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Introduction

A queueing network is a network of arbi-~
trarily connected queues. In analogy to a
computer system we shall refer to & queue of
"jobs.' Each queue of jobs is serviced by one
or more “"devices.” A job that finishes service
in one queue may leave the network or join
another queue. In an open network jobs enter

the network from exterior gources, and leave the

network and go to externmal ginks. In a closed
network, the number of jobs in the network is a
constant; jobs do not enter or leave the network.
The number of jobs in a closed network will be

called the level of multiprogramming.

a) Contributions of this paper

(1) Local Balance

Queueing networks have been widely used in
modeling computer systems LI, 2, 3, 4, 5,6, 7,
87. Steady state probabilities for specific met-
works have been obtained by solving balance
equations. The balance equations equate the
rate at which a Markov process enters a state to
the rate at which the process leaves that state.
The number of states and the complexity of the
balance equations increases rapidly with the
jevel of multiprogramming. We shall hereafter
refer to these balance equations as global
balance equations. We define a new set of
balance equations called local balance equations
which equate the rate at which jobs enter and
leave & single queue of the network. In other
words, local balance is concerned with a local
area: a queue isolated from the rest of the

network. Local balance is a sufficient but not
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necessary condition for global balance. We shall
show that it is possible to trivially analyze
certain classes of networks using the concepts of
jocal balance. Networks where local balance does
not hold will also be discussed.

(1i) Exponential Service Distributions and
Poisson Sources

Networks in which all devices have expomen-
tial service distributions and sources (if any)
are Poisson, and in which queues have infinite
capacity can be analyzed using local balance.
Jackson's results 157 and those of Gordon and
Newell 127 follow easily from local balance.

(iii) Geometric Service Distributions and
Binomial Sources

These networks can also be analyzed using
local balance. k
(iv) Processor Sharing Discipline

A processor sharing discipline is the limit-
ing case of a round-robin fixed quantum discip-
line, as the time quantum and switch times get
arbitrarily small, We have shown that for compu-
ting steady-state Qrobabilities, utilizations
throughput etc., in a network, a queue with a
processor-sharing discipline and any service dist-
tribution with a rational Laplace transform,
behaves in exactly the same way as a queue with a

first-come-first-served discipline and an gxponen-

tial service distribution with the same mean.

This is an important result because it shows,
that for the computation of steady-state probabi-
lities, the only relevant parameter in & service
distribution with a rational Laplace transform is
the mean value, provided a processor-sharing
discipline is used. Median, mode, variance,
Laplace transform, etc., are totally irrelievant.
Basketg[iT and Palacios 237 have obtained the

same result but for very specific and limited



networks. Buzen 137 has discussed the importance Analvsis of Closed Networks with Exponential
Sexvice Distributions
of studying the processor-sharing discipline. _

(v) Last Come First Served Preemptive Resume Consider a closed queueing network in which

Discipline all jobs enter at an origin, pass through a net-
In this discipline a job that enters a queue, work, reach a destination and are recycled back
preempts the job (if any) which is currently to the origin, see fig. 1. Let pij be the proba-
getting service; the new job immediately starts bility that a job which finishes service in queue
getting service. This discipline is gimilar to i then joins queue j. Let there be M queues in
many priority schemes in which the latest job has all. Let BTERM(i)--Branch TERM for queue i--be
the highest priority. We have shown that a queue the probability that a given job passes through
in & network, with this service discipline, and queue i on its passage from the source to the
any service distribution which has a rational sink. Clearly BTERM(i) = 1%~BTERM(j) . pji'
iaplace transform, behaves in the same way, as far Let the level of multiprogramming be N. A
as utilizations and throughput are concerned, as state of this system is an M-tuple (nl, Oys oo
a queue with an expomential service distribution. nM) where n, is the number of jobs waiting for,
In this case too, the only relevant parameter of or getting service in queue i. Of course,
the service distribution is the mean. This disci- ny + ..+ o, = N. The system can transit out of
pline is potentially very importént because the this state into (nl, ey Oy - 1, +ep, m, +1, ..,
change in throughput obtained by using this disci- nM) if pij:>0' The system can transit into this
pline is the same as from processor sharing. It state from (nl, ees By +1, .., nj -1, nM) if
also has less overhead than round-robin fixed Py % 0. Global balance is concerned with all
quantum, in some systems. the (M) different ways a state may be entered, and
(vi) Design Automation, Algebraic Symbol Manipu- the (M) different ways in which a state may be

