BUDDY SYSTEMS
by

James L. Peterson and Theodore A. Norman

October 1974 TR-59

This research was supported, in part, by the National
Science Foundation under Grant Number MCS75-16425.

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

ABSTRACT

Two algorithms are presented for implementing any of a class of
buddy systems for dynamic storage allocation. Each buddy system
corresponds to a set of recurrence relations which relate the block
sizes provided to each other. Analyses of the internal fragmentation
of the binary buddy.system, the Fibonacci buddy system, and the weighted
buddy system are given. Comparative simulation results are also

presented for internal, external and total fragmentation.

Key Words and Phrases: dynamic storage allocation, buddy system,
fragmentation, Fibonacci buddy system, weighted

buddy system.

CR Categories. 3.89, 4.32, 4.39

1. Introduction

Two dynamic storage allocation algorithms derived from the buddy
system have recently been proposed. Knowlton [5] and Knuth [6] des-
cribed the original buddy system. This memory management scheme allocates
blocks whose sizes are powers of two. (In this paper, we will call this

system the binary buddy system to distinguish it from the other buddy

systems considered.) Hirschberg [4], taking Knuth's suggestion [6, Pro-

blem 2.5.31] has designed a Fibonacci buddy system with block sizes which

are Fibonacci numbers. Shen and Peterson [12] have described an algorithm

for a weighted buddy system which provides blocks whose sizes are Zk and

3.2K,

These three buddy systems are similar in the overall design of the
algorithm with the major differences being in the sizes of the memory
blocks provided and the consequent address calculation for locating the
buddy of a released block. The address calculation for the binary and
weighted buddy systems is straightforward, but the original procedure
for the Fibonacci buddy system was either limited to a small, fixed
number of block sizes; or a time consuming computation [4]. A recent
note by Cranston and Thomas [1] has removed this problem, and made the
address calculation for the Fibonacci buddy system comparable with the
address calculation for the binary or weighted buddy systems.

Another important variation among these three buddy systems is in
memory utilization. Buddy systems suffer from both internal and e%ternal

fragmentation. Internal fragmentation is the result of allocating memory

only in predefined block sizes. A request for a block of memory which is

not one of these specified block sizes must be satisfied by allocating

the next larger block size, with a resulting loss in available memory.

External fragmentation results from breaking available memory into blocks

which can be recombined only if they are buddies. Thus, a request for
memory may have to be rejected because no single block is large enough
although the total amount of available memory (in smaller blocks) may be
sufficient to satisfy the request many times over.

The amount of internal and external fragmentation in a buddy system
depends upon the distribution of requests for memory which must be satis-
fied, and the block sizes provided. For a paiticular distribution, one
buddy system may have lower fragmentation that the other systems, while
the situation may be reversed for another distribution. Since it is
generally not easy to change the memory distribution to match the alloca-
tion strategy, it would bé useful to have available a class of dynamic
storage allocation algorithms.» For a particular problem, an algorithm
could be selected from this class to minimize fragmentation and hence
maximize memory utilization. Hirschberg [4] has suggested that such a
class of algorithms could be defined to allocate block sizes which satis-

fy the following recurrence relation.
L, =1L, . +1L, (k > 0)

For each value of k, a new buddy system is defined. (k=1 is the binary
buddy system; k=2 is the Fibonacci buddy system.) The weighted buddy
system does not satisfy the above recurrence relation, however, so this

class appears to be too restrictive. In general, a buddy system can be

based upon any sequence of numbers which satisfy a set of n recurrence

relations with the form,

L, > L,

i Z 1“‘1+L8(i) i=1, eesy DN L =0. (l)

where B is any function over the positive integers with B(i) < i.

In Section 2 of this paper, we present an algorithm for the request
and release~procedures which can be used to implement any buddy system
whose block sizes satisfy the set of recurrence relations (1). 1In Sec-
tion 3, we discugs an even more general class of buddy systems and their
implementation. Section 4 presents some analytic results on the expected
internal fragmentation for a uniform distribution of requests, while Seé-
tions 5 and 6 investigate both internal and external fragmentation for
several buddy systems by means of simulation. Section 7 summarizes and
presents some conclusions concerning the advantages and disadvantages of

the buddy systems for dynamic storage allocation.

2. A Generalized Buddy Algorithm

Let Ll, LZ’ ieny Ln be the set of block sizes provided by the buddy
system such that these block sizes satisfy the set of n recurrence relations

(1) for a function B with L. <L

< ... <L . For a block size L,, we
1 2 n i

call i its size index. The generalized buddy system will split a block
of size L, into two blocks of size L, and L_,.\.
i i-1 g{(i)
The major data structure for the generalized buddy system is its avail-

able space list. The available space list is an n-vector which is indexed

by the size index of a block. The ith element of the available space list
is a record with a HEAD and TAIL field pointing to the front and rear of a

doubly linked 1list of all available blocks of size Li. Other fields may be

3

present in the available space list elements (such as a field which records

the number of available blocks of size Li)' In particular, Li and g(i)

may be stored as fields of an element of the available space list. This

data structure, or any of its fields, may be implemented as separate paral-

lel n-vectors rather than as a vector of records, if necessary for effici-

ent accessing.

The generalized buddy algorithm can now be stated. TFor a request for

a block of size index, i, the request procedure is:

Ql.

Q2.

Q3.

Search up the available space list from the ith entry for the
smallest available block (of size index j at location P) such
that j z i. If no block of sufficient size is available, memory
overflow has occurred, and the appropriate action must be taken.
If such a block exists, remove it from the available space list,
and continue to step Q2.

