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The method of insertion has been explained previously and
ig used in the construction of nonloop descriptors to
show the point at which the descriptor for a loop may be
inserted. Hence, as each arc is processed, the node to
which the arc is incoming is checked against the Loop Base
Table to determine if that node is a loop base. If it is,
the proper designator (LOOP x) is concatenated onto both
the control expression and the kernel expression to signify
a point of insertion.

The generator processes all ancestor lists for
a given exit node in a similar manner. When all ancestor
l1ists for an exit node have been processed, the generator
searches the Assignment Table for other exit nodes to
process. When all exit nodes in the table have been pro-

cessed, the case description is complete.

Output of the Case Description

So far in this chapter, we have seen how we are
able to derive output. What is explained here 1s the exact
content of the output.

Output is in the form of basic descriptors.

These descriptors are in an abbreviated form, with each
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expression consisting of a list of labels representing
the statements which would be included in the expression.
Hence, the first thing to output for any case description
is the table of statements and associated labels which
was built in the first pass. This table is used to ex-
pand the control and kernel expressions of each descriptor.

A sample table is shown in Table 3.Z.

TABLE 3.2

Subscript Expression Tag Type

ENTRY

I« 1

SUM « O

SUM <« SUM + A(I)
N = I?

I« I +1

output <« SUM
EXIT

O~ U RN
OMNUWEHENND WO
(SRR N NN o

The descriptors themselves come in two forms,
one for nonlooping paths and one for looping paths. Both
forms consist of the control statement list and the kernel
statement list. Both are ready for output when they have

been created. The descriptors for the looping paths are



53

output first as they are created first in order to enable
easier referencing. Each set of descriptors are labelled

to show which loop base they describe. The descriptors

for the nonlooping paths are also output as they are created,
completing the case description. Examples of these output
descriptors may be found in the next chapter.

When this has been completed, the case des-
cription is complete. The last set of descriptors, by
referencing the loop descriptors, are able to determine
any path through the program, and, hence, become the case

description for the progranm.
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EXAMPLES

This chapter takes a sample program and derives
its case description using the case description generator.
The program is input to the generator in flowchart form
and the resulting output is the case description for that

program.

Input

The program to be processed is the Wensley Divi-
sion Algorithm. The flowchart for this program 1is shown
in Figure 4.1. The code representing this flowchart is
shown in Figure 4.1la,

The generator accepts this flowchart as input.
The generator makes a preliminary pass of this graph and
produces the Assignment Table shown in Table 4.1. This
table.contains the expression for each node in G, the type
of expression for each, and its respective tag. The label
which is associated with each expression is the subscript

corresponding to its entry in the table. Using these

54
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A<O C

v

B-Q/2 |C

Dl CK

el

&

P<a+B>E plyey+n/2 | X

output«y{ XK

\V/

FIGURE 4.1
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TABLE 4.1

Subscript Expression Tag Type
1 ENTRY A
2 A<O F C
3 B«Q/2 F c
4 De1 F CK
5 Y0 F K
6 P<A + B B c
7 Y<Y + D/2 F K
8 A«A + B F C
9 B<B/2 F C
10 D«D/2 F ’ CK

11 D<E B C
12 outpute¥ F X

13 EXIT Z
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FUNCTION SUB(P, Q, E)

A =0
B= Q/2
D =1
Y =0
10 IF(P.LT.A+B) 30,20
20 Y =Y + D/2
A=A + B
30 B = B/2
D = D/2

IF(D.LT.E) 40,10
40 SUB = Y
RETURN

END

Figure 4.la

labels, G has been changed from its original representation

to the one depicted in Figure 4.2,

Initialization

When the Assignment Table and transformation of
the input graph is complete, the generator begins the ini-

tialization routine. In this routine, the generator sets



FIGURE 4.2
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up the workspace in which the tree is to be built and be-
gins construction of the tree. It creates a node corre- -
sponding to the ENTRY node of G and then seeks the next
statement for which a node is to be created, 1.e., the ini-
tial branch statement in the program. To do this, the
initialization routine calls a second routine, known as the
Direct Descendant algorithm, which finds the direct descen-
dant for the ENTRY node. This routine returns the direct
descendant, Q, of the ENTRY node and two lists, the control
list, C, containing all control statements between the
ENTRY node and Q, and the kernel list, K, containing all
kernel statements between the ENTRY node and Q. For the
ENTRY node, Q@ = 6, ¢ = (2, 3, 4), and K = (4,5). Since
statement 6 is the first branch statement encountered in
any path through the program, the node which is created to
represent it becomes the first node representing &a branch
statement. Its type in the Assignment Table is changed
from 'B!' to tI' to denote the initial branch statement of
the program. A node in the tree is created corresponding
to this statement and an arc is created to attach this node
to the original, or ENTRY, node. The two lists, C and X,
are attached to the connecting arc as the control and ker-

