Approximate Analysis of Central Server Models with
Non-exponential Service Distributions,
Different Classes of Customers and

Priority Queueing Disciplines*

C.H. Sauer, K.M. Chandy
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

TR-45

ABSTRACT

Service time distributions at computer processing units are often
non-exponential. Empirical studies show that different programs may have
markedly different processing time requirements. When queueing disciplines
are first come first served, preemptive priority or non—preemptive'priority
models reflecting these characteristics are difficult to analyze exactly.
Available approximate techniques are often foo expensive for’parametric
snalysis. Inexpensive approximate techniques for solutiom of central
gserver models with the above characterié%g%s are presented. The results of

these techniques are validated with simulation results.

November 1974

*Research supported in part by National Science Foundation grants GJ-1084
and GJ 35109.

1. INTRODUCTION

Central server queueing network models have been widely used in the
analysis of computing systems. (1, 3, 13, 16, 17) These models assume that
a fixed number of customers (programs) traverse a closed network consisting
of the central processor (CPU) and the input/output (I/0) devices. A
customer alternately receives service erm the CPU and one of the I/0 devices.
A customer may have to wait in a queue if the server is busy. After completing
service at the CPU, a customer selects an 1/0 device according to broba-
bilities associated with that device and the given customer. These probabil-
ities are independent of the state of the system. The service time of a
customer on a device may depend upon the device, the customer, and the
queue lengths for that device, but is otherwise independent of the state
of the system. Figure 1 illustrates a central server model with three 1/0
devices.

Often the models used are such that gsolutions for the equilibrium
behavior can be determined using the techniques of local balance (2, &),
1f the model is to have first come first served (FCFS) queueing disciplines,
and if the techniques of local balance are to be used in the solution of
the model, then it musﬁ be assumed that, at the servers with FCFS disci~
plines, the service distributions are exponential and independent of the
customer being served. Local balance techniques do not allow priority
queueing disciplines.

Empirical studies on real computing systems show that CPU service
distributions are often hyper-exponential (the standard deviation is

greater than the mean) and that I/0 device service distributions may be

hypo-exponential (the standard deviation is less than the mean).

Studies (11) have shown that mean service times and service distributionms
are dependent on the customer being served. When one makes assumptions
that distributions are exponential and all customers have the same distri-
butions, significant inaccuracy may be introduced into the model. Clearly,
distinctions must be made between customers if priority CPU distributions
are considered. Therefore, (a) many realistic problems do not satisfy
iocal balance and (b) customer differentiation is often required for
realistic models.

Chandy, Herzog and Woo (5) have developed accurate approximate iterative
techniques for analysis of general queueing networks with non-exponential
gervice distributions and distributions dependent on customer class. The
jterative techniques of Wallace and Rosenberg (18) may also be used to
obtain exact solutions for models with non-exponential distributionms. The
techniques of Crane and Iglehart (8, 9) may be used to obtain confidence
intervals for simulation results for these models and thus to obtain
accurate simulation results. However, these techniques are relatively
expensive to apply. 1In many instances it will not be practical to survey
a large variety of models using these techniques.

We present here approximate solution techniques specifically intended
for, but not limited to, central server models of computing systems. Our
techniques are considerably less expensive to apply than the above mentioned
techniques, but are sufficiently accurate for the initial stages of computer
system design. Our techniques complement the previous techniques in that
ours can be used to study and compare a large variety of models, and then
more accurate, more expensive techniques may be used, to study more carefully,

a small subset of the original group of models.

 Section 2 of the paper vomaarizes centeal nerver wodels in local balance
and gives examples of inaccuracics of "local balance aspumptions.' Section
3 describes "Norton's Theorem'" on locally balanced queueing networks (6)
as applied to central server models. Our approximations are based on the
results of Norton's Theorem. Section 4 presents the approximations for
models with non-exponential distributions, section 5 presents techniques fdr
class dependent service distributions, and section 6 presents techniques
for models with priority CPU disciplines based on customer class. In section
7 we compare the results of our techmiques with results of simulations; our

tecﬁniques are validated by comparison with over 125 different simulations.

>

2. LOCAL BALANCE
A central server model willl be in local balance (2) 1if 1) branching
probabilities are dependent only on the device and the customer class, 2) all

queueing disciplines are FCFS, processor sharing (PS) or last come first served

preemptive resume (LCFSPRY, 3) servers with FCFS discipline have exponential
distributions independent of customer class, and 4) servers with PS or
LCFSPR disciplines have differentiable service distributions (which may be
dependent on customer class). In these models the equilibrium state proba~=
bilities will have the "product form," and are easily calculated (2). From
the state probabilities one can determine model statistics such as throughput,
gserver utilization, queue length distributions and waiting timé distributions.
The following example illustrates the inaccuracy which may be intro-
duced by using local balance solutions for models violating local balance
assumptions. This example is by no means a worst case, but illustrates that

results of assdming local balance are likely to be unsatisfactory. -

Suppose that a system to be modeled has one I/0 device and two classes

of customers, with one cuntomer per clasu. Furthcr, both smervice disciplines
are FCFS, all service distributions are exponential, the mean CPU aervice time
for class one is'2, the mean CPU service time for class two is .2, and rhe
mean I/0 service~time for both classes is l; Suppose we are ieterested 1A
- the overail.throughput of customers through the CPﬁ.. Tﬁis model is small'
enough that exaeﬁ solution of the Markov balance equations»is practical, and
from the solution of these equations the throughpﬁt is .5941, 1If we assume
‘that the results for a similar model with PS CPUbdiscipline wili be accurete‘
enough, the value we get for throughput will be .84 an error of more than
40%. 1f we apply the techniques of section 5, the value we get for throughput
is .6375, an error of about 7%.

Other examples illustrating the inaccuracy. introduced by local balance

assumptions are found in (5).

