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then ¥'(Q) = [(2,2,1,1,2)].
(2,2,2,1,2)
(2,2,2,2,1)

. - ! = ' = ! ' s

Since « Y (9)3’4’5, B =1y (Q)Z,B and vy P (9)1’2, P () is lossless. /77
Before we look at the correspondences between decompositions and

syntheses, we define the following term which will be used in the following

sections.

Definition: An n-ary relation o is constructable from @ if there

exists an n-synthesis ¢(R) such that a = P(Q).

Decompositions Syntheses
derivable from o constructable from Q
B = PL(a): Projection a = P(R): Synthesis
decomposition of o loss—free synthesis of §
= % =
o= %P (o) ¥ = P (o)
i"i
*
maximal decomposition a : skeleton, ¥: loss—-free
* full
Y(a ) = a type 3
%
W) =4«
Table 4.1

The correspondences between decompositions and syntheses are

summarized in Table 4.1. Given a relation o, a set of projections PL (a)'s
i

of o generate a set of relations . Each relation of & is derivable from a.
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Given a set of relations O a synthesis (Q) generates a relation a. o is

constructable from Q. A decomposition of a is a set of projections PL (o),
1

P. (a),...,P. (o) such that their natural join P_ (a)*P_ (a)*...*P_ (a) is
L, Ly Ly 7k L

the same as o. A loss-free synthesis is a relation a such that for each
essential factor L of the synthesis the L projection of o, PL(a), is the
same as the essential relation corresponding to L, i.e., PL(a) = y@) V

essential factor L.

4.4 Relational Spaces

If we regard projections and syntheses as operators on relatioms,
we can think of the relation space which is generated fggm a set of
relations by applying these operators. Here we are primarily concerned with
the problem: what is the relation between the relation space of a given set
of relations { and that of its skeleton Q*.

A relation a is constructable from a set of relations § if there
exists a synthesis ¥(Q) such that o = Y(Q). Therefore we easily have the
following:

Lemma 4.1 If o is constructable from @, and B is constructable

from {a} UQ', then B is constructable from @ U Q'.

Definition: The type i m—constructable space, denoted by P?(Q), is
the set of all m—ary relations which are constructable from @ by type i
m-syntheses, i.e., P?(Q) = {a | a = ¢(Q) is an m-synthesis and y is type i},
where i = 0, 1, 2, 3. 1In case of type 0, it may be referred to simply as
the m—~constructable space rm(Q).

The following is a simple result of the definitioms.

Theorem 4.1 For any set of relatioms Q,

(@) > i) > (e > 3 -
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Other simple facts about type i m-constructable spaces are: in
general 2 ¢ T?(Q) and F?(F?(Q)) = T?(Q) by using Lemma 4.1.
On the other hand, it was earlier defined that a relation o is
derivable from a relation B if o is an equivalent of some projection of R. It
will be convenient to have the following operator.

Definition: The derivable space of a set of relations Q, denoted

by A(R), is the set of all relations which are derivable from Q. We may
write A(o) instead of A({oal}) if Q@ ={al}.
Lemma 4.2 If o is derivable from B and 8 is derivable from y, then
a is derivable from vy.
It is straightforward; the proof is omitted.
Obviously in general Q@ ¢ A(P?(Q)) for i1 = 1,2,3 while Q CIA(Tg
(2)) if © contains only relations of ranks m or less than m. Also it is
self-evident that  C A(F?(Q)) if © is a subset of the elementary relations
of some m-ary relation. 1In the converse case, again A(A(a)) = A(a) but
o € T?(A(a)) Y i since all elementary relations of o are in A(qy) provided
that the rank of o is m. We summarize the above arguments below.
Theorem 4.2 Let o be an m—ary relation and @ consist of relations
of rank m or less, then the following are true:
@ e¢ r;@,
2) rjeie) =ri@,
(3) a < a(rg@),
(4) a e M),
(5) A(a(a)) = A(a),
(6) o e I3 ).
Next we will extend the concept of m—constructable spaces.

Hereafter we will not specify the type of syntheses used. We tacitly assume
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that they are the most general type, type O. But, of course, the following
discussions are valid even when the syntheses are restricted to a certain
type since the inclusion relations among their m—constructable spaces which
were shown earlier are applicable. Now suppose that a set of relations
is given. Then the set of relations which are constructable is infinite
because the ranks of the syntheses which are used for constructions are not
specified, which leads to the following concept.

Definition: The set of all relations that are constructable from

a set of relations § is termed the constructable space of 2, denoted by T'(Q).

That is, T(R) =U,= T (2).
i=0
Let us consider the following problem.
Lemma 4.3 For any set of relations {, if a relation is construct-
*
able from £, then it is also constructable from the skeleton of &, & , i.e.,
*
rE)c r@).
Proof Let a relation B be constructable from 2, i.e., B = y(Q)

*
where U: ET—> Q. We will show that B = ¥'(Q°) by some ¥' which is obtained

by modifying ¢ as follows. Let ¥(x) al,al € Q and a® decomposable, then

!

1 % *
(ul) c o . For each such x we define '(x) = Sk where lxl =k and ¢'(y) =

(ai)y for each (k-1)-factor y of x where (ai)y denotes the (k-1l)-ary partial
relation corresponding to y except for those y's such that y(y) < (ai)y, in
which case we define y'(y) = y(y). Then for those y's such that Y(y) = (ai)y
is decomposable, we apply the above process. Repeat this procedure until all
lower relations are not decomposable; this corresponds to the maximal decom—
position of ai. Then we claim that the synthesis of Q* thus constructed,
w'(n*), yields B. For ai is equivalent to, as a constraint for all B ¢ B,

§ {By e p(y)} » {BX € ai} = (4] W@ftf@gg} {By e a(y)} A {BX ¢ o} which

. AN
w1 yeare oy < YO (41 du)5 6y

i
is, in turn, the same as {Bys(a )y}
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A {BX € ai}. The same argument is applicable to the factors of
ranks lower than k.
Q.E.D.
So far we have considered relational spaces for each operator
separately. Next we define relational spaces which are obtained by using
both projection and synthesis.

Definition: Let § be a set of relations, then the relation space

of Q, denoted by £(R), is the set of all relations which can be obtained
from 2 by using any number of projections and syntheses.

The following lemma is a straightforward consequence of the
definitions.

Lemma 4.4 If QC Q', then

| @) @) crha",

(2) T(R) <r@h,
(3) a@ ca@h,
) @ cz@").

Let Q be a set of relations, then any relation of & can be
constructable from its skeleton Q* by the definition. Therefore @ C TGZ*).
Then since Z(R) C Z(T(Q*)) = Z(Q*), we have the following.

Theorem 4.3 For any set of relation @,

£@) Cr).

In practice we may use other operations, especially set operations
such as union, intersection, and complement, in relational systems. However
the above results hold even if set operations are added to the operation set

for relational spaces.
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4.5 Compaction of Relations

Another interesting problem is how compactly can we express a set
of relations? 1In this section we consider only full syntheses unless
stated otherwise. Since the original rélations are derivable from a
lossless synthesis, lossless syntheses provide a means by which it is suf-
ficient to keep only one relation instead of many relations. Obviously it
is always possible, given a set of relations, to have a lossless synthesis
if the rank of y(Q) is increased as high as desired. Naturally what we
want to have among such lossless syntheses will be one of the lowest possible
rank.

Definition: (m-integration) A set of relatioms { is said to be

m-integrable if there exists a full and lossless synthesis ¥(Q) of rank m;

such a synthesis ¥(?) is called an m-integration of Q.

First, we look at what happens to the m-integrability if a set of
relations is modified in certain ways.

Definition: A set of relations is redundant if some relation is

derivable from another, and non-redundant otherwise.

Lemma 4.5 1If a set of relations © is m-integrable, then so is a
non~-redundant subset Q' of Q.

Proof Since £ is m-integrable, there is an m—ary synthesis @Ry =
Y T —> 6. Now let ¢' be a mapping y': I — Q' such that Pi(x) = y(x) if
xe ¥ and () C Q' ¢ Q and Y' () = Sixl otherwise, then clearly ¢'(Q') is
lossless. Hence y'(Q') is an m-integration of Q'.

