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ABSTRACT

Relations are an important concept and tool in information process-
ing. For example, by using a set of relations, one can represent sentences
in natural languages, patterns, and data bases. In general, the information
about a finite set of elements can be expressed formally by a relational
system (S, {ui}isl) where § is the set of elements and {ai}iel is the set
of relations of finite ranks on S. In this study, relations, especially
relations of ranks higher than two are studied since relational systems
generally contain higher rank relations.

The study of higher rank relations consists of three parts. First,
higher rank relations themselves are analyzed since we know little about them.
Secondly, since lower rank relations are generally simpler, more intuitive
and easier to handle, the decomposition of a relation into lower rank rela-
tions is considered. Thirdly, the converse problem to decomposition, i.e.
the synthesis of a set of relations into a higher rank relation, is consider-
ed. Syntheses are important from the point of compaction of relations too.

Bases on the results obtained from the study on relatioms, a rela-
tional data structure which is actually designed for the internal represen-
tation of relational systems is described. Noting that sets are unary rela~-
tions and graphs are bimary relations, it is pointed out that the relational
data structure is more powerful and flexible than the existing data struc-—
tures. Finally, the concept of relational systems with the operations of
decomposition and synthesis are applied to pattern recognition and graph
theory.

Tn short, this piece of research studies relations, especially

higher rank relations and demonstrates the usefulness of the results.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Relations are important in various fields of information
processing. Relations are an important concept and tool especially in the
areas of pattern recognition, semantic information processing, and data
management systems. One of the most significant facts about relations is
that most information can be conveniently represented by a set of relatioms
defined on the set of primitives which concern us. This idea is exactly
the model of most systems of pattern recognition, question answering and
data management. Let us review some of the important uses of relations
in these areas.

In pattern recognition, Miller and Shaw [26] point out the
importance of syntactic approaches. Along this direction relational
approaches in pattern recognition are described in Fu [11] and Rosenfeld
[34]. Guzman [13] also thinks that any figure can be completely described
by a set of relatioms. Winston [38] uses a labeled graph model for the
representation of patterns inside computers. Evans [9,10] is also
interested in syntactic methods in pattern recognition that use relatioms.

Example 1.1 The picture as shown in Fig. 1.1 can be described

by the following relations [34].

SQUARE = {(a)] RECTANGLE = {(b)}
(c) (e)
(@)



LEFT = {(a,b)} ABOVE = {(b,d)} INSIDE = {(e,d)}
(b,c)
CONGRUENT = {(a,c)} LARGER = {(d,a)} TALLER = {(b,d)}
BETWEEN = {(b,a,c)} NEARER = {(b,c,a)}
(b,d,c) /17

WIDER = {(e,b)}

Fig. 1.1

While pattern recognition is concerned with this kind of
abstraction and representation of patterns, natural language processing is
interested in the abstraction and representation of sentences and concepts.
Quillian [31] and Tesler, et al. [36] are primarily interested in the
representation of memory structure. SIR by Raphael [31] is a question
answering system in which well selected relations are used. The semantic
network by Simmons is a model to represent English sentences [35].

Example 1.2 In SIR [32] each sentence is represented by a
relation. For example,

1. "The lamp is just to the right of the chair," is represented

by a binary relation JRIGHT(LAMP, CHAIR).

1

2. "John gave a book to Jim," is represented by a ternary

relation GIVE(JOHN, BOOK, JIM).



unique # name department
1 A a
2 A b
3 B b
4 C a
Fig. 1.3
supplier part project quantity
1 2 5 17
1 3 5 23
2 3 7
2 7 5 4
4 1 1 12
Fig. 1.4

In the above records, unique # and the combination of supplier and
part can be used as the indices of the records EMPLOYEE and SUPPLY, respec-—

tively, because they uniquely specify a row in the records. 11/

1.2 Relational System

A relational system L39] is a pair (S’{ui}iei) where § is a set of
primitives and {ai}ieI is a set of relations on S. This set of relations may
contain unary relations, binary relations, ternary relatioms, and, in general,
higher rank relations. The important point, as illustrated in the above
examples, is that relational systems can be used to represent pattern descrip~-
tions, sentences in natural language, and data bases.

An efficient data management is critical if any system of visual
and semantic information processing is going to be practical. It is even

said that pattern recognition and semantic information processing are actually

data management. On the other hand, pattern recognition and natural language



The internal representation of these sentences is given in Fig. 1.2 (1) and

(2), respectively, where top nodes are atoms which have the bottom expres-

sions in their property lists in LISP. 17/
LAMP CHAIR
(JLEFT, CHAIR) (JRIGHT, LAMP)
(1)
J?HN BOOK JIM
(GIVER, (BOOK,JIM)) (GIVEN, (JOHN,JIM)) (GETTER, (JOHN,BOOK) )
(2)
Fig. 1.2

The efficient processing and the répresentation of data are the
concern of data management systems. Today there are many generalized data
management systems available. In spite of the name 'generalized" they are
usually data-dependent [7]. For a more flexible and general model than
hierarchical models, McGee [25] proposed a labeled graph model, and Childs
[4,5] described a set theoretical model. Codd [7] regards even tables as
relations and proposes a relational model.

Example 1.3 As will be stated later, tables can be regarded as
relations which are subsets of cartesian products. Therefore each record of
a data base is a relation [7]. For example the record of employees given in
Fig. 1.3 is a ternary relation, and the record of supply shown in Fig. 1.4

is a 4-ary (quaternary) relation.



processing are often combined to have more general and more powerful
information processing systems [8,20]. Therefore it seems quite natural to
treat these different systems in a unified way. Also the abstraction by
relational systems may describe the problems common to all these systems and
solve them.

However, in this simple and unified form, there are many fundamental
questions about relations. Some of the typical ones are: 1Is it reasonable
to handle all these relations of different ranks in the same way, i.e., can
higher rank relations be regarded as extensions of binary relations? What
relationships exist between relations? Are there any convenient representa-
tions of a higher rank relation by lower rank ones and vice versa? These
lead us to the study of relations. Another type of problem related to the
adoption of a relational system is the internal representation of relational
systems. None of the existing data structures seem suitable for it. Since a
relational system generally has relations of ranks higher than two, the data
structures using digraph model and set theory [4,25] are inadequate. For the
same reason the associative structure of LEAP 528] is not enough. Codd's

relational model [7} is too specific and limited to data bases only.

1.3 Structure of the Study

Our motivation is relational systems as stated above. However, we
find that the theory of higher rank relations is lacking. Therefore, we
initially attempt to study higher rank relations and subsequently apply the
results of the study to relational systems.

We pursue our study as follows. In the next chapter relations are
formally defined. Then higher rank relations are analyzed by analogy to

binary relations. In other words, the properties of relations are presented



and the extension of the concepts of compatibility relation and equivalence
relation are considered. The decomposition and the synthesis of relations
are the topics of Chapters 3 and 4, respectively. Since there has been much
study of binary relations, it will be desirable to consider the relationships
between higher rank relatioms and lower rank relations, especially the possi-
bility of the representation of a high rank relation by binary relations and
the construction of a high rank relation from binary relations. Various
problems, including the characterizations related to these subjects, will be
considered. Then Chapter 5 will describe the data structure for relational
systems based on the results obtained in the preceding chapters. Finally
some applications of decomposition and synthesis of relations are presented
in Chapter 6.

Chapter 7 summarizes the study emphasizing the major results and
describing them in the context of previous work.

Throughout this study, lemmas, theorems and corollaries are
sequentially numbered from the beginning of each chapter. TFigures and
examples are numbered in the same way. Each new definition will be stated
separately as far as possible but will not be numbered. It should be remem—
bered here that ¢ is equivalent to <. If & is meant, that symbol is explicit-

1y used.



CHAPTER 11

ANALYSIS OF HIGHER RANK RELATIONS

2.1 Introduction

Although relations may be defined in various ways, we adopt a very
standard and formal definition. It is true that a relation can be described
independently of the objects on which the relation is defined: for example,
“ig to the right of". However, when we talk of a relation here, the set of
objects on which the relation is defined is always specified, even if the set
is infinite. The relations defined in this study are called abstract rela-
tions and distinguished from those defined by others.

In this chapter abstract relations are formally defined and analyzed
by analogy to the amalysis of binary relations. That is, the concepts for bi-
nary relations are extended so that binary relations are indeed simply a spec-—
ial case of general high rank relations. In this chapter, therefore, we are
concerned with relations themselves and their properties while the relation~
ships between relations will be our primary interests in the following chapters.

As it will be seen, the complexity of a relation seems to grow
geometrically as the rank of the relation increases linearly. Another trouble
in extending binary relations is the fact that the rank of binary relations
is even while the ranks of general relations may be odd as well as even. It
will also be mentioned later that the lack of a good method for the represen-
tation of higher rank relations like digraphs for binary relations makes it

difficult to study higher ranmk relations intuitively.

In the next section preliminary definitions of abstract relations

which will be used throughout this study are given. Then, in Section 2.3,



we present properties of higher rank relations which are similar to
reflexivity, symmetry, and transitivity of binary relatioms. Finally, we
extend the equivalence and compatibility relations of binary relations to

higher rank relations in Section 2.4.

2.2 Preliminaries

n
i=1

i i i . . s
of the sets Si = {al, 5 5eees am } is the set consisting of all ordered
i

Definition: The cartesian product, S xS X ... X Sn (or X Si)

n~tuples al , a? sesoes a? where a% £ S,.
31 3 J i

32 n

i

If n = 2, a rectangular array having m; rows and my columns, such
that the rows and the columns are labeled ajj, ajn,«.-, alml’ and asy, 8205e00,
aZmz’ respectively, as shown in Fig. 2.1 (a), is a convenient way to represent

a binary cartesian product since each position corresponds to a unique 2-tuple

of the cartesian product. But when n = 3, a cubic representation of a ternmary

Sy
891%22 . . . 8om,
' S
211 1
212
. . g T
51 . ) S
2
S5
alml
(a) (b)

Fig. 2.1



cartesian product (as shown in Fig. 2.1 (b) similar to the binary case) is
already less attractive. And it will not be practical at all when n is
greater than 3. This difficulty of representation of higher order cartesian
products is just the small tip of a huge iceberg of various difficulties

which we will encounter in the study of general relatioms.

Definition: An n—-ary relation o of an ordered set of sets Si's is
a subset of Ra of the cartesian product Xizlsi’ i.e., Racz Xizlsi' We say
that the rank (also "degree", "order", and "dimension" are used by others) of
the relation a, denoted by r(a), is n.

We will usually use small Greek letters for relatioms. Also we will
use Ra and o interchangeably when no confusion occurs.

Since we are going to handle two different kinds of sets, one of
which is sets of objects over which relations are defined and the other of
which is the relations themselves, we need to make a distinction between
members of these different sets.

Definition: We call each member of a set S an element of S, and
each member of Ru a member of the relation a.