nel lists for this path. An ancestor 1ist is created for
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the initial branch statement and attached to the node in
the tree which represents it. The ancestor list, X, con-
sists of the branch list, B, and arch list, A. The branch
1ist contains the label corresponding to the initial branch
statement (B = (6)), and the arch list contains the label
for the arc connecting the root to this node (A = (201)).
Hence, X = ((6)(201)). (The labels for the arcs in this
example are completely arbitrary.)

When these actions are complete, the initializa-
tion routine is finished. The Assignment Table is complete
and is ready to be output for the final case description.
The final table is shown in Table 4.2. The tree as it ap-
pears after the initialization routine is shown in Figure

4.3.

(&)

((6)(201))

Figure 4.3



TABLE 4.2

e e s i e e
e e e T e S

Subscript Expression Type Tag
1 ENTRY A
2 A<O F C
3 B«Q/2 F C
4 D«1 F CK
5 YO0 F K
6 P<A + B I C
7 Y<Y + D/2 F K
8 A<A + B F C
9 B«B/2 F C
10 D«D/2 F CK
11 D<E B C
12z output<Y F X

13 EXIT Z
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Level 1 Processing

The generator 1s now ready to find direct descen-
dants of the initial branch statement. The generator calls
the Direct Descendant routine, passing to it as parameters
the initial branch statement, and the true value for that
statement. This routine returns the values Q = 11, C =
(6, 9, 10), and K = (10). The node corresponding to the
label 11 becomes the direct descendant of node 6. A search
of the tree shows that there is no node 11 so & new node
must be created. An arc is created between these two nodes
and labelled as a true, nonlooping arc. The control list,
¢ = (6, 9, 10), and the kernel list, K = (10), are attached
to this arc. The label, 11, is concaéatenated to a duplicate
of the parent nodest's branch list and the arc label, 202,
is concatenated to a duplicate of the parent node's arc
list. These two lists become the ancestor list, ((6,11)
(201, 202)), for the new node. This completes processing
for the true branch of the parent node.

The generator calls the Direct Descendant routine,
this time passing the false value rather than the true
value for the initial branch statement. The values re-
turned by the routine for these parameters are Q = 11,

¢ = (~68, 9, 10), and K = (7, 10). Since node 11 already
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exists in the tree, there is no need to create a new node.
An arc is created between the parent and 1ts descendant.

A search is performed on the ancestor list of the parent
using the direct descendant as the search argument. Since
no match is found, this arc is classified as a nonlooping
arc and is labelled as false, nonlooping. The control 1list,
C = (~6, 8, 9, 10), and the kernel list, K = (7, 10), are
attached to this arc. The ancestor list, ((6,11)(201,203)),
for the node is determined in the same manner as it was
determined for the true branch and attached to the node.
Processing for the false branch of the branch statement is
complete. Likewise, processing for level 1 is complete.

The tree, as it now exists, is shown in Figure 4.4.

Level 2 Processing

The generator now moves to level 2 in the tree.
There is only one node, node 11, on level 2 of the tree.
The generator begins processing on this node by calling
the Direct Descendant routine. The parameters passed are
node 11 and the true value., The values returned by the
routine for these parameters are Q = 13, C = (11), and K =
(12). Since there is no node correspondent to statement

13, a new node is created to represent this statement. A



c=(2,3,4) €--+--» K=(4,5)

-> ((6)(201))

> ¢=(~6,8,9,10)

c=(6,9,10) <

K=(10) <- - k=(7,10)

4 ~

((6,11)(201,202))  ((6,11)(201,205))

FIGURE 4.4
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true, nonlooping arc is created to connect this descendant
to its parent and the control 1list, C = (11), and the ker-
nel list, K = (12), are attached to it. Ancestor lists,
X and Y, for the new node are created from the ancestor
lists of its parents. 1In this case X = ((8, 11, 13)(201,
202,204)) and ¥ = ((s6, 11, 13)(201,203,204)). Both are
attached to node 13 in the tree. Thus, the true branch is
complete for node 11.