Q.E.D.

Lemma 4.6 If a set of relations { is m-integrable, then so is a

set of relations 9' which is obtained from 2 by replacing a relation o € Q

of rank k which is (k-1)-ary decomposable by all its (k-1)-ary partial
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relations, i.e., Q' = {Q-a} U {all (k-1)-ary partial relations of o}.

Proof By the hypothesis, o is derivable from an m-integration of
2, (). This is possible in two ways. First, o is not essential but a
is derivable from y(R), or 3 x ¢ £ 3¢y (x) - o but w(Q)X # a. Secondly, o
is essential, i.e., 3 xe I3 P(x) = a and o is derivable from w(@)x. Let
y' be defined as follows. In the first case, let §' = ¢. In the second
case we set P'(x) = Sk for x € ¥ S¢y(x) = o and w(ﬂ)x = a. We set the value
of each (k-1)-factor of the x by ¢' to the corresponding (k-l)-ary partial
relation of o. Now in order for ¥'(Q') to be an m-integration of Q', we
have to show that y'{(Q') is lossless. Since o is derivable from Y (Q),
clearly k (k-1)-ary partial relations of a are derivable from y'(Q').
Next suppose that there is a relation B ¢ Q', which was derivable from a(Q)
but is not derivable from y'(R'). Then this means that it was caused by
the replacement of o by its (k-l)-ary partial relations, which contradicts
the assumption that o is (k-1)-ary decomposable, which guarantees that the
restrictions used to construct $'(2') are essentially the same as those used
to construct Y(R). Therefore ¢'(Q') is lossless, proving the lemma.

Q.E.D.

By applying the two procedures described in Lemmas 4.5 and 4.6, we
can show the following.

Theorem 4.4 If a set of relations @ is m—integrable, then so is
its skeleton Q*.

Let us suppose, by limiting the above general case, that all
relations in Q are binary decomposable, then the following is an immediate

result of Theorem 4.4.
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Corollary 4.1 1If a set of relations # is m-integrable and all

relations in Q are binary decomposable, then ' = {all binary partial rela-.
tions of o | a € Q} is also m-integrable.

So far in this section it has been shown that the modifications
of Q described above do not increase the rank of integrations. Next, what
can we say about a set of relations @ if it is known that 2 is m~integrable?
It is easy to see that if a non-redundant set { consists of only binary
relations and is m-integrable, the number of relations in Q has to be less
than m(m-1)/2, i.e, || s m(m-1)/2. How about the general case?

Definition: The dimension of a set of relations @, denoted by
d(Q), is the number of all non-equivalent binary relations derivable from
the relations in .

Example 4.4 Let 2 = {0,8} and let a, B C S3 be defined as

follows:
o= [(1,1,1), g = [@,1,1)
(1,1,2) 1,1,2)
(1,2,2) (1,2,1)
12,1, (1,2,2)
(2,2,1)
(2,2,2) ]

Then all binary relations derived from o and B are:

Oy = 013 = p3 = ap3 = [(1,1)
(1,2)
(2,1)
(2,2)
Bip = B13 =

13 = {@DL
(1,2)

Therefore the dimension of § is two, i.e., d(Q) = 2. 17/
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We can conclude the following about the dimension by adding an
additional constraint.

Theorem 4.5 If a set of relations which are all binary decompos-
able is m-integrable, then d(Q) s m(m-1)/2.

Proof By induction on the highest rank n of relations in Q.

(i) Obviously it is true for n = 2, in which case d (non~-redundant
set of Q) = d(Q).

(ii) Suppose that it is true for r< n. Let {oci}iEI be the
relations of the highest rank n in @, then by Lemma 4.6 Q' = {Q~- {ui}i I}\)
{ a1l (n-1)-ary partial relations of ay l a, € {ui}iel} is also m~integrable.
And clearly d(0') = d@). Since d(Q') £ m(m~1)/2 by the hypothesis, d@) <
m(m-1)/2.

Therefore, from (i) and (ii), it is true for any Q.

Q.E.D.

Now since a synthesis is the construction of a higher rank relation
from a set of relations ©, and binary relations are the most fundamental, we
finally consider the important special case in which  contains only binary
relations. Therefore it is assumed to the end of this section that § con-
tains only binary relations. First, we define the following convenient
terms.

Definition: Let o be a binary relation, then the front of a is
fla) ={a ](a,b) £ ot énd the tail of o is t(a) ={b I (a,b) € o}

Actually the front and the tail are not new concepts. In other
words, f(a) = Pl(a) and t(o) = Pz(a). Also note that f(a), t{a) C S and
f) =t ™, ) = £h.

Definition: Let o be a binary relation on S and T C S, then T

is a base of o if f(a) = T or t(a) = T.
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Let Q be non-redundant and || = m(m-1)/2. Our final goal is to
characterize the m~integrability of such @, which is the least possible case
but the most desirable case from the data condensation point of view. First,
suppose that @ is m~integrable, then one of the conclusions is that the
m-integration ¥ (Q) must be type 3. What can be said about binary relations
in Q7

Lemma 4.7 If Q = {ai ‘ i=1,2,...,m(m~1)/2} is non-redundant and
}

m-integrable, then for each a; € 3 two subsets of Q, {uj} and { o

jed k”keK

such that |J| = |K| = m~2 and oy has a base f(aj) Vi eJand o has a
base t(ai) Y k¥ e K, and moreover J /1 K = 0.

Proof Since all m{(m-1)/2 relations are not equivalent and the
number of binary partial relations of m—ary synthesis 8 = ¢(Q) is m(m-1)/2,

each partial relation is equivalent to exactly one . Therefore let the

relation in Q which is equivalent to the partial relation qu be denoted

.
by L and let us rename { upq}ls p<qsm as {o pq}ls p< q< m according
to the rule that ¢' =a dif o = 8__ and a' = u-I if a = B~l. Then

Pq Pqd Pq P4 Pq Pq P4 Pq

since the set of binary partial relations of B = ¢ (), {qu}l < p< g5
has the properties described in the lemma and there is a one-to-one

correspondence between {Bp } and {a'

¢l p< gg m pall< p< > the lemna

follows immediately.
Q.E.D.
Before we go on to the converse of Lemma 4.7 so that the charac-
terization of the m-integrability of our case is completed, the following
is given.
Lemma 4.8 Let  be m—integrable, then the number of different

bases, i.e., f(ai)'s and t(ui)'s, of binary relations ay in Q is at most m.
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Proof Let 8 = Y(RQ) be an m-ary synthesis since { is m—integrable,

then 3 a binary partial relation B (1< p< q< m)=>B__ = a_ or a_l Y
P4 Pq s s

a € . On the other hand, f(Bij) = f(BkR) if i = k and t(Bij) = t(Bkl) if

4 = 2. But there are only m different subscripts 1,2,...,m. This proves
the first part of the lemma.
For the second half, a, # a, if a, # a, ¥V a., o, € Q since Q is
1 J 1 J 1]
non-redundant. Since there is a one-to-one correspondence between {ui or

uTl | a, € @} and {B_}
i 1 p

1< p< qg w it is also true that Bij # Bk2 if

ij # k2 ¥ Bij, B. e {8

el pq}l < p< qsmw Suppose that f(Bij) = f(eki) i

# k, there are three non-trivial cases (m > 2):
i < 1 == i = =
(i) 3 s=s< i,k, then Bsi Bsk since f(BSi) f(BSk) and t(BSi)
t(Bsk).
(ii) 1 s=1i< s< k, then Bis = Bk since f(gis) = t(Bsk) and t(gis) =

£(B)-

]

+ v P SO 1 = =
(iii) 3 s=i,k< s, then Bis Bks since f(gis) f(gks) and t<Bis)
t(Byg) -

And all these cases contradict the assumption that Bij ¢ Bkg Y ij # ke.
Similarly it can also be shown that f(Bij) = t(Bkz) i # 2 and t(Bij) =
t(Bkz) j # L for some Bij and Bkl induce contradictions. Therefore the
number of different f(Bij)'s and t(Bij)’s, hence the number of different

f(a i)'s and t(oci)'s, is at most m.

