in memory to represent them. Each card for a
node consists of a ten character field for the expression
followed by a one character field for the tag. After all
the nodes are read in, the number of arcs to be created is
read in and then the arcs to connect the nodes are read in.
Each card for an arc consists of a two digit from node
field (the node from which the arc is outgoing), a two
digit to node field (the node to which the are in incoming),
and a one digit value for the arc (0, 1, or 2 representing
none, true, and false). The two digit node labels are
determined by the user. TFor each arc read in, an arc is
created in memory connecting the nodes already in memory.
When this routine is complete, it has created, in effect,

a flowchart in memory.

This routine performs the initialization proce-
dures for the generator. It classifies each node in the
flowchart according to the number of outgoing arcs. It
creates the root of the derivation tree and determines its
direct descendant. If the direct descendant is an exit
node, this routine prints a message stating that the case

description is trivial and returns to the main program., If

78
a meaningful case description can be found, this routine
creates a node for the initial branch and creates an arc
connecting it to the root. It also adds the initial branch
node to the list of tree nodes to be processed by the MAIN

progranm,

DDA

This routine determines the direct descendant
for a tree node dependent upon the branch taken from that
node. This routine is an implementation of the Direct
Descendant algorithm described eariier, The input param-
eters to this routine are the node for which a direct
descendant is to be found and the value assigned to it.
The output parameters are the direct descendant, the tree
control list and the tree kernel list for the arc con-

necting these two nodes,

DIRADD

This routine creates the ancestor lists for di-
rect descendants from the ancestor lists of its parent.
The routine adds the representation of the direct descen-

dant and the representation of the connecting arc to the

79
branch list and the arc list of each ancestor 1list. This
new ancestor list is then used as an argument to search the
descendant nodets ancestor lists in order to prevent dupli-
cate ancestor lists. If it is not a duplicate, it is hung
from the node as another ancestor list. This routine also
checks the branch list to determine if the node is a loop
base and adds the node to the Loop Base Table if this sit-

uvation occurs.

PROPA

This routine propagates ancestor lists when the
direct descendant of a node has already been created in
the tree, After the ancestor list for the direct descen-
dant has been hung from that node, this routine adds an
appropriate ancestor list to 1ts descendants determined by
the path now being processed. When no other descendants
exist, the routine is complete. Processing is done much
as in MAIN, with a list which is added to and deleted from

as new descendants are found and old ones are processed.

NUMQOCC

This routine determines the number of occurrences

of an element in a list. It is called by PROPA in order to

80
determine which ancestor lists are not to be propagated
from the parent to its direct descendant, i.e., which an-

cestor lists determine the looping situation in the parent.

This routine finds the descriptors for all looping
paths in the program being processed. It uses the Loop
Base Table to determine the loop bases in the program,
When one is found, the routine searches the ancestor lists
of the loop base to determine which ancestor lists are the
results of looping paths. When one of these lists is found,
a descriptor is built for this path and printed in the form
of two lists, representing the control expression and the
kernel expression for that path. Processing continues for
this loop base in the same manner until all ancestor lists
for the loop base have been processed. When this occurs,
a new loop base is sought in the table. When mno other loop

bases are left to be processed, the routine is finished.

NONLOP

This routine determines all direct paths through

the program. Tt uses the Assignment Table to find the exit

81
nodes in the tree. When an exit node is found, its ances-
tor lists are used to bulld descriptors. Starting with
empty control and kernel expressions, the routine conca-
tenates the tree control and tree kernel lists to form the
final descriptor. The tree control and tree kernel lists
are obtained from the arcs traversed in a path from the
root to this exit node. These arcs are found by prdcessing
the arc list from beginning teo end. When the end of an arc
list is reached, the descriptor is complete and the routine
prints it in the form of two lists, representing the con-
trol expression and the kernel expression. When all exit
nodes have been processed in such a manner, the routine

and the case description are complete,

oUT 1

This routine produces all output from the case
description generator. It is called by LOP1 and NONLOP to
output the control and kernel expressions of the descrip-
tion produced by these two routines. During the initial
call of this routine, 1t prints the Assignment Table and
Loop Base Table which have been constructed by the genera-

tor.

CHAPTEHR vV I

CONCLUSION

Future of the Generator

The case description generator described in this
paper can become & useful tool for the users of computing
machinery. The generator accepts input in flowchart form.
To make use of the generator, the user must translate the
program he wishes to analyze into a form which is accept-
able to the generator. The routine now used reads in in-
dividual nodes of the flowchart creating nodes in memory
to represent them. It also reads in the arcs connecting
these nodes and creates corresponding arcs in memory. The
conversion by hand from a flowchart to acceptable input
for the generator becomes quite a burdensome task for
larger programs. In the future, a routine to create the
flowchart in memory 1s to be integrated into the system in
order to ease the task of the user.