The traditional notation u(al,az,...,an) is equivalent to (aj,as,
...,an) 3 Ra. We usually use small and capital letters for elements and

members, respectively, like Ra = {A.}, = {(a?,aé,...,a;)}iel. Although

i iel
capital letters are used for both members of relations and element sets,
earlier letters are used for members and later ones for sets among which S
will be used almost exclusively.

One of the reasons why higher rank relations are not welcomed is
that we do not have any decent way to represent a higher rank relation iike

a digraph for a binary relation [13]. Here we will use an extension of the

graph representation of binary relations [30] although this is not
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satisfactory at all, especially when a relation has many members. More
specifically, each i-th column of nodes belongs to the i-th set Si of the
corresponding cartesian product, and for each member (a%,a%,...,ai) € Ra we
draw an arc from a% in the first column to a% in the second column, an arc
from a% in the second column to a% in the third, and so on. In this case
different from the binary case, however, we have to distinguish those arcs
which represent one member from those which represent all other members of
the relation.

Example 2.1 Let S; ={1,2,3}, S, = {a,b}, S3 ={1,2}, and let

Ra = {(1,a,2),(1,a,1),(2,b,1),(3,a,1)}, then the diagram of the graph-like

representation of o described above is shown in Fig. 2.2. iy
51 S2 S3
1
2
3

Fig. 2.2

b2 m L m .y 0 .n
Definition: Let Ru < (Xi=lsi)X(Xj=lsj) and RB C:(Xj=lSj)x(Xk=lSk),

then the ordered pair (a,B) is m-composable if %, n, m > 1. The m-composite,

denoted by « B, of o and B is an (%+n)-ary relation defined by

[}
m

- m
= {(al,az,...,ag,aY,...,aS)i z(aj,ad,...,a') ¢ X,._,S;:

Oof JlJ

m
such that (al,az,...,ag,ai,...,a;) € Ra

and (a{,ai,...,a&,af,...,a") € RB}'



11

Unlike binary relations, compositions of higher rank relations do
not always possess an associative property. The following theorem gives a
generalized associativity.

Theorem 2.1 Let (o,B) and (B,Y) be k- and m-composable,
respectively, then if k + m < r(B),

(o . 8) oY = ; (B 2oy)=o . B e Y-
The proof is trivial.
Definition: The inverse of an n—ary relation o CXizlSi is an n-ary
n-1

. -1l s -1 . -
relation a Xi=OSn—i specified by R@ such that (an’an—l""’al) € Ra

1

iff(al,az,...,an) £ R&.
s o I . . .
Definition: Let o, B C.Xizlsi, then o is said to be a subrelation

of B if o C B.

Definition: The complement of an n-ary relation uc:XiElSi is an

n-ary relation a C:Xizlsi such that
a = {(al,az,...,an)l(al,az,...,an) ¢ al.

Assuming further that the intersection (N) and the union (U) are

defined on n-ary relations of the same cartesian product as the set theoreti-
cal intersection and union, respectively, the following can be easily proved.

Theorem 2.2

o
Q

1) (0 o B) L =gt
k k
2) @Hl =a.

(3) ot =gl iff a

[l

i
™
.

(4) o P C g7l iff o T B.
(5) OREERE

6) (a N gt =0o1 N sl

(n (e y B L=0a1y 8L
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(8 o (o U B) = o o U o B.
) Y2 Yo Yo
(9) Yl‘l(umB)CYﬁOﬂnYiB-
Definition: Let a C X.n S. be an n-ary relation, then B C X,m S, wh-
—_— i=1"1 =171,

3

ere m<nissaid to be a partial relation (more specifically, an (il,iz,...,im)~

(partial relation, denoted by a(.

. y of o if B is exactly the
11’12’ m)

.
t..,l

. ] m
restriction of a to the cartesian product Xj=1s' .

i,
J
Definition: Let R C X.n S.,, then we call X.n S, the domain of R
e o i=1"1 i=1"1 —0
and Xizl (Ru)i (the cartesian product of i-partial relations of Ru) the

range of Ru' Further, we call Si i-th domain (or domain i) of Ra and (Ru)i
i-th range (or range i) of Ra'

Next we present the concepts of onto and one-to-one for general
relations which are slightly different from the counterparts of functions and
which seem natural when we consider the fact that there is no difference
between domains and codomains of relations.

Definition: An n-ary relation o is said to be an onto relation

if a, X o

1 X ...x0 = x.%. s, where oy is the i-partial (or (i)-partial)

i=1"41

2

relation of a, i.e., if the range of a is the same as the domain of a.

Definition: An n-ary relation o is said to be a one-to-one rela-

tion if A = (al,az,...,an),B = (bl’bZ""’bn) € o and A # B implies
a; # bi Yy oi.
These are equivalent to saying that a relation a is onto or one-to-

one if Y j the projection function ¢, : Ra -+ §. is onto or ome-to-one,
i
respectively. We have the following characterization of an onto and one-to-

one relation.



i3

Lemma 2.1 If a C X,? S. is one-to-one and onto, then |S_ | = |S,]|

——— i=1"1 i h|
V i, and hence |a| = lSil.

Proof: Suppose that ISil # ]Sj|, say lSil > ISjl without loss of
generality. Let {Si| = p and [Sjl = q, then p > q. Since o is onto, 1a
member corresponding to each X € Si’ which means that there are p members
in o. But the number of different elements in Sj is g < p, hence a contra-
diction. Therefore, ISi! = !Sjl = |a] ¥ i,3.

Q.E.D.

Theorem 2.3 An n-ary relation a CZX.? S, where |S_.| = Is.| V i,j

e i=1"1 i 3

is onto and one-to—-one iff a, the restriction of o to Si X Si+l’ is an

,i+l?
onto and one-to-one function from S. to 5. ¥i=1,2,...,n-1.
i i+l

Proof:

(=>) Assume that o is an onto and one-to-one relatiom, then clearly

= . . Do '€ i ' impli
ai,i+1 Si X Si+l And Ai,1+l + Ai,1+l ¥ ALA o since A # A' implies aj #+
a'V j. Therefore o, . is an onto and one-to-one function from S, to S, ..
j i,i+1 i i+l
(<=) Conversely, assume that OL o441 of o is an onto and one~to-one
p 1

function from S, to S,,. ¥ i =1,2,...,n~1. Then the onto-ness of a, .
+ i i+l 2T ’ - s i,i+1
guarantees that the relation o is onto and the one-to-one-ness of them
implies that o is an one-to-one relation.

Q.E.D.

Example 2.2 An example of a non-trivial onto and one-to-one rela=

tion is given in Fig. 2.3. /11
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S S S S
1
2
3
4 O >O-
Fig. 2.3

Before we move over to the next section, we mention the isomorphism
of relations.

The way we write and today's overwhelming sequential processing of
information enforce relations to be represented by sequences of elements
on which a relation holds. 1Indeed we used n—-tuples to define relations
earlier in this section. Obviously this is not the best way to express some
relations at all, especially those in which the order of elements is immater—
ial. For example, let ¢ be a ternary relation such that three elements are
in the relation o if each pair is con-
nected. Let the set S = {a,b,c,d} as
shown in Fig. 2.4, then o may be rep- b
resented by {{a,b,cl} if {a,b,c} is
understood to denote not a triple but :

[
a set of three elements since the
order of the three elements a, b, and
¢ is insignificant. But = since the

representation has to be sequential,

a should be expressed as Fig. 2.4
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a = {(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)}, which seems to be
very redundant.

This sequencing gives us another problem. Obviously o = {(a,b),
(b,c)} and B = {(a,b),(b,c)} are the same relation according to our defini-
tion of relations. But how about this case: o = {(a,b),(b,c)} and B =
{(b,a),(c,b)}? Apparently they are different. Hence o and B may have been
completely different in the original meaning of the relations. However,
after another glance at them it can be thought that they provide us exactly
the same information. In other words, if we know the relationship between
o and B in terms of the order of domains, we can obtain one relation from
the other automatically. It is a matter of simple conversion. That is, if
(x,y) € a, then (y,x) € B and vice versa. This is what we mean by saying
that two relations provide us the same information about S. Let us call two
such relations equivalent. In general, i.e., in the case of n-ary relationms,
it is assumed that if o is obtained from 8 by simply changing the order of
the sequence of domains, then o and B provide the same information. In this
sense two equivalent relations are thought to be isomorphic.

Let us consider the enumeration of relations. Suppose{S\= n, then

m
. . . . . n .
the number of different (but maybe isomorphic) m-ary relatioms is 2 since

m
a" is the number of different m-tuples of n elements. The number 2" is

quite large even when n and m are fairly moderate. Therefore we realize that
an m—ary relation is very powerful to represent patterns although the com—
plexity of the relation grows geometrically as the number of elements of 8
grows linearly. This indicates that the number of primitives can be very
small theoretically to classify a large number of patterns if the choices of

primitives and relations are right. The number of non-isomorphic m-ary
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relations on S is left as an open problem.

2.3 Properties

Hereafter we will consider only n-ary relations in s™ for some S
unless it is specified otherwise. In other words, we will be concerned with
only those relations defined on a certain set of elements. Of course all
definitions defined in the previous section are valid and will be used. 1In
this section we will try to extend the familiar properties of binary rela-
tions, i.e., reflexivity, symmetry, and transitivity, to higher rank rela-
tions. One can extend those properties in many diverse ways, but in this
chapter only some of the extensions which seem very natural will be
considered.

Reflexivity

First we consider reflexivities of higher rank relatioms.

Definition: (Strong Reflexivity) An n-ary relation a is strongly

reflexive if (a,a,...,a) € a ¥ a € S.

Definition: (Weak Reflexivity) An n—ary relation o is weakly

reflexive if (ai,az,...,an) € o => (al,al,...,al),(al,az,...,az),...,
. € .
(apsagse-cnay 1.8, ) € o
The strong reflexivity is a direct extension of the binary reflex-
ivity and the weak reflexivity is an extension of the weak reflexivity by

Yeh [40]. We find that the following anti-reflexivity is sometimes useful.

Definition: (Anti-reflexivity) An n—-ary relation o is anti-

reflexive if (al,az,...,an) £ o = a; # aj YV i+# 3.
A binary relation with the anti-reflexivity property corresponds
to a digraph without loops. Such cases occur frequently in applications,

so it is not a new concept at all.
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+\n
Example 2.2 Let o C (Z') and o = {(al,az,...,an)lal|az,
aZIaB,..., and an-l‘an}’ then obviously o is weakly reflexive. If we further

i t < < ... < Y o o, t o is n ti-
require tha a; < a, a (al,az, ,an) € o, then o is now anti

reflexive. A strong reflexive relation can be found easily. For example,

let 8C (" be 8 = {(b,by,v.e5b )[by < by < ... < b}, then § is strongly

22" 2

reflexive since (i,i,...,i) ¢ B Y i = AR /1]
Symmetry
Next we consider symmetric properties of higher rank relations.
The following three symmetries seem to be fundamental.