Q.E.D.
Theorem 4.6 Let @ be a set of binary relations such that Q is

non~redundant and lQ{ = m(m~1)/2, then @ is m-integrable iff for each a; € 9]

and {ak}keK’ such that |J| = |K| =

3 two subsets of relations of 9, {a.},
3 jed

m-2, f(a i) is a base of o Vi e&J and t(u:i) is a base of o Yk eK,

and J N K = @,
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Proof Since Lemma 4.7 already showed one way, we will prove the
reverse way, that is, we will construct an m-integration y(Q), given the
conditions of the second half of the statement of the theorem.

Take one relation g9 £ Q and let Ql = {a13, Gigs v ulm} be a

set of m—2 relations which have f(ulz) as a base and 92 = { Gogs Opgs =oes
azm} be a set of m~2 relations which have t(alz) as a base, which are both

guaranteed by the hypothesis. Then we transform 2, to Qi = {uiz, ai3,...,

by reversing the relations if necessary so that a, = aiz and f(GEZ)

ole}
= ¥ Vo4 [ ¥ v ¥ P
f(uli) i. Also we rearrange 92 to Qz {a23, Aopseres uzm} similarly
Ty = V. 1 1V. P
so that f(dzi) t(alz) i # 1,2. Note that t(ali) # t(aij) i # j since

Q is non-redundant. And, by Lemma 4.8, all different bases appear in Qi.

Therefore every o € {Q—{Ql U QZ}} can have neither f(a'lz) nor t(uiz).
For otherwise o becomes equivalent to some relation in {Qi U Qé}.

v

Next take 0qgo

relations which have f(aiB) as a base is {Ql - 913}. And the set of m—2

then the only possibility for the set of m-2

relations which have t(ai3) as a base has to contain exactly one relation
in Qz, say aéB without loss of generality, and m—~3 relations in Q - {Ql U

QZ}. Let the set of QZ without aé3 be denoted by Q

| B 1 7 H
93 = {a34, Gggseecs Oy

. v 7 voU)
which have t(a14) as a base be 94 U {a24’ a34} or, equivalently, 94

3 and be arranged to

m}' Next take a'lé and let the set of m~2 relations

{ué4, a§4} as the transfermed form.

We proceed this way. Then eventually we have one relation left

in Q - {Ql U 92 Ueoao U erz} since we take (m-~i~1) relations from the

remaining set each time we work on o).. Let the last one be Q = {a }
1i m-1 m—-1,m
! = ¥ ¢ — = ' = = t =
and 9 {um—l,m}’ then t(og,m-1) t(uz’m_l) ces t(umez,m—l)
t 1 = 1 = = v
f(amrl,m)' Note that t(ul’m) t(uz’m) v t(am—l,m)'

Let ¥(x) = ui if |x|= 2 and P(x) = s* if |x| # 2. Then we obtain
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an m—synthesis of {, p(Q), from which all o € Q are derivable. That is,

we obtained an m-integration of .
Q.E.D.

Finally we give an example of the compaction of binary relations
which will hopefully clarify the procedure described above.
Example 4.4 Let {2 be a non-redundant set of the following binary

relations on S = {a,b,c}:

o, = [G@a)], o= [G@al, ey= [GD],
(a,b) (a,c) (a,c)
o, = (a,a)) Gg = (a,b) |, ag = (a,b)
JECRS (a,c) (a,c)
(b,a) (b,b) (c,b)
L (b,c) (b,c) (c,c)

Note IQI = 6 = 4(4-1)/2. Hence m = 4.
Then this set of relations satisfies the condition described in

the theorem. For, let us examine the front and the tail of each relation.

£(a;) = £(a,) = £lay) = {a}
t(a)) = £(a,) = £(a;) = {a,b}
£(ay) = £(a)) = £lag) = {a}
ta,) = tla,) = £(og) = {a,c}
£(a,) = £(o)) = £(ay) = {a}
tlay) = tlog) = tlag) = {b,c}
f(a

= t(al) = f(a.) = {a,b}

4)
t(a4) t(az) = f(a6) = {a,c}
f(ch) = t(ocl) = f(oc4) = {a,b}
t(og) = tlag) = tlag) = {b,c}
f(a6) = t(az) = t(océ) = {a,c}

tlag) = tlag) = t(a.) = {b,c}
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Therefore we can compact these six binary relations into one 4-ary
relation. Actually, following the procedure described above, Qi = {ul, Cys

= = ' = =
u3} so that f(ul) = f(az) f(a3). Ansz {aA, as} so that f(a4) f(qs)
= t(ul). At this point we have one relation o left. Let Qé = {a6}, then
f(a6) = t(az) = t(a4) and t(a6) = t(a3) = t(us). In this case we did not
reverse any relation because we had arranged them that way in advance to

avoid the complexity.

Now we have an 4-integration of @ by defining } as follows:

P (1,2) — @1 (2,3) — u4
(1,3) — o, (2,4) —> o
(1,4) — Gy 3,4) — G

and all other factors are non-essential.
Then, indeed,

p) = ((a,a,a,b)
(a,a,a,c)
(a,a,c,b)
(a,a,c,c)
*(a,b,a,b)
(a,b,a,c)
(a,b,c,b)
(a,b,c,c)

i
It

and Plz(\b(ﬂ)) 0‘13‘ P13(LIJ(Q)) 052: P14(w(§2)) =

|
Q

3’

i
|
Q
|
Q

P23(1P(Q)) 0‘54a P24(‘P(Q)) = 9o P34(\P(Q)) =

Therefore ¥(Q) is lossless. /1



CHAPTER V

RELATIONAL DATA STRUCTURE

5.1 Introduction

Before we go back to the subject of relational systems, let us
summarize some results relevant to this chapter.

1. Relations are sets.

2. There exist isomorphic relations.

3. Most properties of binary relations are extendable to higher
rank relations.

4. Some relations are decomposable while some are not.

5. The set of elementary relations of a relation is enough for
the lossless synthesis of the relation.

6. 1If a relation can be generated from a set of relations, then
it can be generated from the skeleton of the set, i.e. I(Q) <:Z(Q*).

7. Up to m(m-1)/2 binary relations can be compacted into ome
m~ary relation.

The significance of the decomposition theorem is that one needs
not only unary and binary relations but also higher rank relations to
specify a relational system, i.e., there is no way to describe a system
by only unary and binary relations. Let a relational system be (8,92), then
by (6) above I (Q) C Z(Q*). Therefore the replacement of Q by Q* does not
affect the power of the system at all. Now let o = Y(Q*) be a compaction
of %, then Z(Q) C I(a) since P(Q*) is lossless. This means that we can
replace (S,R) by(S,a), one relation on S. Furthermore the process,

decomposition and compaction, may possibly provide a reduction of the
75
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storage space. However in practice one may not always want this type of
compaction since not only storage space but also the efficiency of the
processing is a big factor for the evaluation of real systems. There is
always a trade-off between time and space.

Now let us look at some data structures for relational systems.
Many previous relational systems [12,37] had built-in data structures in-
herent to their implementation languages even if it was known they needed
more efficient data management. Most of them were implemented in LISP.

For example, in SIR by Raphael the data structure consists of a set of ele~
ments S each of which has a property list. Each property list has the list
of celation name, elements) pairs, which indicate that the element is related
to the elements in the pair by the relation in the pair. In short, they

are structured by lists. It is quite obvious that we need a data structure
independent of the embedding languages.

The current tendency in information processing makes the descrip-—
tion of patterns and concepts more and more important. And, as mentioned
earlier, data management will become critical in such systems because the
amount of data is very large. On the other hand, data base systems are
becoming increasingly flexible and powerful. McGee proposed a labeled
graph model [25] and Codd described a relational model [7] for data manage-
ment system. However it has been already pointed out that a labeled graph
model is still too limited in its power of representation. How about Codd's
model? Fundamentally his model is the most general. But the relational
model, at least by his description, is primarily intended for formatted
tables. His model assumes the existence of keys in all tables and, there-
fore, only uses decomposition intoAtwo partial relations. 1In this sense

his relational model is very specialized. We have to extend his model in
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order to use it for relational systems.