lation and Queueing Theory departed from

We have partially completed a program which Local balance is concerned with a single
will accept as input, ? network, with the para- queue in the network. Consider a state Si =
meters of the network specified algebraically or (kl, ves ki-l’ ki + 1, k1+1, aesy kM) where
numerically. For instance, the expected service k1 + ..+ kM + 1 = N, We shall refer to the kr
time of a device may be specified by an algebraic jobs in queue r, r = 1, .., i, .., Mas ceteris
term (such as 1/u) or as a number. The program paribus jobs, or "stay-put" jobs. We shall call
will output relevant characteristics of the net- the additional job in queue i, the peripatetic
work, such as device utilizations, either as an job, These designations are somewhat arbitrary,
algebraic expression, or as a graph. Though the but useful in understanding local balance. We
types of networks which will be analyzed by the shall assume that kr’ r=1, .., M are non-
system, will be limited initially, to the classes negative.
of networks discussed above, we hope to generalize Consider the rate at which the system leaves
our system as we get additional theoretical re- Si DUE TO THE MOVEMENT OF A JOB OUT OF QUEUE i.
sults on different kinds of service disciplines. Thus we are only considering tranmsitions out of
However, the system will be able tz_gnaizfe most Si into Sj where Sj = (kl’ aes kj-l’ kj + 1, kj+1’
of the models studied in Baskett /1/, /2/, Buzen, ves kM). Note that in these transitions the
13/, 157, Palacios 137, Jacksoq[é?, and Gordon ceteris paribus jobs stay put, while the peripate-
and Newell 127. A description of a first pass tic job jumps out of queue i and into another
at such a system will appear in 1§7. queue. If queue i is served by a single device

(with an exponential service distribution), with

expected service time l/ui, and if the steady-
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state probability of being in state Si is P(Si)’
then the rate at which the system transits out of
Si due to the movement of a job out of queue i is
P(Si) . Uy
Consider the rate at which the process enters

~Si due to the movement of a job into queue i. Thus
we are considering transitions from Sj into Si
where, once again, the ceteris paribus jobs stay
put and the peripatetic job jumps from queue j
into queue 1. The net rate at which the process

enters Si due to the movement of a job into queue

i ist_P(Sj) . uj. pji

Local Balance: The rate at which the
process enters a given state due to

the movement of a job into a given
queue is equal to the rate at which

the process leaves that state due to
the movement of a job out of that queue.

Clearly local balance is a sufficient but not
necessary condition for global balance. In our

example local balance is

b .
P(Sj) . uj p

3 = P(Si) . u

i L

The Ceteris Paribus Equation

Let R{,...,) be the functional form of the
steady-state probabilities, i.e.
P(nl, ces nn) =R(n1, eesy nM) if (nl, vey D.M) is
a feasible state

= 0 if (nl, ves nM) is infeasible

We will show that for many systems, the rate at
which the process leaves state Si due to the move-~
ment of a job out of queue 1 is E . BTERM(1),
where E = R(kl’ ves kM)' E is called the ceteris
paribus term.
the steady state probabilities but of course

(kl’ ey kM) is not a feasible state since kl + ..
+ kM # N. The ceteris paribus term is concerned

E has the same functiopnal form as

with the ceteris paribus jobs. In our example
P(Si) cuy = E . BTERM(i). This equation will be

referred to as the ceteris paribus equation,

Lemma: A sufficient condition for global balance
is that the ceteris paribus equation hold for all
queues in the network.

Proof: 1f the ceteris paribus equation holds then

local balance holds, since the left hand side of
E .BTERM(J) . Pys
and the right hand side is E . BTERM(L), and we
know that ZjBTERM(j) - Py = BTERM(1).

Let PTERM(i) = 1/ui, where PTERM is the pro-

Then in a closed

the local balance equation is

cessing term for device i.
network, the functional form:

R(n,, .., mp) = NORM jjl fererv() BTERM(1Y "1
satisfied the ceteris paribus equation, and hence
is the steady-state probability.

We will now present the functional forms for
steady-state probabilities for different kinds of
networks . Lack of space prevents us from deriving
the functional form from the ceteris paribus
equation in each case; however, it is easy to
verify that the ceteris paribus equation is satis-
fied.
extension to open networks is straightforward and
is found in [157.

We will only consider closed networks., The

(1) Geometric Service Distributions, Closed

Network
Let the probability that the service time

in device i will be exactly k units long be

k-1
(1'Pi) P
job which finishes service on queue i joins queue
4. Let BTERM(i) be defined as before. Then

= n

R(a,, --, m,) = NORM J frerece) . pTERMAO}"L
where PTERM(1) = 1/?1.

(i1) Exponential Service Distributions, Closed
Negworls

Let pijbe the probability that a

Same form as above, with PTERM(i) = 1/“1'

Exponential Network Distributions

A service time distribution may be represent-
ed as a network of interconnected exponeptial
stages, where the time spent by'a job in the ith
stage has an exponential distribution with mean
value 1/v,. A job starts at an entry oint,
traverses the network, and then finishes its ser-
vice when it reaches the exit point (fig. 2). The
network may have several branches, and the path
that a job traces through the program may vary
with each service. We will assume that there are
no loops in the network; a job can visit a stage
at most once on its path from the entry point to

the exit point. Each stage in the network distri-



bution may correspond to a task in a program, and
a branch point in the network distribution may
correspond to a conditional branch in the program.
On the other hand, the stages and branches of the
network distribution may be quite arbitrary and
have nothing to do with program structure. Dist-
ributions which can be represented as a finite
network of interconnected exponential stages will
be called (EN) (Exponential Network) distributions.
Note that the class of EN distributions is very
rich and includes hypo- and hyper-exponential
distributions. Any distribution with a rational

Laplace transform is an EN distribution.