While j >1i, split the block at location P of size index j into
two buddies: (1) a left buddy at location P of size index B(j)
and (2) a right buddy at location P + LB(j) of size index j-1.
Reset P and j to specify the smaller of the two buddies which
is large enough to satisfy the request, and attach the other to
the available space list. (i.e., if i - B(3) then (,3) + (P,8(3))

else (P,j) « (P + L),j—l).)

B(j
When j = i, allocate the block at location P.

For a release of a block at location P of size index i, the release

procedure is:

L1l. Set j <« i.
L2. While the buddy of the block at location P of size index j is
available,
a. Remove the buddy from itsbavailable space list.
b. Recombine the block at location P of size index j
and its buddy. Reset P and j to specify the block
which results from this recombination. (i.e., if
the buddy of (P,j) is (Q,%2), then (P,3) < (min(?P,Q),
1+max(j,2).) |
13. When the block at location P, of size index j, camnot be recom-
bined with its buddy (because the buddy is not available), attach
the block at location P to the available space 1iét for blocks

of size index j.

The determination of the availability of the buddy of a block is the
central computétion of a buddy system. It involves first calculati;g the
‘address of the buddy and then determining that the block aﬁ that address is
(1) available, and (2) the desired buddy. Figure 1 illustrates this pro-
blem.

To aid in the computation of the availability of the buddy of a block,

we define three fields which are stored in each block in the buddy sys-

tem. These fields are:

(1) a TAG field, a Boolean value which records the available (TAG=0)

or allocated (TAG=1) status of the block.

(2) a TYPE field, a two bit value (ab) which specifies by its first
bit (a) whether this block is a left (a=0) or right
(a=1) buddy. The second bit (b) records the first
(if a=0) or second (if a=1) bit of the TYPE field
of the parent block of this block. This allows
the TYPE fiéld of the parent block to be redefined
when this block and its buddy are recombined. (The
definition of this field is due to Cranston and
Thomas [1].)

. (3) an INDEX field, specifying the size index of the block. If n
block sizes are provided by the buddy system,

then [1og2ﬁ] bits are needed for this field.

On most machines, for many buddy systems, these fields can be packed into
the first word of the block.
Using these fields, we can now define the computation of the address, Q,

of the buddy of a block at location P with size index j, as,

P+ Lj if TYPE(P)

=)
il

ob,

= P if TYPE(P) 1b.

=~ Lg(5+1)

The block at Q is the buddy of the block at P only if the buddy of P
has ﬁot been spli; into subblocks. If P is a left buddy (TYPE(P)=0b),
then the block at Q is the buddy of P if (and only if) the block at Q is
a right buddy (TYPE(Q)=1b). All subblocks of Q which are at location Q

are left buddies. If P is a right buddy (TYPE(P)=1b), then the block at Q

Figure 1.

The block at the address of the buddy of the block at P is
available, but the buddy of the block at P (at Q) is not available.
Squares (&) indicate available blocks; Circles indicate

blocks reserved by the user (8), or blocks split into
buddies (o).

is the buddy of P if and only if the size index field of Q, INDEX(Q), is
equal to B(j+l), where j is the value of the INDEX field of the block at
location P. j+1 is then the size index of the parent of the block at loca-
tion P and B(j+l) the size index of the buddy of the block at location P.

This completes the description of the generalized buddy system al-
gorithm. TFor special cases of the B function, more specific and more ef-
ficient algorithms can be defined (such as in [6] for the binary buddy sys-
tem), but the algorithm just described will work for any B function. Ap-
pendix A lists a Pascal version of the request and release procedures,
where SIZE[i] is Li and SUBBUDDY[i] is B(i).

The algorithm described was designed to allocaté memory from a large,
initially available, block of size M, addressed from 0 to M-1, where M = Ln
In this case the available space list is initialized to indicate one avail-
able block, of size index n at address 0. If the size of the inmitial block,
M, is not one of the defined block sizes, Ll’ LZ’ ey Ln’ then we initial-

ize the available space list to indicate that a set of blocks of sizesL., , L. ,

| 2-1 31 &
..., L, are available at locations 0, L, , L, +- L, , ..., L L., , respect—
% % S DR S /) i=1 11
ively, with M = £ L, . The TYPE fields are set to indicate all blocks as

i=1 ‘1
left buddies (Ob). This prevents the release routine from trying to com-

bine these blocks when any of them became available. If an address of a
buddy is generated which is greater then M~1l, it is treated as a buddy which
is not available. As an example, an initial block of size 25 would provide
initial blocks of sizes 16, 8, and 1 at locations 0, 16 and 24, respect-
ively, for the binary buddy systemy or of sizes 21, 3 and 1 at locations

0, 21 and 24, respectively, for the Fibonacci buddy system.

Block sizes can be in any unit of storage (bytes, halfwords, words,

8

doublewords, etc.) since if Ll’ L2, ceesy Ln is a solution to a set of
recurrence relations (1), then y'Ll, Y-LZ, vens y*Ln is also a solution,
for constant y. An initial block whqse absolute starting address is L,
rather than zero, can be used in a buddy system by considering all ad-
dresses to be relative to location L. Other similar minor variations

to the basic buddy system are also possible.