The relational data structure described here can be regarded as
an extension of not only Codd's relational model but also of LEAP's associa-
tive data structure [ 28] and Childs' set theoretical data structure [4].
In an associative data structure, an association is a triple (A, 0, V) where
A is an attribute, O if an object, and V is a value. There are three tables,
an attribute table, an object table and a value table, to speed up the
process. LEAP's model can be regarded as the special case of the relational
data structure which allows only unary and binary relations. This limitation
makes it possible to find an efficient storage structure. A set theoretical
data structure consists of a table of sets and a table of elements. Sets
may be, for example, ''male', '"female'", "white" and "black". Each element
has a list of set names in which the element appears. For example, the
element "John'" may have a list of set names "'male'", "white", "35 years old"
and "professor'. Obviously the model uses only unary relations. Since
relations are sets, one can define relations of any rank by using Childs'

"complex"; however, it lacks operations on relations.

5.2 Definition of Relational Data Structure

The relational data structure D consists of a set of elements E, a
set of relations R and a set of operations on relations 0, i.e., D = (E, R,
0). The structure isschematically shown in Fig. 5.1. The set of elements
is represented by the element name list (ENL) and the element data (ED).
Each element is assigned its own unique internalwﬁame, and the information
about the element is kept in ED. For example, ED may keep the list of all

relation names in which the element appears. The set of relations R is

represented as follows. The relation name list (RNL) keeps all relations
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known to the system by their internal names. Each relation in RNL has a
pointer to the data of the relation in the relation data (RD). This RD holds
various information about relations, including a pointer to the description
of each relation. The description may be a table of n-tuples or a descrip-
tion of synthesis or projection. The symbol for this distinction may be
kept in RD. The set of operations O contains all operations defined in the
data structure and provides all necessary and fundamental operations for

the efficient manipulation of data.

Since this is a data structure for relational systems, every
operation involves at least either specific elements or specific relations.
If some relation is specified, we go to RNL. If elements are specified, we
go to ENL. One can think of many other supplementary components to speed up
the processes. An extreme case may be some sort of inverted files. However,
the most desirable thing in the sense of speed is the availability of assoc-
jative memory. Anyway the above is the fundamental structure of the rela-
tional data structure. Next we explain each part of the data structure in
more detail.

ENL is the table of element names with pointers. Fach element is
assigned a unique internal name at the time the element becomes known to the
system. ENL is ordered for fast access to the elements. The use of hashing
may make the system very complicated. Corresponding to each element name
is the pointer to the record of the element.

ED is the set of records. Therefore it does not need to be
ordered. Also the sizes of the records do not need to be the same. Each
record may contain the code of the external name as well as the list of the

relations in which the element appears.
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RNL is the table of relation names. Each relation has its unique
name internally. Relations also come and go like elements. Again RNL is
ordered. Although some relations may have the same names as elements
externally, their internal names should be different. Each entry in the
table has a pointer to the record of information corresponding to the
relation.

RD is the set of such records. Each record contains a pointer to
the description of the relation itself. In addition, it will contain the
external name and the symbol which indicates whether the description is a
table or a description of a synthesis or projection, along with other neces-
sary and convenient information about the relation. The function and the
format of RD and ED may vary widely, depending on the application. For
example, the record of a relation may contain the list of all elements which
appear in the relation, or more extemsively, the range of the relatiom,
which may speed up some operations.

RS is the set of descriptions of relations. The relation may be
a list of n-tuples or the description of a synthesis or projection. The
structure of the table of n-tuples will be considered in Section 5.4. If
the description is a synthesis, the mapping y has to be given along with the
set of relations Q; if it is a projection, it will be simply a pair comnsist-

ing of a relation o and a factor L in PL(a).

5.3 Definition of Operations

Since relations are sets, all set operations are intrinsically
applicable here if the relations are of the same rank. Other relation
operations are also given. For each operation below the abbreviation of the

name may be attached.
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SUBSET(A,B); SUB(A,B)
T if A T B, F otherwise.
EQUAL(A,B); E(A,B)
T if A = B, F otherwise.
EQUIVALENT(A,B); EQUIV(A,B)
T if lA{ = {Bl, F otherwise.
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Tif A N B = ¢, F otherwise.
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Ll L2
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5.4 Representation of Relations

In Section 5.2 we did not menltion how the relations can be
represented internally. Of course any relation of rank m can be intuitively
represented as an n by m table where n is the cardinality of the relation.
In this section we consider the representation of relatioms.

First, we will examine the logical, i.e., machine independent,
representation of relations. Since unordered sets and ordered sets (sequen-—
ces) are involved in the description of relations, these two types of sets
should be distinguished in some way in their representation. It seems very
natural to represent sets by trees and ordered sets by lists since in a set
there should not be any precedence relation among members while in a
sequence there should be. For example, let us look at the set 5 = {a,b,cl},

(1) of Fig. 5.2. Since each of a, b and ¢ is a member and, there is no

¢y (2) ® °

(3)

Fig. 5.2

precedence relation among them, each has a direct arc from the node S, which

indicates that each is a member of S. One may add arcs between each pair
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as shown in (2) of Fig. 5.2. But this would be costly. If a is a set
T = {ajsay} instead of an element, a is replaced by a tree T as shown in
(3) of Fig. 5.2. On the other hand, if S is ordered, i.e. S = (a,b,c), S

may be represented by a list as in (1) of Fig. 5.3. Since the set is

S
S S
L @
T S o P P @ a ¢
a b c
a b c
P S
by Py Py
1) (2)
3)
Fig. 5.3

ordered, any element in the set can be specified only by its relative
position. Again more costly structures can be considered. Refer to
Lowenthal [24] for more variations of the representation of tree structure.
1If one of the elements is a sequence, say b = T = (bl’bZ’bB)’ then b is
replaced by a list T as shown in (3) of Fig. 5.3. 1In general, we can
represent any nested expression of sets and ordered sets this way. For
example, W = {a,b,{{c}},(a,{b,d},c),((a,b),c)} will be represented by

Fig. 5.4. Note that the number of vertical levels (the number of vertical
arcs to the node) corresponds to the depth of the nest which contains

the element. Also note that the structure of {a} is identical to that of

(a), which is reasonable because the order of an ordered set containing
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just one element does not have any sequence.

a
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c b d a b
Fig. 5.4 Fig. 5.5

Now back to the representation of relations; a relation is repre-

sented by a tree each node of which is replaced by a list. For example, a
X . b _ _ i i 1 . ‘

texnary relation o with four members, o = {Ai l Ai = (al,az,a3), i=1,2,3,&},
will be represented as shown in Fig. 5.5. However this does not solve the
problem completely since this is a logical structure. We have to find an
efficient and small storage, i.e., physical, structure of relations. If we
ignore the recurrences of elements in a relation, the minimum storage

representation of the relation B seems to be n x m sequential locations

each of which keeps the element name, where m = r(B) and n = |8|. However,
when we consider the efficiency of the operations, we will see immediately
that this is not desirable. For example, such a representation is not flex~-
ible for various set operations.

There are two simple structures available for the representation

of sets. One is lists and the other is arrays. Let us consider the
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representation of ternary relation o. Then we have two different
representations for relations, (2) and (3) in Fig. 5.6, by applying arrays
to sets and lists to sequences in case of (2), and lists to sets and arrays
to sequences in case of (3). However, when we notice that a relation has
the same rank throughout the life of the relation while the set of nm~tuples
ig time~variant, i.e., may vary according to changes in the set of elements
and in the outside world, (3) seems to be more flexible than (2). The

structure (4) in Fig. 5.6 obtained by applying lists to both sets and

o

[¢)
e
= L
‘[ . Pt : .
 SEOS A ad ——
1) \,,_»CZ.