Now the generator calls the Direct Descendant
routine using the false parameter. The values returned
are Q = 6, C = (v1l1), and K = ( ). There is a node 6 in
the tree so no new node is created. A search 1s performed
upon the ancestor list of the parent node using the descen-
dant as the argument. This time a match is found so that
the arc connecting the two nodes is classified as a looping
arc. At the same time, the label 6 is added to the Loop
Base Table. An arc connecting the two nodes is created and
the appropriate control and kernel lists are attached to
it. 1In this case, the kernel list is empty. The appro-
priate branch and arc labels are concatenated to duplicates
of the parent nodet's ancestor lists and these new lists
are attached to node 6 as ancestor lists. Processing is

complete for node 11, and, hence, for level 2 of the tree.
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The tree after this step of the processing 1is shown in

Figure 4.5 and the Loop Base Table is shown in Table 4.3.

LOOP BASE TABLE

Table 4.3

Completion of the Tree

The generator proceeds to level 3 in the tree.
There it finds only one node, and this node is of type Z.
No other nodes in the tree need to be processed. Hence,
the tree is complete and ready for the derivation of the

case description.

Derivation of the Case Description

Upon completion of the creation of the tree, the
generator begins derivation of the case description. The

Assignment Table is used for reference purposes in the



c=(2,3, 4) €--+->K=(4,5)

_»((s,11,86)(201,202,205))
> ((6,11,6)(201,203,205))
{§>C=(~6,8,9,lo)
-»X=(7,10)

((6,11) ((8,11)
(201,202)) (201,203))

<> ((6,11,13)(201,202,204))

™ ((6,11,13)(201,203,204))

FIGURE 4.5
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case description. As soon as it is complete, it is output
as the beginning of the case description. TIts format 1is

shown in Table 4.2

Looping Paths

The generator begins derivation with the looping
paths in the program. Searching the Loop Base Table, the
generator finds the first loop base to be processed, node
6. The generator finds that this loop base has three an-
cestor lists to be processed. These ancestor lists are
((s8)(201)), ((&, 11, 6)(201,.202,205)), and ((6, 11,6)(201,
203, 205)), which shall be referred to as A, B, and C, re-
spectively.

In processing for loop descriptors, the generator
must find ancestor lists which are determined by the paths
through the loop. Hence, the generator must search the
arc list of each ancestor list for an arc whose from node
(i.e., the node from which the arc is outgoing) is equal
to the loop base. Since the to node (i.e., the node to
which the arc is incoming) of the final arc in the arc list
is the loop base, finding an arc whose from node is the
loop base shows that the ancester list describes a loop

path.
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The arc list of list A is searched first. The
from node of arc 201 is node 1. Since no other arcs exist
in the 1list, list A does not describe a loop path.

Next the arc list of list B is searched. The

from node of arc 201 is 1. Since the test fails, the gen-
erator moves to the next arc in the arc list. The from
node of arc 202 is node 6. Since node 6 is a member of

the Loop Base Table, this means that this list is descrip-
tive of a loop path and the generator sets up the empty
control list, C, and the empty kernel list, K, with which
it builds the descriptor for the path. To the respective
lists, the generator concatenates the tree control and tree
kernel lists which are attached to the arc. The generator
now moves to the next arc in the arc list, arc 205. From
it, the generator retrieves the tree control and three ker-
nel lists, concatenating them to the appropriate lists.
The generator now seeks another arc in this path through
the loop but finds none. Hence, the descriptor 1s complete
for this path and is ready to be output.

The generator now moves to ancestor list C to
process, This ancestor list is found to be descriptive of
a path through the loop, and, in a similar manner, the

descriptor for this path is constructed and output.
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The generator seeks other ancestor lists for node
6 but finds none. The generator seeks other loop bases in
the Loop Base Table, but, since node 6 1is the only loop
base in the program, it finds none. Hence, the descriptors
for looping paths are complete. The output for loop de-

scriptors is shown in Figure 4.6,

LOOP 6
CONTROL: ((6, 9, 10) (~11))

KERNEL: ((10) ())

coNTROL: (((~8), 8, 9, 10) (~11))

KERNEL: ((7, 20) (. ))

Figure 4.6

Nonlooping Paths

The generator now begins processing on nonlooping
paths. To do this, the generator must find the exit nodes
in the tree. To find them, it accesses the Assignment
Table, searching for a type Z node.