Definition: (Strong Symmetry) An n—ary relation o is strongly

symmetric if (al,az,...,an) €0 *>(ap(l),ap(2),...,ap(n))s o for any permuta-
tion p on (1,2,...,n).

Definition: (Weak Symmetry) An n-ary relation o is weakly

symmetric if (al,az,...,an) € o = (an,an_l,...,al) € a.

Definition: (Circularity) An n-ary relation o is circular if

(al,az,...,an) e o = (an’al""’an-l)’(an—l’an""’an-Z)""’(aZ’a3""’al)
¢ a, or equivalently, (al,az,...,an) £ o => (an’al"'°’an—1) £ .

These three are all direct extensions of binary symmetry. We give
one more symmetry which is more general and will be used later.

Definition: (Complete Symmetry) An n-ary relation o is completely

~

. . e 11 = s o T B
symmetric if (al,az,...,an) e a=T C awhere T = {all distinct a;'s in
(al,az,...,an)}.

We give the following two kinds of anti-symmetry.

Definition: (Strong Anti-symmetry) An n-ary relation o is

strongly anti-symmetric if (al,az,...,an) e o and any of its permutation

(ap(l)’ap(2)""’ap(n)) e o= a, = ap(i) ¥i.
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Definition: (Weak Anti-symmetry) An n-ary relation o is weakly

anti~-symmetric if (al,az,...,an), (an’an—l"°"al) ea > a, = a, Vi,j>

i+ j = ntl.

It should be noted that a completely symmetric relation is also
both weakly symmetric and circular, and that the strong anti-symmetry implies
the weak anti-symmetry.

Example 2.3 Let G = (X,T) be a graph where X is a set of nodes

and I' C X2 is a set of edges, and let us define a, B, v C X4 as follows:

Q
i

= {(al,az,a3,a4);{al,az,aB,a4} is a complete subgraph of G},

B = {(al,az,aB,aé)‘(al,az),(az,a3),(a3,aa) e T},

¥ = {(a,ay,a5,3,) [ (ag,8,),(a,,a5),(a552,) , (a,,2)) € T}

Then it is easy to see that o is strongly symmetric, B is weakly

symmetric, and Yy is circular. /11

Transitivity

Finally we look at tramsitivities of higher rank relatioms.

Definition: The k-star composition of a C Smdcsk and 8 C Sk x g™

3

denoted by(xirﬁ, is an (mtn+l)-ary relation such that uﬁﬁ = {(al,az,...,

am,bi,cl,cz,...,cn) i(al,az,...,am,bl,bz,...,bk) € a and (bl’b2’°"’bk’c1’ Cys

°..,cn) e 8, and b, e{bl,bz,...,bk}}.

Definition: (Compositional Transitivity) An n-ary relation a is

compositionally tramsitive if o ﬁ ¢ T o when n = 2k and a ﬁ o C o when n =
2k+1 where k is a positive integer.
Definition: (Chain Transitivity) An n-ary relation o is chain-

. . 11 1 22 2 2 2 _
transitive if (alaz...an),(alaz...an),...,(a az,a3 =

nn

n 1_
1az...an) € o and a, =

1 12
83seesy @) = az,.a ==a? =>(ala2

an) € a
1 eea .
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The necessity of the strange looking k-star composition comes from
the fact that the rank of a general relation can be odd as well as even.
Chain transitivity is also found to be natural as will be seen below.

Example 2.4 Let R be an integral domain (commutative ring with no
zero divisor) and o C Rq such that a = {(al,az,a3,a4)la1/a2 = a3/a4}, then
clearly o is compositionally transitive. 11/

Example 2.5 Let G = (X,T) be a graph and a C X4 be a set of cycles
of length 4, i.e. a = {(al,az,a3,a4)l(al,az),(az,aB),(aB,aA),(aa,al) e T and
a; # a, Vi # j}, then o has the
chain-transitivity property as il-
lustrated in Fig. 2.3, where X =
{1,2,...,12}. Namely, (12,3,2,1),
(4,3,6,5),(8,7,6,9),(12,11,10,9)

e o implies (12,3,6,9) € o. /17

We define another trans—

itivity which will be used later.

Definition: (Terminal

Fig. 2.3

Transitivity) An n-ary relation

o is terminal-transitive if (x,al,

32""’an-l)’(al’az""’an—l’y) e o => (x,al,...,ai_l,ai+l,...an_l,y) e ayi=
1,2,...,0-1.
This property is not uncommon.
Example 2.6 Let S be a set of real numbers, then the n-ary rela-
. n . .
tion a € S defined by a = {(al,az,...,an)lal < a, < v.e < an} obviously has
the property of terminal transitivity. Namely if (xl,xz,...,xn),(xz,x3,...,

Xn+l) £ o, then (Xl’XZ""’Xi~1’xi+l""’xn+l) e oV 1. ///
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Unlike the reflexivities and symmetries, there is no inclusion

relation among the transitivities defined here.

2.4 Two Ternary Relations

It may be appropriate to give some practical higher rank relations
at this point by means of the properties defined in the previous section so
that they can be used whenever some examples are needed and those are
relevant.

There seem to be two large sources for higher rank relations:
linear relations and complete relations. By a linear relation we mean an
n—ary relation in which only those binary relations between two consecutive
elements, i.e., a; and a4 for i = 1,2,...,n~1, are critical while a com-
plete relation is one in which all binary relations between two elements,
i.e., a,; and aj Y i # j, are essential factors to decide whether each (al,az,
...,an) € o or not. Intuitively, linear relations are regarded as sequences
and complete relations as groups. For example, a sequence of four numbers
(al,az,aB,aA) is the former type and a group of four persons (bl’bz’bs’ba) is
the latter type.

In spite of all these higher rank relations, what we need here are
those which seem to be higher rank relations in nature and which will lose
their meaning significantly when they are expressed otherwise. It turns out
that such pure high rank relations are surprisingly rare [11,13] even though
it is not seldom that for various reasons people use higher rank relations
which can be also treated by their binary-expressed relations. Here we will
give two of the simplest yet useful higher rank relations both of which are

of rank 3. One is the "between" relation [13] which seems to be a genuine

ternary relation. Another is the "triangle' relation [11] which most people
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prefer to handle as a ternary relatiom.

Definition: The between relation is a ternary relation B C283

which satisfies the following properties:

(i) (a,b,c) € B = a,b,c are all distinct (anti-reflexivity),

(ii) (a,b,c) ¢ B = (c,b,a) & B (weak symmetry),

(iii) (a,b,c),(b,c,d) € B = (a,b,d),(a,c,d) € B

(compositional transitivity),
(iv) (a,b,d),(a,c,d) ¢ 8 = (b,c,d) ¢ B or (c,b,d) € B but not both,
(v) (a,b,c),(a,b,d) ¢ B = (b,c,d) ¢ B or (b,d,c) ¢ B but not both.
Example 2.7 Let S be a set of points on a plane and let o C 83 be

defined as o = { (a,b,c) ] three distinct points a, b and ¢ constitute a
straight line and b is between a and c}. It is fairly easy to see that a
satisfies all five conditions above and, hence, actually is a between rela-
tion. The properties (i) and (ii) are direct from the definition itself.
The other properties come from the fact that if (a,b,c) € a, then a, b and ¢
are on a line. It may be of interest
to notice that S can be divided so
that a pair of classes can have at 1
most one point in common, and that
each class can be identified by at
most two points, as seen in an ex- 3
ample of Fig. 2.4. These observa- 4

tions throw light on an extension

of the equivalence relation of bi- 6 7
nary relations which will be a

topic of the next section. /11 Fig. 2.4
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Definition: The triangle relation is a ternary relation © T S

which satisfies the following properties:
i (a,b,c) € T = a,b,c are all distinct (anti-reflexivity),
(ii) (a,b,c) € T = all of its permutations e T (strong symmetry),
(iii) (a,b,x),(a,y,c),(z,b,c) € T = (a,b,c) €1 (chain-transitivity).
Example 2.8 Let G be a graph G = (X,T) without loops and let
a X3 be defined as o ={ (a,b,c) | (a,b),(b,c),(a,c) € T}, then o is a tri-
angle relation. For since G is a graph
without loops, (i) is satisfied. The 1
properties (ii) and (iii) are obvious

from the fact that G is a graph, not a

2 5
digraph. A simple example is given in
Fig. 2.5, where X = {1,2,3,4,5} and a
is defined by the set of (1,2,5),(2,3,4), 3 4 b
(2,3,5),(2,4,5),(3,4,5) and all their
permutations. 11/ Fig. 2.5

2.5 k-compatibility and k-equivalence Relations

The properties of reflexivity, symmetry, and transitivity consti-
tute an interesting set of attributes for the categorization of binary rela-
tions on a set. They are fully exhibited in [29]. An it is pointed out
that among them the compatibility and equivalence relations are important as
well as interesting. It is doubtful that it is fruitful to categorize
higher rank relations by the extended properties described previously even
if we can do it since the categorization will become less neat than that of
binary relations because of the large number of properties. However we will

try to extend the relations of compatibility and equivalance which seem to
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be interesting.

Definition: A k—compatibility relation o C Sk (k = 2) is a k—ary

relation on S which has the strong reflexivity and the complete symmetry
properties.

Note that the degenerate case of k-compatibility relation, i.e.,
k = 2, is exactly the same as the compatibility relation of binary relations
since the strong reflexivity and the complete symmetry become simply the
reflexivity and the symmetry of binary relations, respectively. In that
case, therefore, we may call it a compatibility relation instead of a
2-compatibility relation.

Definition: Given a k-compatibility relation o on S, a k-compati-

bility class or k-compatible, induced by o, is a subset C of §, such that

(al,az,...,ak) e alV 8y5855c 0058y € C.
Definition: Given a k-compatibility relation o on S, a maximal
flastnsficuimntniuuthm 3

k-compatibility class or a maximal k-compatible is a k~compatibility class

which is not properly contained in any other k-compatibility class.

Definition: The k—complete cover of S with respect to o, denoted

by Ca(S), is the collection of all and only the maximal k-compatibility
classes induced by o on S.

Lemma 2.1 If a is a k-compatibility relation on a countable set
S and C is a k—-compatibility class, then there is some maximal k-compatibil-
ity class C' such that C < C'.

Proof Since S is countable, the elements of S can be numbered;
that is, S = {al,az,...}. We define a sequence Cy C c, cC,C ... of k-

1 2

compatibles by the following rule: C0 = C. Given Ci’ Ci+l is defined as

C. y {a,} where j is the smallest integer for which a, 4 C,and C, . is a
i 3 3 i i+l

k-compatible. If there is no such j, then Ci is the last k—compatible of the
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sequence and C, = C'. Thus C' is k-compatible and maximal. Since C CC',
the lemma is proved.
Q.E.D.

Theorem 2.4 There is a one~to-one correspondence between k-
compatibility relations on S and k—-complete covers CQ(S).