(2)

|

(3) (4)

Fig. 5.6



87

sequences is essentially the

¢,~——f same as (3) but may require more
. - ——
s I — — 7 space. When we consider permuta-
al a; as ) o )
Py 2 2 tion and decomposition operations,
Q/ 2 43

. . . the structure in Fig. 5.7 seems

very attractive. But it cannot

a* a ar be efficient for overall opera-

tions.

Fig. 5.7

5.5 Some Applications

The relational data structure described here is general enough
to handle the structures of sets, relations, and tables. Therefore, one of
the most significant features of the data structure is that all these
structures can be used simultaneously and in a uniform manner. Some poten-
tial fields for the application include data management systems, pattern
recognition, semantic information processing, graph theory, and network
analysis. In the sequel we will give some examples.

Tt should be noted that the design of an efficient data base is
the responsibility of the user. All relations have to be defined in
advance if they are referred to without specification. But the peint is
that one can choose which relations should have real data and which should
be only described by other relatiomns in order to optimize the speed and the
space since some relations are obtained by projection, synthesis and other
relational operations and since some relations are used frequently and

others are rarely used.
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Example 5.1 Let us consider family lineage. Given a population
of people, unary relations specify special classes in the population. For
example, the sets of males, females, children, boys, girls, those who are
older than 40, etc., are given by the corresponding unary relations. Then
we have various binary relations, e.g., father, mother, brother, sister,
son, daughter, aunt, senior by more than 10 years. Also we have higher rank
relations. For example, parent, grandfather-father-son and three brothers are
ternary relations.

In the case of family lineage, most high rank relations are binary
decomposable. As a matter of fact, three binary relations, 'husband-wife',
"brothers or sisters' and 'parent-child" relations, dlong with appropriate
unary relations may be enough to generate any other relations of family
lineage. Therefore, to make the example more interesting, we add the
two tables described below.

Let the data of the following relations be actually given:

Unary relations:

© §: a population of people
M: the set of males
F: the set of females
X: any subset of S

Binary relations:

a = {(x,y) | x is the husband of y}

™
Il

{(x,y) | ¥ is a brother or a sister of y}
vy = {(x,y) ] x is a parent of y}
Ternary relation:
§ = {(a,b,c) ! a is the household head of b and ¢ is the

age of bY b ¢ S}
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4-ary relation:
» = {(a,b,c,d) | b is the blood type, ¢ is the hair
color, and d is the eye color of a ¥ aeS}
Then the following are some examples which show how one may obtain
specific relations including sets by using the operations of the relational
data structure defined earlier.
1. the set of ages A
A = PRO(3,6)
2. the set of blood types B
B = PRO(2,1)
3. the set of hair colors HC
HC = PRO(3,)\)
4., the set of eye colors EC
EC = PRO(4,))
5. the relation w "is the wife of"
w = INV(a)
6. the relation u "is the mother of"
u = REST(1,F,y)
7. the relation yp "is the grandmother of"
yu = PRO((1,3),SYN(3,(1,2):u,(2,3):v))
8. the set of father FA of the people in X
FA = I(M,PRO(1,REST(2,X,Y)))
9. the number p of mother-child pairs whose blood types are the same
p = CARD(SYN(3,(1,20:u,(1,3):PRO((1,2),1),(2,3):PRO((1,2),))))
10. the relation k "is a cousin of"

« = PRO((1,4),SYN(4,(1,2):INV(Y),(2,3):8,(3,4):7))
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12.

13.

14.

90

the set N of people with no brother or sister

N = C(PRO(1,R))
the number q of households whose head is not related to any other
member by blood or marriage

q = CARD(PRO(1,REST((1,2),U(B,y,INV(y),a,INV(a),PRO((1,3),SYN(3,

(1,2):v,(2,3):v))) ,8)))

the number r of households whose head is of an age in a subset of A’
of A

r = CARD(PRO(1,REST(3,A',8)))
the set of people T whose blood type is b € B, whose hair color is h ¢
HC and whose eye color is e £ EC.

T = PRO(1,REST(2,b,REST(3,h,REST(4,e,1)))) /1]

Example 5.2 Let G = (S,I') be a graph, then the sets of various

subgraphs can be expressed as high rank relations. And they are binary

decomposable. Therefore one needs only the binary '"connection" relation T.

Unary relation:
S: the set of nodes
Binary relation:
o ={(a,b) | (a,b) ¢ T}
the set of complete subgraphs K4 of order 4
K4 = SYN(4,(1,2):0,(1,3):a,(1,4):0,(2,3):0,(2,4) :0,(3,4) :0)
the set of simple cycles Cé of order 4 ‘
C4 = SYN(4,(1,2):0,(2,3):0,(3,4):0,(1,4):0,(1,3):C(a),(2,4):C(a))
the set of nodes which are directly connected from X, R
R = PRO(2,(REST(1,X,a)))

the set of all paths of length 3 from a node x to a node y, ny
ny = SYN(4,(1,2):REST(1,{x},0),(2,3):0a,(3,4):REST(2,{y},a)) ///



CHAPTER VI

SOME APPLICATIONS OF RELATIONAL SYSTEMS

6.1 Introduction

In this chapter two different applications of relational systems
and, hence, the use of decompositions and syntheses of relations, namely pat-
tern recognition and graph theory, are presented. First, we formalize pattern
classification by using the concept of relational system and apply it to the
problem of synthesis of patterns. Secondly, an algorithm to find all cliques
by synthesizing complete subgraphs from smaller complete subgraphs is des-

cribed.

6.2 Pattern Recognition
6.2.1 Relational pattern description
In this section an attempt is made to apply relational systems to
pattern description. Although the word "pattern" is used, it should not be
limited to patterns in a narrow sense, i.e. pictures, but rather a pattern
should be interpreted as any system as mentioned in Chapter 1. The impor-
tance of pattern descriptions cannot be over-emphasized because they are
critical for both pattern classification and pattern analysis[11,34].
Definition: A pattern P is a pair P = (S, {Ri}iel) where S is the

s i, .
set of primitives of the pattern and each R” is a relation of rank n, on S,
i M
i.e. RRC S 7.

Example 6.1 Let us consider the pattern shown in Fig. 6.1. The
2 .3

pattern may be expressed by P = (S, {Rl,R ,R ,Ré,RS}) where S = {a,b,c} and
91
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R™ = "square" = {(a),(c)},

R2 = "left of" = (a,b)},
(b,c) a b c
(a,c)

R3 = "rectangle" = {(b)},

R4 = "right of" = (b,a)),
(c,b) Fig. 6.1
(c,a)

R = "between" = {(a,b,e)}. /1]

It should be remarked that all primitives are already determined
and the relations can be detected. Also it should be noted that these prim-—
itives and relations depend primarily on one's concern and the possibility of
identifying the primitives and the relations. Although methods are being'
developed in this direction[14,20,23], we are not concerned with this topic
here.

Some of the terms defined earlier which are used here are: The pro-

jection or partial relation corresponding to a factor L of a relation a is

, . . . n
the relation uL whose domain is restricted to the domain L of § . A permu-

tation of a relation o corresponding to a permutation 7 is a relation w(a) =

{(aﬂ(l),an(z),...,aﬁ(n)) § (al,az,...,an) € a}. An m-synthesis of a set of

relations is an m—ary relation each of whose binary factors is covered by
some relation of the set or a trivial relation.

Definition: A subset of relations {Rk}ksK of a set of relations

{R.,} i.e. K € I, is a generating set of {Ri}ie

I S, if every relation R, is
i iel i

I
obtained from {Rk}keK by applying the operations of projection, permutation
and synthesis to them. It is said to be minimal if no subset of it is a

generating set.
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The motivation of the definition of generating sets is clear. A
generating set is sufficient to provide all information about the pattern
which can be obtained from the original set of relations. We write {ai}iel

*
= {Bj}jsJ to denote that {oci}iEI is a generating set of {Bj}jeJ'

Definition: Two elements a and b in S are ambiguous if the inter-
change of a and b in all relations of the pattern leaves the relations un-
changed. They are said to be unambiguous otherwise. An element in S is said
to be unique if the element is unambiguous with any other element in S.