3. An Even More General Class of Buddy Systems

The major problem in the algorithm described in Section 2 wés the com-
putation of the address of the buddy of a released block. An alternative
approach to the solution given in Section 2 is to store the address of the
buddy of a block explicitly in the block when the two buddies are created.
Thus if P and Q are buddies, each will contain a pointer pointing to the
other. This can be extended to allow aﬁy number of buddies to be created
from a block by linking them in a circularly linked list. However, now when
a block is split into subblocks, and these blocks are recombined, we
must be able to recreate the pointer to the buddies of the recombined block.
One solution would be to break the pointer up into parts which are stored
in the header of its subblocks, as was done with the TYPE field of the al-
gorithm presented in Section 2. If sufficient room exists in the header
word of each block, this change is a minor variation of the algorithm
of Section 2.

Another approach is to retain the header of a block when it is split
into subblocks., If y storage units are needed for a header containing a
TAG field (to indicate available/allocated status), an INDEX field (to store

a size index), and the pointer to the next buddy in the circularly linked

list, then a buddy system can be designed for any set of block sizes

Ll’ Lz, eres Ln which satisfy a set of recurrence relations of the form

>
L, ~u+L, + L, + ... + L, i=1, ..., n
Ji,1 94,2 Ji,0(4)

with the restriction that ji r<’i for all r, 1 z T 2 2(i). A block of

b4

size index i at location P is split into a header word (of length u at

location P)and 2(i) buddies, circularly linked through their header words,

of size indices, j. ., j. cees 3. .\ at locations P+u, P+utl, ;
Q,(i)—l’ Jl,l 31,2’ i J‘_L,Q,(l) ’ Ji’l,v
eewy PHut L L, respectively. If the pointer is dismembered and
r=1 ii g 2
i, .

stored in the header words of the subblocks as mentioned above, we have
u=0. It would be necessary to require that ji,r = i-1 for some r (for
each i) because of the search policy in the request procedure, but a more
complicated search policy might be able to remove this constraint also,
for some buddy systems. (The problem is: 1If a block of size index i is
requested and not immediately available, where do we look for a block
which can be split to produce a block of size index i? In the algorithm
of Section 2, we look at i+1, i+2, etc. 1If a blockvof size indexli+l is
available, it makes sense to use this to produce the requested .

block of size index i.)

An example of the use of this algorithm 1s a system which requires
blocks of sizes 12, 80, and 132, the first for a control block, the se-
cond for a card image buffer, and the third for a line printer image buf-
fer. Figure 2 illustrates how blocks can be split in a system with p=2,
starting from a block of size 136. Under the binary buddy system, it

would be necessary to allocate blocks of sizes 16, 128, and 256 with large

10

internal fragmentation. The weighted buddy system does somewhat better

on internal fragmentation with blocks of sizes 16, 96, and 192, (Re-
member that the header word in these systems takes at least the first word,
so to have 12 usable words, at least 13 must be allocated,) The Fibonacci
buddy has very low internal fragmentation with block sizes of 13, 89, and
144, but with an initial block of size 144, only 8 blocks of size 13 can
be created, while 9 blocks of size 14 can be created from an initial block

of size 136 in the pointer buddy system of Figure 2.

4. Internal Fragmentation

Unless the set of requested block sizes is a subset of the set of
provided block sizes, it will be necessary to allocate more memory than
is requested for some requests. The memory wasted due to this overal-
location is internal fragmentation. The amount of internal fragmentation
will vary depending upon the set of provided block sizes and the distri-
Bution of requestsfor memory. Thus, it can be used as a point of compar-
ison for buddy systems.

A measure of internal fragmentation can be defined in several ways.
Several researchers [4,7,11] have considered the ratio of average allo-
cated space to average requested space. This measure is difficult to
compare with external fragmentation in order to compute total fragmenta-
tion, however. Another suggested measure is the ratio of overallocated
memory (average allocation-average request) to total memory size, M, but
this results in a measure which is a function of both the buddy system

and the memory size. We have chosen to use a measure of internal frag-

11

Size

Frequency
136 @ 1
90 ‘I!l' 1
44 0 | 4 ' 3
FololoYololo¥ololo

Figure 2. Tree structure for a pointer buddy system with p = 2, providing

o

usable blocks of sizes 12, 80, and 132.

12

mentation which is the ratio of overallocated memory to allocated memory.
This measure is a function of the buddy system and the request distri-
bution. By knowing the proportion of total memory which is allocated,
the ratio of overallocated memory to total memory can be computed.
Letting A(i) be the size of the allocated block for a request of

size i, and Py be the probability of a request of size i, we have the
internal fragmentation for a request distribution with requests for blocks
of memory in the range 1 to m defined by,

m
T op,(A(1)-1)
. i
i=1
m

T p,A(1)
i=1 *

Notice that since we are intereéted in comparing the utilization of
memory of buddy systems, the probability Py is the probability of find-
ing a block of size i in memory. This probability will, in general, dif-
fer from the probability of a request for a block of size i. The proba;
bility of a block being allocated in memory is influenced not only by
the request distribution and the memory management scheme, but also by
the size of memory and the lifetime distribution for requests. If re—
quest lifetimes are independent of request sizes and the size of memory
is large, relative to the maximum request size, the difference between
these two probabilities will be minimal, however.

In order to compare the performance of the previously published
buddy systems, (binary, Fibonacci, and weighted), the internal fragment-

ation for a uniform probability distribution has been investigated. A

13

uniform distribution of blocks in memory, or even a uniform request dis—
tribution, is admittedly not very realistic, but it is mathematically
tractable and the relative performance of buddy systems under this dis-
tribution is believed, by the authors, to bé indicative of the performance
under other distributions. The simulation results of Section 5 for both
a uniform distribution and a (truncated) exponential distribution and of
Section 6 for three actual request distributions support this belief, but
a major motivation for examining the uniform distribution is its mathe-
matical tractability and the fact that real memory distributions tend to
be very system specific and hard to work with analytically.