3. NORTON'S THEOREM APPL;ED TO CENTRAL SERVER MODELS

This section reviews earlier work on Norton's Theorem in subsection
3.1 and presents twe examples: in 3.2 a multiclass proﬁleﬁ is .presented, and
a single-class example isrworked out in 3.3. |

3.1 Norton's Theorem. ‘a discussion

Norton 8 Theorem (6) may be used to transform a central server model in
local balance into one with a single ' composire” I/O which represents the
combined effects of the I/0 devieee in the. original model at steady state.
lSee fig. 2. Values determined for equilibrium throughputs, server utiliza-
tions, and CPU queue length and waiting time distributions of the two-queue
model will be the same as those calculated for the original meaeli The
transformation 1s independent of the CPU parameters, s0 if a variet& of CPU
parameters are to be studied, effort may be saved by applying Norton's

Theorem and studying the reduced model as the CPU parameters are varied.

The approximation technique presented here is also especially well suited
for parametric analysis of the CPU.

In describing Norton's theorem we gshall assume without loss of genera-
lity that there are m classes of customers and exactly one customer of each
class. The composite 1/0 processes all customers in parallel in the two
queue, CPU-composite I/0 model. The composite I/0 service rate for the
customer of any given class i at any given time depends upon 1 and upon
the number of customers Nj of class jJ (Nj =0 or 1), j=1,..,m, in the compo-
site I/0 queue at that time. These composite I/0 service tates are determined
by analyzing a modified version of the original network in which the CPU
has been "shorted," i.e. the mean CPU service time for all customers is set
to zero. See fig. 3. The composite 1/0 service rate of a customer of any
given class 1, when there are Nj customers of class j, (Nj = 0 or 1), j=Llyees,my
in the composite I1/0 queue, is set equal to the throughput of the customer
in class i through the shorted CPU when there is a population of Nj customers
of class j, j=l,...,m in the shorted CPU model. The solutions of the .
two-queue, CPU-composite 1/0 model, with the séme CPU parameters as in the
original model and these queue-dependent composite I/0 service rates, will be
identical to those of the original model for the equilibrium statistics
mentioned above.

3,2 Example

Consider the following two-class example of a locally-balanced central-
server model with a processor-shared CPU and two I1/0s labeled 1 and 2, two
non-identical customers, one of class A and the other of class B. The class
A customer uses I/0's 1 and 2 with equal probability, while the class B

i
customer uses 1/0 § exclusively. The mean service time for each 1/0 is inde-

pendent of customer class. The mean service times for I/0s 1 and 2 are
1 and 2, respectively. All 1/0 service times have negative—-exponential
distributions.

Both class A and B customers are assumed to be gerviced in parallel in
the composite I/0 queue. The service rates for class A and class B customers
depend upon the numbers of class A and B customers in the composite I/0 queue.
We next discuss the computation of these rates by analyzing the modified
version of the original network in which the CPU has been shorted (fig. 3).
When only the class A customer is present in the CPU-shorted network, the
throughput of the class A customer through the shorted CPU is 2/3; when only
the class B customer is present the throughput is 1; and when both are present,
the throughputs for classes A and B are 1/2 and 3/4 respectively. The
composite I/0 service rates when there is one customer of class A and none
of class B in the composite I/0 queue is set to 2/3 for class A (and O for
class B); when there is 6ne customer of class B and none of class A the rate
is set to 1 for class B (and 0 for class A); and when there is one customer
of each class the rates are set to 1/2 for class A and 3/4 for class B.

The solution of the CPU-composite-I/0O model with the same CPU parameters as
in the original model and these queue-dependent composite I/0 service rates,
will be identical to the solutions of the original model for the equilibrium
statistics mentioned above.

3.3 Example 2 Consider the following single customer class example. A

locally balanced central server model has two identical customers and two
1/0 devices labeled 1,2. The probabilities that a oustomer will branch to
the ith 1/0 device, 1 = 1,2 are .5 and .5 respectively. The mean service
times for 1/0s 1 and 2 are 4.0 and 2.0 respectively. All 1/0 queues have the
FCFS discipline. With the CPU shorted and j customers in the shorted network,

j=1,2, the throughputs through the shorted CPU are 1/3 and 3/7 respectively.

7

In the twg—queue, CPU—composite—I/O model, the total service rates of the
composite I1/0 when there are j customers in the composite I/0 queue, j=1,2,
are set to 1/3 and 3/7 respectively. Equivalently, with all customers served
in parallel, the rate for each customer when there are j customers in the
queue is 1/3 for j=1, and (1/2) x (3/7) = 3/14 for j=2.

The equilibrium statistics computed for the CPU-composite-1/0 model with
the same CPU parameters as in the original model, and these queue-length
dependent composite 1/0 service rates, will be identical to the equilibrium

statistics computed for the original model.

4, TFCFS CENTRAL SERVER MODELS WITH NONfEXPONENTIAL SERVICE TIMES

We first discuss the overall technique generaliy (4.1), then study
composite 1/0 representations (4.2), present the detailed algorithm (4.3),
and finally work out an example (4.4).

4.1 Overview

We now restrict our attention to central server models with all customers
identical, FCFS disciplines at all servers, and arbitrary gervice distri-
butions having rational Laplace transforms. Even though this class of models
is not in local balance except when all service distributions are exponen-
tial, we shall apply Norton's Theorem and show that the composite I/0 model
yields solutions close to those of the original model. (In making the compo-
gite I/0 transformation we assumevthat the I/0 devices have exponential
distributions with the same means as the actual distributions. See example
below.) Chandy, Herzog and Woo (5) use an approximate application of Norton's
Theorem in their iterative method. In order to compensate for the inaccuracy
introduced, we adjust the distributions for the composite 1/0 to reflect
the non-exponential character of the actual distributioms.