The first node found which is type Z is node 13.
Node 13 has two ancestor lists, ((6, 11, 13)(201, 202,204))
and ((8, 11, 13)(201, 203, 204)), to be processed. These

shall be referred to as list A and list B, respectively.
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Processing begins with the arc list of list A,
The generator sets up empty control and kernel lists for
the processing of this ancestor list. Onto these lists,
the generator concatenates the tree control 1list and the
tree kernel list obtained from arc 201. Before moving to
the next arc in the arc list, the generator checks the to
node of arc 201 against the Loop Base Table to determine
if this is a point of insertion for a loop in the program.
The to node of arc 201, node 6, is a member of the Loop
Base Table so an identifier for an insertion point of a
Loop in the path (i.e., LOOP 6) is concatenated onto both
the control list and the kernel 1list. The generator now
moves to the next arc (202) in the arc list. The tree con-
trol and tree kernel lists obtained from this arc are con-
catenated onto the respective list. Since the to node of
arc 202, node 11, is not a member of the Loop Base Table,
the generator moves to the next arc in the list, arc 204.
The tree control and kernel lists are concatenated to the
respective lists. The to node, node 13, for this arc 1is
checked against the Loop Base Table. Since it is not a
member, the generator moves on to the next arc in the arc
list. However, since there are no more arcs in the list,
the descriptor for this path is complete and is ready to be

output.



72

The generator now processes the second ancestor
list, 1ist B. The processing for this 1list is similar to
that of 1list A and will not be described in detail. Upon
its completion, all ancestor lists for node 13 have been
processed.

The generator returns to the Assignment Table to
find other type Z nodes. Since there are no other type Z
nodes in this program, the set of nonlooping descriptors

is complete. These descriptors are shown in Figure 4.7.

CONTROL: ((2, 3, 4) LoOP 6 (6,.9, 10) (11))

KERNEL: ((4, 5) LooP 6 (10) (12))

CONTROL: ((2, 3, 4) LooP 6 ((~8), 8, 9, 10) (11))

KERNEL: ((4, 5) LooP & (7, 10) (12))

Figure 4.7

The complete case description for the Wensley
Division Algorithm is shown in Figure 4.8. This example
is brief but includes the important aspects of the deriva-

tion of a case description.
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CASE DESCRIPTION FOR WENSLEY DIVISION ALGORITHM
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Assignment Table

Label Expression Tag Type
1 ENTRY A
2 A<0 c F
3 Beq/2 c F
4 Del CK F
5 Y0 K F
6 P<A + B? c I
7 Y<Y + D/2 K F
8 A<A + B c F
9 B«B/2 c F

10 D<D/2 CK F

11 D<E? C B

12 outputey K F

13 EXIT z

LOOP BASE TABLE

*¥¥¥ 00P DESCRIPTORS¥**

**LOOP o%*

CONTROL:
KERNEL:

CONTROL:
KERNEL:

((6,9,10) ((~11)))
((x0) ()

(((~8),8,9,10) ((~11)))
((7,10) ( )

¥%¥%¥NONLOOP DESCRIPTORS**¥*

CONTROL:
KERNEL:

CONTROL:
KERNEL:

((2,3,4) LOOP 6 (6,9,10) (11))
((4,5) ooP 6 (10) (12))

((2,3,4) 100P 6 ((~6),8,9,10) (11))
((4,5) LooP 6 (7,10) (12))



CHAPTER v

IMPLEMENTATION

This chapter describes the implementation of the
case description generator. It describes briefly the lan-

guage used and the routines needed for implementation.

Language and Machine

The generator was implemented at The University
of Texas at Austin on the CDC 6600/6400 in use at the Uni-
versity. The language in which 1t was written 1s the
FORTRAN-based graph processing language GROPE (1), a GRaph
OPerations Extension to FORTRAN IV. The language GROPE is
designed to perform operations on atoms, nodes, directed

arcs, graphs, graph structures, and lists.

The Program

The following paragraphs describe the implemen-
tation of the case description generator. They describe
the different routines and how they operate together in
order to achieve the goal of producling & case description
for a program.