For a uniform distribution of requests from 1 to m, the average

internal fragmentation is,

Am—am am
)\ -_-l_..)..\....
m m
where,
m m2 +
a =1+2+3+4+ ...+m= ¢ i = m
m . 2
i=1
Am?x(l)+>\(2)+x(3)+>\(4)+... + A (m)

with A(i) being the size of the block which is allocated for a request

of size i (A(d) = Lk such that Lk-l <i= Lkl Noting that A(i) is con-

. < <
< i £ - =
stant for Lk—l i Lk, we can express the sum Am’ for Lk m Lk+1’ as,

14

Lym @y) # 0l Ty

withm= L -+ a(L

< < . .
" Ktl Lk)’ 0= a = 1. The parameter o indicates how close

m is to Lk or Lk+l' For buddy systems based on the set of recurrence re-

ations (1), this is then,

ool Feae)

The Fibonacci-like sequences which were suggested as the basis of a class
of buddy systems by Hirschberg [4] have been studied by Harris and Styles

[3] and Ferguson [2]. If we define,

u, = 0 o for 1 <0,
U = 1,
=u, + for i 2 0
Uigq = Uy ui;p or i s
then we have L. = u, with
i i
Bi) =1 ~-p -1 i>p
= 0 i=gp

i
(For p=0, u, = 273 for p=1, ui = Fi+l)‘ Then,

15

k~p-~1
Am =14+ I u
=0

u, + au

=]
]

au *u

17 Yiaprl ¥ %Y1t Ykep

0fas1

Harris and Styles [3] have investigated the sequences u, and proved many

useful summation and product formulas. They also show that the limit,

. ~ . ptl_ _p
as k -+ », of uk+l/uk is the largest real root of the equation X - X' -

Ferguson [2] gives numerical values for these roots.

If we let ¢ be the largest real root of L P 1= 0, (15¢=2),

then u, may be approximated by c'¢i for an appropriate choice of c¢. (For

p=0, u, = 1-21; for p=1, u, = F, ﬁ¢1+1/V§l) The approximation is quite

i i i+l

good, even for small i due to the form of the zeros of xp+1 - %P - 1. [2]

With this approximation,

k-p~1 ,
A o214 3 c2¢21+p+l + 0“:Zd)Zk—-p+1
m .
i=0
2k-p+1 p+l
- 2 2k-
= 1 + c2 ¢ 5 ¢ t+ac ¢2k ptl
9 -1
c2 2 , Zk;p+1 p+l
=14 S— LA+ ale =D et
o -1
2
2k~ 2k~ —
a = E;Ei;E. = % [c2¢2k+2ac2¢ ILa2c2¢ k 2p+c¢k+ac¢k p].

And internal fragmentation is,

1 - ;g__ 1 - (¢2—1)[¢2k+2a¢2k'p+a2¢2k"2P+(¢k+a¢k—p)/c}
2
m i 269“51‘+ [l+(¢2—l)a]-¢2k—P+l _ ¢p+l)

(o4

16

anqjas k > o

(%1 (6% + 204P + oD

=1
2[1+a (p2-1) 1Pt
D (P
26(6P + aloPT2-4P)]

D (P
26(P + a¢ +a)

This function of o has a maximum value of %i%-when o =<$%I
¢-1

mum value of~755 wvhen o =0 or a = 1. Table 1 lists the values of ¢

, and a mini-

and the minimum énd maximum internal fragmentation for p = 0, ..., 10.
The binary buddy system (corresponding to p=0) has an internalbfragment—
ation of 25 to 33 percent of allocated memory. The Fibonacci buddy sys-
tem (p=1) suffers from 19 to 23.6 percent wasted memory due ﬁo internal
fragmentation. This agrees with the computations of Knuth [6] (for the
binary buddy) and Russell [11] (for the Fibonacci buddy).

The block sizes of the weighted buddy system do not correspond to
any of the systems whose internal fragmentation is given in Table 1. In-
ternal fragmentation for the weighted buddy system requires the analysis
of two cases:

€] ok S ns 3-2k’1, m azk, 12a=3/2,

and (2) 3-2k"’l Sqps 2k+l, m aZk, 3/2 £ o S 2.

il

i

17

Internal Fragmentation

P ¢ _max min
0 2.000 0.333 0.250
1 ~1.618 0.236 0.191
2 1.466 0.189 0.159
3 1.380 0.160 0.138
4 1.325 0.140 0.123
5 1.285 0.125 : 0.111
6 1.255 | 0.113 . 0.102
7 1.232 0.104 0.09% .
8 1.213 0.096 0.088
9 1.197 0.090 0.082
10 1.184 0.084 0.078

Table 1. The asymptotic values of the maximum and minimum
internal fragmentation for a uniform distribution
of requests from 1 to m (as m-+») for buddy sys-

tems based on the recurrence relations u:,L = ui—-l +

ui_p__l .