After applying Norton's Theorem and adjusting the distributions, we

have a central server model with a single composite 1/0, with both service

distributions non-exponential. This model is solved by an efficient recur-
sive technique which is an application of the technique developed by Herzog,
Woo and Chandy (10). Their technique assumes distributions of the generalized
Erlang form developed by Cox (7). This generalized form includes arbitrary
distributions with rational Laplace transform. Our technique assumes that
both the CPU and the I/0 distributions are of this general form. Details
of our two.queue analysis are given in (15).

Our adjustment for the non-exponential nature of the 1/0 distributions
is simple and effective. More sophisticated adjustments could potentially
increase the accuracy of the final results. We characterize each I/0
distribution by its mean and c;efficient of variation (standard deviation
divided by the mean). For the means of the composite I/O distributions we
use the queue length dependent values as shown qgrlig;. We assume that the
composite I/0 coefficient of variation is the wéighted gsum of the coefficients
of variation of the individual distributions, with the weights being the 1/0
branching probabilities. The composite I/0 coefficient of variation is a
constant, independent of queue length. 0f course, the mean and coefficient
of variation do not completely specify the distribution. If the composite
1/0 coefficient of variation is greater than one, we assume that the composite
1/0 service time is a standard two stage hyper—exponential as in fig. 4. 1If
the coefficient of variation is one, we assume the service time is exponential.
1f the coefficient of variation is less than one, we assume the service time
is of the generalized Erlang form with the minimum number of stages necessary
to obtain the given coefficient of variation, all stages having the same mean,
and all branching probabilities zero, with the possible exception of the

branch after the first stage, as in fig. 5.

4.2 The Composite I/0 Distribution

We desire the composite I/0 distribution to represent the aggregate
of all the individual I/0 distributions. Intuitively, we expect the dis-
tribution of a given I/0 to influence the composite I/0 distribution more
than distributions of other 1/0s, if the given 1/0 processes more customers
than other 1/0s. We decided to restrict attention to the first two moments
to keep computation simple. The means of composite I/0 service times are
obtained by aggregating individual I/O mean service times via Norton's
Theorem. The composite coefficient of variation is obtained by aggregating
individual coefficients of variatiom , weighting each 1/0 by its branching
probability since 1/0 branching probabilities are directly proportional to
1/0 throughputs. Note that though the mean composite service time is
queue-length dependent, the coefficient of variation is not dependent on
queue length. Note also that if all the I/0s have the same coefficient
of variation, then the composite 1/0 will have that coefficient of variation
too.

The first two moments do not completely specify a distribution. We
decided to model composite service times using either two—stage hyperexpo -
»nential (fig. 4) or generalized Erlang (fig. 5) random variables since these
are common ways of representing service times in computing systems. Note
that the particular forms of the hyperexponential and generalized Erlang
random variables are such that the first two moments uniquely specify the
distributions. The selection of these particular composite 1/0 distributions
were made with modeling convenience and reasonability in mind; clearly other
choices could also have been made. However, note that if the, original model

satisfies local balance, then our technique gives exact results, since the

10

composite I/0 distribution obtained via our technique is the same as that
obtained via Norton's Theorem.

The hyperexponential

Let kC be the coefficient of variation of the composite I/0. We shall
use a standard hyperexponential random variable to model composite I/0 service
t¢imes 1if kc> 1. The relationship between kc and parameter p (fig. 4) of the
hyperexponential is .shown below:

k 2 +1 -““jl: -1
P = C e

z(kc2 + 1) (4,2.1)

Note that kc uniquely specifies p. The means for each stage of this
hyperexponential are uniquely specified by p and the mean composite service
time.

Mean of stage 1 = mean composite service time <f
2p (4!212)

Mean of stage 2 = mean composite service time
2(1-p) (4:2.3)

GCeneralized Erlang

Consider the generalized Erlang (fig. 5) with n stages, n = 2,3;450000
After a customer completes the first stage, he may finish service with
probability p, or he may continue through the remaining n = 1 stages with
probability 1-p. All stages have the same-mean time, and all stage holding
times are independent exponential random variables. By varying p from
0 to 1 the coefficient of variation ranges from 1/4n to 1. We wish to keep
the number of stages small to minimize computation. Hence, we shall
use n stages if and only if, l/"{ﬁ:fi)kc}_ 1/yn; The value of n 1s directly
determined from kc. n and kc together uniquely specify p. See eqn. (4.2.4)

below. The means for eath stage are uniquely specified by n, kc’ p and the

il

means of the composite I/0 service times.

2

2k + -2 - 0+t —bok®

- (4.2.4)
P 2k +1) (a-1)

mean composite service time
n - p(n-1)

Mean of each stage = (4.2.5)

In conclusion, the generalized Erlang and hyperexponential random
variables shown in figs. 4 and 5, are completely-specified by the first two
moments, and have a wide range of coefficients of variation. The parameters
p are independent of composite I/0 mean service times and the mean times
for all stages in both distributions are directly proportional to the
composite I/0 mean service time; this simple relationship is an advantage
in modeling queue-dependent service rates.

4,3 The Algorithm

We now present the algorithm after explaining some nofation. Let
there be R 1/0 queues indexed lyccesTyeessRe We shall use the subscript ¥
to denote the rth I/0 in the original model and the subscript c to denote
the composite I/0 in the CPU-composite~I1/0 model. Let P, be the proba-
bility that a customer branches to the rth 1/0 device after finishing CPU
service. Let k denote the coefficient of variation:'.kc for the composite
1/0 and kr for the rth I/0 device. We shall use the subscript 0 (zero)
for the CPU. Let Ur be the utilization and tr the throughput for the rth
queue, r= 0,1,...,R. Let Ar be the service rate for the rth 1/0 device.
Let q and W be the mean CPU queue length and wait times and let oq and g,
be the corresponding standard deviations.