Proof Obviously a k-compatibility relation a induces a k-complete
cover Ca(S) and it is unique. Next we show the converse.

Suppose that there are two distinct k—compatibility relations o
and o' such that Cu(S) = Ca,(S). Since o # o', there is at least one member
A= (al,az,...,ak) such that A € a but A ¢ o'. Then by Lemma 2.1 there is
some member, i.e., a maximal k-—compatible, C of Ca(S) which contains all dis-
tinct elements a; »8; 5ee053y of A. Since Ca(S) = Cu,(S), there is a member

i) i

C' of C ,(8) which is identical to C; hence it contains a, ,a, ,...,a, .
o i.’"i *7y
) i

Then since C' is a k-compatible, any sequence of k elements of a; 58, seres
1 2

ai. is in o' by the property of the complete symmetry of o' if j 2 2 and of
thi strong reflexivity of o' if j = 1, which is a contradiction. Therefore
if Ca(S) = Ca,(S), a = a'.
Q.E.D.
Example 2.9 Given a set S = {a,b,c,d} and the 3-complete cover
CQ(S) = {{a,b,c},{a,b,d},{c,d}}, we can readily derive the corresponding 3-
compatibility relation o as shown in Fig. 2.6, where we show those members

of o derived from each maximal 3-compatible separately for clarity, and

further, multiple arcs are simplified to simple arcs.

/11
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Next we characterize k—compatibility relations.

Theorem 2.5 A k-ary relation o C Sk is a k—compatibility relation
iff there exist a set T and an onto binary relation p €S x T such that a =
{(al,az,...,ak) £ Sk f a; € p“lp(aj) Y i,ilt.

Proof

(=>) Suppose that o is a k-compatibility relation, then there is a
k-complete cover Ca(S) induced by a. Let T be Ca(S) and p be defined as
follows: p(a) = {C ¢ Ca(S) l a £ C}. Now assume that (al,az,...,ak) € 0,
then there is a maximal k-compatible C such that a, € c Vi. Since a, ¢
ORENFEE TN RN E

(<=) Conversely suppose that o is a k—ary relation such that
o = {(al,az,...,ak) eSk l a; € p_lp(aj) VY i,3} where p is an onto binary
relation such that p £ S x T. TFirst since p is onto, a € p—lp(a) Y ae S.
Hence (a,a,...,a) ¢ a ¥ a € S, i.e., o is strongly reflexive. Next assume

that (al,az,.,.,ak) ¢ e, then (ap(l),ap(z),...,ap(K)) e o for any permutation
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p of (1,2,...,k) directly form the hypothesis, i.e., o is strongly symmetric.

Therefore o is a k-compatibility relation.

Q.E.D.
Example 2.10 The onto binary
relation p above for Example 2.9 is S Ca(s)
shown in Fig. 2.7. /17 a
C.
By adding one more property b '
c
to k-compatibility relations we define c 2
c
3
k~equivalence relations in the follow- d
ing.

Definition: A k-equivalence
. k .

relation o< S (k 2 2) is a k-ary re-
lation on a set S which is a k-compatibility relation and has the property of
terminal transitivity.

Again note that when k = 2, a 2-equivalence relation is simply an
equivalence relation of binary relations.

Definition: A maximal k—-compatible of a k—equivalence relation

is termed a k~equivalence class.

Lemma 2.2 For a k-equivalence relation a, any two distinct mem-

bers El and E2 of C (8) have at most k-2 elements of S in common.
o

Proof Suppose that E. and E2 have more than k-2 elements in

1
common. Let the arbitrary k-1 elements of them be €158y e ey - If
= 0 N e o i 7
E1 El E2’ then El E2 Otherwise let a ¢ El and b ¢ EZ’ then since

M
©15€5500058 4 € El E2, (a,el,ez,...,ek_l),(el,ez,...,ek_l,b) € 0, Then

by the terminal transitivity (a,el,ez,...,ek_z,b) € 0, which means a ¢ EZ'
b
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Hence E, T E

1 2° Similarly we can show that E, CE

9 1 thus obtaining E, = E

1 2°
Q.E.D.

Now we are ready to extend the partition concept.

Definition: A n-partition of a set S is a collection of subsets
of 8, such that each element of S belongs to at least one member of the col-
lection and two different members of the collection have at most n elements
in common. f

By this definition an O-partition is the same as an ordinary par-
tition. Actually this extension is so natural that the reader can find the
same definition in Jardine and Sibson [18] in which it is called a k-
partition which allows any two members of the partition to have a maximum of
k~1 elements in common.

Theorem 2.6 There is a one-to-one correspondence between k-
equivalence relations on S and (k-2)-partitions of S.

Proof It is trivial that the complete cover of a k-equivalence
relation is a (k-2)-partition, and it is unique.

Conversely we show that a k-partition uniquely specifies a (k+2)-
equivalence relation whose complete cover Ca(S) coincides with the k-
partition. Given a k-partition P, define a (k+2)-ary relation o as follows:
(al,az,...,ak+2) cea 1ff al,az,...,ak+2 belong to the same subset of P. Then
o is strongly reflexive because each element belongs to some subset of P. o
is also completely symmetric since if 81589500058 49 belong to the same
subset of P, then any subset of them is also contained in the subset of P.
Finally if (x,al,...,ak+l),(a1...,ak+l,y) € a, then eI PERRRFL and y are

in the same subset of P since P is a k-partition.
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Next we show that each class C of the original k—partition is a
maximal (k+2)-compatible. First C is by hypothesis a (k+2)-compatible.
Secondly if (X’al""’ak+l) e aV 81581500581 € C, then x ¢ C, a contra-
diction. Hence C is maximal.

Q.E.D.

Example 2.11 Let S = {a,b,c,d,e,f,g} and the l-partition of S be

{{a,b,c},{c,d,e,f} ,{f,g}} as shown in Fig. 2.8, then we have the 3~
equivalence relation corresponding to the l-partition, and its diagram is
given in Fig. 2.9. As seen in the diagram, there exists a 3-equivalence rela-
tion among any three elements which belong to the same l-partition class

but not among three in different classes.

Here, for clarity, the arcs of those
members of S belonging to the same
class are drawn by the same type of
line and multiple lines are replaced
by a single line.

Fig. 2.8 Fig. 2.9
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Finally we characterize k-equivalence relations.

Theorem 2.7 A k—ary relation o C Sk is a k-equivalence relation
iff there exists an onto binary relation p Z S8 x T such that lp—l(x) N
pwl(y){.s k-2 ¥ x,y € T and a = {(al,az,...,ak)]aj € p—lp(ai) Y 1i,3il.

Proof

(=>) Since Ca(S) is a (k-2)-partition, lp_l(x) N p-l(y)l < k-2
Y x,y € T. And since o is also a k-compatibility relation, the second half
is satisfied by Theorem 2.5.

(<=) Conversely assume that o = {(al,az,...,ak)laj € p—lp(ai)
) i,j} where p is an onto binary relation from § to T such that [p~l(x) N
p—l(y)[ < k-2 Y x,y € T. Then by Theorem 2.5 o is a k—compatibility rela-
tion. We have to show that «

is also terminal-transitive.
Let (s,al,az,...,ak_l),(al,az,

...,ak_l,t) € a, then 3 x T

k-1
=- N N
Sxe (N [ Jela)} o (s)
k-1
N
and 3y e T3y e { i=lp(ai)}
Y p(t) by the hypothesis. If

x#y, | ot n ol | 2

({al,az,...,ak_l}l 2 k-2, which
contradicts the assumption that
o7l 0 e Th) | s k2 Voxyy Fig. 2.10

€ T. Therefore x = y. Hence,
(s,az,a3,...,ak_l,t),(s,al,a3,...,ak_l,t),...,(s,al,az,...,ak_z,t) £ o,
namely o is terminal-transitive, proving the theorem.

Q.E.D.



CHAPTER III

DECOMPOSITION OF RELATIONS

3.1 Introduction

Higher rank relations are generally less intuitive and more
complicated than binary relations, as seen in the previous chapter. Further-
more, since binary relations have a practical significance and at the same
time can be handled by digraphs, they have been studied and utilized exten-
sively. A question one may naturally ask at this point is whether or not
higher rank relations can be decomposed to binary ones so that we can make
use of the many results about binary relations which we already have or so
that higher rank relations can be analyzed by means of simple binary rela-
tions. An intuitive concensus about the relationship between higher rank
relations énd binary relations has been that any higher rank relation can
be decomposed into lower rank relatioms and hence, eventually, into binary
relations. This seems to be one of the reasons why the study of higher
rank relations has been consequently neglected.

It seems very natural, of course, to assume that a set of elements
is in a certain high rank relation if and only if each pair of elements of
the set is in a certain binary relation. For example, Fu [11] mentions two
methods for decomposition of relations. He says, " ., . a relation
r(xl,xz,...,xn) can be transformed into a decomposition of binary relatioms,
such as rl(xl’rZ(XZ""’rn—l(xn—l’xn))"')’ or into a conjunction of binary
relations rl(xllixlz)A rz(x21,x22) AN rk(xkl,xkz), or into a combina-

H

tion of these.”" Note that "relation' here is used for "member of a relation"

in our definitions. It would be reasonable to assume that he is describing
30
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the decomposition not of a relation r C s™ but a member of r, r(xl,xz,...,xn).
However, since these decompositions look very natural and we are concerned
with the decomposition of relations, we will next look at them as'methods
for the decomposition of relations.

Although the first form looks neat, it is nothing but a rewriting

of the original form. For T is a relation on S x Sn"l = Sn, r, on S x Sn_-2

= Sn~l’ and so on. That is, the rank of the relation Ty has not been
decreased at all. Naturally this kind of decomposition is not to reduce

the ranks but to proVide structures to relations. Therefore the first form

is meaningless here but useful for some applications, especially for structur-
ing data structures such as in Lisp [22].

In the second form above, k is not specified. It is convenient,
however, to fix k = n(n-1)/2 for a uniform treatment. And, as a matter of
fact, it is always possible to fix k that way. If a pair of elements is in
more than one binary relation, we assign the pair to a new binary relation
which is composed of them. And, on the other hand, if a pair of elements is
in no binary relation, then we assume that they have a "don't-care" relatiom,
so that every pair is in one and only one binary relation. One more thing
is worthy of comment. Even though we always deal with ordered pairs for
binary relations, we will use only one of the two related ordered pairs,
i.e., an ordered pair and its inverse, since if one pair is specified by a
binary relation, the other is automatically specified by the inverse of the
binary relation.