18

As m »oin these cases, internal fragmentation becomes,

@ 1 - 2a2 - 6a2 - 18a + 11 1 S a°5.§
(6a - 11/3) 11 - 18« 2

2) 1 - 2a2 - 3a2 - 120 + 10 3x o < 2.
(8a - 20/3) 10 - 12a 2

Internal frggmentation for the weighted buddy system has a maximum value
of 5/27 (=0.185) at o = 11/9 and a minimum value of 1/7 (=0.143) at ¢ = 1
or o = 2. A local maximum of 1/6 (=0,167) occurs at a = 5/3 and a local
minimum of 5/32 (=0.156) occurs at a = 3/2.

From these calculations, we see that the weighted buddy system al-
ways has lower internal fragmentation than the Fibonacci buddy system
which always has lower internal fragmentation than the binary buddy sys-
tem. Because of the similar block sizes for the binary and the weighted
buddy systems, we can compare their internal fragmentation directly to
show that the binary buddy system has from 2.08 (m = 3-2k) to 1.72
(m = 1.08v2k) times more internal fragmentation than the weighted buddy
system. Clearly the weighted buddy system performs much better than
either the binary or Fibonacci buddy systems, in terms of internal frag-
mentation.

It must be emphasized however that these results are valid ohly for
the particular theoretical distribution considered here. TFor a real
distribution, internal fragmentation may be considerably different de-
pending upon the "fit" of the provided block sizes to the requested

block sizes.

19

5. External Fragmentation, Total Fragmentation, and Fxecution Time

Internal fragmentation is not the only measure of memory utili-
ation, however. External fragmentation can also decrease the effective
size of availéble memory. Unlike internal fragmentation, which occurs
continuously in a buddy system, it is a matter of definiﬁion whether
external fragmentation can be said to occur before a request for memory
must be rejected because all available blocks are of insufficient size
(i.e., before memory overflows). A measure of external fragmentation is
the proportion of total memory which is available when overflow occurs.
This measure depends upon the specific sequence of réquests and releases
which precede overflow, and is therefore difficult to deal with énalytic—
ally, although some attempts to analyze other measures of external frag-
mentation have been made [10].

Internal and external fragmentation result from different properties
of the buddy system, but both decrease the effective size of the avail-
able memory which is being managed by making portions of that memory un-—

usable. We define total fragmentation of a buddy system be the total a-

mount of memory which is unusable due to either internal or external frag-
mentation (normalized by dividing by the total memory size). Since our
definition of internal- fragmentation is the proportion of allocated memory which
is unusable, while external fragmentation is a proportion of total memory,
total fragmentation.is not a simple sum of internal and externmal, but

rather,

total

it

(1 - external) internal + external

il

internal + external - internal-external.

Another important property for a buddy system is its running time.

20

The original advantage of the buddy system over first-fit or best-fit
memory management schemes was its reduction in search time to find and al-
locate an available block of the appropriate size. Three statistics are
important in a buddy system. In the élgorithm description of section 2,
these are the number of times that steps Q1 (the number of searches), Q2
(the number of splits), and L2 (thé number of recombinations) are executed.
In equilibrium, the number of splits will ﬂe equal to the number of re-
combinations, so only two statistics are needed. Also, the number of splits
is always less than or equal to the number of searches, and if, as would
be hoped, the number of searches is normally O or 1, these two statistics
will also be equal. (The discrepancy between the number of searches and
the number of splits occurs when a block of size Lj’is split into sub-

blocks of sizes L, and L is used to

/ i-1 8(3 B()
continue the splitting. In the binary buddy system, B(j) = j~1, and the

)’ and the block of size L

two statistics are equal.)

A simulation of four buddy systems (binary, Fibonacci, weighted, and
the F-2 buddy system based on the recurrence relation Li+l = Li + Li~2)
was used to obtain comparative values of internal, extermal, and total
fragmentation as well as the average number of searches, splits, and re-
combinations. Request and release procedures for a general buddy sys—-
tem were programmed. Since we wished to obtain both internal and ex-
ternal fragmentation figures, the memory management schemes were driven
at overflow in the simulation. A 31-bit uniform pseudo-random number

generator was used to produce an unbounded sequence of requests ac-

cording to either a uniform distribution from 1 to m or a (truncated)

21

exponential distribution with mean m/2. Associated with each request
was a uniformly distributed block lifetime. If a block was allocated

at time T then it was queued for release at T plus the lifetime of the
bloék. Requests were made until overflow occurred. Then blocks were
released (and the simulation timer incremented as needed) until the
block which caused overflow could be successfully requested; the sys-
tem then returned to making requests until overflow occurred again.
This process of alternately requesting and releasing blocks continued
until a fixed number of (simulated) time units had elapsed. At regu-
lar intervals, statistics on internal, external, and total fragmentaﬁion
were taken. The number of searches, splits and recombinations were also
recorded. Identical request sequenceswere given to all buddy systems.

For our simulations, a memory of 10,000 words was simulated. The
block lifetimes were uniformly distributed from 1 ﬁo 10. The simulations
continued for 4000 time units at first, and as our budget became tight-
er for 2000 time units (with no significant change in results.) The
uniform request distributions were investigated for m, the maximum re-
quest size, varied from 40 to 1000 in steps of 10.

For the exponential request distribution, the distribution was trun-—
cated to generate requests which were less than 1000 with a mean which
varied from 50 to about 400 (to match the mean of the uniform distri-
bution) by steps of 25 (due to budget pressures). The actual mean did
not vary by steps of 25, but increased more slowly due to the effect

of discarding requests greater than 1000. Thus the mean of the last

22

generating exponential distribution was 400, but the mean of the trun-
cated distribution was only 345. All results are presented in terms of
the true mean of the truncated distribution.