ALGORITHM A
Step 1. Composite 1/0 service rates

Consider the given (non-locally-balanced) model. Construct the

12

shorted-CPU model in which all 1/0 service times are assumed to be inde-
pendent exponential random‘variables and the CPU service time is set to zero.
The shorted-CPU model satisfies local balance and can be analyzed easily.
Determine queue-dependent composite 1/0 service rates by analyzing the
shorted-CPU model.

Step 2. Composite I/0 coefficient of variation

R
2N
Compute kc = ié, k

‘P
ol r r

_ Step 3. Determine exponential stage representations for composite 1/0

service times from kc and composite I/0 mean service times.

If kc > 1 use standard hyper-exponential random variable., (fig. &)
1f kc = 1 use exponential random variable
If kc <1 use generalized Erlang random variable, (fig. 5)

Step 4. Solve the two queue, CPU-composite I/0 model.

The CPU parameters in this model are set to the same values as in
the original model. The composite I/0 parameters are completely and uniquely
specified by step 3. The two-queue model is completely specified. Analyze

this model to determine Uy, tg» Qy 0 W, and O .

Step 5. I/0 Utilizations

Compute t.= ty X Py forr=1, ..., R

Uratrlkr forr“l, nao,R

stop.

4,4 Example

Consider example 2 in section 3.3 except that I/0 1 has an exponential

service time, I/02 has a generalized Erlangian service time with a coefficient

13

of variation of .414 and the CPU has a standard hyper-exponential service
time with a coefficient of variation of 2 and a mean of 2. We shall now
follow through the five steps of the algorithm.

Step 1. The composite 1/0 service rates (from section 3.3) when there are

j customers in the composite 1/0 queue are 1/3 and 3/7 respectively.
Step 2. kc = (0.5 x 1.0) + (0.5 x 0.414) = 0.707

Step 3. Since kc < 1 the generalized Erlang representation is used.,
In this case n will be 2 and p will be zero. (The rate for each stage is

clearly twice the composite 1/0 service rate.)

Step 4. We now have a two-queue model where the CPU service time is a
two-stage hyper-exponential and the composite I/0 service time is a two-stage
Erlang. The balance equations for the resulting Markov states are solved

to obtain U, = .571, t

0 0

= ,286, EO = .837, ﬁo = 2.93

=t x 0.5 = ,143

Step 5. t, =t 9 0

L= o X 0.5=.143, ¢

U =t /A = STL Uy = ty/h, = 1286

stop.

5. TFCFS CENTRAL SERVER MODELS WITH CLASS DEPENDENT SERVICE RATES

This section is divided into three subsections. In 5.1 we discuss the
technique generally, in 5.2, the algorithm is presented and an example is
worked out in 5.3.

5.1 Discussion

In this section, we restrict ourselves to models with several classes
of customers, FCFS, all service distributions exponential, all I1/0 sexrvice

rates independent of customer class, and the CPU service rates dependent on

14

customer class (14). The assumption of class independent I/0 service rates
can be justified by observing that the largest portion of most I/0 services
is spent on primarily program independent operations such as acquiring
channels, positioning disk arms, and waiting for device rotation. The
techniques presented here have been extended to non-exponential CPU distri-
butions and can also easily be extended to non-exponential I/0 distributions.
They are extended to priority disciplines in the next section, using the
techniques of the previous section. Our techniques may also be extended

to other, more general models.

When we consider such central server models, even the reduced model
obtained by applying the ﬁorton's Theorem approximation to the 1/0 subnetwork
is difficult to analyze. As the number of classes and/or the numbers of
customers per class attain even moderate values, e.g. 4, the analysis becomes
too complex to be of practical value.

To reduc; the complexity of analysis, we transform the more general
original model to an approximately equivalent one with only two classes
of customers: a designated class with only one customer and a composite
class representing all of the other customers in the network. This
further reduced model can be analyzed relatively easily, by applying the
Norton's Theorem approximation. By designating each class in the original
model and in turn analyzing the corresponding reduced model, we can obtain
approximate values for the interesting statistics by each customer class
in the original model. |

In transforming the original model to the one with only two classes,
the customer of the designated class is given the same I1/0 branching
probabilities and CPU service distribution as in the original model. For

each 1/0 device, the composite class branching probability is determined as

15

a weighted sum of the branching probabilities of the classes being "coalesced"
from the original model. The weights used are the relative throughputs of
the corresponding customers in a model identical to the original model,
except that the CPU is processor—shared; this PS model satisfies local balance
and is easily analyzed. The CPU service distribution for the composite
clase is chosen to be the standard two stage hyperexponential distribution
with mean and second moment determined from weighted sums of the means and
second moments of the CPU service distributions of the classes being coalesced
from the original model.

After this transformation is applied, the Norton's Theorem approximation
is applied. The resulting model, with the composite class and composite
1/0 queue is analyzed by techniques similar to those used in section 4.

5.2 Algorithms. In this subsection we describe two algorithms, the -

main program, algorithm B, is presented in 5.2.1., and a subprogram, algorithm

C, which approximates an N-class problem by a two-class problem, is in 5.2.2,

5.2.1 Algorithm B

Assume that there are N classes of customers. For purposes of
exposition, we assume (without loss of generality) that there is only one
customer iﬂ each class.

Step 1. For each class i in turn, 1 =1, ..., N, do steps 2-1 through 5-1
and thus compute the throughputs and utilizations for all queues for class
i, and also the means and variances of CPU queue lengths and wait times

for class i. The algorithm stops after all N classes have been considered.

Step 2-1 Use algorithm C to approximate the given N-class problem by a
two-class problem where the two classes are the designated class and a
"eoalesced class" which represents all customers except those in the desig-

nated class. We shall refer to the original central-server model as model A

16

and this two-class approximation as model B. Note that B and A have exactly
the same central-server network structure; only the number of classes is
changed. The parameters for the designated class are the same in A and B.
CPU service time for the coalesced class is assumed to be hyperexponential,
in B. 1I/0 service times are identical in A and B.