The output of the generator, as it now exists,
also proves difficult to interpret for larger programs.
Each numerical representation of an expression must be
looked up.in the Assignment Table to determine the correct

82z

83
control or kernel expression., With smaller programs, i.e.,
those with short descriptors, the translation is easily
done, but as the length of the descriptor grows, the diffi-
culty of the translation increases proportionately. An
output routine which performs this translation is also to
be integrated into the system in the future, also easing

the usert's task.

Uses of the Generator

These two routines make the generator an extremely
useful tool. Of special interest is i1ts use as an aid in
proving the correctness of programs. With extensions, it
is able to analyze programs in a more primitive state, i.e.,
that of a flowchart, and show that the result of that pro-
gram is with a given set of input and a given control ex-
pression. The user is then able to determine from the dif-
ferent descriptors for his program whether or not it meets
the specifications desired for that program. In other
words, he is able to determine how correct his program 1is.

Also of interest is the use of the generator in
the area of analysis and debugging of programs. Generally,
when & program is first written, the author of that pro-

gram has some idea of what the output for that program is

84

to be under a given set of conditions. Using the case de-
scription generator, he may submit the flowchart (or, if a
module is available which is able to translate code into

a flowchart, he may submit the coded program) and determine
how close the program comes to the desired result. Likewise,
at any point in debugging of a partially tested program,

he may submit the flowchart (or code) of all or parts of
the program to the generator and find out whether or not he
is achieving his goals. It is in this area in which the
author believes the case description generator will prove
"to be of the most use.

The generator is not limited to the above, Other
uses for the case description, and, hence, for the genera-
tor which produces it, have been proposed. The generator
may be used in equivalence proofs by showing that two pro-
grams which result in the same case description are, in
fact, equivalent. Also, 1t is conceivable that, since a
flowchart may be manipulated to form a case description,
in the same manner, &a case description might be manipulated
to form a flowchart from which a program might be derived.
A user could formulate the case description for the desired
program and submit it to this system to obtain the flow-
chart (or code). Hence, case descriptions may prove use-

ful in program synthesis,

APPEDNDTIX

PROGRAM LISTING

85

86

anN3
INNTLINOD

d0INON TYPD

1407 1V)

ANNTINGD

001 0L 09

(PP sgrue) 00vEIC TVD

CLOTM) AVHHUSXTO (TTMH) AVHHY) SHYNIZ (P11 L VY
(IHOTA6 (TI3L0NB4(0)3LLnUs (PAMI3LOND) LST =X
tefrrrsere

(19 %NS La0= (0T \vHuy

(0% (10} 31000) L811=)T

(L08 (TD)3LO0M0) LS T unN) LYINODI=ONN

E0E 0L 09

«2f) ydOud V)

(PrreoTns T XY QavEIa VD

(LOTH) Avity e Xl (TTH) AVHNY) Jdvaaa (PTF) Ayudly
(THeT6 (1131000 (0 ILUN0SLPAPr 30070 LST TaXT
Lerprsree

(o (10131070 L&Y =2

00ECLVZ ((T1H)210nD*03%EN) I

(9nN® (18) 3L0N0) HIGWINSEYN

0O le2¥al N

00letnally

(LOsIe Ty 0e2%Ivgn vy

(LU T OVEIA VD

CCOTHIAVEMU SN (TIN) AVONY) JHVHIB LTI) AVHYY
CIMO T8 (1) 3LONOC(0)3L0UN0S (PAF)3LOND) LST =X
[*rreseee

(194X TINSL8I= (01%) AvHEY

(0e (10231000} 181 =xT
((Os(TD)3L0N0) LS T wWN) LYINOIZONN

EUZ o1 09

(20 vdOdd 1IV3

(PEPeQINe 11X GOval0 V)