74
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MAIN

This is the main program of the generator which
calls the other routines to produce the case description.
Tts main functions are to call the routines to obtain the
flowchart, initialize all counters used in the program,
build the tree from the initial branch node to completion,
and call the routines which determine and print the de-
scriptors. A more detailed description of MAIN follows.

MAIN first sets up the area to be used by the
GROPE system to build the derivation tree. It then sets
up all the counters and lists which are used by the gener-
ator. MATIN then calls GETGR in order to obtain the flow-
chart for which the case description is to be built. A
call to INIT sets up the Assignment Table and starts con-
struction on the derivation tree, A check is also made
to determine whether or not a case description would be
meaningless, i.e., whether or not the program in dquestion
contains a branch statement. If the case description 1is
meaningless, the generator terminates operation with an
appropriate message.

The generator begins construction of the remain-
der of the derivation tree. It builds a list (NMG) which

contains the nodes whose direct descendants have not been
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found. Upon return from INIT, this list contains the ini-
tial branch node. As the direct descendants for a tree
node in this 1list are found, the node is deleted from the
list. As direct descendants are found, they are added to
the list if they are not already a member of the l1list.
When no other members of this list exist, the tree 1s
complete.

The direct descendant for a node is determined
by a call to DDA. An arc is created to the direct descen-
dant. When this has been done for both the true and the
false direct descendant for the node, MAIN processes the
next member of NMG.

When the tree is complete, MAIN calls the routines
to process looping paths and then the routine to process
nonlooping paths. When the latter is finished, the case

description for the program is complete.

GETGR

This routine reads in the flowchart for which a
case description is to be produced. In this implementation,
all data is read from cards. The routine first reads in
the number of nodes to be created. The expressions from

the flowchart and their tags are each read in and a node
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is created in memory to represent them. Each card for a
node consists of a ten character field for the expression
followed by a one character field for the tag. After all
the nodes are read in, the number of arcs to be created is
read in and then the arcs to connect the nodes are read in.
Each card for an arc consists of a two digit from node
field (the node from which the arc is outgoing), a two
digit to node field (the node to which the are in incoming),
and a one digit value for the arc (0, 1, or 2 representing
none, true, and false). The two digit node labels are
determined by the user. TFor each arc read in, an arc is
created in memory connecting the nodes already in memory.
When this routine is complete, it has created, in effect,

a flowchart in memory.

This routine performs the initialization proce-
dures for the generator. It classifies each node in the
flowchart according to the number of outgoing arcs. It
creates the root of the derivation tree and determines its
direct descendant. If the direct descendant is an exit
node, this routine prints a message stating that the case

description is trivial and returns to the main program., If
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a meaningful case description can be found, this routine
creates a node for the initial branch and creates an arc
connecting it to the root. It also adds the initial branch
node to the list of tree nodes to be processed by the MAIN

progranm,

DDA

This routine determines the direct descendant
for a tree node dependent upon the branch taken from that
node. This routine is an implementation of the Direct
Descendant algorithm described eariier, The input param-
eters to this routine are the node for which a direct
descendant is to be found and the value assigned to it.
The output parameters are the direct descendant, the tree
control list and the tree kernel list for the arc con-

necting these two nodes,

DIRADD

This routine creates the ancestor lists for di-
rect descendants from the ancestor lists of its parent.
The routine adds the representation of the direct descen-

dant and the representation of the connecting arc to the
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branch list and the arc list of each ancestor 1list. This
new ancestor list is then used as an argument to search the
descendant nodets ancestor lists in order to prevent dupli-
cate ancestor lists. If it is not a duplicate, it is hung
from the node as another ancestor list. This routine also
checks the branch list to determine if the node is a loop
base and adds the node to the Loop Base Table if this sit-

uvation occurs.

PROPA

This routine propagates ancestor lists when the
direct descendant of a node has already been created in
the tree, After the ancestor list for the direct descen-
dant has been hung from that node, this routine adds an
appropriate ancestor list to 1ts descendants determined by
the path now being processed. When no other descendants
exist, the routine is complete. Processing is done much
as in MAIN, with a list which is added to and deleted from

as new descendants are found and old ones are processed.

NUMQOCC

This routine determines the number of occurrences

of an element in a list. It is called by PROPA in order to
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determine which ancestor lists are not to be propagated
from the parent to its direct descendant, i.e., which an-

cestor lists determine the looping situation in the parent.