What does ambiguity mean? It means that even though two ambiguous
elements have different names, they are identical characteristically in the
pattern, i.e. with respect to the relations defined in the pattern. There-
fore, for example, if one is retrieved by some condition expressed by using
the relations and other elements, then the other is also retrieved. Does
decomposition help disambiguate ambiguous elements? No. Actually we have
the following.

Theorem 6.1 Two elements in S are ambiguous iff they are ambiguous
with respect to a generating set of the pattern.

The proof is trivial. Also it is easy to see that syntheses do not
help disambiguate if they are loss-free.

Definition: A pattern is unambiguous if any two elements of S are
unambiguous.

Example 6.2 The pattern is rectangular as shown in Fig. 6.2,

The primitives are edges, a, b, ¢

and d. Let us choose the follow- b
ing four non-isomorphic relations, a c
two binary relations o and B, one d

ternary relation y, and one &4-ary Fig. 6.2
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relation 8. And let us assume that these are all essential as far as our

present interest is concerned.

a = ((a,b), (b,a) B (a,c), (c,a)
(b,c), (c,b) i(b,d), (d,b)}
(c,d), (d,c)

(a,d), (d,a)

vy = ((a,b,c), (c,b,a) § = [(a,b,c,d), (a,d,c,b)
(b,c,d), (d,c,b) (d,a,b,c), (d,c,b,a)
(c,d,a), (a,d,c) (c,d,a,b), (c,b,a,d)
(d,a,b), (b,a,d) (b,c,d,a), (b,a,d,c)

Here o may be the relation "adjacent to", "connected" or "perpendicular”,
R the relation "indirectly connected", or '"parallel", y the relation "between',
and 6§ the relation "circuit", in the physical and structural meaning.

Now the pattern P in Fig. 6.2 is represented by P = (S, {Ri}) where
s = {a,b,c,d} and {Ri} = {a,B,y,8}. Then the followings are the simple con~-
sequences of the definitions above.
(1) o # B.
(2) v45 = 8.

) Sijk = y, where i, j and k are distinct.
(5) 813 = 8y, = 8-
6) &, =6,, =6,, =a where i,j = 1,2,3,4 and i-j = 1.

14 41 ij
(7) e=1{g,=aAga=BAE, =aAnbg=0aAE, =BAEy = o} = 8.

(8) =1y, =Cyg=a ALy~ B} = v.
* * k3
Therefore {o,B} = {0,B,v,6}, {y} = {a,B,v,8}, and {8} = {a,B,v,5}.
In other words, each of {a,B}, {y} and {8} is a minimal generating set of
{a,B,7,68}.

Finally note that a and c, and b and d are ambiguous because they
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are interchangeable as also seen in the figure. Therefore none of them are

unique. /11

6.2.2 Relational pattern classification
Next we consider pattern description in light of pattern classifi-

cation. Suppose that we have a set of patterns {Pj}j 7= {(Sj, {Rji})} such

€

that all Sj's are the same and each Rji has the same structural meaning for

n

all 4. In other words, for any different j1 and jz, Rj . Rj 5 c S L have
1 2

the same structural meaning although it may be that Rj : # Rj T It may be
1 2

i

thought that the relation Rji varies not from time to time but from pattern
to pattern in the set. In this sense we denote the relation which represents
he R,.'s simply by R,.

the ii pLy by R,

Definition: Ri is a discriminant relation of P1 and P2 if Ri

distinguishes Pl from P2’ i.e. if Rli # RZi'

Definition: A set of relations {Ri}ie is a discriminant relation

I

set of {Pj}je if {Ri}isl distinguishes each pattern from others, i.e. if

J

there exists a discriminant relation in {Ri}i for each pair of patterns in

el

{Pj}jeJ° A discriminant relation set is minimal if any proper subset of the

set cannot be a discriminant relation set.

Definition: {Ri}iel is a characteristic relation set of P, if

{R,}, distinguishes P, from all other patterns in {P,}, A minimal
i“iel 3 33 ———

eJ’
characteristic relation set is also defined similarly.
Therefore a discriminant relation set is always a characteristic
relation set for any pattern while a characteristic relation set of any pat-
tern is not necessarily a discriminant relation set of the set of patterms.

~

. a
Definition: The active primitive set S~ of a pattern P = (S,{R,}

i“diel

)
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is a set of elements S = {x l ElRiA} x is an element of Ri}.

Since we are talking of patterns which are supposed to be distinct,
it is quite conceivable that the active primitive sets S?'s of the patterns
Pj's are also different. ©Noting this point, the procedure to distinguish two

patterns Pl and P2 may go as follows.

1. ISi[ = {Sgi? If not, they are different.

2. Si = Sg ? If not, they are different.

3. Try to find a relation R, such that R.. # R,.. If there is
i ii 2i

one, they are different.

4, Take a new S and repeat 1 to 3. Or it is decided that they are
the same.

An example is given to illustrate the terms defined above.

Example 6.4 Suppose that S = {a,b,c,d} although d does not appear

in the patterns Pl, P2 and P3 as shown in Fig. 6.3. Then the active primitive

a = {{(a,b)} a = {(a,b)} o = {(b,a)}
g = {(a,b),(c,p)} B = {(a,b),(c,b)} B = {(a,b),(c,b)}
Y = {(b,C)} Y = {(agc)} o= {(b,C)}

Fig., 6.3

set is S? = {a,b,c} for i = 1,2,3. Suppose further that we have chosen three
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binary relations on S, a = "to the left of", B8 = "larger than", and vy =
"above!'. The abstract relations corresponding to these physical relations
for the patterns are also given under each pattern in Fig. 6.3.

Note that the relation B is not useful at all in classifying the
patterns Pl’ P2 and P3. 0 is a discriminant relation of Pl and P3, and of P2

and P3. Y is a discriminant relation of Pl and PZ’ and P2 and FB. Neither

o nor y alone can be a discriminant relation set of {P P.} although they

1°F2°F5

are the characteristic relation set of P_ and P_,, respectively. Therefore

3 2°

{a,Y} is the only minimal discriminant relation set of {Pl, PZ’ P3}. Iy

6.2.3 Synthesis of patterns

In this section a special type of pattern synthesis problem is
considered: Given a discriminant set, we construct patterns which satisfy the
discriminant set condition as well as other necessary relatioms. Since,
specifically, we are going to synthesize characters, the topic of character
recognition is briefly described.

The character recognition may be conveniently categorized as fol-
lows [17]:

1) recognition of special stylized fonts,

2) recognition of machine imprinted fonts,

3) recognition of hand-written characters.

Even though during the last several years the developments in 2)
and 3) have been so remarkable that the rate of erroneous recognition has
reached 1/2 % in some systems which is enough for practical use, still many
users prefer to adopt the approach 1) because of the efficiency and the cost
of the systems. Today several typical stylized fonts are used in the U. S.

These fonts were designed by various ad hoc techniques and experiences. It
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is very conceivable that the designers used all sorts of ad hoc techniques to
design the characters which are easily discriminated from each other. One
important thing, however, in the design of sylized fonts is that they must
be easily recognized by human beings too. Here we will describe a systematic
method for designing stylized fonts by using the set of numerals, 1, 2,...,
9, 0, as an example.

The ordinary figures of these numerals are given in Fig. 6.4.
First we have to determine primitives. Each primitive should be easily
recognizable. Furthermore in general the fewer the number of primitives, the
better. Another condition is
that any two characters must
be distinguishable by the / y 3 6‘ 5
primitives and the relations é 7
on primitives. By checking
the numerals one by one we can Fig. 6.4
find that at least a circle,
a line and a half circle have
to be in the set of primitives. We can distinguish numerals using only unary

relations, i.e. these three primitives, as described in Table 6.1.

circle 0, 6, 8, 9
line 1, 4, 6, 7, 9
half circle 2, 3, 5

Table 6.1
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two circles

one circle

Circle

circle + line 6, 9
Line line

line + something s 7

one half circle + something s D
(Half Circle two half circles 3

Table 6.2

If we classify numerals using these three primitives, we obtain the
result in Table 6.2. This means that we have to distinguish only three pairs:
(6,9), (4,7) and (2,5). This can be easily accomplished by either adding
more primitives or by using relations on the primitives we already have. At
this point we should recall that the designed numerals have to be easily
recognizable by human beings.