CCOTH) AVHHU YT (TN AVENY) SHvad= (NT1) s vuby
CIMS 1A (1) IL0NTE (0 ILUnUe (ArP T 3L0ND)LST 1IN

6666

000%
€08

{11

L0E

g0e

00e

Lerrperrr
106 (TDILON0) LS =2

002820l ({TH allND*03 e¥) 4]
(9N (18)320N0) #38WInzEN
00Te2usTIv

00 LeTO®OIN

(Lo*gxeta*leguivaa 1D
001 0L 09 'S°03*{2»°1)1378YI% 3T
(A) 3DwWI=2%

(10My0L=A

10160005 (10¥°03*)41
(10 ONLwSIsly

(unN) ¥333¥Im 10N

6666 YL 09 (L*D3*MSH3N) 4T
(mod3N) LINI 19D

=M SHIAN

49139 Tles

DW=OWN

LEEDM

YnzOn

2llaXwW

(2 1*T1) AVINOI=ET

(04 (2)3L000) 151 1=2

0+ (1) 31006) 151=1(]
({*=HT) A0y = 4
(G00G4GT*0400002% Aydav) di3SzNID3n
GamSyaEN

=11

O=IMSN

Lol

10t

oot

.U'".‘“‘“‘.‘"‘0"‘*“#*‘#““0##“4##‘081‘*#3#‘0‘0“*'8““‘.‘*#‘*“0.@

o]
3
o)
2
o]
o]

*SH01dTadB30 ML INTHd ONY

INTw3L30 01 SANLLAOY 3HL STIWD 41 #3A4L 3WL 40 ~NOIL3TIdWoD

NOdN

Imy SOTINE 41 3
‘04 S3INILNOM 3HL 5773 LI
‘."‘*Q“‘.‘.“"."’.‘..#""'t"‘ﬂ.##“‘#@tt“‘t‘t“ﬁ"03““““#33*‘8

*NOIL3TdWO] FILNN HONVNE TviLINT 3HL wo¥d 33nl
*33y1 3HL ILVILINT 05V HVME 3L df 135
*WyNd0Hd Baplng sHL ST STui

403306108 ¥IOILNT

1210 83931N]

310N0 ¥393ILNT

L¥ONOGD *LS81d ¥IOIINT

TWAdd H3IDILINT
wMIN/9REN/NONWOY
CMDN/EMSN/NOAROD
2MaN/2MENINOARDD

TMSN/ IREN/NORWOS

L0V T) 40U 178V LI/NOWRHOD

TV OC/NOHWOD

L9/ FAUL/NOANGD

CRP/ANN/NONNDD

AW/ ANINONNOD

S/NDS A/NORNCD

(OUT) dXI/HY LdXI/NONNOD

YN/ DNN/NONRGD

IR/ DON/NONNDD

N/ QDN ANN/NONNOD

(00142) L3318V LN/ WV SSYN/NONWOD
; (00002) AyMNV/ IdvHd/NOWNOD
(INdLNuUE9Tdy s iNANIZSIdY L LNAINU LN4NEI NI v AvyDOUd

-
o
<
J
~

87

ans

N®NL 3w

1020

(CIXT (I8 AV0BY) £ I30R0) LYINGISSOw
.c»nc..o.a.om.w»oao.»w~4..c.nuvw»cacv»wud.»wngvkmanaxJ
(TN U4y LYINOS=ORT

{INALETX) LA0TmINY

(DY AvNNY) 103Aq0mTY

(LI AVEEY X4 (TO1) AVENY) JHVHIZ(10E) Avtiny
Rx.u.ﬁmvu—o:a.aavacac.ﬁaomvwFOJQV»mnanxJ

(Lo 108 (D) 30N LSININS LI = (1D} Av iy

Q0te0aTH
(0¢1) 1378viNn
NYOL3M
ToMSN
(SSINONINVI~ 50LdIHISIA422) LyAn0 4
IBUE fNTbd

goteeROE (093¢ (u* 111378y) 41
(Dex¢0400) v3G 1Y)

1=1

(198 (D vNUINSTINY 3 (T01) Aviny
((Te330)Hp)Wuiy)¥038D = 1o

9y =

3NNTLINUY

S (I 138vLn
0062 o4 0o

€ ® (140 Taveviv
V9lzZe0alz (1°93* 31
0062 04 U9

2 e (I'D)1318VLY

yel2eonlz (2°93* D4y

(D AYBYY)I DL aSH)I HLONIT = 9
0662 o4 09

T % (14D 1376viy

Uotl2e1u02 (1°93°1) 47

NeT=l 00s2 UQ

L
b d
*
*
»
*
-
-
»
»
*
L4
-
*
b
-
-
*
*
»
.
*
.
L4
*
.
*
.
L4
&
L d
*
b4
*
-
b
*