Step 3-i. Compute composite I/0 service rates for the designated and coa-
jegsced classes of model B in the usual manner (i.e. by computing throughputs
through the shorted CPU of model B and assuming all I/0 service times are

exponential).

Step 4-i. Consider the resulting two-queue, two-class network consisting

of the QPU and I/0 queues and the designated and coalesced classes; we shall
refer to this network as model C. Solve Markov balance equations to deter-
mine steady-state probabilities of model C. Determine CPU throughput toi®
utilization UOi’ mean and variance of CPU queue 1§ngth and wait time for
designated class i from the equilibrium state probabilities of model C.

(Statistics for the coalesced class are not computed) .

Step 5-i. Determine I/0 throughputs teqs and utilizations Uri’ for each
I/0x, r = 1, «+., R, for the designated class 1. Let p_, be the probability
that a customer of class 1 branches to 1/0 r after CPU service. Then

t =

i tOi X Py forr =1, «se5 R

and

U /ki for r =1, «osy R

ri - tri
Statistics for the coalesced class are not computed.

Fig. 6 shows the relationships between models A, B and C.

5.2.2. Algorithm C for determining CPU service distributions and I/0 bran-

ching probabilities for the coalesced class.

17

Step 1. Consider a network identical to the given network (model A) except
that the CPU is processor-shared; we shall refer to this network as model
D. Model D satisfies local balance and is easily analyzable. For the
purposes of algorithm C only, we shall approximate the CPU throughputs of
model A by those of model D. Compute tg, the CPU throughput of class j in

model D, for j =1, ..., N.

Step 2. Compute the conditional probability Vj that a random customer who
finishes 1/0 service in model D is in class j given that he is not in desig-

nated class 1.
gf/<\ rd
Vj t}/ < for § # 1
h# i

= 0 for j =1

Step 3. Compute the first two moments of the CPU service time for the
coalesced class. Let E[sn] and E[Sjn] be the nth moment of the CPU service

time for the coalesced class and class j respectively, j = 1, ...y N. Then:

E[S] = g E[Sj].V;
J

E[s%] = 2 E{sjz].\g’
h

Represent CPU service time for the coalesced class by a standard hyperex—

ponential random variable (fig. 4) with the above first two moments.

Step 4. Approximate 1/0 branching probabilities for the composite class by

.;v"\

re “i'prj'vj
j f

Stop.

18

5.3 Example

Consider a model with two 1/0s and three classes of customers. The
mean service times for 1/0 1 and 1/0 2 are both 2 time units. The Branching
probabilities for the first 1/0 are 1., 0, .5, for classes 1,2 and 3
respectively, and 0, 1., 5, for the second 1/0. CPU mean times for classes
1,2,3 are 1,2,3 respectively. All service times are assumed to be indepen- .

dent, exponential randomvvariables.

Algorithm B~ Step 1. Ve shall carry out steps 2-i1 through 5-i, for i = 1.
We first call algorithm C to obtain the 2-class approximation.
Algorithm C- step 1. Analyzing model D we get

ti = .159 ta = ,111

Algorithm C-step 2. Vl = 0, V2 = ,589, V3 = 411

Algorithm C-step 3. E[S] = (2 x .589) + (3 x .411) = 2.41
s(s?] = (8 x .589) + (18 x 41 = 1212
The hyperexponential representation for the CPU service time has parameter

p = 0.398.

Algorithm C-step 4.

Py, = (0% .589) + (.5 x .411) = .206

Poc = (L x .589) + (.5 x .411) = 795
We now have a two-class problem the CPU service time for the coalesced class

is hyper—exponential with mean 2.41 and 1/0 branching probabilities for

device 1 is .206 and for device 2 is .795.

Algorithm B- Step 3.1. The composite 1/0 service rates for class 1l and the

coalesced class for different queue conditions are shown below.

19

Total Total rate
Number of Number of coalesced rate for for coalesced

class 1 customers class customers class 1 class

1 0 «5 0

0 1 0 .5

0 2 0 .598

1 1 415 415

1 2 . 386 . 556

Algorithm B-Step &4-1. Model C is analyzed to obtain tOl = ,173, U01 = ,173,

4, = .59, w

ql = 3.43’ cq = 049’ OW = 3‘09-

1 1 1

6. APPROXIMATIONS FOR MODELS WITH PRIORITY CPU DISCIPLINES

Now we consider central server models with the same characteristics
as in the previous section, except that the CPU diggcipline will be a prio-
rity discipline with priority based on customer class., We will restrict
consideration to preemptive and non-preemptive priority based on customer
class, but these techniques are directly applicable to other priority
disciplines.

Again, we do not try to apply Norton's Theorem approximation directly,
but rather coalesce the classes of customers in the original model to sim-
plify the analysis. The reduced model we consider has three classes of
customers: a designated class, which we do not restrict to a single customer
as in the FCFS model, and two composite classes, one of a higher priority
than the designated class, and one of lower priority. The coalescing of
classes into these three classes 1s similar to the technique used in the
previous section. The coalescing is done separately for each of the

two composite classes. The CPU distribution used for each qof the composite

20

classes is an exponential distribution with mean taken as the weighted sum
of the means of the classes being coalesced into that composite class. The
weights are the relative throughputs of classes within the composite class.
In other respects, the analysis is essentially the same as that already

described.
7. VALIDATION, IMPLEMENTATION AND PERFORMANCE

We have constructed a simulator which employs the confidence interval
techniques of Crane and Iglehart (8, 9). This simulator can be used with
general queueing networks with a variety of disciplines, heterogeneous
classes of customers, and generalized Erlang service distributions. The
simulator determines confidence intervals during the simulation, and con-
tinues the simulation until satisfactory intervals are obtained. Details
of the simulator are found in (15). This simulator has been used to
determine results for the various models described below. Crame and
'Iglehart show how to obtain confidence intervals for results of simulations
of Markov models with finite or countable state spaces. In general, the
confidence intervals obtained are as follows: For utilization, the 907
intervals are at most .05 wide. TFor those cases where queue lengths and
waiting times are obtained, the 90% intervals for the means are at most
+ 6% of the point estimates, and the 807 intervals for the standard
deviations are at most + 16% of the point estimates. In many of the cases
the intervals are considerably tighter. However, we were unable to obtain
confidence intervals for the FCFS models with 6 classes of customers. For
these models the state space is very large, and we were unable to select a

state that the system would return to frequently; this is necessary to

21

apply the Crane and Iglehart techniques. We used predetermined simulation
run lengths for the 6 class FCFS models,\with the run lengths based on
experience with 4 class FCFS models.