Now we are ready to ask, '""Can any higher rank relation be repre-
sented by the second form?" 1In other words, given an n-ary relation a C_Sn,
do there exist n(n-1)/2 binary relations aij such that o = {(al,az,...,an)}

A (a.,a.) € a,.]}? The answer is not trivial although obviously it is
i<j 1’73 ij
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always possible to express a member of a higher rank relation by a conjunction
of the corresponding binaries as claimed by Fu. The question above can be
interpreted in terms of digraphs, since a binary relation corresponds to a
digraph. That is, is a higher rank relation really representable by a set
of digraphs? Here we are talking of the decomposition of a higher ramnk
relation into binary relations which, in turn, reproduce exactly the same
higher rank relation. Let us take a look at the following simple example.
Example 3.1 Let o be a ternary relation o = {(1,1,2),(2,1,1),
(2,2,2)} on a set of elements S = {1,2}, then each member can be expressed

by a conjunction of its binary components:

[

a(1,1,2) alz(l,l) A u13(1,2) A u23(1,2),

i

a(2,1,1) a12(2,1) A a13(2,1) A a23(l,1),
0a(2,2,2) = a12(2,2) A al3(2,2) A a23(2,2).

Therefore the corresponding binary relations are:

0"12 = {(131)1 s Of'13 = (132)1 s OLZS = (l,l) .
2,1} <2,1>i (1,2)
(2,2)

(2,2) (2,2)

1
D)
? -—-->
%13
@ D>
%23

Fig. 3.1 Fig. 3.2
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The diagram of the ternary relation o is given in Fig. 3.1. The
reader may recognize the binary components given above also directly in the
diagram. Now let us represent the decomposition of this ternary relation by
a labeled diagraph instead of three different digraphs as shown in Fig. 3.2,
Here we used different lines for different labels just for clarity. Do not be
confused by the use of the same lines as those of members of a in Fig. 3.1.
The question is whether this exactly represents the ternary relation o above.
A (b,e) &

*
Let o, = { (a,b,c)|(a,b) e P A (a,c) €0y }, then we readily

3 %23

* *
find that a, # a, actually, that a, = {(2,1,2)}U o, as also seen from the

2

* P T -a
figure. In other words oy = {(i,j,k)l (:) — o> in the graph,

i,j,k = 1,2}, /1]
It may be helpful to give another example which, this time,is exact-~
ly the same as a conjunction of its binary partial relations.
Example 3.2 Let & = {(1,1,1),(1,1,2),(2,2,1),(2,2,2)}C 3> where

S =1{1,2}, then
612 = {(l,l)}’ 813 = (191) H and 823 = g(l,l)

(2,2) (1,2) | (1,2)
2,D 2,1
(2,2) (2,2)
%
Therefore 8 = 82 = {(a,b,c)[(a,b) £ 812 A (a,c) € 613 A (b,c) € 823}. /77
S S s . "3
1
, 7 Bi2
.._...._..9 B
i3

Fig. 3.3 Fig. 3.4
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From the discussion and the examples above we notice that a higher
rank relation may be represented by the second form, i.e., by a conjunction
of its binary partial relations although this is not always possible. 1If
the rank of the relation is greater than three, we can think of the decom—
position into relations of some reduced ranks greater than two as well as
into binary relations.

A similar decomposition of relations first appeared in Codd L7]
and then was studied by Rissanen and Delobel [33]. The motivation of their
studies was data base systems. Codd proposed a relational model for data
base systems which he claimed was superior to traditional hierarchical
models which are still overwhelmingly dominant in generalized data base
systems. At this moment RDMS [19] of General Motors seems to be the only
data base system which adopted the relational model outside IBM. In the
sequel the decomposition of relations is briefly and informally described.

A file is a set of records. Each record is a list of data, i.e.,
a list of attribute-value pairs. In other words a file is a table in which
each row is a record, i.e., an n~tuple of data. Since the order of attri-
bute-value pairs in records is predetermined for operational reasons, and,
hence, is important, a file can be regarded as a relation, more specifically,
a linear relation. Then it is apparently desirable to decompose files into
simpler files, i.e., to decompose tables into simpler tables, in such a way
that all information that could be obtained from the original files can be
also retrieved and at the same time any information which did not exist in
the original files should not come from the new simpler files.

Suppose that a file F is a table consisting of n—-tuples (al,az,
...,an), i.e., F = {(al,az,...,an)}, where a; is the value of the record

corresponding to the attribute Ai' Let a = (Akl,Akz,...,Aki) and
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g = (A ,A ,...,Am ) be the sequences of two subsets of the attributes

2 3

{Al,A ,...,An} such that {a} N {8} # ¢ and {a} U {B} = {Al,Az,...,An}, The

2

o~ and B-projections of F, Pu and PB’ are defined as the relations of F

restricted to a- and Pf-domain of XizlAi’ respectively. The natural join of

P and P
o

denoted by Pa % P_, is specified by Pa % PB = {(al,az,...,an)l

B’ B

(akl,akz,...,aki) € Pa A (aml,amz,...,amj) € PB} where (kl’kz""’ki) and

(ml,mz,...,mj) are the subsequence of (1,2,...,n) corresponding to o and
B, respectively. Now F is decomposable if F = Pa * PB' This decomposition
is illustrated in Example 3.3.

First note that again it is not always possible to decompose a
relation even though in this case a relation is decomposed into a conjunc-
tion of only two reduced relations, which is slightly different from our
case in which an n-ary relation is decomposed into (ﬁ)k-ary relations. This
difficulty (that a file is not always decomposable) introduces the so-called
normalization of files in relational data base systems. Since, furthermore,
the object of Codd's study of the decomposition is data base systems, he

is concerned with only those decompositions in which the set of attributes
o N g is the key of the file. One of the theoretical results appearing in
the paper by Rissanen and Delobel is Delobel and Heath's corollary that if

there exists a functional dependence Pu —_ Pa or PB’ then Pa * P, = F.

N B B

This is significant because if o ) B is a key, then there is always a

functional dependence from P@ N g to at least one of Pa and PB'

Example 3.3 Suppose that files F and F' are defined by the

following tables where A, B, C, D and E are the attributes of the files.
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ABCDE ABCDE
F=[(,1,1,1,1)]. F' = {(1,1,1,1,1)
(1,2,2,1,2) (2,2,2,1,2)
1,2,2,2,2) (1,2,2,2,2)
(2,1,2,1,1) (2,1,2,1,1)

And let o = (A,B,C) and B8 = (B,C,D,E) so that o ¥ B = (B,C). Then the

projections Pa’ PB’ P& and P! are obtained as follows:

8
BCDE
ABC (1,1,1,1)}, B C
P = (1,1,1)], P, = (2,2,1,2) L. ,1)],
1,2,2) (2,2,2,2) (2,2)
(2,1,2) (1,2,1,1) (1,2)
ABC BCDE
P! = (1,1,1)), Pé = ((1,1,1,1)), B C
! =
(2,2’2) (2,2’]"2) Pa (\ B (l’l) .
(1,2,2) (2,2,2,2) (2,2)
(2,1,2) (1,2,1,1) 1,2)

And the natural joins of Pa and P_, and P& and P! are given as follows:

B B

Pu * PB ={ {(a,b,c,d,e) [(a,b,c) £ Pu A (b,c,d,e) ¢ PB}

= {(1,1,1,1,1)},
(1,2,2,1,2)
(1,2,2,2,2)
(2,1,2,1,1)]

P& * Pé ={ (a,b,c,d,e)| (a,b,0)¢ P& A (b,c,d,e) ¢ Pé}

= {(1,1,1,1,1)).
(2,2,2,1,2)
1(2,2,2,2,2)
1a,2,2,1,2)
(1,2,2,2,2)
1(2,1,2,1,1) ]
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Therefore F is decomposable while F' is not by o and B since F = Py % Py
and F' # P& * Pé.

Note that there is a functional dependence from P, | g to Py
i.e., ¥V (a,b,c,d,e),(a',b',c',d",d") € F (a,b,c) # (a',b',c') implies
(b,c) # (b',c'), While there is not from P& n g to Pl mor to Pé.

The structure of the rest of this chapter is as follows:

First in Section 3.2 we define decompositions mentioned above and
describe a hierarchical structure of decompositions and an approach to
general cases. Then the decomposition is characterized in various ways in
Section 3.3. And finally the decomposability of the two ternmary relations

described in Chapter 2 is discussed in Section 3.4.

3.2 Decomposition of Relations

We will consider the decomposition of a relation into its partial
relations mentioned in the previous section.

Definition: Let L = (21,&2,...,£k) be a sequence such that
1< 8 < &< .0 < L < m, then (xl,zz,...,xk) is called the L-factor (or
factor L) of the sequence (1,2,...,n). Each such L-factor is a k-ary
factor of the sequence,

n . .
Definition: Let aC S, then we refer to i-th S of s" as the i-th

domain (or domain i) of . More generally, if L = (21,22,...,%k), we refer

to the sequence of il—, 22—,..., Qk—th S's of S” as the L-domain (or domain

L) of a. Each such L-domain is called a k-ary domain of the relationm.

In terms of these, the L-partial relation QL of a relation o CS"

is a k-ary relation of @ restricted to the L-domain. And each such L-

partial relation is called a k-ary partial relation of .

Definition: The L-component of a member A = (a,,a,,...,a_) of a
rerinttion m-component 1°32 n
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relation is defined as (a, ,a, ,...,a, ) where L = (&,,% serss¥ ). Each such
21 22 Rk 1272 k

L-component is called a k—ary component of A.
Definition: Let o be a set of n-tuples, i.e., & = {(al,az,...,an)}s
then an operator, projection is defined as follows. Given a factor L of the

sequence (1,2,...,n), the L-projection of o, denoted by PL(a), is PL(Q) =

{ (a

LY ,...,azk)l(al,az,...,an) € a}. Each such L-projection is called a
1 2

k-ary projection of a.

In terms of projections, the L-partial relation o of o is obtained
by PL(a) and the L-component of a member A is obtained by PL({A}), or simply
PL(A).

Next we give a natural way of combination of partial relatioms.

Definition: The natural join, * , of two partial relatiomns
0tLl aLZ ?

and of a relation a C s™ is an n-ary relation specified by {A ¢ s™
OLLl aLZ

P. (A) A P (A) 3.
L € "‘L1 L, € O"LZ

*
Definition: The k-ary closure, Qs of a relation o C s" is an n-
%
ary relation specified by o = {A ¢ st | PL(A) € o YV k-ary factor L}.
Now we are ready to give the definition of decompositions.

Definition: (k-ary Regular Decomposition) A relation o c:Sg is

k-ary (regular) decomposable iff a = d;, (k < n).

When k = n, it is trivial. If‘a = 8" or a consists of dne member,
o is always k-ary decomposable for any k. A simple but non—~trivial example
is given below.

Example 3.4 Let o C S and a = {(1,4,2,3),(2,3,4,3),(4,2,1,3),
(4,3,2,1)} where S = {1,2,3,4} as shown in Fig. 3.5, then its binary partial

relations are:
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13

14

23

= r(134)

1(4,2)

(2,3)

(4,3)

(2,4)
4,1)
(4,2)

(2,3)
4,1

]

(4,3)

(2,1)) ,

(3,2)
(4,2)
(3,4)

((1,2)) ,

((1,3)) ,

= (2,3)
(3,1)
(3,3)
(4,3)

24

Therefore the binary closure of a is

@Z = { (1,4,2,3) ’(233:433) ,(4’29133) 3(4’39231) ,(49332:3)} .