The re;ults of our simulation for internal fragmentation are pre-
sented in the graphs of Figure 3 (for a uniform distribution of requests),
and Figure 4 (for an exponential distribution of request). The curves of
Figure 3 agree with the computations of Section 4 to within 1 percent,
lending support to the validity of our simulations. Notice that both the
relative position and the average internal fragmentation of the four bud-~
dy systems do mnot change radically as'a function of the two distri-
butions presented.

Figures 5 and 6 present our_simulafion results for external frag-
mentation. We notice that although our measure of external fragmentation
is not directly comparable to the measures of other studies, our results
are compatible with the previous observations of Knuth [6] and Purdom
and Stigler [10]. The values obtained for the buddy systems also seem
reasonable if we consider that the lower internal fragmentation values
of Figures 3 and 4 were obtained due to the increased number of dif-
ferent block sizes which are available in the weighted buddy, and F-2
buddy systems over the number available in the binary and Fibonacci bﬁd—
dy systems. With a smaller intrablock difference, (Li - Li—l) a better
fit to the requested block size can be made, yielding lower internal
fragmentation. However, this also produces a smaller available buddy (if

'a block is split), and this smaller block is less likely to be as useful as

23

‘u01INQIAISIP 3sonbax wiogyTun ®B l0J uoTjezuswSeay jeuIDIU]

az1g 31sanbay aSesoay

*¢ 2an31yg

008 007 008 003 OOF 0

L 1 i , 1 L 1 1 i ! L c-c
-0

Pa3yB1am

cd. . ~

\ 20

muumSOnﬁnﬁ

Arewg -8°0

NAY

] jeuaduy

uoneudwSes

24

*uoTINgIilsTp 3sonbaa

Terauduodxa (po93edounii) ® 103J uoriejuswdeiJ TBUISIUT ‘4 san31g

271 1sanbay o8eraay

o0% 008 003 00T 0
b 1 i H { I A) | ooQ
-1'0
pa1y3ram I
5”
Nﬂ).\\le\)t\/ llllllllllllllll e 2
. -6’0
\M\.N\I\SIM\W/\/\/\II/\/ ..Mw.c

vl jrulauy

uoneyuwd

25

‘u013INQIA3STIP Isenbal wiojyun B 103 uofipjuLWBeRII [BUIIIXF

az1g 1sanbayy o8eraay

008 003

¢ 2and1g

PaIyS1aM

vl IBUJG]XH

.

uorneIuaud

26

‘u0T3INQTIISIP Isonboa [erjusuodxe ue J037 uorlejudwdeaI [RUAIIXY

az1g 3sanbay a8eroay

008 003 007

*g sandig

Axeurq
1d08U0q1,] ~
/
/
¢-d /
/ /
NN e \r A PR
A\ B \ PISFAAN - /
NN N /.\ N \\ RN \,\
~

pay3ram

00

X
S

&2
S

ol IBUJS}XE

.

uonelusw el

27

the larger buddies provided by the binary and Fibonacci buddy systems.
Th.ese small, unusable but availatble blocks contribute to higher external
fragmentation.

These considerations also lead us to the conclusion that these smaller
blocks will (being unused) be available when their buddies are released,
and hence will be recombined immediately, requiring the resultant pérent
block to again be split if the just released block size is requested again.
This shpuld result in an average number of searches, splits, and recombinations
which parallels the external fragmentation of a buddy system. Figure 7
presents the average number of searches for a uniform request distribution.
The graphs for the number of éplits and recombinations are identical to each
other and similar to the graph of Figure 7. The savings in the number of
splits due to using the smaller of B(j) and j-1 are minor. The largest
savings are for the Fibonacci buddy system where, for example, for a uni-
form distribution from 1 to 1000 the average number of searches is 0.44
while the average number of splits is 0.35. The sténdard deviations of
these performance measures increase as the external fragmentation increases
also (being on the order of 1.00 for the weighted buddy system).

The total fragmentation for the four buddy systems investigated is
plotted in Figure 8 (for a uniform distribution of requests) and Figure 9
(for an exponential distribution). While we apologize for the difficulty
in reading these graphs, one very important . conclusion can be drawn from

this exact problem: The total amount of usable space in a buddy system is

relatively independent of the buddy system used. The total fragmentation for

all thesefbuddy systems lies in a band with the difference between the best

and the worst total fragmentation being only 5 to 10 percent of total

28

*uoy3INQIalsIp 3senber wiojyyun ® 103 3sanbaa 1sd soydaeds jJo aoqunu a3easay 7/ 2an31g

az1g 3sanbay aeroay

00¢g 008 003

00%

195EU0qL . 50

ysonbay] 12 sayoarag jo Ioquny] I5eIAY

pa1y31om
-8°0

29

‘Uo13INQIAISTP 3Isonboa wiojgjun e 103 uorjejuswBrazy [elol g °and1g

az1g 3sanbay a3eroay

008 00z 0k O

€2
@
t1y [2i0],

-0

.

uonejuow 8

30

0ov

‘u0T3INQIAISTP Isenbaxa ferjusuodxe ue 103 uorlejuswSeay (elol ‘6 2an3Tg
2z1g 1sanbay a3eraay
008 003¢ 00t 0
! 1 i § [l 1
-0
pa1ydrop -~ -
A
1D2BUOqL]—— 80
L1eurg :
-¥°0

d 1¥I0L

tojejuawdea

31

memory. The standard deviation of the points on the total fragmentation

curves is in the same range (5 to 10 percent).