Processor Sharing

1f a device is being processor shared, then
if there are K jobs awaiting service from the
device, then each of the K jobs is serviced at
1/K times the rate of a single jéb serviced on the
device by itself., Consider a closed queueing net-
work in which all devices are processor-shared and
all service distributions are EN distributions.
A state of the vector is a set of M vectors
§= (yl, crs Fis oevs yM), where vy = (xil’ ves
xij’ ees xiQ) where xij
stage j of queue i. Let Ki =

is the number of jobs in

xil + ..+ xiQi.

Then all Ki jobs are being simultaneously process~
ed by the device.

The local balance equation is in terms of
stages rather than queues: the rate at which the
process enters a given state due to the movement
of a job into a glven stage of a given queue is
equal to the rate at which the process leaves that
state due to the movement of a job out of that
stage of that queue. The rate at which the pro-
cess gets out of state S due to the movement of a
job out of stage j of queue i is P(S) . (x
/ Ki)'

Let BTERM(i) =--the Branch TERM for queue i--
be defined as before, i. e., BTERM(i) =>-’-j BTERM(J)

Let ATERM(i, j) be the probability that a

ij *
Vij

N
jobj;ets to stage j of queue 1 on its traversal
from the entry point to the exit point of the

EN service distribution of queue 1. Let pijk
be the probability that a job goes to stage k

of queue i after finishing service on stage j of
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queue i, Then ATERM(i, j) = Zi ATERM(i, k)

* Py
For ease of exposition we shall label the entry
point of all EN distributions with a O, and define
ATERM(i, 0) = 1.

The ceteris paribus equation for EN service
distributions is : the rate at which the process
leaves a state due to the movement of a job out
of stage j of queue 1 is E . BTERM(i) . ATERM({i,ji).
It is easy to verify that the ceteris paribus
equation is a sufficient condition for local
balance.

The following steady-state probabilities
satisfy the ceteris paribus equation'

< Q
BTERM(i) i {Amm(i j) . PTERM(:., j} ij

where K, = x_. + .. +x is the total number of

i il iQi
jobs sharing device 1, and PTERM(i,3) = (1/vij) is
the expected time in stage j of queue i. Note
that the form of steady-state probabilities is
very similar to that given for exponential service
distributions, and is quite simple. Furthermore,
»y i=1, .., Qi

= Ki’ we find that the probabi-

summing over all values of Xy

such that j%i xij

lity of Ki jobs in queue i, i =1, .., M is

vorv {prErmM(s) . BTERM@D)}FL where
Qi
PTERM(1) = Z{ATERM(:L i) . PTERM(i, j}, which
is the expected service time of device i. 1Im
other words, the steady-state probability is the

same as in an exponmential service distribution

with the same mean.

Last Come First Served Preemptive Resume
The states of the network are a set of M

vectors S = (yl, eos yM), where vy = (zil’ ey

zZn ) is a stack of jobs awaiting service in
i
queue i, z,

ij

the stack is in.

is the stage in which the jt"h job 'in
The topmost job in the stack
Thus 1if

1, 2) then there are three jobs in queue

is currently being serviced full time.
Yy F 2,
i; the job that is currently getting service is
in stage 2 of the EN distribution, the next job



{n the stack is in stage 1 and the lowest job in
the stack is also in stage 2. If a new job should
enter queue i, before the topmost job in the stack
finishes service, then the topmost job is preemp-
ted, and the new job enters the stack at the top.
The rate at which the process leaves state S
due to the movement of a job out of queue i is
P(S).u where 1/u is the expected time in stage ziq-
Steady-state probabilities which satisfy the cete-
ris paribus equation are -t
P(y e Yy = nor I, TERM(1) ijl‘i{ATERM(zij).
PTERM(zij)}
Once again, summing over all possible distinct se-
quences (zil"" 2101)’ we find that the steady-
state probability of n, jobs in queue 1, and n,
jobs in queue 2, and .., oy jobs in queue M is
noret L faTERM(1) PTERM(D} ™, where PIERM(L) is
the medn service time of device i. Once again, the

steady-state probabilities are the same as for an

exponential service distribution, with mean
PTERM(1).

Processor-sharing and last come first served

preemptive resume disciplines force nonexponential
cervice distributions to behave like exponential
distributions. This may explain why analysts have
found models of round robin fixed quantum disci-
plines to be scmewhat insensitive to service

distributions.

Networks Without Local Balance

Unfortunately many networks do not satisfy
local balance. For instance, if a device has a
hyperexponential service distribution, and a first
come first served service discipline, then it is
easy to show that local balance does not hold.
These networks must be analyzed using global bal-
ance. The analysis can be automated, but is ex-
tremely slow, and sometimes intractable.
Extensions of this work to other types of

networks is found in /10/.

Applicationsg

Many of the models of mulziprogrammed compu~
ter systems which have appeared in-the literature
are specific cases of the networks é;§3y2§d hére.
The concept of local balance and ceteris paribus

has pedagogic significance: it has been used in
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an undergraduate first course in systems modeling.
It was also used in computing the improvement in
throughput obtained by parallel processing in a

multiprocessing environment 17,
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