CSONTONYM FLVIUdOUddY 3L SINVA unv AVHIOMY

341 NI HONVNE TVTLINT 3HL 04 ONIONOGS#5N0D 43wy 3Mi NI
3UON 3WL ONY d34) NOTIYAIB3G Fuy 40 L0OM 3INL S{ONMLISNOD
O8IV 11 *03UN3NI4Iq 38 AVW L1 42Que HiIw 3997 ¢ 300N
WOV3 SIALIO UNV 3dAL OL ONIQH¥DIIV 3uGH 42v3 5314158vY)
11 *S3un0300Md NOTLVZITWILINT SwoOdu3d 3.lindy STHY

VOOV LR

¢
’

DOLSHIA 1206 VINDD ¥IADINT
3nul TWNm3ix3
COR/ANN/NONRGD
YNT/INNINO NG
(00T x1/78vLi1/NONROD
IN/ON/NONNDD
L0UT) aX3/HY L dXI/NOWROD
NAUONANN/NONNOD
(001423 318V %/ a¥ 1SSYH/NOA
: (973344 /NOWNO
(00002) Avyuv /34D /NOANGS
(MSN)LINT 3INILNouang

.“““.“J.."“‘.“0.““"#‘.“

001€

9g80¢€
Ugoe

0Q0E
Gose
u91e

Jgte
uypic

ugte
votlez
too2

badedd TT T T 22 YT TN Y PHFFPE TP

gn3g

LELTEL]

3ONTLNGD

{B1) Avbliv s (1) X1 (vi)Agiby) soylo= (1) svay
(310N (A1) ILund) 18T=4 1) x?
(14°21%21 dynuiy

Al*ulevl®02 Qvan

W NsT 0601 GO

AeNEHNY

TANEMNN

o0 GY3n

ANNTLINGY

(XA*ON) LYINOD 30N

(08 (1)3L0N0e (AL 3LuND) LS TI= (1) X1
(06 (1) 3L0M07 1S TmXN

10714608 (1°D31) 41

(B9 (D) xS TuIm (1) synay

SOV (1) 3LunD) LSI= (I XT
ANNTANGD

(08 {11 3L070) (ST Ieon

98 01 09 (1*3Nel) sl

(1421 1378viNt (1) dy3* 12 Oviy
NSTEE 006 00

TEN

(21 iwanCy

NOOT Uv3N

i) u938d = a9

(BT UAFELIET IR 238V

(T1e0Ty) Lynt0d

vaol

3¢

0N

tot

66
L
ot

at

te

*S300N ISIHL LIINNOD ui SOHY Iy
$§376VL OUNI HOV3 BO4 (*u13 $TIVNgX
$JOMAINDD) BVE 3IHp ONY MIv3 uNd NOTSS3wdx 4L INIJwAe
LSHIA L1HYHUMGTS FMg 40 S$300N 3Wi vI gOv3w 11 *indni
QUVD WOH4 AMOWIN NI LBVHINOTS ¥ S3LVIND Ielindy SIug

NI SQv3d N3WL 11

[

o e

*» DEBRBSNEBB Y
DLSHE4 ¥InIINT
10¢2 w393 IN]
LYINOD ¥393in]
3ngi vny3gx3
COP/UNN/NONRGD
YNT/ONN/NONNOD
(000 s l/BVLI/NORROD
AN/DN/NOAWOD
(0CT) dY 3/ 0y LdX3/NONWESD
N/UONANN/NOAWGD
(00T42) 13718V /¥ | SSYN/NONWOD
L9/733YL/NONNLDY
(00G0C) Avrre/ ITHI/NOANCD
49439 3INILnousans

88

an3

NYNL3Y

1 0L 09

(36 { (W) AVHNY) D37 BO) LYINGOI=LT
(peguN) TSIy

1 0L 09 (Swx*B3° gy dy
L1763) s3gnanmey

(psZXe23) 1SI13GMN

CLOS (PP 3AUND) LST 14 2%) LYINGIsEN
{3AHL 8 (#) 1Sy L40T=EN

(408 (W) 3LONOILSTTS M) LVINODSZNY
1121

WnE(17) 14007

CUE 0L w9 (T1°03°%¥)d1

. 30NTANOD

1=X%

902 04 VO (AwWe3n" (BI)Lid00T) 31
e (e81 902 00

oBXN

00E40UZ ((wWW)ALONO*0I*TIMdT
CTXN® (A} 340N0) HIgWgNxr
(anug s (1 ASHI4) L2099 T

1010 (1*L19ev 31

OO ASHIA) LSy I 39V ¢ (M) [5HT 4) ID0WNN=YT
(vauy 0i=u

6014666 tvOy RI*2N) 41
(yOM)ONLVSI=2

(W) AVAYY) LOITRO=TT

(VQH) 013%

[RUR-EELELIG]