6. Simulations of Actual Request Distributions

In addition to the simulations using the theoretical distributions,
simulations were performed for each of the four buddy systems with each
of three actual request distributions. The actual request distributions,
listed in Table 2, were the distribution of buffer requests on the UNIVAC
1108 Exec 8 system at the University of Maryland [4], the distribution of
memory requests on an IBM/360 CP-67 system [8], and the distribution of
partition size requests on the IBM 360/65 OS MVT system at Brigham
Young University.

Note thai the University of Maryland and Brigham Young University
distributions are labeled '"continuous'. This is because their tables
consist of points on the cumulative distribution function between which
the probability is equally distributed over the integers. Consider, for
example, the first two entries in the University of Maryland table. This
implies zero probability for a request of size 1 or 2 and a probability of
.06 for each of sizes 3,4,5,6,7 and 8.

The CP-67 distribution is a discrete distribution. There is zero
probability of request sizes not shown in the table.

The simulations were run in the same way as the simulations of Sec-
tion 5, with the exception that the actual distributions listed in Table
1 were used to generate the sequence of requests, and because of the
smaller average - request for these distributions, a memory of only 1000

words was used.

32

University of Brigham Young

Maryland University CP-67

S1ZE CDF (%) SIZE CDF (%) SIZE PDF (%)
2 0.0 -3 0.0 1 11.1
8 36.0 16 6.4 2 0.2
10 44.0 32 16.8 3 3.7
15 54.0 48 27.6 4 24.8
25 84.0 64 40.0 5 21.9
30 94.0 80 45.8 6 0.3
35 96.5 96 62.7 7 0.6
40 97.5 112 82.6 8 11.2
50 98.5 128 94.9 9 2.0
70 99.3 144 95.3 10 4.1
100 99.6 160 95.7 11 0.2
200 100.0 176 96.1 12 0.2
192 96.4 17 0.9
("continuous'" distribution) 208 . 97.0 18 1.9
224 98.3 21 0.2
average request = 15.99 256 99.4 23 0.3
272 99.6 27 0.1
304 99.8 29 15.6
352 99.9 31 0.4
511 100.0 50 0.3

(""'continuous" distribution) (discrete distribution)

average request = 80.26 average request = 9.34

Table 2. Actual Request Distributions

33

The results of these simulations are given in Tables 2, 3 and 4. The
measured internal, extemal and total fragmentation are presented/ as well
as the expected internal fragmentation for each distribution and buddy sys-—
tem. The expected internal fragmentation was computed directly from the re-
quest distribution as definéd in Section 4. The results of these simulations
compare very favorably with the results obtained in Section 5 with the
theoretical distributions. Between 28 and 43 percent of available memory

is being wasted due to internal and external fragmentation.

7. Summary and Conclusions

We have, in this paper, considered a number of properties of dynamic
storage allocations schemes based upon the buddy system. We have presented
two general algorithms which can be used to implement a wide variety of
buddy systems. Then using these algorithms we investigated, first ana-
lytically and then by simulation, the fragmentation characteristics of
several buddy systems. These results, presented in Figures 3-9 and Tables
2-4, indicate that as intemal fragmentation decreases (due to more block
sizes) external fragmentation increases (due to more small blocks). Total
fragmentation remains relatively constant, with from 25 to 40 percent
of memory being unusable due to either internal or external fragmentation.
The execution time of the request and release procedures increases with
external fragmentation.

Some general comparisons can be made, hoWever, for the binary,
Fibonacci, and weighted buddy systems. The total fragmentation of the

weighted buddy system is generally worse than that of the Fibonacci bud~

34

Table 2. Simulation Results Using University of Maryland Request Distribution [4]

expected ,
internal interna’ external total
Buddy System fragmentation fragmentation fragmentation fragmentation
Binary .276 .276 .179 .406
Fibonacci .198 .199 » .217 .373
F-2 .155 154 .265 .378
Weighted .137 .137 .305 .400

Table 3. Simulation Results Using CP-67 Request Distribution [8]

expected
internal internal external total
Buddy System fragmentation fragmentation fragmentation fragmentation
Binary .182 .188 114 .281
Fibonacci 131 .136 .189 .300
F-2 .210 .216 .230 .397
Weighted .103 .107 .239 .321

Table 4. Simulation Results Using Brigham Young University Request Distribution

expected
internal internal external total
Buddy System fragmentation fragmentation fragmentation fragmentation
Binary ' .227 .227 .151 T .343
Fibonacci .222 .222 .212 .387
F-2 .163 .162 .318 .429
Weighted 134 .132 .323 .413

35

dy system. The total fragmentation of the binary buddy system varies
widely because of its internal fragmentation characteristics. Still the
variation among these buddy systems is not great, and the lower ex-
ecution time of the binary buddy would therefore seem to recommend it for
general use, although the execution time of the Fibonacci buddy system

is not much greater. The weighted buddy system seems to be less desir-
able than either the binary or the Fibonacci systems due to its higher
execution time and greater external fragmentation.

In conclusion then, we would recommend that the memory managemeﬁt
module of a system be constructed as either a binary or Fibonacci buddy
system before any information concerning the actual distribution of
block sizes is obtained (assuming of course that a buddy system is to
be used at all). With these systems, there is a‘reasonable assurance
that no better buddy system can be chosen without knowledge of the act-
ual request distribution. With the system in actual use, statistics
on the actual request distribution can be obtained and, if deemed ap-
propriate, a new buddy system can be tailored [9] to thaﬁ distribution
by use of the algorithms of either Section 2 or Section 3. The new
system can thén replace the original buddy system, to improve memory

utilization and execution speed.