Let us look at each pair in order. First, 6 and 9 can be distin-
guished by the relation between the circle and the line. In other words, in
"g" the line is onto the circle while the circle is onto the line in "9".

It may be advantageous to think that 6 is obtained by rotating 9 by 180°.
Next, for 4 and 7 we feel that two more primitives, i.e. r and .., are neces-
sary. Finally, these two additional primitives can also be used for 2 and 5.

The figures of numerals designed this way are given in Fig. 6.5.

One may be surprised to find how few primitives and combinations actually

produce numerals.
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i d S b8 do

Fig. 6.5

6.3 Complete Subgraphs
6.3.1 Synthesis of complete subgraphs

The concept of complete subgraph in graph theory is very fundamen-
tal, yet not much study of them has been done. On the other hand, the cover-
ing of edges by edges has not been studied although the covering of nodes by
edges or edges by nodes of graphs has been much investigated[2,15,29).

Since relations are our subject in this study, and not only edges
which are binary relations but also complete subgraphs can be thought of as
well-behaving relations, we will study complete subgraphs with respect to the
covering of edges by edges. In other words, let G = (X, ¢) be a graph where
X is a set of nodes and ¢ is a binary relation on X, i.e. ¢ C,Xz. Since we
consider graphs without cycles, ¢ = ¢—1 and (x,x) ¢ ¢ Vx ¢ X. As usual, (x,y)
and (y,x) are denoted by one edge (undirected arc) in graphs. Then the rela-
tional system G can be conveniently represented by (X, {¢i}) where each ¢4
represents the relation of complete subgraphs of order i, assuming that what
we are interested in about this graph is complete subgraphs. Therefore

¢, <X, 0, C.XZ,..., $ < X" where |X| = n. Let [¢.] represent the set of

elements x such that Eﬁ(al,az,...,ai) £ ¢i and x = aj for some j = 1,2,...,1

Then it follows immediately from the definitioms that X C:Ui21[¢i], therefore,
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x= U2 [6.1and [0;12 6,15 ... ole 1.

We showed earlier that complete subgraphs of order 3 as an example
of the triangle relation is binary decomposable. Here we generalize the
claim. The proof is straightforward and omitted,

Lemma 6.1 The relation of complete subgraphs of order k is (k-1)-
ary decomposable.

In this section we are considering an application of synthesis of
relations. It was stated earlier that complete subgraphs of various orders
can be thought of as a set of relations on the graph. And complete subgraphs
of order 3 can be obtained from complete subgraphs of order 2, and the com-
plete subgraphs of order 4 can be obtained from the complete subgraphs of
order 3, and so on although the converse is not always possible. In other
words, we generate all complete subgraphs by repeatedly synthesizing complete
subgraphs of order k from the complete subgraphs of order k-1. Before we
give the complete algorithm for this, the presentation of the following fact
which will be used in the algorithm is due.

Theorem 6.2 Let g be a relation of the complete subgraphs of order

k (k z3), then

where Ll, L2 and L3 are any three different (k-l)-ary partial relations of a.
Proof Since A = (al,az,...,ak) is a complete subgraph of order k
if (ai,aj) € ¢ b’ai # aj, i,j = 1,2,...,k, we only have to make gure that a,
and aj are connected V’ai # aj. In other words, a; and aj are both contain~
ed in some complete subgraph of order k-1 i/ai,aj. Suppose that one (k-1)-

ary partial relation a covers (2,3,...,k)-factor and another QL covers

1 2
(1,3,4,...,k), without loss of generality, since O =0 otherwise. Then

L I

L
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just one binary factor (1,2) has been covered by neither o nor dL . But
1 2
it is then obvious that any other (k-1)-ary partial relatiomn or different
3

from ¢ and o can cover the factor.
Ll L2

Q.E.D.

This theorem provides a drastic reduction of time for synthesis of
complete subgraphs. We can use this theorem for those syntheses in which
only (k-1)-ary factors are essential and all other factors are non-essential.
This is an example of type 2 synthesis. Of course it is not true for general
relations. This specialty comes from the property of strong symmetry of the
relations. The following example shows that the theorem is not true in
general.

Example 6.5 Let ¢ = {@,1,2,2,2),(2,1,1,2,2),(2,2,2,2,2)} be a
5-ary relation on S = {1,2} as shown in Fig. 6.6, then a is clearly 4-ary
decomposable. Since
%yass = (1,2,2,2)}

(1,1,2,2)

(2,2,2,2)
1
)

(1,2,2,2)
(2’1’2,2)
(2,2’2’2)

%1345 =

1,1,2,2)) , Fig. 6.6
(2,1,2,2)
(2,2,2,2)

o
1245

* * 2
(2,1,2,2,2) € Goans * %1345 * %1945 although (2,1,2,2,2) ¢ a. 11/
6.3.2 Description of algorithm

In the sequel, to eliminate redundancy in the complete subgraphs

generated, each relation of the complete subgraphs of order k contains only
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those members (al,az,...,ak) such that {al,az,...,ak} is a complete subgraph
of order k and a; < a, < .. < a, by the predetermined ordering, i.e. {A =

(al,az,...,ak) | A e ¢k and a; <a, < ... < ak}.
Now an algorithm to find all complete subgraphs of a given graph is
described. The following symbols are used in the algorihtm.
Ci: the ordered list of all complete subgraphs of order i.
C?: the j-th complete subgraph of order i in the list Ci.
L: the initial list of edges.
Limit(i): the number of members in the list Ci, i.e. the number of

different complete subgraphs of order i.

The macro structure of the algorithm is given by the flowchart shown

in Fig. 6.7.
T
= 2
C =1

N
, . Generate Ci+l from Ci
i = i+l

N




Generation of Cl+1 from C*

Find next Ci

104

Determine if

€

i+l

Fig. 6.8

. . i+
How do we generate ct 1 from C? According to Theorem 6.2, ct

can be generated from the synthesis of c''s which may be any three i-ary

1
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i+
factors of the (itl)-ary relation ct 1. Therefore we only have to generate
a natural join of Cl, ¢ and Cl, i.e. C' % ¢* % C'. The number of the opera-
tions will not grow as fast as order {Limit (i)}3 because we will exploit the
i
property that al < az < hes < ai for any (al,az,...,ai) e C7. The flowchart

of an algorithm for this operation is given in Fig. 6.8. For each C; we look

for C; such that the last i-1 elements of C; are exactly the same as the

Find cCi
' k

k = j+1

k > Limit (i)

k = ktl

T
F
T
M= (ey0C 000t oCyy)
S| ouT

Fig. 6.9
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Determine if M ¢ CiTt

p (le’CkZ"
m = j+1

m = mt+l

<....

i+l _ Cl+4. U (M}

Fig. 6.10

first i-1 elements of Ci. For the (i-1)-composition of C; and C;, denoted by

i+l . i . i
M= (le’ckl’ckZ""’cki)’ to be a member of C , there must exist Cp in C
i

such that C; is the same as some i-factor of M different from C; and Ck'
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Then clearly c' is located between C% and C. since C is ordered and c = c,
P 3 k pl jl

and cP2 = Cpo Therefore only a partial portion of Ci has to be searched for
Ci and C;.

Fig. 6.8 gives the flowchart of an algorithm to generate Ci+l from
Ci, which was explained above. For each table Ci we need, in order to accom~
plish the goal, three pointers, one for j, one for k and one for p. Among
them the following relations always hold: j < k, and j < p < k. The flowchart
shown in Fig. 6.9 gives an algorithm to find C;'s.

Also an algorithm to determine whether M is a member of Ci+l is

shown in Fig. 6.10. This completes the algorithm that generates all complete

subgraphs of a given graph.

6.3.3 Discussion
1. It is easy to show that the algorithm just described terminates
for all finite graphs. Let the number of nodes in the graph be n, then clear-

1

ly ™2 ¢ i any case. Hence the algorithm ends up with STOP in Fig. 6.7.

Also we can show that each subroutine does not have an infinite loop.