We have implemented our approximation techniques as a set of Fortran
programs for a CDC 6600. Over 125 models have been validated to assure a
thorough sampling of problems.

%; of the models validated are of the class described in section 4,
i.e. single class, non~exgopential. These models included from 2 to 12
customers,iéigh ; ﬁo 8 1/0 d;vices, and a wide variety of combinations of
distributions, with coefficients of variation ranging from .577 to 5. 1In
general the models were fairly well balanced, but some of the models were
strongly CPU bound or 1/0 bound. Error tolerances were determined in the
manner used in (5) for utilizations, CPU queue lengths and CPU waiting
times. Results are said to be within a tolerance z if 1) the difference in
utilization is not more than z, 2) the differences in the means and stand-~
ard deviations of queue length are not more tham z times the number of
customers in the network, and 3) the differences in the means and standard
deviations of the wait times are not more than z times the cycle time.

For the 48 models studied, the results are generally within a tolerance of
.05, with a maximum tolerance of ;;iz In (5) a tolerance of .05 is con-
sidered to be good, and a tolerance of .10 is considered adequate. By
these standards the results are good or adequate for Z; of the“2;°models.
For these models, the computer time required per model was negligible,
approximately 75 milliseconds per model. Tables 1, 2, and 3 show results
for 12 of these models.

L4 models of the class described in section 5, i.e. FCFS with differ-

ent classes of customers, including 4 with hyper—egponential CPU distribu-

22

tions, have been validated. These models include from 2 to 8 customers,
with from 2 to 6 classes of customers, and 3 or 4 1/0 devices. Utilizations
and throughputs, both overall and by class, were validated for all of these
models. For 8 of the models, queue lengths and wait times for each class
were also validated. We did not explicitly determine tolerances as in the
single class models, but in general the results showed good accuracy for
utilization and reasonable accuracy overall. Tables 4 and 5 give results
for 2 of the models. For the 44 models, the programs required approxi-
mately 400 milliseconds computation per model.

36 priority models were validated, 24 preemptive and 12 non-preemptive.
These models included from 4 to 6 customers, with from 3 to 6 classes, and
3 or 4 1/0 devices. Again, utilizations and throughputs were validated for
all models, CPU queue lengths and mean CPU wait times were validated for
12 preemptive models and all non-preemptive models. Tables 6 and 7 show
results for 2 models. For the 36 models, the computation per model was
approximately 400 milliseconds.

In addition to providing reasonable accuracy for models not in local
balance, these programs give exact results for models in local balance where '
class coalescing is not necessary. Though the coalescing techniques do not
necessarily give exact results for locally balanced models, the results are
very close. In the above validation process, for all FCFS models requiring
coalescing, the coalescing process was applied to a locally balanced model
gimilar to the non-locally balanced model being studied. Individual class
throughputs and utilizations were compared for the locally balanced model
with and without coalescing. The differences were never more than 1% end
usually less than that.

These programs are more than an order of magnitude faster than existing

implementations of other techniques.

23
8. CONCLUSIONS

We have presented approximate solution techniques for several classes
of models which are very important in the modeling of computing systems.
These techniques are computationally very inexpensive and of great practical
value. éhey complement previous techniques which may be more accurate but
are more computationally expensive, and may be used directly in conjunction
with previous techniques.

Our techniques give exact results for several interesting classes of
models, and are reasonably accurate for typical models of computing systems..
Our techniques have been validated extensively. Our methods may be extended
to consider more general networks. Our techniques are compatible with the
techniques of Keller and Chandy (12) for including the effects of passive
resources in central server models. Williams and Bhandiwad have also used
approximations of Nortén's theorem in analyzing three class preemptive,
exponential models (19).

Three sets of programs were used in constructing and validating these
models: (1) programs to approximate central server models by two-queue
networks, (2) programs to analyze the resulting two-queue networks and
(3) the Crane-Iglehart simulator. Four variations of the two-queue analysis
technique were programmed: 1) single class non—exponential, 2) multiple
class FCFS, 3) multiple class preemptive priority and 4) multiple class
non-preemptive priority. Each of these cases (except the last two) required
slightly - different programs to construct two-queue approximations of the
given central server problem. The simulator handles arbitrarily intercon-
nected networks, a large number of customer classes and customers, and a

variety of disciplines.

24

ACKNOWLEDGEMENT

The problem was first suggested in discussions with U. Herzog and

L. Woo of IBM Research.

and criticism.