(T AvHHY) L2231 800N

. QaXy

G0 Twnann

Ynaeses P,

666

00

00c

tot

00t

- *» » ".“‘.“..’..‘.‘.““.“““‘C

*m UL 4N HLVd HIVE yod
G3sMIAVHL SOMY TIv ONv 03MIINNOONI S3CON 1w 40 L1SISNQD

oL 7 300N ami 40 SISTH HOLSIINY IHL 53Sn Inlin0W STui

e
2
3 SISIT 3S3IHL *w 300N 3HL 204 S1STT oQLS3ONV AN 3AVIMO
2
be]

Inut ynu3gxd
1§V unpaLx3
L1SBId4 TyNH3LX3
4033034908 HI9IAINT

LSHI4 ¥393LNT

41000 ¥393iINT

313730 01 ¢1VINOD *ONVHNN ‘UNVH ¢LI3C80 H3O3LNT
403rg0 TyNy3LX3

T/ T /NONNOD

({0UT) 14OV I/BYLTI/NONNDD

(00002) Ayd¥y /3dy U /NORWOS

(PEeswt 1 oavalo INIinodens

ang

NyNL 3N

X=00

Uy 0L U8

COODIY) 300801 UL3SYH) [SHTdsA
ABNNN

(aW3 T8 %3) LYINOS = g
06%ve (E°53°M) 4l

14098 (2°03%% 4t

(us iy 31und) 151 T=gnddn
(dW317%30) LYINDD = 20
DLCUS (E"D3"MI AT

16408 (10331

(X$2) T3y LMaN

(Ut (x¥) L) 181 1=an 3l

05001 (S°03*M°00 4 03I A y0"2°03X) J1

LX) TIANRY LY

COCEA) JQONDLI LUMR0) ASHI 4) 3DyWisXy
LAY IADNOLY LOIM80) 4581 4) Jovwis ¥
(aw3 1401 AVONDD 3 D0

(O (0s (PO FLONAS) 151D IST1mgn3Ln
({70 AvEyY I 01 3SKH) LSHT 4%

0% 0g 09

{ew3 L1600 4vINGD = 00

(U8 (rayILund) 151 1=dW3LT

CCAPU) AyHHEY 1 013S8) [SVI=A

CECLE (T1°UL3*A0) 4]

iy oL 09

(({rQ)AVYNY) 0L35U) ASHTA = A

0Efud (1*93%rOrdT

=1

9l=Mg

(A EL) LYINDO=E]

(06 (2) 310007 LS 1=ay]

2I=20

(24°11)1¥INDI=RE]

(06 (2) 31000 1S11=2]

(0#(1)34000) L5211

*HivVe SIul 2¥IHI83Q oL

SNOISSIudXI 13NMA%N ONY TORINOS 3HL 23{v3y) il ¢SS300ug
3ML NI *AG A8 O3INIwWMILIO WIV4 3HL uNiSA (Fu) 300N 3kt
40 (90) INvANIISIA 13310 3Hi SINI~¥3L3a 3nlln0H SrYui

g0t

o0&
04
14
i23
29
is

k3

av

[-1%

snGosupsIELeIRRRARaORERNONRY

o

-

uo

L3 4

AVINDD HIBILNT
MOSQUPASX AR LA HIHTINT
0Le1SHIA* 103N AN JUONDL ¥3D4INT
9342 ¥393INT

(007) xI/78vLI/NORNCD
A/NISI/NOAWOD

X/ XN/MOANGD

(00T+2) 137189 L3/ uV [SSYN/NOANOD
(00U0E) Aydtv/ IdyEE/NOANRWDD
{OAsNA*IULAQ PN YOG INTLNOBENS

89

(5]
N¥NL3Y

XaJJ0NON

s oL 09

TrNEY

((2XI3DVATI DIy AT
(ixtoi=ey

Goltg6n (TXN*DI* Xy 4T
(Ix30NLugimiy

(X #033ud= 1y

o=y

06+101

» £ 2] ..“"‘."‘.‘..“."...‘."‘.....‘.‘.'.‘L

] *ENwuN3IS3A0 3y
o] 01 03Lv9vdOug 38 0INOMS LSI7T BUESIONV NV LON uO
] w3 IHM ANIWHIAEU 0L va08d AB 0371VD o1 31 *«Y L1817 3Mi
2 NI Y 40 S3ONIN1000 40 WIAnNN W) SANTA83L30 IeIlndY STHL