And its ternary partial relations are:

%123 ©

%134

L

((1,4,2))
(2,3,4)
(4,2,1)

(4,3,2)

(1,2,3))
(2,4,3)
(4,1,3)

(4,2,1)

Therefore the ternary closure of ais

Fig. 3.5

%124

234

%

(1,3)
(2,3)
(2,1)
(4,3)

(1,4,3))
(2,3,3)

| (4,3,1))
((2,1,3))
(3,2,1)
(3,4,3)

(4,2,3)[

((4,2,3)]

*
33 = { (1,4,2,3),(2,3,4,3),(4,2,1,3),(4,3,2,1)}.

39

* *
Since<& = {(4,3,2,3)} U a and a3 = 0, O is ternary decomposable but not

binary decomposable.

111
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Next we describe an interesting hierarchical structure among

closures of a relation which seems natural.

% %
Lemma 3.1 For any relations a, Y C o -

*
K41 ? then by the definition PL(A) € o V (k+l)-ary

factor L, in other words, IA" e o> PL(A) = PL(A') € a. V (k+l)-ary factor L.

Proof Let A e «

Now let L' be a k-ary factor, then always 3 (k+l)-ary factor L =L' is a k-
= - ]
ary factor of L. Therefore PL'(A) PL'(PL(A)) PL(PL(A )) € apye Hence
%
PL,(A) € oy VY k-ary factor L', i.e., A€ o, .

G.E.D.

® *

Since o = o - @ -1 for any n-ary relation o, we have the following

hierarchy of closuresimmediately from Lemma 3.1.

Theorem 3.1 For any n-ary relation a C Sn,

o C u* C a* - C a* C a* c st
n-1 n-2 " T 2T L T Yt

Example 3.5 Let o C S4 and o =1 (2,1,3,1),(2,3,1,2),(4,3,1,1),
(4,3,3,2),(4,4,1,2)} where S = {1,2,3,4} as shown in Fig. 3.6, then its binary

partial relations are:

Ay = (2,1}, ayg = (2,1)}, Ay = (2,1)), ag3 = ((1,3) s
(2,3) (2,3) (2,2) (3,1)
(4,3) (4,1) (4,1) (3,3)
L (4,8) (4,3) (4,2) 1(4,1)
ay, = (@1, a, = [(L,D]. S S -8 S
(3,1) (1,2) .
(3,2) (3,1)
(4,2) (3,2) 2
3
4

* .
Hence a, = {(2,3,1,1),(2,3,3,2),(4,3,1,2)} U a.
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And its ternary partial relations are:

0195 = [(21.9)s oyy, = ((2,1,1)],  opq = [BLD]s oy, = [1,3,D).
(2,3,1) (2,3,2) (2,3,1) (3,1,1)
{(4,3,1) 1(4,3,1) ¢ 1(4,1,1) ¢ 13,1,
(4,3,3) (4,3,2) (4,1,2) (3,3,2)
(4,4,1) [(4,4,2)) ((4,3,2)) ((4,1,2)

*
Hence 05 = {(4,3,1,2)} U a.
Theref btai Cor o
erefore we obtain & G 04 & %ye /11
The following corollary is also an immediate conclusion of Theorem

3.1.

Corollary 3.1 If o is not a k-ary decomposable, it is not j-ary

decomposable for any j < k.

Since we are concerned with the decomposition of relations into
relations of lower ranks, it is appropriate to look at the decomposition into
relations of the lowest possible ranks. Let o c s™ and suppose that o is
(n-1)-ary decomposable. Then we obtain n (n-1)-ary partial relations which
constitute the (n-l)-ary closure of a. Next suppose that some of them are
(n-2)-ary decomposable. Then for each of them we obtain n-1 (n-2)-ary par-
tial relations which constitute the (n-2)-ary closure of it. In this way we
perform the successive regular decompositions to © and its subsequent partial
relations until no further decomposition is possible to any of the subsequent
partial relations.

Definition: The unique decomposition thus obtained is called the

%
maximal decomposition of o, denoted by o . Each partial relation which re-

sults from the maximal decomposition and which is not further decomposable is

termed an elementary relation of o. Equivalently, a* = {A e Sn‘PL(A)e aI'V L

o. is an elementary relation of ol.
=L y
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S S S S Example 3.6 Let o C S4 be defined by
1 o = (1,1,1,1)),
(1,2,2,2)
2 (2,2,1,3)
3 (3,1,3,3)

and its diagram be shown in Fig. 3.7.

Fig. 3.7 Then Fig. 3.8 illustrates the succes-

sive regular decompositions of o des-

cribed above. Each terminal node represents an elementary relation of a. ///

Suppose that we obtained the maximal decompositions of a set of

relations, instead of one, on S. Then it is quite possible that some of the
elementary relations are identical. In other words, it will be necessary to
keep only the irredundant set of elementary relations to reproduce the entire

set of relations. This idea is equivalent to what underlies the irredundancy

of a relational data base system by Codd [7].

o
Q193 = (1’191) 0‘124 = (l:lal) OL134 = (l,l,l) 05234 = (lslal)
(1,2,2) (1,2,2) (1,2,2) (2,3,2)
(2,2,1) (2,2,3) (2,1,3) (2,1,3)
(3,1,3) (3,3,3) (3,3,3) (1,3,3)
01,12 = (131) 024 = (131) OL14 = (131) 0&13— (131) U«34 = (l,l)
(1,2) (2,2) (1,2) (1,2) (2,2)
(2,2) (2,3) (2,3) (2,1 1(1,3)
(3,1) 1,3 (3,3) (3,3 <3,3>§
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Apparently it is not always possible to decompose a relation a & s
into even (n-1)-ary partial relations. Therefore it may be appropriate to
consider non-decomposable cases so that we can always have the representa-
tion of a relation by its k-ary relations for arbitrary k. One way to
decompose a relation which is not decomposable is to divide the relation
into a set of subrelations. That is, let o = U aiﬁa'qi = (ai)z, then o =

g i

L{(ul)k.

This approach to the decomposition of non-decomposable relations
may be justified by the following arguments. We have already mentioned that
a binary relations can be a combination of binary relations. For example,
a(a,b) may mean that a is bigger than b but not to the left of b or that a
is not bigger than b but to the left of b. In other words, o = B A-1y)
(78 A Yy) where B is "bigger than' and vy is "to the left of". Now suppose

that a set of relation {otl}i€ on S are all binary decomposable. Then it

I
may be possible to generate new relations from them by using only ordinary
set theoretical operations, l.e., intersection, union, complement and sub-
, i 2 . . . ;
traction. For example,o U o may be interpreted as a relation which is
1 2 . . .
o” or a” on S. In this case it is very conceivable that most of these new
i
relations are not regular decomposable even though {a }ig 1 are: Therefore,
when we have a non-decomposable relation, it is very natural to replace it
by an equivalent set theoretical expression of other relations which are
. ; - ; i
decomposable. Among many possible expressions, a disjunctive forma = U a
ied
. . i~ . .
is better simply because at least o & a V i e J. But note that even this
disjunctive form is not unique.
*
Before going further, we need a new concept. Let A e (ak - a),

then each k—-ary component of A has to be identical to the corresponding k-ary

component of some member of a. Therefore it may be convenient to define
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the following term.

Definition: (k-ary covering) Let A e a C Sn, then for an m—ary

factor M the M-component of A is said to be k—ary covered by a set of rela-

tions {Ai} cs™ (k< ms n) if PL(A) £ PL({Ai}) Y k-ary factor L of M. When

k = m, it may be said instead that it is covered by {Ai}. Also note that
when m = n, the m—-ary component of A is A itself.

The approach to the decomposition of a general case suggested above
may be done as follows. For each A ¢ (uz ~ o), those members which k-ary
cover A are divided into different subrelations ui so that A is not con-

i

\ . i* A . . .
tained in (o )k anymore. We choose a disjunctive form o~ which satis-

.U
igl
- » » s 3 - *

fies the division requirement of covering relations for each A ¢ (uk - ).

R
Then o = i\gl(al)k. The following example illustrates the process.

Example 3.7 1In Example 3.5 let us name the members as

A1 = (2,1,3,1) and B1 = (2,3,1,1)
A, = (2,3,1,2) B, = (2,3,3,2)
Ay = (4,3,1,1) B3 = (4,3,1,2),
A, = (4,3,3,2)

A5 = (4,4,1,2)

*
then q, = {Bl’BZ’BB} U o where o = {Al’AZ’AB’AA’AS}'

Let us express the binary covering of each Bi by a conjunction
of members of o, such that each term of the conjunction is the disjunction
of Aj's which cover the corresponding binary component of Bi:

1) Bl = A2 A AZA A1 A (A2 v A3) A A3 A A3 = A1 A A2 A A3,

9 AZ A Al A A1 A A2 A A4 A (A2 v AA) A A4 = AlA A2 A A45

3= (Bg v A A (Ag vAD A, vAD A (A) v A A Ay v A A (B vhg)

(2) B

il

(3) B

(1) dindicates that Al’ A2 and A3 cannot be in the same subrela-

tion. (2) indicates that Al’ A2 and A cannot be in the same subrelation.

4
And (3) indicates that Ag, Ag, Ay and Ag cannot be in the same subrelation.
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Therefore, for example, let ul = {Al’AB’AS} and az = {AZ,AA}, then ol =

% *
(ocl)2 and uz = (az)z, which gives us a binary decomposition of o, a =

* *
(ul)z V) (az)z. The diagrams of o and its two subrelations ul and az are
shown in Fig. 3.9. /11
1 2
Q 64 o
S S S S S S S S S S S S
1
2
3
4

3.3 Characterization of Decompositions

In this section we will be concerned with decomposability, that
is, whether a given relation is k-ary regular decomposable for a certain k,
when it is decomposable, and the like. Before we go into general cases,
it may be beneficial to have the results of the following simple cases
which will provide a rough guidance to this section.

Definition: A binary relation o is said to be a function if
a, # b2 implies a; = b1 v (al,az),(bl,bz) £ O .