This routine finds the descriptors for all looping
paths in the program being processed. It uses the Loop
Base Table to determine the loop bases in the program,
When one is found, the routine searches the ancestor lists
of the loop base to determine which ancestor lists are the
results of looping paths. When one of these lists is found,
a descriptor is built for this path and printed in the form
of two lists, representing the control expression and the
kernel expression for that path. Processing continues for
this loop base in the same manner until all ancestor lists
for the loop base have been processed. When this occurs,
a new loop base is sought in the table. When mno other loop

bases are left to be processed, the routine is finished.

NONLOP

This routine determines all direct paths through

the program. Tt uses the Assignment Table to find the exit
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nodes in the tree. When an exit node is found, its ances-
tor lists are used to bulld descriptors. Starting with
empty control and kernel expressions, the routine conca-
tenates the tree control and tree kernel lists to form the
final descriptor. The tree control and tree kernel lists
are obtained from the arcs traversed in a path from the
root to this exit node. These arcs are found by prdcessing
the arc list from beginning teo end. When the end of an arc
list is reached, the descriptor is complete and the routine
prints it in the form of two lists, representing the con-
trol expression and the kernel expression.  When all exit
nodes have been processed in such a manner, the routine

and the case description are complete,

oUT 1

This routine produces all output from the case
description generator. It is called by LOP1 and NONLOP to
output the control and kernel expressions of the descrip-
tion produced by these two routines. During the initial
call of this routine, 1t prints the Assignment Table and
Loop Base Table which have been constructed by the genera-

tor.
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CONCLUSION

Future of the Generator

The case description generator described in this
paper can become & useful tool for the users of computing
machinery. The generator accepts input in flowchart form.
To make use of the generator, the user must translate the
program he wishes to analyze into a form which is accept-
able to the generator. The routine now used reads in in-
dividual nodes of the flowchart creating nodes in memory
to represent them. It also reads in the arcs connecting
these nodes and creates corresponding arcs in memory. The
conversion by hand from a flowchart to acceptable input
for the generator becomes quite a burdensome task for
larger programs. In the future, a routine to create the
flowchart in memory 1s to be integrated into the system in
order to ease the task of the user.

The output of the generator, as it now exists,
also proves difficult to interpret for larger programs.
Each numerical representation of an expression must be
looked up.in the Assignment Table to determine the correct

82z
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control or kernel expression., With smaller programs, i.e.,
those with short descriptors, the translation is easily
done, but as the length of the descriptor grows, the diffi-
culty of the translation increases proportionately. An
output routine which performs this translation is also to
be integrated into the system in the future, also easing

the usert's task.

Uses of the Generator

These two routines make the generator an extremely
useful tool. Of special interest is i1ts use as an aid in
proving the correctness of programs. With extensions, it
is able to analyze programs in a more primitive state, i.e.,
that of a flowchart, and show that the result of that pro-
gram is with a given set of input and a given control ex-
pression. The user is then able to determine from the dif-
ferent descriptors for his program whether or not it meets
the specifications desired for that program. In other
words, he is able to determine how correct his program 1is.

Also of interest is the use of the generator in
the area of analysis and debugging of programs. Generally,
when & program is first written, the author of that pro-

gram has some idea of what the output for that program is
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to be under a given set of conditions. Using the case de-
scription generator, he may submit the flowchart (or, if a
module is available which is able to translate code into

a flowchart, he may submit the coded program) and determine
how close the program comes to the desired result. Likewise,
at any point in debugging of a partially tested program,

he may submit the flowchart (or code) of all or parts of
the program to the generator and find out whether or not he
is achieving his goals. It is in this area in which the
author believes the case description generator will prove
"to be of the most use.

The generator is not limited to the above, Other
uses for the case description, and, hence, for the genera-
tor which produces it, have been proposed. The generator
may be used in equivalence proofs by showing that two pro-
grams which result in the same case description are, in
fact, equivalent. Also, 1t is conceivable that, since a
flowchart may be manipulated to form a case description,
in the same manner, &a case description might be manipulated
to form a flowchart from which a program might be derived.
A user could formulate the case description for the desired
program and submit it to this system to obtain the flow-
chart (or code). Hence, case descriptions may prove use-

ful in program synthesis,
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