36

References

[1] Cranston, B. and Thomas, R. A simplified recombination scheme
for the Fibonacci buddy system. Communications of the ACM 18,
6 (June 1975), pp. 331-332.

[2] Ferguson, H. R. P. On a generalization of the Fibonacci numbers
' useful in memory allocation schema. To appear in The Fibonacci

Quarterly.

[3] Harris, V. C. and Styles, C. C. A generalization of Fibonacci
numbers. The Fibonacci Quarterly 2, 4 (December 1964),
pp. 227-289.

[4] Hirschberg, D. S. A class of dynamic memory allocation algorithms.
Communications of the ACM 16, 10 (October 1973), pp. 615-618.

[5] Knowlton, K. C. A fast storage allocator. Communications of the ACM 8,
10 (October 1965), pp. 623-625.

[6] Xnuth, D. E. The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Addison-Wesley, Reading, Massachusetts, 1968, pp. 435-455.

[7] Lewis, T. G., Smith, B. J. and Smith, M. Z. Dynamic memory allocation
systems for minimizing internal fragmentation. Proceedings of the
ACM Annual Conference, (November 1974), pp. 725-728..

[8] Margolin, B. H., Parmelee, R. P. and Schatzoff, M. Analysis of free-
storage algorithms. IBM Systems Journal 10, 4 (1971), »p. 283-304.

[9] Norman, T. A. Tailored buddy systems for dynamic storage allocationm.
Proceedings of the Fourth Texas Conference on Computing Systems,
(November 1975), pp. 2B-3.1 - 2B-3.5.

[10] Purdom, P. W. and Stigler, S. M. Statistical properties of the buddy
system. Journal of the ACM 17, 4 (October 1970), pp. 683-697.

[11] Russell, D. L. 1Internal fragmentation in a class of buddy systems.
Technical Note 54, Digital Systems Laboratory, Stanford University,
(January 1975).

[12] Shen, K. K. and Peterson J. L. A weighted buddy method for dynamic
storage allocation. Communications of the ACM 17, 10 (October 1974),
pp. 558-562. Corrigendum, Communications of the ACM 18, 4 (April 1975),
p.--202. '

37

Appendix A. A General Algorithm for Buddy Systems

The following Pascal procedures implement the algorithm of section 2. The
constants null, n, and m ares;a special address indicating that overflow has occurred
in the request procedure, or that the buddy of the block at p is not available in
the buddyaddress function; the number of different block sizes which are provided
by the buddy system; and the size of the memory block which is being managed by
the buddy system, respectively. The attachtoasi and removefromasl procedures are
standard doubly linked list insertion and deletion routines. The buddyaddress
function returns mull or the address of the buddy of the block at p, if the buddy

is available for recombination.

CONST mull = -1;

TYPE address: null..m;
‘ strgeindex: 1..n

VAR size: array l[sizeindex] of 1..m;
subbuddy: arvay [sizeindex] of 0..n;
memory array [0..m]
’ of packed record
tag: (available,allocated);
a,b: (left,right);
index: sizeindex;

forward: = address;
backward: address;

end;
asl: array [sizeindex]
of record
head, tail: address;
end;

.38

procedure attachtoasl (p: address);

begin
with memory [pl, asllindex]
do begin
backward := null;
forward := head;
head := p;
if tail=null then tail := p;
end;
end;

procedure removefromasl (p: address);
begin
with memory [pl, asl[index]
do begin
if backward=null
then head := forward
else memory [backward]. forvard :
if forward=null
then tail := backward
else memory [forward].backward :

forward;

bdc kward;
end;
end;

function buddyaddress (p: address): address;
var q: address;
J: sizeindex;

begin
if memory[pl.a = left
then begin
‘ := p + size[memorylpl.index]; »
if (g>m) v (memorylql.a=left) v (memory [ql. tag=allocated)
then g = null;
end
else begin :
J := subbuddy [1+memory [p].index];
q :=p - stzeljl;
if (memory [q].index#i) v (memory{q].tag=allocated)
then q¢ := null;
end; '
buddyaddress := q;
end;

39

procedure request (var p: address; i:: sizeindex);
var J: sizeindex;

q: address;
begin
J =43
while (j<n) Ao (asl[j].head=mull)
do j :=g + 1;
if ast [f]. head=mll
then p = null
else begin
p := aslljl.head;
removefromasl(p);
while j>'¢
do begin
q := p + sizelsubbuddyljll;
with memory Iq]
do begin ~
tag := available;
b := memorylpl.b;
a := right;
index := J-1;
end;
with memory [p]
do begin
tag := available;
b := memory Ipl.a;
a := left;
index := subbuddy [§];
end;
if 1 < subbuddy [j]
then attachtoasl(q)
else begin
attachtoasl(p);
p =4
end;
J := memory [pl.index;
end;
memory [pl. tag := allocated;
end;
end;

40

&

ey

3 #

procedure release (p: address; <i:
var g,r: address;
begin
q := buddyaddress(p);
while q # null
do begin
removefromasl(q);
ifp>g

then begin »
with memory [p]

sizeindex);

:;-—-p; p:=q q:=1r end;

tag := available;
a := memory [pl.b;
b := memorylql.b;

do begin
index
end;
q := buddyaddress
end; ‘
attachtoasl(pl;

end;

:= 1 + memory [ql.index;

(p);

41