Oony

LERFE]

{ oL 0o

(NPT eawNne ey aoyala 1Mvs

1R ES M AE BRG]

((E10) LJaAH0) L2UT) FRYNT BN
CL04 (MNMIFL0HO) IST 12X} LV INOD =X
80T Of Ov (W) 240NN 03 ex) 41
X 14 (ais) FLOND) BAANIna Y

({1201 4030 H0) [>414) 39VwTeNNY
(10) 3JONOL=28

(S LN TS

LUTt002 (EQMeR3*oN) 4T
LEOQNIONLYS =%

(AT sy e) Q0veia Vv

GO TeNuNBUNYT
(Ce101403080) LaHT4) VVNT =TT
400) 240N0 ST 14X D) Ly INODAX T
G001 D1 NY L{¥NN) 3L0ND°0T° o) 3T
(X 14 00 3A0N0) HIANTN Y
(002014030 E0) LonTd) 3DV =Y

(10 3u0NOL=2h

(Edyiolsin

G01s00e (0*V3I*TH 41

(2 HO33MITECNH

COLEMHI APNRYI OLISUIHLONT 1210
S(EuN) AVNMY) O1ASUREY

(19 39Vl ru0TSENN

(20w oi=ly

666 QUTtREs (20U VAT AT
(Zou)QNivsi=ly

1ol xemln
X MUIFIHAFZON

LI
fae

g0l

Lal

931

got

onl

a0t - . sewsnse -
*CILYINI VIIF AUYINTY FAVH HITHm
06 $3IG0N HMONNEWL SLSTT MOLSIONY SIUVuVdadd F«1Lin0¥ >THL

LYINDT ¥IADFINT
L0 ¥I9IAnT
J €3y uIn3ILNT
wn%3 B30I 101
2y*013Sy HioFINT
X/ XNINOQANUD

Lo L ¢

U.....‘..‘OI‘.‘.".‘..‘".“.““‘."‘l.‘...““t.‘ L2 L] - *o
_ Ix%a03380 ¥3nILh]
CieXT3200ANY NOT1INNY

4033036208 HIGIINT
(00002) Awsdy / 3dvHO/NONAED
(1) vdudd INLINOHENS

(22T YIS L2 S YT LA 228l 1d

90

anNg

N¥nL 3y

131 oL 09

(WeNN*INITLND TV

181 ol 0o

(2aud)oL=2a

101 UL 09 (Z08¥*03°2%) 31
{<au¥IgNivsIi=dy

ANNTINGDY

(2% %M LIINOD =N
(TN INY LVINOI=ON

(31 8 2%N) L3012 EMNN

(0% () 10U 3L0N0 XX 1S T T= N
0ET9LT ((L)}1d0OT DI ({1 LIFTE0)4Sy1 4 IDYwl) 41
(17¢tar 0al GO