We are grateful for their continued encouragement

(1

(2)

(3)

(4)

(5)

(6)

(7N

(8)

(9)

(10)

(1)

(12)

(13)

REFERENCES

Baskett, F. Mathematical Models of Multiprogrammed Computer Systems.
TSN-17, Computation Center, The University of Texas at Austin.
(January 1971)

Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios-Gomez, F. Open,
Closed and Mixed Networks of Queues with Different Classes of Customers.
To appear JACM. (January 1975)

Buzen, J. Queueing Network Models of Multiprogramming. Ph.D. Thesis,
Division of Engineering and Applied Physics, Harvard University.
(June, 1971)

Chandy, K.M. The Analysis and Solutions for General Queueing Networks.
Proc. Sixth Annual Princeton Conference on Information Sciences, Prince-
ton University. (March 1972)

Chandy, K.M., Herzog, U., and Woo, L. Approximate Analysis of General
Queueing Networks. To appear 1BM Journal of Research and Development.
(January 1975)

Chandy, K.M., Herzog, U., and Woo, L. Parametric Analysis of Queueing
Network Models. To appear, IBM Journal of Research and Development.
(January 1975)

Cox, D.R. A Use of Complex Probabilities in the Theory of Stochastic
Processes. Proc. Cambridge Philosophical Society, 51, (1955), p. 313~
31—9-)

Crane, M.A. and Iglehart, D.I. Simulation of Stable Stochastic Systems I:
Ceneral Multiserver Queues. JACM 21, 1 (January 1974) p. 103-113.

Crane, M.A. and Iglehart, D.I. Simulation of Stable Stochastic Systems IL:
Markov Chains, JACM 21, 1 (January 1974), p. 114-123.

Herzog, U., Woo, L., and Chandy, K.M. Solution of Queueing Problems by
a Recursive Technique. To appear, IBM Research Report, Yorktown Heights,
New York. :

Johnson, D.S. A Process-Oriented Model of Resource Demands in Large,
Multiprocessing Computer Utilities. TSN-29, Computation Center, The
University of Texas at Austin, (August 1972).

Keller, T.W. and Chandy, K.M. Computer Models with Constrained Parallel
Processors. 1974 Sagamore Conference on Parallel Processing.

Lee, C.C. Queueing Models of Device Utilizatiom in Multiprogrammed
Computer Systems, TR-7, Department of Computer Sciences, The University
of Texas at Austin, (December 1972)

(14)

(15)

(16)

an

(18)

(19)

Sauer, C.H. and Chandy, K.M. Approximate Analysis of Computer System
Models with Different Classes of Customers. Presented at ORSA/TIMS
Puerto Rico meeting. (October 1974)

Sauer, C.H. Design of Computing Systems Using Approximate Solution
of Queueing Network Models. Ph.D. Thesis, University of Texas at
Austin.

Shedler, G.S. A Cyclic Queue Model of A Paging Machine. IBM Research
Report, RC 2814, Yorktown Heights, New York. (March 1970).

Smith, J.L. An Analysis of Time Sharing Computer Systems Using Markov
Models. SJCC, (1966).

Wallace, V.L., Rosenberg, Richard S. Markovién Models and Numerical
Analysis of Computer System Behavior. SJCC, (1966).

Williams, A.C. and Bhandiwad, R. Private communication.

O

CPU

Figure 1 - Central Server Model

G

CPU

1/0

Figure 2 - CPU Queue and Composite I/O Queue

O
1/01
)

I/0 2

1/0 3

Figure 3 - Central Server Model with Shorted CPU

a4

1-p

maan= &/2(1-p)

Figure 4 - Hyperexponential distribution form used for
coefficient of variation>1. Mean = d.

0<p<1l

LY
7

P j .
1-p [- -
i 2 3 n-1 n

" Figure 5 - n stage (nD 1) generalized Erlang distribution form
used for 1/Am-1 D coefficient of variation2 1//n .
Moan of each stage = m. Distribution mean = p/m + (1-p)/nm

0£p<1

MODEL A
Given network

N classes

______________ Transformation achieved
by algorithm C

MODEL B
Given network

2 customer classes

e e m— e ————— Transformation achieved via
composite I/0 technique

MODEL C
2 queue - network

2 customer classes

FIGURE 6

Table 1

Hyper-exponential CPU, Exponential I/0

Number of Customers

CPU Utilization
(simulation)
(local balance)

CPU Mean Queue Length

CPU Standard Deviation
of Queue Length

CPU Mean Wait Time

CPU Standard Deviation
of Wait Time

I10-1 Utilization
10-2 Utilization
10~3 Utilization

CPU Mean Service
Coef. of Variation

I/0 1 Mean Service
Coef. of Variation
Branching Probabil-
ity

1/0 2 Mean Service
Coef. of Variation
Branching Probabil-
ity

1/0 3 Mean Service
Coef. of Variation
Branching Probabil-
ity

«590
.588
.623

L] 912
.894

.851
840

1.54
1.50

.25
1.
.25

4

.713
.715
.783

8
.802

.835
.884

.802
.824

.201
.214

.050

.054

12

. 846
. 864
.921

Table 2

Exponential CPU, Erlang I/O

Number of Customers 2
CPU Utilization .646
(simulation) .652
(local balance) .623
CPU Mean Queue Length .881
.917
CPU Standard Deviation «759
of Queue Length 778
CPU Mean Wait Time 1.36
1.43
CPU Standard Deviation 1.26
of Wait Time 1.30
10-1 Utilization .646
. .629
10~2 Utilization .162
. 165
10-3 Utilization . 040
040
CPU Mean Service 1.
Coef. of Variation 1.
1/0 1 Mean Service 2.
Coef. of Variation .707
Branching Probability .5
1/0 2 Mean Service 1.
Coef. of Variation . 707
Branching Probability .25
I/0 3 Mean Service .25
Coef. of Variation .707

Branching Probability .25

4

.813
.821
.783

8

.906
914
.884

12

.937
<940
.921

Table 3

Hyper-exponential CPU,

Number of Customers

CPU Utilization
(simulation)
(local balance)