Lemma 3.2 For a ternary relation o C 83, if there is an A € &;
such that A ¢ o, then Eai > 2 and all binary partial relations and their

inverses are not functions.
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*
= £ a
Proof Let A (al,az,a3) € ay and A ¢ o, then Pij(A) Pij( )y v

. . . P R S § .
i,j. This means that there are Al’AZ’A3 ¢ awhere Ai = (al,az,aB), i=

1,2,3 such that

11
(al,az)

2 2,
(al’aB) - (alsa:)))’

(al,az),

3 3, _
(32 ,3'3) - (32333) .
Suppose that A; = A,, then Ay = A2 = A. HenceAeo, which is a contradic-
tion. Similarly, if any two of Al’ A2 and A3 are the same, A € 0O, which
contradicts the assumption that A £ o. Therefore lui > 2.
. . 1 1 2 2 3 3 1 _ 3
Since A, € oV i, {(31’32)’(al’a2)’(a1’a2)} e o, where a; = a) =
d - 2 = Suppose az = a then we h ( 2 22 2) =
a, and a; = af a;. PP 2 2o ave (a;,a,,a3) = (a;,2,,
. 2 2, _ . 1 2 .
33), hence A ¢ a since (al,az) = (al,az). Therefore, since a, # a, while
2 . . o - .
a; = a;, o, is not a function. Similarly %, cannot be a function. By
symmetry, the two other partial relations and their inverses are not
functions.

Q.E.D.

Definition: It is said that there is a functional dependence from

o to o, denoted by o = as if V AAY ¢ o A # A" implies PL(A) = PL(A‘).
If there is not a functional dependence from QL to o, we will use the nota-
tion o 7 .

Lemma 3.3 For a 4—-ary relation ol 84, if there is an A € d;
such that A £ o, then |a| > 3 and for each ternary factor L of (1,2,3,4)
oy #= o for any binary factor L' of L.

*
Proof Let A = (ai,az,a3,a4) € Qg and A ¢ o, then Pijk(A)S Pijk(&)

s . i i i i
Y i,3,k. This means that there are Al,Az,AB,AAE;q where Ai = (al,az,aB,aA),

i=1,2,3,4 such that
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11 1,

(31532’33) = (31:32333):
2 2 2,

(31332934) - (alsazaa4))
3 3 3,

(al,a3,a4) = (al,a3,a4),

Lo & b
(32933334) - (azaa3aaa)°

Suppose that A1 = A2, then A1 = A2 = A, therefore, A ¢ o, which is a con-

tradiction. Similarly, if any two of Ai's are the same, A ¢ o which contra-

dicts the assumption that A ¢ a. Therefore ]al > 3.

, 1 1, , 2 2
Since (al,az) = (alsaz) (al,az)s

1 1, _ ,.3 3, _

(al’a3) - (al’a3) - (31933),
11, 4 4

(32933) - (32333) - (32583)’

1 2 X _ _ .
ag # ag. Otherwise A = A1 = A2 € o. Therefore Qg > ayg93° Similarly

it can be proved that Gy3s CGog F> o And by symmetry the rest of the

123°

cases can also be proved.
Q.E.D.

In the previous section the concept of covering was introduced and
it was pointed out that even if a member A of a; is not a member of a, there
exist a set of {Ai}ij(xwhich k~ary cover A. We have the following condition
on such a set {Ai}.

Lemma 3.4 If A € (az - a) and A is k-ary covered by {Ai}iiq,
then

[{Ai}l > kt+l.

Proof Since A ¢ (a; - o), A# Ai Y Ai e a. Obviously A # Ai iff
33 5}aj # a? where A = (81’32"°"an) and Ai = (ai,aé,...,aé). Therefore
there must exist at least one aj(i) which does not appear in Ai for each Ai'
Let us consider the best case, that is, each Ai is different from A just
at one domain j(i). Suppose without loss of generality that A and Al differ

i
only at domain 1, i.e., aj# a% and ag = aj v i # 1. Then the number of
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n~1
k-1

these (2:;) k-ary components whose first element is ay have to be covered

k-ary components of A which are not covered by Ai is ( ) . Therefore

by other Ai's. Let A2 be a member with a% = ay. Az always exists since at

least (al,az) has to be covered by some Ai. Since A, # A, let ag # a, and
a§ = aj V 5 # 2, again without loss of generality. The number of k-ary
components of A which have not been covered by A2 among (2:;) k-ary compon-
ents above is (2:5) . Repeating this process, we eventually come to the
point where the number of k-ary components which are not covered by Ak
either is (ngk). Therefore we need one more member Ak+l to completely cover
A. Since Al’A2’°"’Ak+l obtained above is a best possible case, i{A%i z
k+1 in general.
Q.E.D.
The above process will be illustrated by the following example.
Example 3.8 Let a < 86 and A = (1,1,1,1,1,1) ¢ (a; - o), then

{Ai} = {Al = (2,1,1,1,1,1), A, = (1,2,1,1,1,1), A, = (1,1,2,1,1)} is a best

3
case obtained by the procedure described above, and {Ai} is shown in Fig.

3.10. That is each Ai
differs from A at only

one domain. Since Al

differs from A at do-

main 1, A is covered

by A1 except for (L,i)
components, i = 2,3,4,
5,6. Among them A2

covers (1,3),(1,4),(1,5) and (1,6)-components of A. Finally the remaining

(1,2)-component is covered by A,. Note that [{Ai}i = 3. /77
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The following is an immediate consequence of Lemma 3.4 on the
minimum number of members necessary for a relation to be not k-ary decompo-
sable.

*
Corollary 3.2 If q ;_ak, then ia} > k.

Now we go on to the characterization of regular decompositions.
Theorem 3.2 An n—-ary relation o C s” is k-ary regular decomposa-

ble iff for each A € Sn'E>PL(A) e o V k-ary factor L of (1,2,...,n), A € Q.
Proof

=) Ifa=az={Aes“‘

VAN .
| k-ary factor L PL(A) € aL}, clearly

the second half is true.
(=) 1f for each A ¢ st=> PL(A) e o Y k~ary factor L,A € a,

* * *
then o C a. On the other hand, o C R by Theorem 3.1. Hence g = oy -

Q.E.D.

The reader may notice that the characterization of the decomposi-
tion above is almost useless in practice because finding those A's which
satisfy the above condition is equivalent to checking whether or not o = u;.
Therefore a different and more practical method to decide the decomposabil-
ity of relations is needed. The following theorem is a generalization of
Lemmas 3.2 and 3.3.

Theorem 3.3 If 3 A ¢ (a;_l - o) for aC Sn, then for any {(n-1)-
ary factor L, o =¢»aL ¥ (n-2)-ary factor L' of L.

Proof Let A be covered by {Ai} including-{AI,AZ,...,An}, since

l{Ai}l > n is guaranteed by Lemma 3.4, such that

_ (.0 1 n n
(al’aZ"°"an~1) (al’aZ""’an—l) and a_ #+ a_s

_ n-1 n-1 n-1 n-1 n~-1
(al,az,...,an_z,an) = (a1 P L L )} and a1 # a_1»

-

: 1 1 1 1
(az,a3,...,an) = (az,a3,...,an) and ay # aj-
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( n~-1 n-1 n-1

"an—Z) = (a] Ha, Theena

Then (al,a ) but a§~l 4 an~l because

A n-1

otherwise A € a. Hence alZ...(n—Z) F= alZ...(n—l)’ Similarly we can show

that o %§'a12...(n~1) for any other (n-2)-ary factor L' of (1,2,...,n~1).

L!
Furthermore, by symmetry, for every other (n-1)-ary factor L oy #= o 14
(n~2)~ary L' of L. Q.E.D.
By simply negating the statement of Theorem 3.3 we have the follow—-
ing corrollary. However we give an alternate proof using Delobel and Heath's

corollary which was stated in Section 3.1.

Corollary 3.3 1If there exists an (n-1l)~ary partial relation g

L
of o such that apr o for some (n-2)-ary factor L' of L, then the n-ary

relation ¢ is (n-1)-ary regular decomposable.
Proof Suppose that L = (1,2,...,n-1) and L' = (2,3,...,n-1),
without loss of generality. And let M = (2,3,...,n), then L N M = L',

Hence a;, % a,, = a by Delobel and Heath's corollary since g

L M Lt = ap by the
%
hypothesis. Then since g = ap kO :)an~l — o because L and M are (n~1)-
%
ary factor, o = aLq

Q.E.D.

3.4 Examples

Next we will decide the binary regular decomposability of two
ternary relations described earlier in Chapter 2, which we restate below
for convenience.

A "between" relation g is a ternary relation g < S3 which satis-
fies the following properties:
(1) (a,b,c) ¢ B = a,b,c are all distinct (anti-reflexive),
(2) (a,b,c) € 8 == (c,b,a) ¢ B(weak symmetric),

(3) (a,b,c),(b,c,d) ¢ 8 == (a,c,d),(a,b,d) ¢ 8 (compositional transitive),
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(4) (a,b,c),(a,c,d) ¢ p = (b,c,d) ¢ g or (b,d,c)e¢ g but not both,
(5) (a,b,c),(a,b,d) ¢ B ==>(b,c,d) € B or (b,d,c)e 8 but not both.

A "triangle" relation t is a ternmary relation 1 C 83 which satis—

fies the following properties:

(1) (a,b,c) € T == a,b,c are all distinct (anti-reflexive),

(2) (a,b,c) ¢ T = all its permutations are in t (strong symmetric),
(3) (a,b,x),(a,y,c),(z,b,c) € T = (a,b,c) ¢ 1 (chain transitive).

Example 3.9 First, a "between" relation is not always binary
decomposable. We give an example. Let B = {(1,2,6),(6,2,1),(3,2,4),(4,2,3),
(4,5,6),(6,5,4)}, then apparently B is a "between" relation on § =
{1,2,3,4,5,6} and the diagram of the corresponding set of points on a plane

is shown in Fig. 3.11. Its binary partial relations are:

B, = [(L2)), By5 = [(L2D)), Byy = [(2,D)]-
(3,6) (3,4) (2,3)
(4,2) (4,3)L (2,4)
14,5 1(4,6) Y2,6)
(6,2) (6,1) (5,4)
(6,5) ] (6,4) (5,6)

Therefore £ = { (4,2,6),(6,2,4)} U B # ¢.
/1]
Theorem 3.4 A "triangle" rela-
tion t is binary decomposable.
Proof Suppose that 3 A = (a,b,c) ¢ (Tz - 1), then, from Lemma 3.2,

there must exist Al’AZ’AB e 7 such that

>
i

(a,b,x) and x # c,

g
[

, = (a,y,c) and y # b,
A, = (z,b,c) and z # a.

But then (a,b,c) € T by the property (3) of "triangle" relations. Hence
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* *
A £ 1 which is a contradiction. Therefore Ty C 1, that is Ty = T,

Q.E.D.



CHAPTER IV

SYNTHESIS OF RELATIONS

4.1 Introduction

In the previous chapter we considered the decomposition of
relations. And we have seen that some relations are decomposable while some
others are not, and finally we have determined when they are. 1If a relation
is decomposable, of course we want to decompose it into lower rank relations
so that we can have simpler relations. However a question arises: how the
replacement of the relation by its decomposition affects other matters. For
example, one may want to make sure that the original relational system

(s, {ai}ial) is the same as the new relational system (S, {ag} ) by some

jed
necessary criteria. We will not approach directly these problems induced by
decompositions. Instead we will study them in a more general form, synthesis.
Synthesis is the converse problem of the decomposition described in Chapter
3. That is, synthesis is a way to construct a higher rank relation from a
given set of relations.