G800 (EX"O3%1v) 4l

(Onw) AVHaTsTX) Wnn3aly
(L(2A)3vval) AveyT) 3d0ND i (Y

665

ane

ogi

gel
set

{ZAASHND LY IND I3 NN

(USEA) LSTI8ZAN

(EnuMynista

(ZAACIN) LV INNADEON

LI EST =24

{(E0nM) Ol=E

(EUEM)oLsEL

(EUSMYDL=Ey

(EUNMIOLZES
(CEEZAYIOTWII ATBAV) LD3C a0) w03 3ud=eOuy 141

(H4* 11 LYINNImET

(DN 11)iyoNoosmel

{08 (£ 310000 LT Nadm

(08 ¢2) 310001 451 1=0N
(¢ {1+ 4100 (YT T PI-H

1318061 (IX°"D3°yv)dl

{{nd)avdave T lynndsily

COLEAS IugnltAvany) 3unusasTy
(2UrN)oL=eA 2l

clitlor (20un*u3e2Mn) 41
(U N iwSizdy Tt

[EPFR-TEELLE AL

(3Nal e (N7 L 40 iy

{TAYLSYIsIre
(10asiot=ia att

1 0oL U9
{el=} CRE

“1E8507 L0ou At TN AT
(L0Mx) ONLYSTI=ivw 1ol

(10 oL=1y

(WA AY Y (23 oul 0338021y

U TenNSHKE

QzmtudN
(1) 1d00msw 00l
666 0f w9 (117831 41 i

{«PI=1TY

=1

{TeduuHe) RO LyEYX Y

o=EasSH

OmZmasy
Jessanee o Ad 2000 LRRIGNBRVORANCSRORVIIRBIVLRDIADRBOARIDAS
3 *H0LdIMIS3q SIT SiniMd uvv S3LVIMI]
2 INTLNOY 3HL *SI 3INO 4T *C3BINIS30 §i Hi¥d 9vId00T v J1 v
he ANTHH3L3Q 0L S3OUN 3SVR g007 S0 S1SI1T Hui>3dvwy audy $38n 41 v
el *wyHOOHd FML NI SHIVd oMI4G0T V1Y SINI-83L30 Fnilndy SIni v
NQavoses hd I...“0““"“‘0.0'."0‘“l“"""'ﬁ“'.‘k

LUDNDD*cU334D ¥303141
30yl TyNudLx3

193780 TlyNw3ix3
BRIN/PREN/NONNUY
EMDN/ERSN/NOANGD
2m3N/2WS A/ NOANUD

THaNZ INSN/NNANGD

(GuT) LoV /787 L I/MOAWUD
TV /NONROD

L9/ 3IBL/NOHNCD
(QOQ0C) AuNuy/ IdvHD/NONNGD
Tal IN1LNOHENS

91

an3
NN L3y

ot oL 09

(TeM*INI TANG TIVD

201 oL 09

ANNTINGD

(244 85N) LYINO D =N

CTNMA$IN) LYINOI=ON
C3NMLS O L3022

(G4 ({r) 1OV ILOND XXX LST Tm TN
08T*SLT ((r)Ld00T* 03 (((T1x)1337g0)48814) 39V It

666
009

ogi

9Lt

(14130 0g1 Oq
(E(2A)AVYAT) AVayY) IAOND LS [Y
(ZAA*HNY LYINOI 3NN

LUAEA) LSYIR2AN

(EGuMYOLmEL

{ZAX*IN) LYINOIsIN
CICEAY ST IEZAN

(EUyN) OLmER

(eQuxyoi=t,

(EQuN) OL=ER

(EuyoLagn

(LUCEA) 39vWT) ATEYY) LD3C) 8033uJaEQUY
(2qH%)0i=2a

00 Ui 09 (20u¥eudrtay ar
(SOM®) ONLYSIady

(4TI LvNDD=2T

(24 71) LYINOD=2T

(U6 (€2 310N ST ImMdN
(0421410900 LS 1=0N

(0o (13100 ST =TT

(%) 203390=20uM
(3NBLe M) L 40 13%%

(LAY LSYI=ICP

(1dsniot=iy

9% Uf 09 (LQyu*V3*N) 41
(Lo givsi=in

(10 gl=ly

(CCITY ATREY) L0230 ul) 4033800y
uptei=ly

1 oL 09

1+1=]

06T 0L 09 (2°03° (i1 1308w 41
666 0L 09 (N°i9*[)dT

2ot

it

oot
(33

LLOWLLY

[Chnl Ta]

, 1=1

(T 4u0HY) A0 LySXXY

AzEMSH

1=2ZnSN
*Suiva 3Iei ONT S J
0f S300N 14x3 IH{ 40 SLSIT MOLSIIAV Idi Sasn INInow J
SIML *17Inw 3u¥ SHOLdiudS3Q #SMiva AS3ui ~Udd "33ui 4
)

ML HONOHRL Snivd 133810 3¢ SIN{A¥3L30 Inllndm SYul

LVINDDI 4 a3 MIOIINT
andl TyN¥3ILx3

193rad TyNn3ix3

PRBN/ PRASN/NOWROD
CMIN/ERSHINONRGD
2ZMBN/2RSN/NOANCD
1ASN/TASN/NONRGD

N/ UONATNIN/NORNOD

(001¢2) 1318V L%/ uV LESYN/NOARTD
(0UT) 140U /891 T/NOAW0D
TV T /NOAWOD
\D/3IHL/NONNCY

(0000€) Avrv/3dvaId/NONNGS
407 INON 3NILNOUBNS

92

aN3

NHNL3Y

(L3 UUOIN) Lady ded

202 iNldd
(133raudIN) L ddyudad

102 inlnd
(0eeSH01dlB3830 dODT=NUNBaoMI2XT4///) LYnNNOA
0029 jNlud

1aEMSN

G0%L 0L 05 (1°23°gmsN) At
N¥NL3Y

(1330 u04XN) Lddxddad
C1IINYIAHLOXT) LyANO 4

202 iNlbg

(1230 auedN) Lidxddad
(1I0MINDIHT X TS /) LYAEO S
102 INTud

009¢
602y

vosL

20e

16¢e
G014

(ao=2214 SO0 TuaHL XTI/ /) Lyntiy

ATl InTud

T=ombn

0014 Al 09 (1°03°wmsN) 41

(oeeSHOLSINISIT OV NaoRH224xT4///) Lunn0yd
0019 pulod

T=EMSN

10VL 04 09 (I*93°EmeN) 4]