CPU Mean Queue Length

CPU Standard Deviation
of Queue Length

CPU Mean Wait Time

CPU Standard Deviation
of Wait Time

10-1 Utilization
10-2 Utilization
10-3 Utilization
CPU Mean Service

Coef. of Variation

1/0 1 Mean Service
Coef. of Variation

.604
.610

.151
+150

.038
.038

1.
2.134

2.
.707

Branching Probability .5

1/0 2 Mean Service
Coef. of Variation

1.
.707

Branching Probability .25

1/0 3 Mean Service
Coef. of Variation

.25
.707

Branching Probability .25

Erlang

1/0

8

.815
.851
.884

12

. 857
.893
921

Table 4

FCFS, 4 Classes, 1 Customer/class, 3 I/0 devices

Class 1 2 3 4 all
CPU Throughput .182 .192 .110 .168 .652
(simulation) L1464 ,156 ,122 126 . 548
(local balance) .230 .272 .090 .208 .800
CPU Utilization .091 .048 .552 .084 .775

.072 .039 .612 .063 .786
.115 .068 .451 .104 .738

CPU Mean Queue Length .36 .35 .59 .35

(simulation) .51 .49 .65 .48

CPU Standard Deviation .48 48 49 48
of Queue Length .50 .50 48 .50
CPU Mean Wait Time 1.97 1.82 5.32 2.08
3.45 3.22 5.44 3.67
CPU Standard Deviation 3.95 3.87 4.94 4.08
of Wait Time 4.63 4.58 5.13 4.70
1/0 1 Utilization ,219 .154 .044 067

1/0 2 Utilization ,058 .123 .,071 .054
1/0 3 Utilization ,097 .103 .118 .268
CPU Mean Service .500 .250 5.00 . 500

Coef. of Variation 1.00 1.00 1.00 1.00

1/0 1 Probability .6 4 .2 .2
(Mean Serv. = 2.00)

I/0 2 Probability .2 NS N .2
(Mean Serv, = 1.60)

1/0 3 Probability .2 .2 N .6
(Mean Serv, = 2.67)

FCFS, 4 Classes, 1

Class
CPU Throughput
(simulation)

(local balance)

CPU Utilization

CPU Mean Queue Length
(simulation)

CPU Standard Deviation
of Queue Length

CPU Mean Wait Time

CPU Standard Deviation
of Wait Time

I/0 1 Utilization

1/0 2 Utilization

I/0 3 Utilization

CPU Mean Service

Coef. of Variation.

1/0 1 Probability
(Mean Serv. = 2.00)

1/0 2 Probability
(Mean Serv. = 1.60)

1/0 3 Probability
(Mean Serv., = 2,67)

L1111
.118
.093

.555
.590
465

.61
.64

Table 5

Customer/class, 3

.097
.077

500
2.00

.4

I/0 devices

all

.607
.518
.778

.765
.758
.750

Table 6

Preemptive, 6 Classes, 1 Customer/class, 3 1/0 devices

Class 1 2 3 4 5 6 all
CPU Throughput .119 .166 .149 .138 .143 .138 .873
(simulation) .148 .162 .141 .126 .114 .102 .793
(local balance) .104 .195 .169 .161 .172 .172 .973
CPU Utilization .396 .055 .050 .023 .048 .046 .618

493 ,054 .047 .021 .038 .034 .687
.347 .065 .056 .027 .057 .057 .609

CPU Mean Queue Length 40 .29 .25 .21 .25 .27

(simulation) .49 .34 .34 ,31 .37 .38
CPU Standard Deviation .49 45 b 41 b 45
of Queue Length .50 47 A7 .46 48 0 .49
CPU Mean Wait Time 3,33 1.76 1.70 1.53 1.78 1.99
3,39 2.06 2.44 2.54 3.16 3.59
1/0 1 Utilization .143 .133 .060 .055 .095 .092
.169 .129 .056 .047 .077 .067
I/0 2 Utilization ,038 .106 .096 .044 .076 .073
,047 .102 ,087 .037 .062 .062
1/0 3 Utilization .063 .088 .,159 .220 .127 .122
' .076 .093 .146 .,202 .101 .093
CPU Mean Service 3.33 .333 .333 .167 .333 .333
1/0 1 Probability .6 N .2 .2 .333 .333
(Mean Serv. = 2.00)
1/0 2 Probability .2 NA A .2 .333 .333
(Mean Serv, = 1,60)
I/0 3 Probability .2 2 A .6 .333 .333

(Mean Serv. = 2,67)

Table 7

Non-preemptive, 6 Classes, 1 Customer/class, 4 I/0 devices

Class

Cru

CPU

CPU

CPU

CPU

1/0

1/0

1/0

1/0

CPU

1/0

1/0

1/0

Throughput
(simulation)
(local balance)

yeilization

Mean Queue Length
(3imulation)

Standard Deviation
of Queue Length

Mean Wait Time

1 ytilization

2 Utilization

3 ytilization

4 Utilization

Mean Service

1 Probability
(Mean Serv, = 2,00)

2 Probability
(Mean Serv. = 1.00)

3 Probability

" (Mean Serv. = ,500)

1/0

4 Probability
(Mean Serv, = 1.00)

.211
.239
. 184
.211
.239
.184

.23
.29

42

.125

.125

.125

2
.354
.381
.334
.236
.254
.223

.33
.36

.47
48

.963
. 946

071
.067

.106
.112

.053
.057

.106
.114

.667

100

.300

.300

.300

3
435
.408
.529
.036
.034
L 044

«25
.27

43
Ab

.508
.641

.087
. 083

174
.177

.087
.082

.043
041

.083

«100

400

400

.100

4
.384
.348
.438
.032
.029
.037

.19
.26

.39
A4

478
737

.096
.081

.048
.046

.024
.024

.240
.216

.083

+123

.125

.125

.625

5
.327
.288
.368
.027
.024
.031

.16
.2‘"

.37
.43

487
.857

.163
° 146

.082
.070

041
.038

.082
.067

.083

. 250

.250

.250

.250

6

e 326
.270
.373

.022
.018
.025

.16
.25

.36
.43

480
.897

.163
.128

.081
074

.041
.035

.081
.070

.067

+230

.250

.250

.250

all

2.036
1.934
2.226

.564
.598
. 544