The structure of this chapter is as follows. First, synthesis
is defined in Section 4.2 and various types of syntheses are classified by
placing restrictions on the mapping. Next, Section 4.3 is concermed with
the relation between decompositions and syntheses. In Section 4.4, after
defining a relation space as the set of all relations that can be constructed
from a set of relations, we conclude that decompositions do not reduce the
relation space of the original set of relations. Another important problem

related to syntheses, the compaction of relations, is discussed in Section

4.5. Given a set of relations, what is the lowest ranked relation which
53
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represents them? Since each original relation has to be retrieved from the
new relation, the synthesis should not lose information. In some cases this
problem is important since, from the data structure point of view, up to (;)
different binary relations can be compacted into one n—ary relation which

may provide a great deal of reduction in the storage space of the information.
Finally the properties defined in chapter 2 which are preserved through

decompositions and syntheses are summarized in Section 4.6.

4.2 Syntheses of Relations

Although there are many ways to comnstruct a relation from a set of
relations, we want to have something that is considered to be the converse of
decomposition. For example, we want to construct a higher rank relation from
a set of given relations in such a way that the original relations are obtain-
ed directly as the partial relations of the constructed relation. 1In this
section, however, we define the most general form of these comnstructions,
called syntheses, and later we will place restrictions on them to obtain more
useful results. First we need more terms.

Definition: Let ¢ = {(al,az,...,an)} be an n-ary relation and 7 be
a permutation of the n-tuple (1,2,...,a ) i.e. (7(1),7(2),...,7(n)), then
we call m(a) = {(aﬂ(l)’aﬂ(z)""’aﬂ(n)) l (al,az,...,an) e a}l a permutation
of a (by m).

Definition: Let o, B be two n—ary relations on S, then we say
that o and B are equivalent, denoted by o = B, if @ is a permutation of B by
some T, i.e. 3 m=a =7 (B). If @ and B are equivalent, © is an equivalent
of B and vice versa.

Definition: A relation o is derivable from a relation B if o is an

equivalent of some partial relation of B.
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Now we define a synthesis as follows.

Definition: (m-ary synthesis or simply m-synthesis) Let Q =

1 2 n . .
{a”, a“,...,0 } be a set of relations of not necessarily the same rank on S

and ¥ be a set of non-void factors of (1,2,...,m), i.e. I = {(il,iz,...,ij)!l

2

< 1 <

1< iz vee < ij < m}, we generate a new set of relation O = {BIB = 7(a)
for some 7 and a € Q} U {S,Sz,...,Sm}. Now let ¢ be a mapping ¢ : I —> Q
such that if L € £ is a k-tuple, then Y(L) is a relation of rank k in Q.

Then the (type 0) m—synthesis of Q by y, denoted by y(Q), is an m-ary rela-

tion on S defined by ¥(Q) = {A e 8™ | P (&) e v@ YV Lez}={(a,ay,..05a)

| v O PARTRRE AL z[(ail,ai bevesdy ) € w((il,iz,...,ij))}}.

2 h|
Definition: In a synthesis ¢(R), each L €I is called essential if

i , , i i .
there exist uls 2 such that P(L) is a permutation of o, and each o £ Q is

)

also essential if there exists K € I such that ¢(K) is a permutation of aj

Otherwise they are non-essential.

Note the generality of the above definition. For example y(Q) may
be ¢ or s™ itself, even if Q is not empty. One of the reasons for this
generality comes from the fact that all ai's in Q may not be essential in
the synthesis Y{Q). Various syntheses related to decomposition and compac-
tion will be studied in the other sections. In this section we confine our
attention to the mapping itself. First we look at an exmaple of a
synthesis.

Example 4.1 Let @ = {o,B} where o ={ (1)} and 8 = {(1,1),(1,2)}
on S = {1,2}, then Q = {a,B,B—l} U {S,SZ,S3} and £ ={(1),(2),(3),(1,2),(1,

3),(2,3),(1,2,3)} for m = 3. And let the mapping y be defined by
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P a,2,3) — S
(1,2) — 8
1,3) — S
(2,3) — 8
1) — «a
(2) — 8
(3) — s,
then the 3-synthesis of Q by ¢ is easily worked out, and

p@)={ (a,b,c) I(a,b,c) £ 83 A (a,b) € B a(a,c) ESZ A (b,c) € 8—1 A (a) £ a

(b)e S A (c) € S} (L)
= {(a,b,c) |(a,b) € B A (b,c) ¢ g7t (a) e o} (ii)
= {(19131)3(192:1)}° ///

In the above definition of an m—synthesis a set of dummy relations
{s, Sz,..., s™ }is added to the co-domain of Y so that ¢(x) is defined for
all x ¢ ¥ without affecting what the essential factors do in the synthesis.
This point can be seen clearly in the above example. That is, the specifi-
cation (i) of ¥(Q) is exactly the same as (ii) since ¢((2)), v {3, ¥((1,3) and
9((1,2,3)) do not contribute to specify yY(2) at all. Let us change $({2,3))
from B-l to S2 and leave the others unchanged in the new mapping ¥', then
the new synthesis ¥' () is {(1,1,1),(1,1,2),(1,2,1),(1,2,2)} which is
equivalent to {(a,b,c) | (a,b) € B o ¢ ¢ S}. This case may be of interest
because P(R) could be constructed by a 2-synthesis instead of a 3-synthesis
and by concatenating S with it. Similarly, if the essential factors do not
overlap, the synthesis could be obtained from the natural join of syntheses
of lower ranks. Suppose,in the above example, that the essential factors
are only (1) and (2,3) such that $((1)) = o and ¥((2,3)) = B, then Y(Q) could

be obtained by the natural join of a l-synthesis and a 2-synthesis.
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Definition: An m-synthesis ¢(Q) (m 2 2) is type 1 if every
binary factor of the form (i,i+l), i = 1,2,...,m1, is covered by essential
factors.

Definition: An m-synthesis $(2) (m 2 2) is type 2 if every binary
factor is covered by some essential factor.

Definition: A k-ary factor is called quasi-essential in an m-

synthesis if each (k-1)-ary factor of it is either essential or quasi-
essential.

Definition: An m-synthesis ¢(Q) (m 2 2) is type 3 if each (m-1)-
ary factor is quasi-essential.

The following example illustrates the differences among the syn-
theses type 0, type 1, type 2, and type 3 defined above.

Example 4.2 Let g = {a,B} where o and B are ternary and binary

relations, respectively, on S = {a,b} such that

o = (a,a,b) and B = (a,a) s
(a,b,a) (a,b)
(b,a,a) (b,a)
{(b,a,b)

2.3

then © ={all permutations of a and B} U {8,87,S ,84} and T = {(1),{2),...,
(1,2,3,4)} for m = 4.
Let us define mappings wo, wl, wz, and w3 as follows (in each

mapping the factors except for those indicated below are all non-essential

and omitted for clarity):

woz (1,2,3) —> a wl: (1,2,3) —> a
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wz: (1,2,3) — a ¢3: 1,2,3) —> a
(1,2,4) — o (1,2,4) — a

(3,4) — B (1,3,4) — o

(2,3) — 8

(2,4) — B

(3,4) — B

The diagrams of the coverings of binary factors by essential fac~-

tors are shown in Fig. 4.1.

1 4 ~ T G T )
| IR
1 N /\
' j | A A /4 !
| ! | <
., ‘ ! ",/‘(: N ‘/: I
2 3
Yo vy ¥y Vg

Fig. 4.1

Obviously the syntheses wo( 2, wl(Q), wz(ﬂl and wB(Q) are type 0,1,
2, and 3, respectively. It is easy to verify that the four syntheses yield

the following 4-ary relations:

wO(Q) = [(a,a,b,a)) wl(ﬂ) = ((a,a,b,a)
(a,a,b,b) (a,b,a,a)
(a,b,a,a) <(a,b,a,b)}
*(a,b,a,b)} (b,a,a,b)
(b,a,a,a) \(b,a,b,a)
(b,a,a,b)
(b,a,b,a)
(b,a,b,b)
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v, () = [(a,b,a,a) V(@) = {(b,a,a,b)}.
(b,a,a,b)
(b,a,b,a) /1]

The following special kind of syntheses may be also of interest.

Definition: An m-synthesis ¢() is called k-regular if every k-ary
factor is essential and all other factors are non-essential.

Note that a k-regular m-synthesis (k 2 2) is always of type 3 and,

hence, is a special case of type 3.

4.3 Loss~free Syantheses

In this section we consider the relation between decompositions
and syntheses. Since a decomposition is the representation of a relation by
a set of lower rank relations, there always exists a synthesis which yields
the original relation from the set of relations. Is the converse also true?
In other words, suppose that a = (), then does the decomposition of «
give exactly the same set of relations as (i? Obviously not. First of all,
if some relation of § is not essential in ¢, then it cannot be expected that
the relation is derivable from a.

Definition: A synthesis ¥(R) is said to be full if each relation
of Q is essentiall

Therefore a full synthesis ¥(Q) is one in which every relation of
the given set of relations participates in constructing the relation V().

Since, in an arbitrary set of relations, some relation may be an
equivalent of another and some may be derivable from another, the following
definition of a normal form will be useful. Let E be the set of all elemen-
tary relations in a given set of relatioms, {, i.e., E = {a* l a e Q},

then we can partition E by the equivalence relation induced by the relation
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"equivalent (=)', i.e., a = 8 if 3 a permutation m= o = m(B). Let us
denote the set of the equivalence classes by [E] and each class of [E] by
[B] where B is a representative of the class [6].

Definition: The skeleton of a set of relations 2, denoted by Q*,
is the collection of class representatives, i.e., Q" = {8 | [g] ¢ [E] 1.

*
If 0 =Q , we say that & is in a skeleton form.

Now let us assume further that o = P(Q) is full and in a skeleton
form. In general, it is still the case that not all relatioms in & can be
obtained by decomposing o. Therefore we need to distinguish the following
special syntheses from others.

Definition: A synthesis y(R) is loss-free (lossless) if each

essential relation is equivalent to the projection of ¥ (&) corresponding to
its essential factor, i.e., PL(w(Q)) = p(L) V essential factor L.

Example 4.3 Let & = {a,B,y} where o, 8, and Y are specified as:

a= {(,1,2)], B = {(2,1) , v = {(2,2)}.
(2,1,2) (2,2)
(2,2,1)

Let a 4-synthesis be defined by ¢ as follows:

Y (1,2,3) — a
(1,4) — v

and let all other factors be non-essential.
Then () = {(2,1,2,2)} . Therefore p(Q) is not lossless since a, B are
not derivable from y(R). Only y = w(ﬂ)l’4.

Next let a 5-synthesis be defined by ' as follows:

111'1 (1’2) —> Y
(334a5) —> O

and let all other factors be non-essential,