g0si 0L 09 (1°93°28sN) 41

(%) 14w 2006 pNIdg

{21%x6) LynnO 4

gudsTa¥ 1006 VO

1=Ti=aly

(318Y) 35SV S00THG YT/ /) Lyanays

§005 1NIud

(LIX3=SA96X9) LYAYOS

S008 LNTdHa

CIINE3N ¥ WHINOD2CHB [* XS T oHINYHE VL INISTHITSXI) Lynn0 4
9009 LNIad
(IINHINSEHBOXOZ Y INTANU]SSyatHZIOX0) Lyndl 4
£0U9 iNldd
(IOBLINOIZTHES XYL S HINYHASLHB O XF) LYNNU §

2009 LNlad
(INONEONO ¢ XHZ* AULNIS IMLOXY) LywHO 4

1009 |viad

(OVLIME I XSS AL HY O XOH4/ $ISAINHB S AGS/ /) Lyadl
0009 jNIdd
(1¢2)13708vIN(Ts) T3 eviNt (D ax3 1422 [Nibg
CTTOx e TTonls0Tyexst2Iox9) lyanOy

«¢1=l 0008 Og

C MTexT) LyaNO 4

2004 iNlaod

(OYLIHESXS* JAALNI O XGENOISSIudX IO T4 TIBY NS XGS/ /) fuarld
100 iNIad

(378YL {NIWNOLSSYMRTx5T o TML) Lyanid

000 INTud

. . tzlwsh

GoLL AL 09 (1°04%IMSN 3T

totv

o0
Vol

GooL
100=
200n
200%
=00y
vgay
€00y
250%
{00y
Qo0

Gons
2¢

enny
60y

Goa

Ut.t‘tt‘ttltttotttttttot‘tt.tttotlvttttt.tttta0'.0#&&00'9““00�#tt#tb

3
2
o]
2
el
2

*379vi iSve

4007 ONV 2TBVL [NIWNDISSY IHL Sivivg (1 *7v) lsulid
AL NO *u01alud$3Q wYINDILHvd v 40 SNOISSIadwd TINNIN
OGNV TOHANUD 3WL SiNI¥d LI $77¥D nd03 N0 “MOLVHINID

ANL 04 DNOTLIINAL (NeLNG 2V Swe0ay3d InIin0H S¥ul

VVBDRRRRBRBBDOBBDAIDASBLILIARIVIRORBBGHGRIRORN DR HBOROD FLY2 22T T L L0 2 1

143080 TyNy3LX3
L0UTIdX 3/ dyLdX3/NORW0D
(001¢2) L3TBY LN/ oV SSYN/NONWOD
NAUONANN/NOANGD

TH T /NOARDD
BRIN/EREN/NOAROD
EMIN/ERSN/NOARNDD
2MBN/ZRSN/NONHOD

THON/ THSN/NOMNGD

C00T) 140U /8T LT/NOAWDD
L9/33HL/N0NN0D

(000023 AYaY/IdTHI/NOAWDD
(WX 601 1200 3NILNOBENS

BIBLIOGRAPHY

Baron, R. J., Friedman, D. P., Shapiro, L. G., Slocum, J.,
Graph Processing Using Grope/360, The University
of ITowa, Dec., 1973.

Kaplan, D. M., "Regular expressions and the equivalence
of programs,'" Jour. Comp. and System Sciences,
3, 4, Nov., 1969.

Luckham, D. C., Park, M. R., and Paterson, M. S., "On
formalized computer programs,' Jour. Comp. and
System Sciences, 4, 3, June, 1970.

Pratt, T. W., Kernel Equivalence of Programs and Proving
Kernel Equivalence and Correctness by Test Cases,
University of Texas, Jan., 1e71.

Pratt, T. W., Case Descriptions of Programs: An In-
formal Introduction, University of Texas,
Sept. 1972.

Pratt, T. W., Proposal for an executive, program
representation and semantic analysis module,
University of Texas, Sept., 1973.

93