1, then M ¢ Cl+1 until it is add~

2. If M is determined to be in Ci+
ed by the operation Ci+l = C:H-1 U {M}, that is to say, each C§+l is generated
only once by the algorithm.

3. The algorithm can be easily modified so that single nodes are
also regarded as complete subgraphs of order 1.

4, Since the purpose of the algorithm is to generate all complete
subgraphs, it is not difficult to generate all maximal complete subgraphs, 1.
e. cliques, by modifying the algorithm slightly.

Two algorithms to fiqd all cliques are found in the recent litera-

ture [1,3,27]. There is a fundamental difference between the algorithm given
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here and those in the references. Namely, the former is edge-oriented while
the latter are node;oriented. In the latter case each node is tried to gene~
rate all candidates for cliques of order 2, and then each of these candidates
is tried to generate all candidates for cliques of order 3, and so on. The
level of the algorithm given here is the same as that of the algorithm of
Bierstone [27] in the sense that both are exhaustive methods. On the other
hand, the algorithm by Bron et al[3] tries to generate all cliqﬁes without
generating all complete subgraphs, if possible, by using the branch and bound
technique. Of course we do not claim that our approach is always better than
the others. However, it is obviously advantageous to use this approach when
the number of edges is relatively small. Furthermore, this approach will

become definitely attractive if associative memories are available.



CHAPTER VII

CONCLUSION

7.1 Summary

In this study we first mention the areas which use relations such
as pattern recognition, semantic information processing, and data management
systems, and point out the importance of the uses of relations in such areas.
We can abstract these systems using the model of relational systems. A
relational system is a pair (S, {ai}iel) where S is the set of objects in the

system and {ai}i is the set of all relations on S which specify the char-

el
acteristics of the system. Since we are concerned with these systems with
respect to information processing, the internal representation of rational
systems and its efficient manipulation is quite important. Therefore our
goal is the development of a data structure suitable for relational systems
which is here called the relational data structure.

First of all, in order to deal with relations we find that little
is known about higher rank relations. Therefore we start this study by
analyzing higher rank relations and by giving definitions which are used
later. We pursue the analysis of higher rank relations by analogy with
binary relations. That is, in Chapter 2 we try to regard binary relations
as a special case of high rank relations so that the only difference between
binary relations and higher rank relations is the rank. Along with the
extension of various terms for binary relations to higher rank relations, we
present some possible extensions of the properties of reflexivity, symmetry
and transitivity. And then using these extended properties compatibility

and equivalence relations are extended to higher rank relations.

109
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Then we move to the decomposition of relations. Our original
motivation to study the decomposition of relations is the possibility that
higher rank relations can be decomposed into lower rank relations, and hence,
eventually, to binary relations. This is desirable since lower rank relations
are generally simpler, more intuitive, and easier to handle, and we know
much more about binary relations. In Chapter 3 we define the most general
and natural form of decomposition. Even though the possibility turns out to
be false, in general, it is still desirable to reduce the ranks of relations
so that we may have simpler relations and we can keep only a set~of common
lower rank relations for a given set of relations. After mentioning some
aspects of decompositions, we describe maximal decompositions in which each
resulting relation is not further decomposable. These relations which are
not further decomposable are called elementary relations. Since there are
non—decomposable relations, we mention how one might approach them if he
nevertheless wants to reduce their ranks. At the end of the chapter some
characterizations of decompositions are given.

In a relational system (S, {ai}iei) each relation o, can be of any
rank. Even if they are all necessary relations, some relations may be
obtained as projections of others and some relations may be constructed from
the combinations of lower rank relations especially if some of the
relations can be decomposed into lower rank relations. And if we decompose
them into lower rank relations, we may need to obtain the original relations
from their decompositions. On the other hand, if we can compact a set of
relations into one relation, it is quite possible that we have a reduction
in storage space. These aspects motivate the consideration of the converse
problem to decomposition, which is called synthesis.

In Chapter 4, after defining the m-synthesis in its most general
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form, we give various types of synthesis by placing restrictions on the
mapping function. Then we mention the importance of loss-free syntheses
which are those from which all original relations which took part in the
synthesis can be derived. Next we consider the consistency problem by intro-
ducing the concept of relational spaces. Our main result is that ()< T(R%),
which says that all relations that can be obtained from a set of relations
by using any number of projections and syntheses can also be generated from
the skeleton of §. Finally, because of the complexity of general cases, we
primarily concentrate on the compaction of binary relations and determine
when m(m-1)/2 different binary relations can be put together into one m-ary
relation.

Then, in Chapter 5, we develop a relational data structure based
on the results obtained in the previous chapters since none of the existing
data structures seem to be suitable for the representation of relational
systems. It turns out that the data structure is general enough to represent
sets, relations and tables, regarding sets as unary relations and relations
and tables as higher rank relations. It is pointed out that Codd's rela-
tional model of data bases is too specialized for formatted tables, i.e.,
data bases with keys, and Childs' set theoretical model uses only sets while
LEAP's associative model is concerned with only binary relations. Fundamen-
tal operations are defined for the relational data structure. These
operations include set theoretical ones as well as relational operations
defined in the previous chapters. This relational data structure is intended
to be independent of machines and also the operations are supposed to be
independent of the embedding languages.

Finally, two applications of the concept of relational system are

presented in Chapter 6. First, we formalize the problem of pattern classifi-~
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cation by using relational systems and apply it to the problem of synthesis
of patterns. The idea is illustrated by using the set of Arabic numerals.
Secondly, an algorithm to find all cliques by synthesizing complete subgraphs
from smaller complete subgraphs is described. This approach is different
from the existing ones in that the former is edge-oriented while the latter

is node-oriented.

7.2 Remaining Problems

Some open problems are pointed out as we proceed through the study.
We will list some further problems below.

1. Although it seems very difficult, it would be desirable to have
a better method for checking decomposability which is convenient enough for
practical use. It is true, however, that we can easily determine the
decomposability of a given relation quite often if the relation is meaningful
in the real world, i.e., not an arbitrary table and the like. Therefore the
troublesome relations in this respect are mainly tables. And if the tables
have keys, then we may use the results by Rissanen and Delobel [33].

2. There is a fundamental problem for the relational systems
approach. That is the fact that every relation has to have its unique
specified rank. And if the ranks of relations are different, the relations
are different. This seems to be a limitation of the approach. Sometimes we
do not want to specify the rank for some relations. For example, cliques
can be relations of rank 2, 3, ..., and n in general, depending on the number
of nodes in the cliques. Therefore it seems more natural to have a relation
"clique" without specified rank than to have many different relatioms for
"clique'", such as "clique of order 2" of rank 2, "clique of order 3" of rank

3, and so on. It is probable that the solution to this problem will give
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the relation system approach more flexibility.

3. 1In this study we exclude irregular decompositions, i.e.,
non-regular decompositions, partly because regular decompositions are less
complicated in the process, i.e., automatic, in a sense, compared with
irregular ones, and partly because irregular decompositions are difficult
to find and characterize. We have not found a good approach to irregular
decompositions of relations excluding tables with keys, i.e., Codd's decom-
position. Irregular decompositions are attractive because they decompose
relations into fewer relations than regular decompositions and some relations
which cannot be decomposed by regular decompositions may be decomposed by
irregular ones. Therefore the study of irregular decompositions seems to be
fruitful. Furthermore we do not know much about the relationships between
irregular and regular decompositions. For example, sometimes we notice
that some of the relations in a regular decomposition are redundant, i.e.,
the original relation can be constructed from a synthesis without these
relations.

4, The relational data structure described here has not been
implemented. Therefore the efficiency and storage requirements are not
certain at this moment. Also in order to implement the data structure, more

details will have to be worked out.

7.3 Conclusion

In short, this study pays its attention to relational systems as
an abstract model of various important systems. Since relational systems
generally contain higher rank relations, relations, especially higher rank
relations are studied. Two important concepts of relations, decompositions

and syntheses, are developed. Also various related problems are comnsidered.
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It is concluded that this study contributes to the theory of relations and
that the usefulness of the study is demonstrated by presenting a relational

data structure and some applications.
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